JPH1116591A - Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus - Google Patents

Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus

Info

Publication number
JPH1116591A
JPH1116591A JP9170708A JP17070897A JPH1116591A JP H1116591 A JPH1116591 A JP H1116591A JP 9170708 A JP9170708 A JP 9170708A JP 17070897 A JP17070897 A JP 17070897A JP H1116591 A JPH1116591 A JP H1116591A
Authority
JP
Japan
Prior art keywords
gas
flow path
gas flow
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9170708A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Kazuhito Hado
一仁 羽藤
Junji Niikura
順二 新倉
Eiichi Yasumoto
栄一 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9170708A priority Critical patent/JPH1116591A/en
Publication of JPH1116591A publication Critical patent/JPH1116591A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell and a cell system capable of attaining highly efficient cell performance in supply of relatively low pressure and small volume of gas, and capable of keeping high efficiency for a cell system. SOLUTION: A gas supplying passage 12 engraved in a collector separator 5 is separated from a gas discharging passage 13, and all the gases of the gas supplying passage 12 are discharged to the gas discharging passage 13 after passed through an electrode layer and a catalyst layer. Since water drops in vicinity of the catalyst layer and unnecessary gas such as nitrogen are forcibly discharged, supplying of high pressure and high speed of gas is not required.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル電源や
電気自動車用電源、あるいは家庭内電源システムとして
利用可能な常温作動の燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a room-temperature fuel cell which can be used as a portable power supply, a power supply for an electric vehicle, or a home power supply system.

【0002】[0002]

【従来の技術】常温作動の固体高分子型燃料電池は、水
素などの燃料ガスを酸素と電気化学的に反応させ、電気
と熱とを同時に供給するものであり、その心臓部は従来
図11に示すように、スルホン基を含んだフッ素樹脂よ
りなる高分子電解質膜1を挟持する形で白金系の金属触
媒を担持したカーボン粉末を主成分とする触媒層2、ガ
ス通気性と導電性を兼ね備えた電極層3で構成されてい
る。さらに電極層3の外側には触媒層2へのガス供給を
になうガス流路4、これらの電極・電解質を機械的に固
定すると同時にマニホールド孔6を通じて供給ガスを各
電池に分配し、隣接する電池と電気的に直列に接続して
いる集電体セパレータ5、を電池基本構成単位としてい
る。
2. Description of the Related Art A polymer electrolyte fuel cell which operates at room temperature is one in which a fuel gas such as hydrogen is electrochemically reacted with oxygen to supply electricity and heat at the same time. As shown in the figure, a catalyst layer 2 composed mainly of carbon powder carrying a platinum-based metal catalyst sandwiching a polymer electrolyte membrane 1 made of a fluororesin containing a sulfone group, and having gas permeability and conductivity. It is composed of an electrode layer 3 that also has a function. Further, outside the electrode layer 3, a gas flow path 4 for supplying gas to the catalyst layer 2, these electrodes / electrolyte are mechanically fixed, and at the same time, a supply gas is distributed to each battery through a manifold hole 6. The current collector separator 5 electrically connected in series with the battery to be used is a basic battery constituent unit.

【0003】集電体セパレータ5は気密性と導電性、耐
食性が必要で、一般にカーボン材料がよく用いられてい
る。集電体セパレータ5の電極3との接触面に形成され
るガス流路にはいろいろなタイプがある。図12に示す
ように、マニホールド孔6を比較的大きく取り、ガス供
給側マニホールドからガス排出側マニホールドへ直線上
流路を多数形成したタイプ、図13の1本〜数本の細い
ガス流路を蛇行させたタイプ、あるいはこれらの中間タ
イプなどである。
[0003] The current collector separator 5 requires airtightness, conductivity, and corrosion resistance, and generally a carbon material is often used. There are various types of gas flow paths formed on the contact surface of the current collector separator 5 with the electrode 3. As shown in FIG. 12, the manifold hole 6 is made relatively large, and a large number of linear flow paths are formed from the gas supply side manifold to the gas discharge side manifold. One to several thin gas flow paths in FIG. 13 meander. Type, or an intermediate type thereof.

【0004】これら従来タイプのいずれのガス流路も基
本構成としては、ガス供給側マニホールドからガス排出
側マニホールドへつながったガス流路が形成されてい
る。また、ガス流路を形成する集電体部と、隣接する電
池とガスを分離するセパレータ部が部品としては別々に
構成されている電池もある。
[0004] As a basic configuration of any of these conventional gas flow paths, a gas flow path is formed from the gas supply side manifold to the gas discharge side manifold. In some batteries, a current collector that forms a gas flow path and a separator that separates gas from an adjacent battery are separately configured as components.

【0005】一対の電極層のうち、一方には水素などの
燃料ガスが供給され、他方には酸化剤ガスが供給され
る。燃料ガスとして水素を、酸化剤ガスとして酸素を用
いた場合について説明すると、ガス流路4によって供給
された水素ガスは水素ガス供給側の電極、すなわちアノ
ード表面を通過中に電極層3に取り込まれ、電極層3内
部を拡散しながら触媒層2に到達する。電極層3に取り
込まれなかった水素ガスはそのままガス流路4を通って
ドレインガスとして排出される。触媒層2では水素ガス
と高分子電解質1が共存する領域で電気化学反応が生起
され、水素イオンとなって高分子電解質膜中に取り込ま
れる。一方、酸素ガス供給側の電極層3、すなわちカソ
ード側でも同様に酸素ガスはカソード表面を通過中に電
極層3に取り込まれ、電極層3内部を拡散しながらカソ
ード側の触媒層2に到達する。同じく電極層2に取り込
まれなかった酸素ガスはそのままガス流路4を通ってド
レインガスとして排出される。カソード側の触媒層2で
は電解質膜1を通ってアノード側から供給された水素イ
オンと酸素が反応し水蒸気となる。その間、電子は外部
負荷を通ってアノードからカソードへ移動することにな
り、電力として出力できる。また、このような電気化学
的反応では水素−酸素の化学的エネルギーの一部は熱と
なって電池内で発熱し、冷却水を温水に変えるなど熱エ
ネルギーとして利用できる。
[0005] Of the pair of electrode layers, one is supplied with a fuel gas such as hydrogen and the other is supplied with an oxidizing gas. The case where hydrogen is used as the fuel gas and oxygen is used as the oxidizing gas will be described. The hydrogen gas supplied by the gas flow path 4 is taken into the electrode layer 3 while passing through the electrode on the hydrogen gas supply side, that is, the anode surface. And reaches the catalyst layer 2 while diffusing inside the electrode layer 3. The hydrogen gas that has not been taken into the electrode layer 3 passes through the gas flow path 4 and is discharged as a drain gas. In the catalyst layer 2, an electrochemical reaction occurs in a region where the hydrogen gas and the polymer electrolyte 1 coexist, and hydrogen ions are taken into the polymer electrolyte membrane. On the other hand, also on the electrode layer 3 on the oxygen gas supply side, that is, on the cathode side, oxygen gas is similarly taken into the electrode layer 3 while passing through the cathode surface, and reaches the catalyst layer 2 on the cathode side while diffusing inside the electrode layer 3. . Similarly, oxygen gas not taken into the electrode layer 2 is discharged as it is as a drain gas through the gas flow path 4. In the catalyst layer 2 on the cathode side, hydrogen ions and oxygen supplied from the anode side through the electrolyte membrane 1 react to form water vapor. During that time, electrons move from the anode to the cathode through an external load, and can be output as electric power. Further, in such an electrochemical reaction, part of the chemical energy of hydrogen-oxygen becomes heat and generates heat in the battery, and can be used as heat energy such as changing cooling water to hot water.

【0006】この固体高分子型燃料電池は、通常室温か
ら90℃ぐらいまでの温度で作動させるのでカソード側
の触媒層2で電気化学反応の結果生成した水蒸気の多く
は水となって触媒層2近傍に結露する。この結露水が触
媒層2近傍に停滞すると、反応部位である触媒層2に酸
素が届かなくなり電池性能が低下する。一方アノード側
では電気化学反応の結果としての水は生成しないが、カ
ソード側で生成した水が高分子電解質膜を逆浸透してき
たり、電解質膜を乾燥させないためにアノードガス中に
混入させている水蒸気が結露し、触媒層2に滞留すると
水素が反応部位に供給されなくなるので同様に電池性能
が低下する。この結露水の滞留による電池性能の低下傾
向は、酸化剤ガスとして酸素濃度が薄い空気を用いる場
合は一層顕著である。
This polymer electrolyte fuel cell is usually operated at a temperature from room temperature to about 90 ° C., so that most of the water vapor generated as a result of the electrochemical reaction in the catalyst layer 2 on the cathode side becomes water and becomes water. Condensation in the vicinity. When the dew water stagnates in the vicinity of the catalyst layer 2, oxygen does not reach the catalyst layer 2, which is a reaction site, and the battery performance is reduced. On the other hand, water generated as a result of the electrochemical reaction is not generated on the anode side, but water generated on the cathode side reversely penetrates the polymer electrolyte membrane and water vapor mixed in the anode gas to prevent the electrolyte membrane from drying. Is condensed and stays in the catalyst layer 2, so that hydrogen is no longer supplied to the reaction site, so that the battery performance is similarly reduced. The tendency of the battery performance to decrease due to the stagnation of dew water is even more remarkable when air having a low oxygen concentration is used as the oxidizing gas.

【0007】また、生成結露水の停滞による電池性能の
低下の他にも、燃料ガスとしてメタノールやメタンなど
の燃料を改質して用いた場合や酸化剤ガスとして空気を
用いた場合には、反応に関与する水素、酸素の他に二酸
化炭素と窒素がそれぞれ混在するので、電極反応が進行
し水素や酸素の濃度が低くなったガスは触媒層近傍から
速やかに除去してやらなければ電池性能が低下する。
In addition to the deterioration of the cell performance due to the stagnation of the generated condensed water, when fuel such as methanol or methane is reformed and used as fuel gas or when air is used as oxidizing gas, Since carbon dioxide and nitrogen coexist in addition to hydrogen and oxygen involved in the reaction, the gas in which the concentration of hydrogen and oxygen has decreased due to the progress of the electrode reaction will deteriorate the battery performance unless the gas is quickly removed from the vicinity of the catalyst layer. I do.

【0008】そこで従来、触媒層や電極層を撥水処理し
たり、ガス流路を流れるガス流速を大きくすることによ
って、余分な生成結露水や二酸化炭素、あるいは窒素を
速やかに排除し、反応部位である触媒層を良好に維持す
る努力が積み重ねられてきた。
Therefore, conventionally, a water repellent treatment of the catalyst layer and the electrode layer and an increase in the gas flow rate flowing through the gas flow path are performed to promptly remove excess condensed water, carbon dioxide, or nitrogen, thereby reducing the reaction site. Efforts have been made to maintain a good catalyst layer.

【0009】また、メタンやメタノールなどの改質ガス
を燃料ガスとして用いると、長期間にわたる電池運転中
に、同じアノード内で一酸化炭素被毒によって性能が低
下する領域が生じて全体として電池性能が低下すること
が近年見出された。改質ガスである燃料ガス中に痕跡量
含まれる一酸化炭素の濃度が、触媒層での水素の消費に
よってアノード側ガス流路の下流ほど高くなる。その結
果、下流域の触媒表面への一酸化炭素の被毒によって触
媒層の反応性が低くなるとその部分の温度がそうでない
部分の温度より低くなると考えられる。一酸化炭素の被
毒は温度が低いほど起こりやすいのでアノード側ガス流
路の下流部では一酸化炭素の被毒が加速され、全体とし
ての電池性能が低下する。この燃料ガス中の一酸化炭素
濃度の濃縮の他にも、反応ガスである水素や酸素の濃度
が、反応によるガス消費によってガス流路の下流ほど低
くなることに起因する性能低下要因がある。すなわちガ
ス流路の下流部において反応ガスの濃度が低下し反応性
が低くなると上流部に比べて温度が低くなる。固体高分
子型燃料電池の場合には電池内で温度差が生じると、よ
り高温の部分では高分子電解質が乾燥気味となって導電
率が低下し、逆により低温の部分では水蒸気が結露・滞
留しやすくなる。そのため電池全体が均一な温度にあっ
て、水蒸気の凝縮と排除のバランスが良好に維持されて
いる電池と比べると高性能は期待できない。そこで、マ
ニホールド方式や冷却水流路の改善によってアノード面
内での温度ができるだけ均一になるような工夫が施され
ている。
Further, when a reformed gas such as methane or methanol is used as a fuel gas, a region in which performance deteriorates due to carbon monoxide poisoning occurs in the same anode during a long-term operation of the battery, and the overall battery performance is reduced. Has recently been found to decrease. The concentration of trace carbon monoxide contained in the fuel gas, which is the reformed gas, increases toward the downstream of the anode-side gas flow channel due to the consumption of hydrogen in the catalyst layer. As a result, if the reactivity of the catalyst layer decreases due to poisoning of the catalyst surface in the downstream region with carbon monoxide, it is considered that the temperature of that portion becomes lower than that of the other portion. Since the poisoning of carbon monoxide is more likely to occur as the temperature is lower, the poisoning of carbon monoxide is accelerated downstream of the anode-side gas flow path, and the overall battery performance is reduced. In addition to the concentration of the carbon monoxide concentration in the fuel gas, there is a performance reduction factor due to the fact that the concentration of hydrogen or oxygen as a reaction gas becomes lower toward the downstream of the gas flow path due to gas consumption by the reaction. That is, when the concentration of the reaction gas decreases in the downstream portion of the gas flow path and the reactivity decreases, the temperature becomes lower than that in the upstream portion. In the case of a polymer electrolyte fuel cell, if a temperature difference occurs in the cell, the polymer electrolyte tends to dry out in the higher temperature area, causing the conductivity to decrease, and conversely, in the low temperature area, water vapor condenses and stays. Easier to do. Therefore, high performance cannot be expected as compared with a battery in which the entire battery is at a uniform temperature and the balance between condensation and elimination of water vapor is well maintained. Therefore, various measures have been taken to make the temperature in the anode surface as uniform as possible by improving the manifold system and the cooling water flow path.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
た撥水処理による結露水の排除性を高める試みは効果が
限られており、長時間の電池運転中には撥水性の低下に
よって電池性能が低下していた。また、集電体セパレー
タに刻んだガス流路を流れるガス流速を大きくするため
には、ガス流路の断面積を小さくして圧損を大きく取る
か、逆に圧損は比較的低く抑え大量の加湿ガスを送り込
まなければならないが、そうするとブロアーやコンプレ
ッサーなどの送風機の負荷が大きくなって、固体高分子
型燃料電池の全体システムとしてはエネルギー効率が低
下していた。さらに電池の運転条件、たとえば高電流密
度時の生成水が大量に発生するときや、ガス流量を絞っ
たときには結露水の除去が困難で、より一層電池性能が
低下していた。
However, the above-described attempts to increase the removability of dew water by the water-repellent treatment have a limited effect, and the battery performance deteriorates due to a decrease in the water-repellency during long-time battery operation. Was. Also, in order to increase the gas flow rate flowing through the gas flow path cut into the current collector separator, reduce the cross-sectional area of the gas flow path to increase the pressure loss, or on the contrary, keep the pressure loss relatively low and Gas must be sent in, but doing so increases the load on the blowers, such as blowers and compressors, and the energy efficiency of the entire polymer electrolyte fuel cell system has been reduced. Further, when operating conditions of the battery, for example, when a large amount of water generated at a high current density is generated or when the gas flow rate is reduced, it is difficult to remove the dew condensation water, and the battery performance is further reduced.

【0011】また、冷却水流路やマニホルド方式、及び
集電体セパレータガス流路の従来のような改善によっ
て、一酸化炭素の被毒を抑制したり電池内温度の均一化
を図る方法には限界があって高性能を長期間維持できな
かった。
[0011] Further, there is a limit to a method for suppressing poisoning of carbon monoxide and making the temperature in the battery uniform by improving the cooling water flow path, the manifold system, and the current collector separator gas flow path as in the prior art. The high performance could not be maintained for a long time.

【0012】本発明は、従来のこのような課題を考慮
し、比較的低圧、小容量のガス供給で高効率の電池性能
がえられ、電池システムとしても高効率が維持できる固
体高分子燃料電池、並びに電池システムの提供を目的と
する。
The present invention has been made in consideration of the above-described conventional problems, and provides a polymer electrolyte fuel cell capable of obtaining high efficiency battery performance by supplying gas at a relatively low pressure and small volume and maintaining high efficiency as a battery system. , And a battery system.

【0013】[0013]

【課題を解決するための手段】本発明は、水素イオン伝
導性の高分子電解質膜と、前記高分子電解質薄膜の両面
に触媒反応層を挟んでそれぞれ対向して配された、導電
性と通気性を兼ね備えた一対の電極層と、前記電極層に
ガスを供給し、あるいは電極層からガスを排出するため
のガス流路が形成された導電性の集電体とを備え、前記
ガス流路を構成するガス供給用のガス流路部とガス排出
用のガス流路部とが前記集電体上で分離されつながって
いないことを特徴とする固体高分子型燃料電池である。
SUMMARY OF THE INVENTION The present invention is directed to a polymer electrolyte membrane having hydrogen ion conductivity, and conductive and air-permeable membranes disposed on both sides of the polymer electrolyte thin film with a catalytic reaction layer interposed therebetween. A pair of electrode layers having both properties, and a conductive current collector having a gas flow path for supplying gas to the electrode layer or discharging gas from the electrode layer; Wherein the gas flow path for gas supply and the gas flow path for gas discharge are separated and not connected on the current collector.

【0014】本発明では、水蒸気や水滴、および供給ガ
ス中の混入物である二酸化炭素や窒素の、触媒層近傍に
おける排除を効率的に行うため、集電体上に形成するガ
ス供給用のガス流路とガス排出用のガス流路を分離し、
供給用ガス流路に沿って電極部に供給されたガスの全て
が、通気性を有する電極層にいったん送り込まれて電極
反応に寄与した後、排出用ガス流路に湧出される構造と
なっている。
In the present invention, in order to efficiently remove water vapor and water droplets and carbon dioxide and nitrogen as contaminants in the supply gas in the vicinity of the catalyst layer, a gas for gas supply formed on the current collector is provided. Separate the flow path and the gas flow path for gas discharge,
All of the gas supplied to the electrode portion along the supply gas flow path is once sent to the gas-permeable electrode layer and contributes to the electrode reaction, and then is discharged into the discharge gas flow path. I have.

【0015】また、このガスの流れを低圧損で、電極部
分全体に効果的に導くためにガス供給用の櫛形状ガス流
路と、ガス排出用の櫛形状ガス流路が互いにかみ合うよ
うに集電体上に構成している。
Further, in order to effectively guide the gas flow to the entire electrode portion with low pressure loss, the comb-shaped gas flow path for gas supply and the comb-shaped gas flow path for gas discharge are gathered so as to mesh with each other. It is configured on a conductor.

【0016】さらに、一本のガス供給用ガス流路と対向
するもう一本のガス排出用ガス流路とを一対にして蛇行
もしくは湾曲させて集電体上に構成している。
Further, one gas supply gas flow path and another gas discharge gas flow path opposed to each other are formed on a current collector by meandering or bending as a pair.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】本発明で実施した固体高分子型燃料電池
は、集電体セパレータ以外の構成要素の形状は図11で
示した従来電池とほぼ同じなので、ここではまず作製法
を中心に図11を用いて説明する。
In the polymer electrolyte fuel cell implemented in the present invention, the shapes of the components other than the current collector separator are almost the same as those of the conventional battery shown in FIG. 11, and therefore, here, FIG. It will be described using FIG.

【0019】粒径数ミクロン以下のカーボン粉末に塩化
白金酸水溶液の還元処理によって白金触媒を担持した。
白金の担持量はカーボンに対して重量比で1:1であっ
た。この白金担持のカーボン粉末と固体高分子電解質の
アルコール溶液を有機溶媒中に分散し触媒層スラリーを
作成した。電極層となる厚さ250ミクロンのカーボン
不織布は、撥水処理を施すためフッ素系撥水剤のエマル
ジョン液(ダイキン製ND1)に浸し、乾燥後400℃
で熱処理した。
A platinum catalyst was supported on a carbon powder having a particle size of several microns or less by reducing an aqueous chloroplatinic acid solution.
The supported amount of platinum was 1: 1 by weight with respect to carbon. This platinum-supported carbon powder and an alcohol solution of a solid polymer electrolyte were dispersed in an organic solvent to prepare a catalyst layer slurry. The 250-micron-thick carbon nonwoven fabric serving as an electrode layer is immersed in an emulsion liquid of a fluorine-based water repellent (ND1 manufactured by Daikin) in order to perform a water-repellent treatment, and dried at 400 ° C.
Was heat-treated.

【0020】この撥水処理をしたカーボン不織布を2枚
用意し、それぞれの片面に白金担持のカーボン粉末を含
む触媒層スラリーを均一に塗布し、厚さ50ミクロンの
高分子電解質膜1を挟み込むようにスラリー面を内側に
するようにして接合し乾燥させた。この電極の大きさは
5cm角とし、一回り大きい8cm角の高分子電解質の
中央に配置した。この電極・電解質接合体では高分子電
解質膜の両面に触媒層2が数十〜百ミクロンの厚みで形
成され、その上の電極層3と接合していることが確認で
きた。 《実施例1》気密性を有する厚さ4mmのカーボン板の
両面に、切削加工によって図1に示したようなガス流路
を形成した。ガス供給用の櫛形ガス流路12とガス排出
用の櫛形ガス流路13は分離し、隣り合う流路と流路の
間隔が2mmとなるように互いにかみ合わせて配置し
た。溝の深さは1.5mmとし、溝幅はかみ合わせ部で
は0.5mm、幹部では2mmとした。溝の内部はフッ
素系撥水剤のエマルジョン液(ダイキン製ND1)を塗
布し、乾燥後400℃で熱処理することによって撥水性
を付与した。この櫛形状流路を刻んだカーボン板を集電
体セパレータとして、電極・高分子電解質膜の接合体を
挟み込んで電池を構成した。このとき集電体セパレータ
板5と高分子電解質膜との間の電気絶縁性のシール材料
7にはフッ素系樹脂を用いた。電池特性の評価にはこの
ような単セルの電池を3個積層し、冷却板をかねた端板
で加圧(10kgf/cm2)保持した。燃料ガスとし
ては純水素を、酸化剤ガスとしては空気を用いた。ま
た、それぞれのガス供給部には温調装置と加湿装置とを
設け、供給ガスの温度は基本的に電池温度(70℃)と
同じに設定し、湿度については供給ガスの露点温度を電
池温度より、15℃〜35℃低くして用いた。
Two water-repellent carbon nonwoven fabrics are prepared, a catalyst layer slurry containing platinum-carrying carbon powder is uniformly applied to one surface of each, and a 50 μm thick polymer electrolyte membrane 1 is sandwiched therebetween. And dried with the slurry surface inside. The size of this electrode was 5 cm square, and it was arranged at the center of a polymer electrolyte of 8 cm square, which is slightly larger. In this electrode-electrolyte assembly, it was confirmed that the catalyst layer 2 was formed on both surfaces of the polymer electrolyte membrane with a thickness of several tens to hundreds of microns, and was bonded to the electrode layer 3 thereon. Example 1 Gas channels as shown in FIG. 1 were formed on both sides of an airtight carbon plate having a thickness of 4 mm by cutting. The comb-shaped gas flow path 12 for gas supply and the comb-shaped gas flow path 13 for gas discharge were separated and arranged so as to engage with each other so that the distance between adjacent flow paths was 2 mm. The depth of the groove was 1.5 mm, and the groove width was 0.5 mm at the engagement portion and 2 mm at the trunk. The inside of the groove was coated with an emulsion liquid of a fluorine-based water repellent (ND1 manufactured by Daikin), dried, and heat-treated at 400 ° C. to impart water repellency. Using the carbon plate having the comb-shaped flow channels cut therein as a current collector separator, a battery was constructed by sandwiching the joined body of the electrode and the polymer electrolyte membrane. At this time, a fluororesin was used as the electrically insulating sealing material 7 between the current collector separator plate 5 and the polymer electrolyte membrane. For the evaluation of battery characteristics, three such single-cell batteries were stacked, and pressurized (10 kgf / cm 2 ) with an end plate serving also as a cooling plate. Pure hydrogen was used as the fuel gas, and air was used as the oxidant gas. In addition, each gas supply unit is provided with a temperature controller and a humidifier, and the temperature of the supply gas is basically set to the same as the battery temperature (70 ° C.). The temperature was lowered by 15 ° C to 35 ° C.

【0021】電池特性試験では、まず最初に水素ガスの
利用率を70%と一定にし、空気の酸素利用率を20%
として電流電圧特性を調べた。その後、酸素ガス利用率
を50%まで上げて測定した。つぎに酸素ガス利用率を
20%に固定し、水素利用率を70%から95%まで変
化させて電池特性を測定した。図2には酸素ガスの利用
率を変化させたときの電流電圧特性を表し、図3には水
素ガスの利用率を変えたときの電流電圧特性を表した。
いずれの条件においても従来電池と比較して高い性能が
えられたが、性能改善の傾向はガスの利用率が高いほ
ど、すなわち通ずるガスが小流量の時ほど顕著であっ
た。とくに、空気の流量を絞って酸素ガスの利用率を高
くしたときには本発明の効果は著しく、従来電池ではほ
とんど出力がとれない酸素ガス利用率が50%のときに
も比較的高い性能がえられた。
In the battery characteristic test, first, the utilization rate of hydrogen gas was kept constant at 70%, and the oxygen utilization rate of air was reduced to 20%.
And the current-voltage characteristics were examined. Thereafter, the oxygen gas utilization rate was increased to 50% for measurement. Next, the oxygen gas utilization was fixed at 20%, and the battery utilization was measured while changing the hydrogen utilization from 70% to 95%. FIG. 2 shows current-voltage characteristics when the utilization rate of oxygen gas is changed, and FIG. 3 shows current-voltage characteristics when the utilization rate of hydrogen gas is changed.
Under all conditions, higher performance was obtained as compared with the conventional battery, but the tendency of the performance improvement was more remarkable as the gas utilization rate was higher, that is, when the passing gas was at a lower flow rate. In particular, the effect of the present invention is remarkable when the utilization rate of oxygen gas is increased by narrowing the flow rate of air, and a relatively high performance can be obtained even when the utilization rate of oxygen gas, which is hardly obtained by the conventional battery, is 50%. Was.

【0022】この実施例のガス流路を有する電池では、
供給されたガスは図1の供給側12のガス流路の幹部8
を経てかみ合わせ部9に分配される。触媒層とガス流路
の間に構成されている電極層は通気性があるので、ガス
供給側のガス流路に到達したガスは電極層に強制的に送
り込まれ、触媒層で電極反応する。電極反応の結果、触
媒層で生成した水蒸気や水滴、あるいは反応を阻害する
二酸化炭素や窒素は強制的にガス排出側13のかみ合わ
せ部のガス流路9に押し出される。これらの排出ガスは
水滴や二酸化炭素、窒素を多く含んだ、いわいるドレイ
ンガスとして排出用ガス流路の幹部8をへて排出され
る。
In the battery having the gas flow path of this embodiment,
The supplied gas is supplied to the trunk 8 of the gas flow path on the supply side 12 in FIG.
And is distributed to the engagement section 9. Since the electrode layer formed between the catalyst layer and the gas flow path has gas permeability, the gas that has reached the gas flow path on the gas supply side is forcibly fed into the electrode layer and undergoes an electrode reaction in the catalyst layer. As a result of the electrode reaction, water vapor or water droplets generated in the catalyst layer, or carbon dioxide or nitrogen that hinders the reaction is forcibly pushed out to the gas flow path 9 of the engagement portion on the gas discharge side 13. These exhaust gases are discharged as a so-called drain gas containing a large amount of water droplets, carbon dioxide, and nitrogen through the stem 8 of the exhaust gas flow path.

【0023】このようなガスフロー及び反応メカニズム
を、空気側を例にとって図4に表した。図12、13の
従来のガス流路構成の電池では、図5のように供給ガス
の主流10は電極層3の表面を通過し、触媒層2へのガ
スの供給や、窒素など不要ガスの触媒層2からの排出
は、電極層3内でのガス拡散、もしくは電極層3内に誘
起される微少なガス流によってなされると考えられる。
また、電極層3内の余分な水滴11をガス流路へ排出す
るための力は、電極層3内の微少ガス流が作る非常にわ
ずかなものであると思われる。
FIG. 4 shows such a gas flow and reaction mechanism taking the air side as an example. 12 and 13, the main flow 10 of the supply gas passes through the surface of the electrode layer 3 to supply the gas to the catalyst layer 2 and the unnecessary gas such as nitrogen as shown in FIG. It is considered that the exhaust from the catalyst layer 2 is performed by gas diffusion in the electrode layer 3 or a minute gas flow induced in the electrode layer 3.
Also, the force for discharging the excess water droplets 11 in the electrode layer 3 to the gas flow path is considered to be very small generated by the minute gas flow in the electrode layer 3.

【0024】一方、本発明の電池では図4のように供給
ガスの主流10が、反応部位である触媒層2近傍を流れ
るので、触媒層2への酸素の供給や、窒素の排出がスム
ーズに行われる。また、生成した水滴を排出するための
力も大きいと考えられる。さらに、触媒層2への酸素の
溶解速度は接触しているガスの流速が大きいほど大きく
なると考えられるので電池性能の改善につながる。
On the other hand, in the battery of the present invention, as shown in FIG. 4, the main flow 10 of the supply gas flows in the vicinity of the catalyst layer 2 which is the reaction site, so that the supply of oxygen to the catalyst layer 2 and the discharge of nitrogen can be smoothly performed. Done. It is also considered that the force for discharging the generated water droplets is large. Furthermore, the dissolution rate of oxygen in the catalyst layer 2 is considered to increase as the flow rate of the gas in contact increases, leading to improvement in battery performance.

【0025】また、電池の初期性能の経時変化について
も従来電池と比較して追跡した。図6に示すように、従
来のガス流路構成の電池では時間と共に性能がかなり低
下したのに対し、本発明の電池では性能の低下を抑制す
ることができた。これは本発明の電池においては、触媒
層2近傍の生成結露水が強制的に排除される構造である
ので、電極層3や触媒層2における撥水性の低下の性能
に与える影響があまり大きくないためと考えられる。さ
らに、本発明のガス流路を有する燃料電池では電極面内
全域においてガス組成に変化が小さく、従来のようなガ
ス組成の変化に基づく温度分布や、それと関連した電解
質膜の乾燥や濡れすぎが発生しにくいということが重要
である。
Also, the change over time in the initial performance of the battery was tracked in comparison with the conventional battery. As shown in FIG. 6, the performance of the battery having the conventional gas flow path configuration was considerably reduced with time, whereas the performance of the battery of the present invention could be suppressed. In the battery of the present invention, since the generated dew condensation water in the vicinity of the catalyst layer 2 is forcibly eliminated, the effect on the performance of the reduction in water repellency in the electrode layer 3 and the catalyst layer 2 is not so large. It is thought to be. Furthermore, in the fuel cell having the gas flow channel of the present invention, the change in the gas composition is small in the entire area of the electrode surface, the temperature distribution based on the change in the gas composition as in the related art, and the associated electrolyte membrane being too dry or too wet. It is important that it does not occur easily.

【0026】つぎに、メタンなどの炭化水素燃料を水素
に改質して燃料ガスとして用いた時の一酸化炭素濃縮に
よる一酸化炭素被毒の影響を調べるため、一酸化炭素が
10ppm混入した改質模擬ガス(H2:80%,CO
2:20%)を用いた実験を行った。水素ガスの利用率
は90%、空気中の酸素利用率は20%とした。その他
の実験条件はこれまでと同じにした。図7は300mA
で電流を取り続けたときの電池電圧の変化を表してい
る。図12、13のようなガス流路を有する従来電池で
は徐々に電池性能が劣化し、2000時間後には初期と
比べて出力特性が約100mV低下した。一方、本発明
のガス流路を有する燃料電池では2000時間後も約3
0mVの低下に止まった。試験電池内に構成した熱電対
による温度測定によれば従来電池では2100時間後、
ガス排出部付近はガス供給部付近より約10℃温度が低
くなっていた。
Next, in order to investigate the effect of carbon monoxide poisoning due to carbon monoxide enrichment when a hydrocarbon fuel such as methane is reformed into hydrogen and used as a fuel gas, a modified fuel containing 10 ppm of carbon monoxide was used. Simulated gas (H2: 80%, CO
(2: 20%). The utilization rate of hydrogen gas was 90%, and the utilization rate of oxygen in air was 20%. Other experimental conditions were the same as before. Fig. 7 is 300mA
Represents a change in battery voltage when current is continuously taken. In the conventional batteries having the gas flow paths as shown in FIGS. 12 and 13, the battery performance gradually deteriorated, and after 2000 hours, the output characteristics decreased by about 100 mV as compared with the initial performance. On the other hand, in the fuel cell having the gas flow path of the present invention, about 3 hours after 2000 hours.
It stopped at 0 mV. According to the temperature measurement by the thermocouple configured in the test battery, after 2100 hours in the conventional battery,
The temperature around the gas discharge section was lower by about 10 ° C. than that near the gas supply section.

【0027】本発明の電池ではこのような現象は認めら
れなかった。燃料ガスに含まれる一酸化炭素の濃縮が主
として隣接するガス供給側流路とガス排出側流路の間の
2mmで発生するため、2mmの下流側で一酸化炭素被
毒が発生しても温度差が付きにくく、局所の低温化によ
る被毒の加速が行われないからと考えられる。
Such a phenomenon was not observed in the battery of the present invention. Since the concentration of carbon monoxide contained in the fuel gas mainly occurs at 2 mm between the gas supply side flow path and the gas discharge side flow path adjacent to each other, even if carbon monoxide poisoning occurs at the downstream side of 2 mm, the temperature becomes high. It is considered that there is little difference, and that the poisoning is not accelerated due to the local low temperature.

【0028】これらの実験のうち電流密度300mA/
cm2、酸素利用率20%の場合、必要な空気供給量は
約0.7リットル/分であり、電池での圧力損失は0.
086kgf/cm2であったが、燃料電池システムと
しての効率向上を考えると圧力損失をできるだけ抑制し
たい。そこで図8のように同じ櫛形状流路で供給側ガス
流路と排気側ガス流路の間隔が1mmとなるような集電
体セパレータを設計し、電池試験を行った。電流電圧特
性やその経時変化は流路の間隔が2mmの場合とあまり
変わらなかったが、電池でのガスの圧力損失は同じ0.
7リットル/分の空気供給量の時に約0.03kgf/
cm2であり、大幅に低減できた。
Of these experiments, a current density of 300 mA /
For 2 cm 2 and an oxygen utilization of 20%, the required air supply is about 0.7 liter / min and the pressure loss at the battery is 0,1.
Although it was 086 kgf / cm 2 , pressure loss is desired to be suppressed as much as possible in consideration of improvement in efficiency as a fuel cell system. Therefore, as shown in FIG. 8, a current collector separator was designed such that the distance between the supply-side gas flow path and the exhaust-side gas flow path was 1 mm in the same comb-shaped flow path, and a battery test was performed. The current-voltage characteristic and its change with time were not so different from those in the case where the interval between the flow paths was 2 mm, but the gas pressure loss in the battery was the same.
About 0.03kgf /
cm 2 , which was significantly reduced.

【0029】本発明にかかる燃料電池システムの実施の
形態としては、この図8に表した櫛形セパレータを用い
た5kWの固体高分子型燃料電池、水素ガス供給装置と
して金属水素化物ボンベ、空気供給装置として入力1k
Wのブロアー、さらには直流交流変換装置を基本構成と
した。なお、図11のようなガス流路を有する従来の電
池ではガス供給の圧力損失が大きく(従来は0.2〜
0.5kgf/cm2)、5kwの燃料電池システムを
構成するためには2〜3kWのコンプレッサーや特殊な
ブロアーが必要であった。 《実施例2》に示した本発明の実施例1の他のタイ
プのガス流路も検討し、図9、図10のガス流路を有す
る集電体セパレータを試作し、同様に電池試験を行っ
た。燃料電池の他の構成要素、及びは電池試験条件は実
施例1と同じであった。図9、図10では供給側のガス
流路と排出側のガス流路はそれぞれ分岐のない1本の流
路溝からなり、互いに一定の間隔で対向している。図9
では蛇行湾曲し、図10では渦巻き状になって電極層3
と接する面を形成している。この流路構造でも供給用ガ
ス流路から供給されたガスは、電極層3に強制的に送り
込まれ電極反応の後、対向する排出用ガス流路に押し出
される。さらに、電極層3のどの部分をガスが通っても
圧力損失が等しいので電極層3全域により均一に流すこ
とができる。実際の電池試験の結果でも、櫛形状ガス流
路と比べてこのタイプのガス流路を有する電池の性能は
高かった。しかしながら、同じガス流量の時でも圧力損
失は櫛形流路より若干高かった。ガス流路が長くなった
ためと考えられるが、より高圧用の給気ブロアーを用い
るなど、燃料電池システムとして最適化を図ることによ
って有用性がさらに高まる。
As an embodiment of the fuel cell system according to the present invention, a 5 kW polymer electrolyte fuel cell using the comb separator shown in FIG. 8, a metal hydride cylinder as an hydrogen gas supply device, an air supply device Input as 1k
A W blower and a DC / AC converter were used as basic components. It should be noted that the conventional battery having a gas flow path as shown in FIG.
To construct a fuel cell system of 0.5 kgf / cm 2 ) and 5 kW, a compressor of 2 to 3 kW and a special blower were required. "Example 2" other types of gas passages of the first embodiment of the present invention is shown in Figure 1 also examined, a prototype collector separator having a gas flow path in FIG. 9, FIG. 10, similarly batteries The test was performed. The other components of the fuel cell and the cell test conditions were the same as in Example 1. 9 and 10, the gas flow path on the supply side and the gas flow path on the discharge side are each composed of one flow path groove without branch, and are opposed to each other at a constant interval. FIG.
In FIG. 10, the electrode layer 3 has a meandering curve, and in FIG.
Is formed. Also in this flow path structure, the gas supplied from the supply gas flow path is forcibly sent to the electrode layer 3 and pushed out to the opposite discharge gas flow path after the electrode reaction. Further, even if gas passes through any part of the electrode layer 3, the pressure loss is equal, so that the gas can flow more uniformly over the entire area of the electrode layer 3. According to the results of the actual battery test, the performance of the battery having this type of gas flow path was higher than that of the comb-shaped gas flow path. However, even at the same gas flow rate, the pressure loss was slightly higher than in the comb channel. It is considered that the gas flow path has been lengthened, but the usefulness is further enhanced by optimizing the fuel cell system, such as by using an air supply blower for higher pressure.

【0030】なお、本発明における、供給側のガス流路
部と排出側のガス流路部の形状、関係は上記実施の形態
で説明した例に限らず、他の形状、関係であってもよい
ことはいうまでもなく、要するに互いに分離されていさ
えすればよい。
In the present invention, the shapes and relationships of the supply-side gas passage portion and the discharge-side gas passage portion are not limited to the example described in the above embodiment, and may have other shapes and relationships. Needless to say, it is only necessary to be separated from each other.

【0031】また、本発明にかかる電池は、ノートパソ
コン、携帯用端末、屋外電源、照明用電源など多くの電
気機器に適用可能である。
Further, the battery according to the present invention can be applied to many electric appliances such as a notebook personal computer, a portable terminal, an outdoor power supply, and a lighting power supply.

【0032】[0032]

【発明の効果】以上のように本発明では、比較的低圧、
小容量のガス供給で高効率の電池性能がえられるので、
電池システムとしても高効率が維持できる。
As described above, in the present invention, relatively low pressure,
Since high efficiency battery performance can be obtained by supplying a small amount of gas,
High efficiency can be maintained as a battery system.

【0033】さらに、電解質膜の濡れすぎ、乾きすぎを
防ぐ効果や、一酸化炭素被毒の抑制によって固体高分子
燃料電池、並びに電池システムの耐久性も高い。
Further, the effects of preventing the electrolyte membrane from being overly wetted and overdried and the suppression of carbon monoxide poisoning enhance the durability of the polymer electrolyte fuel cell and the battery system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる一実施の形態における櫛形ガス
流路の平面図と断面図
FIG. 1 is a plan view and a cross-sectional view of a comb-shaped gas flow channel according to an embodiment of the present invention.

【図2】電流電圧特性の酸素利用率依存性を表す図FIG. 2 is a diagram showing the dependence of current-voltage characteristics on oxygen utilization.

【図3】電流電圧特性の水素利用率依存性を表す図FIG. 3 is a diagram showing the dependence of current-voltage characteristics on hydrogen utilization.

【図4】本発明にかかる一実施の形態におけるガス流路
によるガスフローを表した断面図
FIG. 4 is a cross-sectional view illustrating a gas flow through a gas flow channel according to one embodiment of the present invention.

【図5】従来のガス流路のガスフローを表した断面図FIG. 5 is a cross-sectional view illustrating a gas flow in a conventional gas flow path.

【図6】本発明にかかる一実施の形態の燃料電池の初期
性能の経時変化を表した図
FIG. 6 is a diagram showing a change over time in initial performance of the fuel cell according to one embodiment of the present invention;

【図7】本発明にかかる一実施の形態の燃料電池の一酸
化炭素被毒に対する耐久性を表した図
FIG. 7 is a diagram showing the durability of a fuel cell according to an embodiment of the present invention to poisoning with carbon monoxide.

【図8】本発明にかかる一実施の形態のガス流路の間隔
が1mmのガス流路の平面図
FIG. 8 is a plan view of a gas flow channel having an interval of 1 mm according to an embodiment of the present invention.

【図9】本発明にかかる一実施の形態の別のタイプのガ
ス流路の平面図
FIG. 9 is a plan view of another type of gas flow channel according to an embodiment of the present invention.

【図10】本発明にかかる一実施の形態の別のタイプの
ガス流路の平面図
FIG. 10 is a plan view of another type of gas flow channel according to an embodiment of the present invention.

【図11】従来の固体高分子型燃料電池の断面図FIG. 11 is a cross-sectional view of a conventional polymer electrolyte fuel cell.

【図12】従来のガス流路の平面図FIG. 12 is a plan view of a conventional gas flow path.

【図13】従来の別のタイプのガス流路の平面図FIG. 13 is a plan view of another conventional gas flow path.

【符号の説明】[Explanation of symbols]

1 高分子電解質膜 2 触媒層 3 電極層 4 ガス流路 5 集電体セパレータ 6 マニホールド孔 7 シール材料 8 ガス流路の幹部 9 ガス流路のかみ合わせ部 10 ガスの主流 11 水滴 12 ガス供給用櫛形流路 13 ガス排出用櫛形流路 REFERENCE SIGNS LIST 1 polymer electrolyte membrane 2 catalyst layer 3 electrode layer 4 gas flow path 5 current collector separator 6 manifold hole 7 sealing material 8 gas flow path trunk 9 gas flow path engagement section 10 main flow of gas 11 water droplet 12 gas supply comb Channel 13 Comb-shaped channel for gas discharge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eiichi Yasumoto 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高分子電解質膜と、前記高分子電解質薄膜
の両面に触媒層を挟んでそれぞれ対向して配された、導
電性と通気性を兼ね備えた一対の電極層と、前記電極層
にガスを供給し、あるいは電極層からガスを排出するた
めのガス流路が形成された導電性の集電体とを備え、前
記ガス流路を構成するガス供給用のガス流路部とガス排
出用のガス流路部とが前記集電体上で分離され互いにつ
ながっていないことを特徴とする固体高分子型燃料電
池。
1. A polymer electrolyte membrane, a pair of electrode layers having both conductivity and gas permeability disposed opposite to each other with a catalyst layer interposed therebetween on both surfaces of the polymer electrolyte thin film; A conductive current collector having a gas flow path for supplying a gas or discharging the gas from the electrode layer; a gas flow path portion for supplying a gas, which constitutes the gas flow path; A solid polymer fuel cell, wherein a gas flow path portion for the fuel cell is separated on the current collector and is not connected to each other.
【請求項2】前記ガス供給用のガス流路部及び前記ガス
排出用のガス流路部はそれぞれ櫛形形状をしており、互
いにかみ合うように前記集電体上に形成されていること
を特徴とする請求項1記載の固体高分子型燃料電池。
2. The gas flow path for gas supply and the gas flow path for gas discharge are each formed in a comb shape, and are formed on the current collector so as to mesh with each other. The polymer electrolyte fuel cell according to claim 1, wherein
【請求項3】前記ガス供給用のガス流路部及び前記ガス
排出用のガス流路部はそれぞれ、分岐点を持たない一本
のガス流路を構成しており、さらに、それらの供給用ガ
ス流路部とガス排出用ガス流路部とは互いに接近して対
向しながら蛇行、湾曲、あるいは渦巻状に形成されてい
ることを特徴とする請求項1記載の固体高分子型燃料電
池。
3. The gas flow path for gas supply and the gas flow path for gas discharge each constitute a single gas flow path having no branch point. 2. The polymer electrolyte fuel cell according to claim 1, wherein the gas flow path and the gas discharge gas flow path are formed in a meandering, curved, or spiral shape while approaching and facing each other.
【請求項4】請求項1〜3のいずれかの固体高分子型燃
料電池と、前記ガス流路のガスを送風するためのガス送
風機とを備えたことを特徴とする固体高分子型燃料電池
システム。
4. A polymer electrolyte fuel cell, comprising: the polymer electrolyte fuel cell according to claim 1; and a gas blower for blowing gas in the gas flow path. system.
【請求項5】請求項1〜3のいずれかに記載の固体高分
子型燃料電池を電源として利用可能に構成されたことを
特徴とする電気機器。
5. An electric apparatus comprising the polymer electrolyte fuel cell according to claim 1 as a power source.
JP9170708A 1997-06-26 1997-06-26 Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus Pending JPH1116591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9170708A JPH1116591A (en) 1997-06-26 1997-06-26 Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9170708A JPH1116591A (en) 1997-06-26 1997-06-26 Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus

Publications (1)

Publication Number Publication Date
JPH1116591A true JPH1116591A (en) 1999-01-22

Family

ID=15909936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9170708A Pending JPH1116591A (en) 1997-06-26 1997-06-26 Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus

Country Status (1)

Country Link
JP (1) JPH1116591A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044248A1 (en) * 1998-02-27 1999-09-02 Forschungszentrum Jülich GmbH Gas distributor for a fuel cell
WO2000062363A1 (en) * 1999-04-10 2000-10-19 Piller Gmbh Fuel cell with polymer electrolyte
WO2001067532A1 (en) * 2000-03-07 2001-09-13 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
JP2002313367A (en) * 2001-04-12 2002-10-25 Sony Corp Fuel cell separator and fuel cell
WO2002013287A3 (en) * 2000-08-08 2002-12-12 Stefan Hoeller Electrochemical cell comprising a polymer electrolyte membrane
WO2004001874A3 (en) * 2002-06-24 2004-03-11 Morgan Crucible Co Flow field plate geometries
EP1422775A1 (en) * 2002-11-08 2004-05-26 Nissan Motor Co., Ltd. Fuel cell with separator plates having comb-shaped gas passages
EP1447869A1 (en) * 2003-02-15 2004-08-18 Haldor Topsoe A/S Interconnect device, fuel cell and fuel cell stack
JP2005166423A (en) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd Solid oxide fuel cell
JP2005190983A (en) * 2003-12-02 2005-07-14 Denso Corp Fuel cell
WO2005109556A1 (en) * 2004-05-11 2005-11-17 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator thereof
JP2006127770A (en) * 2004-10-26 2006-05-18 Toyota Motor Corp Fuel battery
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell
KR100816361B1 (en) 2006-07-07 2008-03-24 한국과학기술연구원 Gas distributing plate, gas distributing device containing the same and gas distributing method for fuel processor
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2008171608A (en) * 2007-01-10 2008-07-24 Sharp Corp Fuel cell
WO2009084183A1 (en) * 2007-12-28 2009-07-09 Panasonic Corporation Fuel cell separator and fuel cell provided with same
JP2009245892A (en) * 2008-03-31 2009-10-22 Equos Research Co Ltd Hydrogen passage and fuel cells equipped therewith
WO2010067453A1 (en) * 2008-12-12 2010-06-17 トヨタ自動車株式会社 Fuel cell
WO2010084745A1 (en) 2009-01-23 2010-07-29 トヨタ自動車株式会社 Fuel cell
WO2010100872A1 (en) * 2009-03-04 2010-09-10 パナソニック株式会社 Separator for fuel cell, and fuel cell comprising same
JP2011518415A (en) * 2008-04-18 2011-06-23 ユーティーシー パワー コーポレイション Fuel cell component with comb-shaped flow field
JP2011210398A (en) * 2010-03-29 2011-10-20 Toyota Motor Corp Fuel cell
US8129070B2 (en) 2008-12-12 2012-03-06 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2012508954A (en) * 2008-11-17 2012-04-12 ユーティーシー パワー コーポレイション Flow field of fuel cell plate
CN102725893A (en) * 2010-01-25 2012-10-10 雷蒙特亚特特拉维夫大学有限公司 Bipolar plates and regenerative fuel cell stacks including same
US8568941B2 (en) 2009-03-04 2013-10-29 Panasonic Corporation Fuel cell separator and fuel cell including same
US8921000B2 (en) 2010-07-15 2014-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2015122231A (en) * 2013-12-24 2015-07-02 住友電気工業株式会社 Redox flow cell
US9627693B2 (en) 2010-01-25 2017-04-18 Ramot At Tel-Aviv University Ltd. Energy storage and generation systems
US9692063B2 (en) 2009-01-22 2017-06-27 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044248A1 (en) * 1998-02-27 1999-09-02 Forschungszentrum Jülich GmbH Gas distributor for a fuel cell
WO2000062363A1 (en) * 1999-04-10 2000-10-19 Piller Gmbh Fuel cell with polymer electrolyte
US6921598B2 (en) 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
WO2001067532A1 (en) * 2000-03-07 2001-09-13 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
WO2002013287A3 (en) * 2000-08-08 2002-12-12 Stefan Hoeller Electrochemical cell comprising a polymer electrolyte membrane
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
JP2002313367A (en) * 2001-04-12 2002-10-25 Sony Corp Fuel cell separator and fuel cell
CN100334765C (en) * 2002-06-24 2007-08-29 摩根坩埚有限公司 Flow field plate geometries
WO2004001874A3 (en) * 2002-06-24 2004-03-11 Morgan Crucible Co Flow field plate geometries
US7838139B2 (en) 2002-06-24 2010-11-23 The Morgan Crucible Company Plc Flow field plate geometries
EP1422775A1 (en) * 2002-11-08 2004-05-26 Nissan Motor Co., Ltd. Fuel cell with separator plates having comb-shaped gas passages
JP2004247305A (en) * 2003-02-15 2004-09-02 Haldor Topsoe As Ventilation device, fuel cell, and fuel cell stack
EP1447869A1 (en) * 2003-02-15 2004-08-18 Haldor Topsoe A/S Interconnect device, fuel cell and fuel cell stack
US7297425B1 (en) 2003-02-15 2007-11-20 Topsoe Fuel Cell A/S Interconnect device, fuel cell and fuel cell stack
JP4682511B2 (en) * 2003-12-02 2011-05-11 日産自動車株式会社 Solid oxide fuel cell
JP2005190983A (en) * 2003-12-02 2005-07-14 Denso Corp Fuel cell
JP2005166423A (en) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd Solid oxide fuel cell
US7632594B2 (en) 2003-12-02 2009-12-15 Nissan Motor Co., Ltd. Solid oxide fuel cell with improved gas exhaust
JP4661093B2 (en) * 2003-12-02 2011-03-30 株式会社デンソー Fuel cell
WO2005109556A1 (en) * 2004-05-11 2005-11-17 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator thereof
JP2006127770A (en) * 2004-10-26 2006-05-18 Toyota Motor Corp Fuel battery
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell
KR100816361B1 (en) 2006-07-07 2008-03-24 한국과학기술연구원 Gas distributing plate, gas distributing device containing the same and gas distributing method for fuel processor
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2008171608A (en) * 2007-01-10 2008-07-24 Sharp Corp Fuel cell
JP4553976B2 (en) * 2007-12-28 2010-09-29 パナソニック株式会社 Fuel cell separator and fuel cell comprising the same
WO2009084183A1 (en) * 2007-12-28 2009-07-09 Panasonic Corporation Fuel cell separator and fuel cell provided with same
US8614025B2 (en) 2007-12-28 2013-12-24 Panasonic Corporation Fuel cell separator and fuel cell comprising the same
JP2010219055A (en) * 2007-12-28 2010-09-30 Panasonic Corp Fuel cell separator, and fuel cell provided with same
JPWO2009084183A1 (en) * 2007-12-28 2011-05-12 パナソニック株式会社 Fuel cell separator and fuel cell comprising the same
JP2009245892A (en) * 2008-03-31 2009-10-22 Equos Research Co Ltd Hydrogen passage and fuel cells equipped therewith
JP2011518415A (en) * 2008-04-18 2011-06-23 ユーティーシー パワー コーポレイション Fuel cell component with comb-shaped flow field
US8679703B2 (en) 2008-04-18 2014-03-25 United Technologies Corporation Fuel cell component with interdigitated flow fields
JP2012508954A (en) * 2008-11-17 2012-04-12 ユーティーシー パワー コーポレイション Flow field of fuel cell plate
US9812715B2 (en) 2008-11-17 2017-11-07 Audi Ag Fuel cell plate flow field
WO2010067453A1 (en) * 2008-12-12 2010-06-17 トヨタ自動車株式会社 Fuel cell
US8129070B2 (en) 2008-12-12 2012-03-06 Toyota Jidosha Kabushiki Kaisha Fuel cell
US8163432B2 (en) 2008-12-12 2012-04-24 Toyota Jidosha Kabushiki Kaisha Fuel cell
JPWO2010067452A1 (en) * 2008-12-12 2012-05-17 トヨタ自動車株式会社 Fuel cell
JP5093249B2 (en) * 2008-12-12 2012-12-12 トヨタ自動車株式会社 Fuel cell
DE112008004165T5 (en) 2008-12-12 2013-10-10 Toyota Jidosha Kabushiki Kaisha fuel cell
US9692063B2 (en) 2009-01-22 2017-06-27 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
US8221932B2 (en) 2009-01-23 2012-07-17 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2010084745A1 (en) 2009-01-23 2010-07-29 トヨタ自動車株式会社 Fuel cell
JP4875223B2 (en) * 2009-03-04 2012-02-15 パナソニック株式会社 Fuel cell separator and fuel cell comprising the same
CN102341945A (en) * 2009-03-04 2012-02-01 松下电器产业株式会社 Separator for fuel cell, and fuel cell comprising same
WO2010100872A1 (en) * 2009-03-04 2010-09-10 パナソニック株式会社 Separator for fuel cell, and fuel cell comprising same
US8568941B2 (en) 2009-03-04 2013-10-29 Panasonic Corporation Fuel cell separator and fuel cell including same
JP2013518362A (en) * 2010-01-25 2013-05-20 ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッド Bipolar plate and regenerative fuel cell stack including the bipolar plate
JP2015053278A (en) * 2010-01-25 2015-03-19 ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッドRamot At Tel−Aviv University Ltd Bipolar plate and regenerative fuel cell stack including the bipolar plate
US9012104B2 (en) 2010-01-25 2015-04-21 Ramot At Tel-Aviv University Ltd. Bipolar plates and regenerative fuel cell stacks including same
US9627693B2 (en) 2010-01-25 2017-04-18 Ramot At Tel-Aviv University Ltd. Energy storage and generation systems
CN102725893A (en) * 2010-01-25 2012-10-10 雷蒙特亚特特拉维夫大学有限公司 Bipolar plates and regenerative fuel cell stacks including same
JP2011210398A (en) * 2010-03-29 2011-10-20 Toyota Motor Corp Fuel cell
US8921000B2 (en) 2010-07-15 2014-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2015122231A (en) * 2013-12-24 2015-07-02 住友電気工業株式会社 Redox flow cell

Similar Documents

Publication Publication Date Title
JPH1116591A (en) Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus
JP2000058073A (en) Fuel cell
JP2005340173A (en) Fuel cell stack
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP2002270196A (en) High molecular electrolyte type fuel cell and operating method thereof
JPWO2002047190A1 (en) Polymer electrolyte fuel cell and method of operating the same
WO2010084745A1 (en) Fuel cell
US20110123896A1 (en) Fuel cell
JP2007103242A (en) Polymer electrolyte fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JP2022056862A (en) Fuel cell system
JP5021885B2 (en) Fuel cell
EP2405515B1 (en) Fuel cell separator and fuel cell including same
JP4606038B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF OPERATING THE SAME
JP2005158298A (en) Operation method of fuel cell power generation system, and fuel cell power generation system
JPWO2011059087A1 (en) Fuel cell and vehicle equipped with fuel cell
JP2008071633A (en) Solid polymer electrolyte fuel cell
JP2009283350A (en) Power generator and fuel cell
JP2002289200A (en) Fuel battery
JP2004079457A (en) Solid polymer fuel cell
JP2008146859A (en) Membrane-electrode assembly and fuel cell having it
JP4397603B2 (en) Polymer electrolyte fuel cell
JP2002289201A (en) Fuel cell
JP2002329501A (en) Gas diffusion electrode and polyelectrolyte fuel cell using this