JP2004079457A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2004079457A
JP2004079457A JP2002241486A JP2002241486A JP2004079457A JP 2004079457 A JP2004079457 A JP 2004079457A JP 2002241486 A JP2002241486 A JP 2002241486A JP 2002241486 A JP2002241486 A JP 2002241486A JP 2004079457 A JP2004079457 A JP 2004079457A
Authority
JP
Japan
Prior art keywords
gas passage
gas
supply
electrode layer
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241486A
Other languages
Japanese (ja)
Inventor
Takeshi Iwai
岩井 健
Kazuhiko Shinohara
篠原 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002241486A priority Critical patent/JP2004079457A/en
Publication of JP2004079457A publication Critical patent/JP2004079457A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell capable of maintaining a solid polymer film in an appropriate wet condition. <P>SOLUTION: With the solid polymer fuel cell, gas channels are formed on the surface of a conductive collector 5, one for supplying gas to an electrode layer 4 and the other for draining gas from the electrode layer 4 separated from each other on a contact face with the electrode layer 4, and a hydrophilic layer 7 is formed consisting of a hydrophilic matter on the surface on the electrode side where the channels and the collector 5 of the electrode layer 4 get in contact with each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子膜を電解質保持層とする固体高分子型燃料電池に関し、特に、単電池を構成する集電体に設けられる反応ガスの通路が供給側ガス通路と排出側ガス通路とに分離され且つ近接して配置された固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
従来から比較的低圧且つ小容量のガス供給で高効率の電池性能を得るため、単電池を構成する集電体に設けられる反応ガスの通路を供給側ガス通路と排出側ガス通路とに分離し且つ近接して配置する固体高分子型燃料電池が知られており、例えば、特開平11−16591号公報に記載されたものがある。
【0003】
これは、集電体に刻んだ供給側ガス通路と排出側ガス通路とを分離し、供給側ガス通路の全てのガスが電極層や触媒層をくぐり抜けて排出側ガス通路へ排出される構造としている。このため、触媒層近傍の水滴や窒素などの不要ガスが強制的に排出され、高圧・高速のガスを送風する必要がなくなる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例では、供給側ガス通路に沿って供給されたガスの全てが、通気性を有する電極層にいったん送り込まれて電極反応に寄与した後、排出側ガス通路に湧出される構造となっている。このため、供給ガス中の混入物である二酸化炭素や窒素の触媒層近傍から排除が行われる反面、電極層からの水蒸気や水滴の持ち出しが多く電極層が乾き気味となり、連続して安定に運転をするためには外部に供給ガスの加湿装置を設けなければならないものであった。
【0005】
そこで本発明は、上記問題点に鑑みてなされたもので、固体高分子膜を適正な湿潤状態に維持可能な固体高分子型燃料電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、高分子電解質膜と、前記高分子電解質膜の両面に触媒層を挟んで夫々対向して配した、導電性と通気性を兼ね備えた一対の電極層と、前記電極層にガスを供給する供給側ガス通路と、電極層からガスを排出するための排出側ガス通路とを電極層との接触面上で分離して互いに繋げないで形成した導電性の集電体とを備え、それらのガス通路と前記電極層の集電体とが接するその電極層側の表面に親水性物質からなる親水層を形成したことを特徴とする。
【0007】
【発明の効果】
したがって、本発明では、電極層にガスを供給する供給側ガス通路と、電極層からガスを排出するための排出側ガス通路とを電極層との接触面である集電体表面上で分離して互いに繋げないで形成し、それらのガス通路と電極層の集電体とが接する電極層側の表面に親水性物質からなる親水層を形成した。このため、供給側ガス通路から電極層を経て排出側ガス通路部へと流れるガス流れによって移動した水が親水性層に保持され、供給側ガス通路からの供給ガスを加湿して触媒層近辺を再度保湿する。従って、乾き気味となる固体高分子膜を適正な湿潤状態に維持することができる。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。
【0009】
図1は、本発明を適用した固体高分子型燃料電池の一例を示す、燃料電池主要部の断面図である。
【0010】
図1において、燃料電池1は、水素などの燃料ガスを酸素と電気化学的に反応させ、電気と熱とを同時に供給するものであり、スルホン基を含んだフッ素樹脂よりなる高分子電解質膜2を挟持する形で白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層3A、3C、ガス通気性と導電性を兼ね備えた電極層4A、4Cで構成されている。さらに、電極層4A、4Cの外側には触媒層3A、3Cへのガス供給をになうガス通路6を備え、これらの電極層4A、4Cおよび電解質膜2を機械的に固定すると同時に図示しないマニホールドを通じて供給ガスを各電池のガス通路6に分配し、隣接する電池と電気的に直列に接続する集電体5とで電池基本構成単位としている。この固体高分子型燃料電池1は、比較的出力密度が高いため、電気機器用電源装置やFCV用電源装置に使用して最適である。
【0011】
前記電極層4A、4Cは全体として撥水処理され、その集電体5と接触する表面は親水性物質による親水性層7を形成している。親水性層7は、親水物質として無機物であれば、シリカ(SiO)やチタニア(TiO)等、有機物であればポリアクリル酸塩の架橋物等を使用し、カーボン粉末と混合してペースト状にし、電極層4A、4Cの表面に塗布や含浸により形成する。
【0012】
前記集電体5は、気密性と導電性および耐食性が必要であり、一般にカーボン材料が用いられる。集電体5の電極層4A、4Cとの接触面には、燃料ガスあるいは酸化剤ガスを供給する図示しない供給側マニホールドに連通した供給側ガス通路6Aと、燃料電池から流出する未反応ガスの再生装置へ連通する図示しない排出側マニホールドに連通した排出側ガス通路6Bとが設けられる。供給側ガス通路6Aと排出側ガス通路6Bを互に隣合わせて交互に配置し、両者は前記集電体5上で分離し、互に連通しないよう構成している。供給側ガス通路6Aに供給された燃料ガスあるいは酸化剤ガスの全量は、通気性を備えた電極層4A、4Cに流れ込み、電極層4A、4Cから排出側ガス通路6Bに未反応ガスが湧き出るよう流出する。
【0013】
以上の構成の固体高分子型燃料電池は、アノード側およびカソード側において、夫々集電体5の供給側ガス通路6Aに、一方には水素等の燃料ガスを供給し、他方には酸化剤ガスを供給し、夫々の排出側ガス通路6Bから未反応ガスを排出させることで、下記のように作動する。燃料ガスとして水素を、酸化剤ガスとして酸素を用いた場合について説明する。
【0014】
水素ガス供給側の電極層4A、即ち、アノード側では、供給側ガス通路6Aからの水素ガスは電極層4Aに流入し、電極層4A内部を拡散しながら触媒層3Aに到達する。触媒層3Aに取り込まれなかった水素ガスはそのまま排出側ガス通路6Bを通ってドレインガスとして排出される。触媒層3Aでは水素ガスと高分子電解質膜2が共存する領域で電気化学反応が生起され、水素イオンとなって高分子電解質膜2中に取り込まれる。
【0015】
一方、酸素ガス供給側の電極層4C、即ち、カソード側でも同様に、供給側ガス通路6Aから電極層4Cに流入した酸素ガスは、電極層4C内部を拡散しながらカソード側の触媒層3Cに到達する。同じく触媒層3Cに取り込まれなかった未反応の酸素ガスはそのまま排出側ガス通路6Bを通ってドレインガスとして排出される。カソード側の触媒層3Cでは電解質膜2を通ってアノード側から供給された水素イオンと酸素が反応し水蒸気となる。その間、電子は外部負荷を通ってアノードからカソードへ移動することになり、電力として出力できる。また、このような電気化学的反応では、水素−酸素の化学的エネルギーの一部は熱となって電池内で発熱し、図示しない冷却水を温水に変える等の熱エネルギーとして利用する。
【0016】
この固体高分子型燃料電池1は、通常室温から90℃ぐらいまでの温度で作動させるのでカソード側の触媒層3Cで電気化学反応の結果生成した水蒸気の多くは水となって触媒層3C近傍に結露する。この結露水が触媒層3C近傍に停滞すると、反応部位である触媒層3Cに酸素が届かなくなり電池性能が低下する。一方アノード側では電気化学反応の結果としての水は生成しないが、カソード側で生成した水が高分子電解質膜2を逆浸透して保湿される。
【0017】
前記保湿や電解質膜2を乾燥させないためにアノードガス中に混入させる水蒸気が、結露等により触媒層3Aに滞留すると水素が反応部位に供給されなくなり電池性能を低下させるため、触媒層3A近傍から速やかに除去する必要がある。この結露水の滞留は、酸化剤ガスとして酸素濃度が薄い空気を用いる場合は一層顕著となる。また、燃料ガスとしてメタノールやメタンなどの燃料を改質して用いた場合や酸化剤ガスとして空気を用いた場合には、反応に関与する水素、酸素の他に二酸化炭素と窒素がそれぞれ混在するので、電極反応が進行し水素や酸素の濃度が低くなったガスは、電池性能が低下するため、触媒層3A近傍から速やかに除去する必要がある。
【0018】
本構造の燃料電池1では、集電体5上に形成する供給側ガス通路6Aと排出側ガス通路6Bとが分離し、供給側ガス通路6Aに沿って電極層4A、4Cに供給されたガスの全てが、通気性を有する電極層4A、4Cに一旦送り込まれて電極反応に寄与した後、排出側ガス通路6Bに湧出され、触媒層3A、3C近傍の水蒸気や水滴、および供給ガス中の混入物である二酸化炭素や窒素を効率的に排除することができる。
【0019】
そして、未反応ガスや前記触媒層3A、3C近傍から排除された供給ガス中の混入物である二酸化炭素や窒素は、その全量が電極層4A、4Cの集電体5への接触部分の親水層7を通過して排出側ガス通路6Bに排出される。しかしながら、触媒層3A、3C近傍から排出された水蒸気や水滴は、前記親水層7を通過する際に一部が親水層7に保持され、保持できなかった余分の水や水蒸気のみが排出側ガス通路6Bに排出される。
【0020】
前記排出側ガス通路6Bに対面する親水層7部分に保持された水は、その毛細管現象により含水濃度が低い部分、即ち、供給側ガス通路6Aに対面する親水層7部分に浸透し、供給側ガス通路6Aから電極層4A、4Cに流入するガスを保湿し、保湿されたガスが電極層4A、4Cに供給される。このため、触媒層3A、3C近傍は、乾き気味となることも過湿気味になることもなく、適度な保湿状態に保持され、電池性能を最適に維持することができる。前記流入ガスの保湿により含水濃度が低くなる供給側ガス通路6Aに対面する親水層7部分には、排出側ガス通路6Bに対面する親水層7部分から毛細管現象により連続的に水分が供給される。なお、燃料ガスおよび空気を所定圧力および所定の空気過剰率で供給する図示しないガス供給手段により供給するガスは、電極層4A、4Cの触媒層3A、3C近辺を過湿気味または乾燥気味としないために、その相対湿度を80%以下とすることが望ましい。
【0021】
前記集電体5上に形成する供給側ガス通路6Aと排出側ガス通路6Bとを分離する具体的構成としては、図2に示す構造や図3,4に示す構造を採用する。図2は集電体5の第1の例の固体高分子型燃料電池の構造を示す。図3、4は集電体5の他の例の固体高分子型燃料電池の構造を示す平面図、および、図3のA−A線による断面図(A)、および、B−B線による断面図(B)である。
【0022】
図2に示す構造では、集電体5の電極層4に接する表面に、入口マニホールド10に連通する櫛形状の供給側ガス通路6Aと、出口マニホールド11に連通する櫛形状の排出側ガス通路6Bとを、各先端部分を交互に近接させて形成した。櫛形状の先端部分で構成する供給側ガス通路6Aからの供給ガスは、電極層4を経由して、交互配置の櫛形状の先端部分で構成する排出側ガス通路6Bに排出させることができる。供給側ガス通路6Aと排出側ガス通路6Bとは、交互に近接して配置しているため、ガスの流れを低圧損とできる。
【0023】
図3、4に示す構造では、供給側ガス通路6Aが排出側ガス通路6B中に細長い島状に複数を平行配置して備える。これらの供給側ガス通路6Aは、集電体5内を横断するマニホールド12に連通され、マニホールド12はガス入口13に連通させる。他方、排出側ガス通路6Bは、供給側ガス通路6A同士の間およびそれらの両側に配置され、その端部が出口マニホールド14により連通され、ガス出口15に連通させる。この構成においても、供給側ガス通路6Aと排出側ガス通路6Bとを近接して交互配置することができ、供給側ガス通路6Aからの供給ガスは、電極層4を経由して、交互配置の排出側ガス通路6Bに排出させることができる。供給側ガス通路6Aと排出側ガス通路6Bとは、交互に近接して配置しているため、ガスの流れを低圧損とできる。なお、供給側ガス通路6Aを構成している部分を排出側ガス通路6Bとし、排出側ガス通路6Bを構成している部分を供給側ガス通路6Aとして、ガス入口13とガス出口15とを逆にしてもよい。
【0024】
本実施形態においては、以下に記載する効果を奏することができる。
【0025】
(ア)電極層4にガスを供給する供給側通路6Aと、電極層4からガスを排出するためのガス通路6Bとを電極層4との接触面である集電体5表面上で分離して互いに繋げないで形成し、それらの通路と電極層4の集電体5とが接する電極層側の表面に親水性物質からなる親水層7を形成している。このため、供給側ガス通路6Aから電極層4を経て排出側ガス通路6Bへと流れるガス流れによって移動した水が親水性層7に保持され、供給側ガス通路6Aからの供給ガスを加湿して触媒層3近辺を再度保湿する。このため、乾き気味となる固体高分子膜2を適正な湿潤状態に維持することができる。
【0026】
(イ)親水層7は、親水性物質とカーボン粉とを混合して電極層4表面に塗布して形成するため、電極層4の製造時に同時に形成することができる。
【0027】
(ウ)図2においては、供給側ガス通路6Aと排出側ガス通路6Bとは、夫々櫛形状に形成され、夫々の先端が交互に隣合わせて配置しているため、これらの通路6A、6Bは平面上に形成でき、集電体5の厚さを極力薄く構成することができる。
【0028】
(エ)図3,4においては、供給側ガス通路6Aと排出側ガス通路6Bとは、一方は複数の細長い島状に形成され、他方は前記一方を取囲むよう形成したため、同一面積中における通路密度を高く形成でき、ガス交換密度を増加させて出力電力の増大化が図れる。
【0029】
なお、上記実施形態において、直線状の細長い供給側ガス通路6Aおよび排出側ガス通路6Bを交互に平行配置したものについて説明したが、図示しないが、一本の供給側ガス通路と一本の排出側ガス通路とを一対にして蛇行もしくは湾曲させて集電体上に配置してもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す固体高分子型燃料電池の概略断面図。
【図2】供給側ガス通路と排出側ガス通路とを交互配置するための集電体の一例の平面図。
【図3】供給側ガス通路と排出側ガス通路とを交互配置するための集電体の他の例の平面図。
【図4】図3に示す集電体のA−A線に沿う断面図(A)およびB−B線に沿う断面図(B)。
【符号の説明】
1 固体高分子型燃料電池
2 高分子膜
3 触媒層
4 電極層
5 集電体
6 ガス通路
6A 供給側ガス通路
6B 排出側ガス通路
7 親水層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell having a solid polymer membrane as an electrolyte holding layer, and in particular, a reaction gas passage provided in a current collector constituting a unit cell includes a supply gas passage and a discharge gas passage. The present invention relates to a polymer electrolyte fuel cell which is separated and disposed in close proximity to each other.
[0002]
[Prior art]
Conventionally, in order to obtain high-efficiency battery performance by supplying gas at a relatively low pressure and small capacity, a reaction gas passage provided in a current collector constituting a unit cell is separated into a supply gas passage and a discharge gas passage. Further, a polymer electrolyte fuel cell which is arranged close to each other is known, for example, there is one described in JP-A-11-16591.
[0003]
This is a structure in which the supply side gas passage and the discharge side gas passage cut in the current collector are separated, and all gases in the supply side gas passage pass through the electrode layer and the catalyst layer and are discharged to the discharge side gas passage. I have. For this reason, unnecessary gas such as water droplets and nitrogen in the vicinity of the catalyst layer is forcibly discharged, and it is not necessary to blow high-pressure, high-speed gas.
[0004]
[Problems to be solved by the invention]
However, in the conventional example described above, all of the gas supplied along the supply-side gas passage is once sent to the gas-permeable electrode layer and contributes to the electrode reaction, and then is discharged into the discharge-side gas passage. Has become. For this reason, while carbon dioxide and nitrogen, which are contaminants in the supply gas, are removed from the vicinity of the catalyst layer, water vapor and water droplets are often taken out of the electrode layer, and the electrode layer tends to be dry, and the operation is continuously stable. In order to achieve this, a humidifier for supplying gas must be provided outside.
[0005]
The present invention has been made in view of the above problems, and has as its object to provide a polymer electrolyte fuel cell capable of maintaining a solid polymer membrane in an appropriate wet state.
[0006]
[Means for Solving the Problems]
The present invention provides a polymer electrolyte membrane, a pair of electrode layers having both conductivity and gas permeability disposed opposite to each other with a catalyst layer interposed therebetween on both surfaces of the polymer electrolyte membrane, and supplying gas to the electrode layer. A supply-side gas passage for supply and a conductive current collector formed without separating and connecting a discharge-side gas passage for discharging gas from the electrode layer on the contact surface with the electrode layer, A hydrophilic layer made of a hydrophilic substance is formed on the surface of the electrode layer side where the gas passage and the current collector of the electrode layer are in contact.
[0007]
【The invention's effect】
Therefore, in the present invention, the supply-side gas passage for supplying gas to the electrode layer and the discharge-side gas passage for discharging gas from the electrode layer are separated on the surface of the current collector, which is the contact surface with the electrode layer. And a hydrophilic layer made of a hydrophilic substance was formed on the surface of the electrode layer where the gas passage and the current collector of the electrode layer were in contact with each other. For this reason, the water moved by the gas flow flowing from the supply-side gas passage through the electrode layer to the discharge-side gas passage portion is retained in the hydrophilic layer, and the supply gas from the supply-side gas passage is humidified and the vicinity of the catalyst layer is humidified. Moisturize again. Therefore, it is possible to maintain the solid polymer film that tends to dry out in an appropriate wet state.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0009]
FIG. 1 is a cross-sectional view of a main part of a fuel cell showing an example of a polymer electrolyte fuel cell to which the present invention is applied.
[0010]
In FIG. 1, a fuel cell 1 is for reacting a fuel gas such as hydrogen electrochemically with oxygen to supply electricity and heat simultaneously, and a polymer electrolyte membrane 2 made of a fluororesin containing a sulfone group. And catalyst layers 3A and 3C mainly composed of carbon powder carrying a platinum-based metal catalyst and electrode layers 4A and 4C having both gas permeability and conductivity. Further, outside the electrode layers 4A and 4C, a gas passage 6 for supplying gas to the catalyst layers 3A and 3C is provided, and these electrode layers 4A and 4C and the electrolyte membrane 2 are mechanically fixed and not shown at the same time. The supply gas is distributed to the gas passage 6 of each battery through the manifold, and a current collector 5 electrically connected in series to an adjacent battery forms a basic battery unit. Since the polymer electrolyte fuel cell 1 has a relatively high output density, it is optimally used for a power supply for electric equipment or a power supply for FCV.
[0011]
The electrode layers 4A and 4C are subjected to a water-repellent treatment as a whole, and a surface of the electrode layers 4A and 4C that contacts the current collector 5 forms a hydrophilic layer 7 made of a hydrophilic substance. The hydrophilic layer 7 is made of, for example, silica (SiO 2 ) or titania (TiO 2 ) if the hydrophilic substance is an inorganic substance, or a crosslinked polyacrylate salt if the organic substance is an organic substance. And formed on the surfaces of the electrode layers 4A and 4C by coating or impregnation.
[0012]
The current collector 5 needs airtightness, conductivity, and corrosion resistance, and generally uses a carbon material. The contact surface of the current collector 5 with the electrode layers 4A and 4C has a supply-side gas passage 6A communicating with a supply-side manifold (not shown) for supplying a fuel gas or an oxidizing gas, and an unreacted gas flowing out of the fuel cell. An exhaust gas passage 6B is provided which communicates with a not-shown exhaust manifold which communicates with the regenerating apparatus. The supply-side gas passages 6A and the discharge-side gas passages 6B are arranged alternately next to each other, and are separated on the current collector 5 so as not to communicate with each other. The entire amount of the fuel gas or the oxidizing gas supplied to the supply-side gas passage 6A flows into the gas-permeable electrode layers 4A and 4C, and unreacted gas flows from the electrode layers 4A and 4C into the discharge-side gas passage 6B. leak.
[0013]
In the polymer electrolyte fuel cell having the above-described configuration, the fuel gas such as hydrogen is supplied to one of the supply-side gas passages 6A of the current collector 5 on the anode side and the cathode side, and the oxidant gas is supplied to the other. Is supplied, and the unreacted gas is discharged from each of the discharge-side gas passages 6B, thereby operating as follows. The case where hydrogen is used as fuel gas and oxygen is used as oxidant gas will be described.
[0014]
On the electrode layer 4A on the hydrogen gas supply side, that is, on the anode side, hydrogen gas from the supply side gas passage 6A flows into the electrode layer 4A, and reaches the catalyst layer 3A while diffusing inside the electrode layer 4A. The hydrogen gas not taken into the catalyst layer 3A is discharged as it is as a drain gas through the discharge gas passage 6B. In the catalyst layer 3 </ b> A, an electrochemical reaction occurs in a region where the hydrogen gas and the polymer electrolyte membrane 2 coexist, and hydrogen ions are taken into the polymer electrolyte membrane 2.
[0015]
On the other hand, the oxygen gas flowing into the electrode layer 4C from the supply-side gas passage 6A to the electrode layer 4C on the oxygen gas supply side, that is, the cathode side, similarly diffuses inside the electrode layer 4C to the catalyst layer 3C on the cathode side. To reach. Similarly, unreacted oxygen gas not taken into the catalyst layer 3C is discharged as it is as a drain gas through the discharge gas passage 6B. In the catalyst layer 3C on the cathode side, hydrogen ions and oxygen supplied from the anode side through the electrolyte membrane 2 react to form water vapor. During that time, electrons move from the anode to the cathode through an external load and can be output as electric power. Further, in such an electrochemical reaction, part of the chemical energy of hydrogen-oxygen becomes heat and generates heat in the battery, and is used as heat energy such as changing cooling water (not shown) into hot water.
[0016]
Since the polymer electrolyte fuel cell 1 is normally operated at a temperature from room temperature to about 90 ° C., most of the water vapor generated as a result of the electrochemical reaction in the catalyst layer 3C on the cathode side becomes water and becomes close to the catalyst layer 3C. Condensation. When the dew water stagnates near the catalyst layer 3C, oxygen does not reach the catalyst layer 3C as a reaction site, and the battery performance is reduced. On the other hand, no water is generated on the anode side as a result of the electrochemical reaction, but the water generated on the cathode side reversely permeates the polymer electrolyte membrane 2 and is moisturized.
[0017]
If the water vapor mixed in the anode gas to prevent the moisture retention and the drying of the electrolyte membrane 2 stays in the catalyst layer 3A due to dew condensation or the like, hydrogen is not supplied to the reaction site and the battery performance is reduced. Need to be removed. The retention of the dew water becomes more remarkable when air having a low oxygen concentration is used as the oxidizing gas. Also, when fuel such as methanol or methane is reformed and used as fuel gas, or when air is used as oxidizing gas, carbon dioxide and nitrogen are mixed in addition to hydrogen and oxygen involved in the reaction. Therefore, the gas in which the concentration of hydrogen or oxygen has decreased due to the progress of the electrode reaction has a reduced battery performance, and must be promptly removed from the vicinity of the catalyst layer 3A.
[0018]
In the fuel cell 1 having this structure, the supply-side gas passage 6A and the discharge-side gas passage 6B formed on the current collector 5 are separated, and the gas supplied to the electrode layers 4A and 4C along the supply-side gas passage 6A. Are once fed into the gas-permeable electrode layers 4A and 4C and contribute to the electrode reaction, and then are discharged into the discharge-side gas passage 6B, and water vapor and water droplets near the catalyst layers 3A and 3C, and in the supply gas. Contaminants such as carbon dioxide and nitrogen can be efficiently removed.
[0019]
The unreacted gas and carbon dioxide and nitrogen, which are contaminants in the supply gas removed from the vicinity of the catalyst layers 3A and 3C, are totally hydrophilic at the contact portions of the electrode layers 4A and 4C with the current collector 5. The gas passes through the layer 7 and is discharged to the discharge gas passage 6B. However, some of the water vapor and water droplets discharged from the vicinity of the catalyst layers 3A and 3C are retained by the hydrophilic layer 7 when passing through the hydrophilic layer 7, and only excess water or water vapor that cannot be retained is discharged to the discharge side gas. It is discharged to the passage 6B.
[0020]
The water retained in the portion of the hydrophilic layer 7 facing the discharge side gas passage 6B permeates into the portion having a low water content due to the capillary phenomenon, that is, the portion of the hydrophilic layer 7 facing the supply side gas passage 6A. The gas flowing into the electrode layers 4A and 4C from the gas passage 6A is moisturized, and the moisturized gas is supplied to the electrode layers 4A and 4C. For this reason, the vicinity of the catalyst layers 3A and 3C does not become slightly dry and does not become excessively moist, and is maintained in an appropriate moisturizing state, so that the battery performance can be optimally maintained. Moisture is continuously supplied to the portion of the hydrophilic layer 7 facing the supply-side gas passage 6A whose moisture content is reduced due to the moisturizing of the inflow gas from the portion of the hydrophilic layer 7 facing the discharge-side gas passage 6B by capillary action. . The gas supplied by a gas supply unit (not shown) that supplies the fuel gas and the air at a predetermined pressure and a predetermined excess air ratio does not make the electrode layers 4A and 4C near the catalyst layers 3A and 3C excessively wet or dry. Therefore, it is desirable that the relative humidity be 80% or less.
[0021]
As a specific configuration for separating the supply-side gas passage 6A and the discharge-side gas passage 6B formed on the current collector 5, a structure shown in FIG. 2 or a structure shown in FIGS. FIG. 2 shows the structure of a polymer electrolyte fuel cell according to a first example of the current collector 5. 3 and 4 are a plan view showing the structure of a polymer electrolyte fuel cell as another example of the current collector 5, a cross-sectional view (A) along the line AA of FIG. 3, and a line BB. It is sectional drawing (B).
[0022]
In the structure shown in FIG. 2, a comb-shaped supply gas passage 6A communicating with the inlet manifold 10 and a comb-shaped discharge gas passage 6B communicating with the outlet manifold 11 are provided on the surface of the current collector 5 in contact with the electrode layer 4. And were formed by alternately approaching the tip portions. The supply gas from the supply-side gas passage 6A constituted by the comb-shaped tip portion can be discharged via the electrode layer 4 to the discharge-side gas passage 6B constituted by the alternately arranged comb-shaped tip portion. The supply-side gas passage 6A and the discharge-side gas passage 6B are alternately arranged close to each other, so that the gas flow can be reduced in pressure loss.
[0023]
In the structure shown in FIGS. 3 and 4, a plurality of supply-side gas passages 6 </ b> A are provided in the discharge-side gas passage 6 </ b> B in parallel in an elongated island shape. These supply-side gas passages 6 </ b> A are connected to a manifold 12 traversing the inside of the current collector 5, and the manifold 12 is connected to a gas inlet 13. On the other hand, the discharge-side gas passages 6B are arranged between the supply-side gas passages 6A and on both sides thereof, and the ends thereof are communicated with the outlet manifold 14 to communicate with the gas outlet 15. Also in this configuration, the supply-side gas passage 6A and the discharge-side gas passage 6B can be alternately arranged close to each other, and the supply gas from the supply-side gas passage 6A passes through the electrode layer 4 and is alternately arranged. It can be discharged to the discharge side gas passage 6B. The supply-side gas passage 6A and the discharge-side gas passage 6B are alternately arranged close to each other, so that the gas flow can be reduced in pressure loss. The portion forming the supply side gas passage 6A is referred to as a discharge side gas passage 6B, and the portion forming the discharge side gas passage 6B is referred to as a supply side gas passage 6A, and the gas inlet 13 and the gas outlet 15 are reversed. It may be.
[0024]
In the present embodiment, the following effects can be obtained.
[0025]
(A) A supply passage 6A for supplying gas to the electrode layer 4 and a gas passage 6B for discharging gas from the electrode layer 4 are separated on the surface of the current collector 5 which is a contact surface with the electrode layer 4. A hydrophilic layer 7 made of a hydrophilic substance is formed on the surface of the electrode layer 4 where the passages and the current collector 5 of the electrode layer 4 are in contact with each other. For this reason, the water moved by the gas flow flowing from the supply-side gas passage 6A to the discharge-side gas passage 6B via the electrode layer 4 is retained in the hydrophilic layer 7, and humidifies the supply gas from the supply-side gas passage 6A. The vicinity of the catalyst layer 3 is kept moist again. For this reason, the solid polymer film 2 which tends to be dry can be maintained in an appropriate wet state.
[0026]
(A) Since the hydrophilic layer 7 is formed by mixing a hydrophilic substance and carbon powder and applying the mixture to the surface of the electrode layer 4, the hydrophilic layer 7 can be formed simultaneously with the production of the electrode layer 4.
[0027]
(C) In FIG. 2, the supply-side gas passage 6A and the discharge-side gas passage 6B are each formed in a comb shape, and their respective tips are alternately arranged adjacent to each other. It can be formed on a plane, and the thickness of the current collector 5 can be made as thin as possible.
[0028]
(D) In FIGS. 3 and 4, one of the supply-side gas passage 6A and the discharge-side gas passage 6B is formed in a plurality of elongated island shapes, and the other is formed so as to surround the one. The passage density can be increased, the gas exchange density can be increased, and the output power can be increased.
[0029]
In the above-described embodiment, a description has been given of an arrangement in which the elongated, linear supply-side gas passages 6A and the discharge-side gas passages 6B are alternately arranged in parallel. The side gas passages may be arranged on the current collector in a meandering or curved pair.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a polymer electrolyte fuel cell showing one embodiment of the present invention.
FIG. 2 is a plan view of an example of a current collector for alternately disposing supply-side gas passages and discharge-side gas passages.
FIG. 3 is a plan view of another example of a current collector for alternately arranging a supply-side gas passage and a discharge-side gas passage.
4 is a cross-sectional view (A) of the current collector shown in FIG. 3 along the line AA and a cross-sectional view (B) of the current collector along the line BB.
[Explanation of symbols]
Reference Signs List 1 solid polymer fuel cell 2 polymer membrane 3 catalyst layer 4 electrode layer 5 current collector 6 gas passage 6A supply side gas passage 6B discharge side gas passage 7 hydrophilic layer

Claims (4)

高分子電解質膜と、前記高分子電解質膜の両面に触媒層を挟んで夫々対向して配した、導電性と通気性を兼ね備えた一対の電極層と、前記電極層にガスを供給する供給側ガス通路と、電極層からガスを排出するための排出側ガス通路とを電極層との接触面上で分離して互いに繋げないで形成した導電性の集電体とを備え、
前記電極層の集電体と、前記供給側ガス通路および排出側ガス通路とが接する前記電極層側の表面に、親水性物質からなる親水層を形成したことを特徴とする固体高分子型燃料電池。
A polymer electrolyte membrane, a pair of electrode layers having both conductivity and gas permeability disposed opposite each other with a catalyst layer interposed therebetween on both surfaces of the polymer electrolyte membrane, and a supply side for supplying gas to the electrode layers A gas collector, comprising a conductive current collector formed without separating and connecting a discharge-side gas passage for discharging gas from the electrode layer to a contact surface with the electrode layer,
A solid polymer type fuel, wherein a hydrophilic layer made of a hydrophilic substance is formed on the surface of the electrode layer side where the current collector of the electrode layer contacts the supply gas passage and the discharge gas passage. battery.
前記親水層は、親水性物質とカーボン材とを混合して電極層表面に塗布してなることを特徴とする請求項1に記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to claim 1, wherein the hydrophilic layer is formed by mixing a hydrophilic substance and a carbon material and applying the mixture on the surface of the electrode layer. 前記供給側ガス通路と排出側ガス通路とは、夫々櫛形状に形成され、夫々の先端が交互に隣合わせて配置していることを特徴とする請求項1または請求項2に記載の固体高分子型燃料電池。3. The solid polymer according to claim 1, wherein the supply-side gas passage and the discharge-side gas passage are each formed in a comb shape, and their respective tips are alternately arranged adjacent to each other. 4. Type fuel cell. 前記供給側ガス通路と排出側ガス通路とは、一方は複数の細長い島状に形成され、他方は前記一方を取囲むよう形成したことを特徴とする請求項1または請求項2に記載の固体高分子型燃料電池。3. The solid according to claim 1, wherein one of the supply-side gas passage and the discharge-side gas passage is formed in a plurality of elongated island shapes, and the other is formed so as to surround the one. 4. Polymer fuel cell.
JP2002241486A 2002-08-22 2002-08-22 Solid polymer fuel cell Pending JP2004079457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241486A JP2004079457A (en) 2002-08-22 2002-08-22 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241486A JP2004079457A (en) 2002-08-22 2002-08-22 Solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2004079457A true JP2004079457A (en) 2004-03-11

Family

ID=32023954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241486A Pending JP2004079457A (en) 2002-08-22 2002-08-22 Solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2004079457A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742282A1 (en) * 2004-04-28 2007-01-10 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell using same
JP2007048552A (en) * 2005-08-09 2007-02-22 Hitachi Ltd Fuel cell, fuel cell power source system, and electronic equipment using it
JP2007533067A (en) * 2004-04-01 2007-11-15 ユーティーシー パワー コーポレイション Fuel cell reactant flow area to maximize utilization of planar graphics
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2009004298A (en) * 2007-06-25 2009-01-08 Nippon Soken Inc Fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533067A (en) * 2004-04-01 2007-11-15 ユーティーシー パワー コーポレイション Fuel cell reactant flow area to maximize utilization of planar graphics
EP1742282A1 (en) * 2004-04-28 2007-01-10 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell using same
EP1742282A4 (en) * 2004-04-28 2008-11-19 Nissan Motor Membrane-electrode assembly for fuel cell and fuel cell using same
US7648788B2 (en) 2004-04-28 2010-01-19 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell using same
EP1742282B2 (en) 2004-04-28 2014-12-31 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell using same
JP2007048552A (en) * 2005-08-09 2007-02-22 Hitachi Ltd Fuel cell, fuel cell power source system, and electronic equipment using it
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2009004298A (en) * 2007-06-25 2009-01-08 Nippon Soken Inc Fuel cell

Similar Documents

Publication Publication Date Title
JP3530793B2 (en) Fuel cell and operating method thereof
JP4923319B2 (en) Fuel cell
JP4037698B2 (en) Solid polymer cell assembly
JP4312257B2 (en) Fuel cell
JPH1116591A (en) Solid polymer type fuel cell, solid polymer type fuel cell system, and electrical machinery and apparatus
JP3559693B2 (en) Solid polymer electrolyte fuel cell
US6521367B2 (en) Fuel cell with an electrolyte dry-out barrier
JP2002367655A (en) Fuel cell
JPH09283162A (en) Solid high molecular fuel cell
US7727660B2 (en) Modified fuel cells with internal humidification and/or temperature control systems
JP3509180B2 (en) Fuel cell
JP2006216293A (en) Fuel cell system
JP2004079457A (en) Solid polymer fuel cell
JP2003197203A (en) Fuel cell
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP4475378B2 (en) Fuel cell
JP3736475B2 (en) Fuel cell
KR101405689B1 (en) Humidifier for fuel cell
JP2001185169A (en) Solid polymeric fuel cell
JP2004134277A (en) Fuel cell
JP2002289200A (en) Fuel battery
JP4380223B2 (en) Solid polymer electrolyte fuel cell
JP2004103456A (en) Solid polymer fuel cell
JP2002246043A (en) Solid polymer electrolyte fuel cell