JP2003082648A - Bearing capacity calculation method of soil cement composite pile - Google Patents

Bearing capacity calculation method of soil cement composite pile

Info

Publication number
JP2003082648A
JP2003082648A JP2001267665A JP2001267665A JP2003082648A JP 2003082648 A JP2003082648 A JP 2003082648A JP 2001267665 A JP2001267665 A JP 2001267665A JP 2001267665 A JP2001267665 A JP 2001267665A JP 2003082648 A JP2003082648 A JP 2003082648A
Authority
JP
Japan
Prior art keywords
pile
soil cement
soil
ground
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001267665A
Other languages
Japanese (ja)
Inventor
Shinichi Yamato
真一 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001267665A priority Critical patent/JP2003082648A/en
Publication of JP2003082648A publication Critical patent/JP2003082648A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new formula capable of accurately calculating bearing capacity of a soil cement composite pile by simple calculation. SOLUTION: When bearing capacity of the soil cement composite pile obtained by twistedly penetrating the existing pile having spiral wings into a soil cement columnar body is calculated, the calculation of friction stress τacting on the circumferential surface of the composite pile is made with one formula τ=α+βN (α, β represents a fixed number obtained by correlation of a diameter of the existing pile body, a diameter of the spiral wing and a diameter of the soil cement columnar body) for using N value through a standard penetration test without depending on sorts of the ground.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ソイルセメント柱
体の中にらせん状羽根を有する既製杭を挿入してなるソ
イルセメント合成杭についての支持力算定方法に関す
る。 【0002】 【従来の技術】地盤中に設置された杭の鉛直支持力Pは
杭の先端支持力Poと杭の周面摩擦力Pfの和P=Po+Pfと
して求められる。このうち、杭と地盤との境界面に作用
する杭の周面摩擦力PfはPf=τ・Afとして求められる。
τは杭と地盤との境界面の摩擦応力であり、Afは境界面
の面積である。従来の杭工法ではτの値は地盤の種別に
より異なっており砂質地盤ではτ=10N/3、粘性土地
盤ではτ=Qu/2(ここに、Nは砂質地盤の標準貫入試
験によるN値、Quは粘性土の一軸圧縮強度)等の経験式
を用いて求めていた。 【0003】そのため、杭は一般に複数の地層を貫通し
て設置されるので、各地層を砂質土と粘性土に分け地層
毎に周面摩擦力を求めこれらを合算する煩雑な計算が必
要であった。これらの従来式を用いて本工法によるソイ
ルセメント合成杭の支持力を評価すると実際の試験結果
の1/5〜1/10となり全く適用できない支持力算定式
であることがわかった。 【0004】 【発明が解決しようとする課題】本発明は、簡便な計算
により的確にソイルセメント合成杭の支持力を算定でき
る新しい式の提供を目的とする。 【0005】 【課題を解決するための手段】本発明者は、ソイルセメ
ント柱体とラセン羽根を有する既製杭では杭の支持力機
構が従来の杭工法とは異なることに着目し、本発明に到
達した。すなわち、本発明は下記の通りである。ソイル
セメント柱体に、らせん状羽根付き既製杭をねじ込み貫
入させて得られるソイルセメント合成杭の支持力算定に
際し、合成杭の周面に作用する摩擦応力τの計算を地盤
の種別によらず、標準貫入試験によるN値を用いた一式
τ=α+βN(α、βは既製杭本体径、らせん状羽根
径、及びソイルセメント柱体径の相関関係で求められる
定数)で算定することを特徴とするソイルセメント合成
杭の支持力算定方法。 【0006】 【発明の実施の形態】以下に本発明の支持力算定方法に
ついて例を用いて説明する。図2はソイルセメント合成
杭工法の一般的な概要を示す図である。図2においてこ
の合成杭は4種類の地盤を貫いて設置されている。地盤
の種類は上部から砂質土と粘性土の互層であり、地盤の
強さを示す標準貫入試験によるN値の各層の平均値はは
地表部からそれぞれN1、N2、N3、N4である。また、その
層厚はL1からL4である。 【0007】従来の支持力算定式によれば、L2層とL4
は粘性土層であるため杭の周面摩擦力Pfの計算にN値は
使えず、N値の代わりに粘性土の一軸圧縮強度Quを何ら
かの方法により求めて算定する必要があった。これによ
り求めた粘性土部分の周面摩擦力PcとN値から求めた砂
質土部分の周面摩擦力Psを合算して、杭の周面摩擦力Pf
をPf=Pc+Psにて求める必要があった。具体的には、地
盤の砂質土部分では砂質土の周面摩擦力PsをPs=τ・Af
=(10・N1/3・L1+10・N3/3・L3)ψ、(ここでAf
は杭の周面面積、ψは杭の外周長さ)で、粘性土ではN
値を用いず地盤の一軸圧縮強度Qu値を何らかの方法で求
めて粘性土部分の周面摩擦力Pcを、Pc=τ・Af=(Qu 2
/2・L2+Qu4/2・L4)ψを求める。その後両者の和
として杭の周面摩擦力Pf=Pc+Psを求めていた。従っ
て、従来は二つの計算式を使う必要があるとともに、粘
性土ではN値をQu値に変更する必要があるなど大変煩雑
であった。 【0008】本発明の支持力算定方法は砂質土、粘性土
という地盤の種類を考慮する必要がなくN値と地盤の層
厚Lのみで算定できる。即ち、本工法による杭の周面摩
擦力算定式はPf=τ・Af=(α+βN)・Afで示される
一つの計算式で容易に求められる。ここでNは全層の平
均N値であるので各層の厚さを考慮してN=(N1・L1
N2・L2+N3・L3+N4・L4)/L(LはL1からL4の合計)
で求めれば良い。α及びβは、杭の外径寸法(既製杭本
体径、らせん状羽根径およびソイルセメント柱体径)の
相関関係が決まれば実験的に求められる定数である。従
来も、N値やQu値から求められる地盤の摩擦応力τの経
験値は鉛直載荷試験を実施して求めてきた。 【0009】本発明においても従来と同様な方法で載荷
試験を実施すればよい。例えば、杭本体外径dに対しら
せん状羽根径Dを1.5倍とし、ソイルセメント柱体径を
3倍などと一定値として、N値の異なる数カ所の現場で
鉛直載荷試験を実施すれば、摩擦応力τはα、βを定数
とした経験値として求めることができる。α、βを求め
る具体的な方法を以下の実施例にて示す。 【0010】 【実施例】表1に6現場における鉛直載荷試験結果の例
を示す。 【0011】 【表1】【0012】杭は鋼管杭を使用し、杭本体外径dは190.
7mmから216.3mm、杭の長さLは4.3mから22mであ
り、これに杭本体外径dの約2倍の外径Dを有するらせん
羽根が約2mのピッチで等間隔に固着されている。ソイ
ルセメント柱体の外径Dcは羽根外径Dより200mm大きく
600mm及び650mmである。従って、本実施例における
杭外径寸法の相関関係は、D/dは約2であり、Dc/
Dは約1.5である。杭が設置された各地盤の平均N値は
表1に示すとおり2.3から8.4の範囲にあった。杭の周面
積は2種類計算した。 【0013】一つは図2の破線で示すようならせん羽根
外径Dで囲まれる面積でAw=π・D・Lで、もう一つは
ソイルセメント柱体の外径Dcで囲まれる面積でAc=π・
Dc・Lである。各杭のAw及びAcは表1に示すとおりであ
る。載荷試験結果で求められた杭の周面摩擦力Pfを前記
杭の表面積で除すと杭に作用する摩擦応力τが求められ
る。らせん羽根で囲まれる部分に作用する摩擦応力τw
はτw=Pf/Awで、ソイルセメントの外周部分に作用す
る摩擦応力τcはτc=Pf/Acで求められる。τw、及
びτcと平均N値との関係を示したものが図3及び図4
である。いずれの図からも明らかなようにτは最小二乗
法により近似するとN値に比例する直線であり、地盤の
種別や杭長さにかかわらずほぼ一つの直線で求められる
ことがわかる。 【0014】本実施例から明らかなように、図3に示す
らせん羽根外径部分に作用する摩擦応力をτwとした場
合、τc=α+βN=50+10Nの直線式にて求められ
る。一方、図4に示すソイルセメントの外周部分に作用
する摩擦応力τcとした場合はτc=30+8Nにて求め
られる。摩擦応力τをソイルセメント合成杭のどの位置
で計算するかによってα、及びβの値は異なるものの、
いずれの場合もτ=α+βNの単純な式により求めるこ
とができる。 【0015】表1に示す試験結果と従来の摩擦力算定式
により求めた摩擦力を比較すると、かなり異なっている
ことが明らかになった。従来のN値を用いる砂質土の算
定式ではτ=10/3・Nであるから、N値が5の場合τ
=16.7、N値が10の場合τ=33.3となる。これに対して
本提案式はらせん羽根径の部分の摩擦応力で図3に示す
様にτ=50+10Nであるから、N値が5の場合τ=100、
N値が10の場合τ=150となり従来式とは約5倍の差があ
る。 【0016】従来式は、既製杭本体外径で計算したτで
あり、本提案式はらせん羽根外径部分で求めたτである
ので本提案式を杭本体外径に換算すると杭本体外径とら
せん羽根外径の比は約2であり、本提案式のτは上記の
2倍となりそれぞれτ=200、及び300となる。この値は
従来式から求まる値の約10倍であり、ソイルセメント合
成杭においては、従来式は全く適用できないことがわか
る。 【0017】従来、杭の周面に作用する摩擦力は地盤種
別により異なるので、地盤を粘性土と砂質土の2種類に
分けて算定する必要があった。本発明者では、2種類に
分ける必要がなく簡便な一つの算定式で求められるこ
と、及び従来式で求まる値の約10倍にもなる実摩擦応力
を容易に算出しうる算定式を見出した。従来式が適用で
きない理由は、従来の杭工法では多くの場合杭と地盤は
接触しているのに対して、ソイルセメント合成杭では既
製杭本体の周囲を相対的に巨大なソイルセメント柱体が
覆っている。その結果、既製杭と地盤とは直接に触れ合
っていない。更に、地盤はソイルセメント造成時に攪拌
されN値の大きい硬い地盤や、N値の小さい粘性土地盤
が混合され平均的な強度を有するソイルセメント柱体が
造成されるものと予想される。これらの結果既製杭周面
に作用する摩擦力は、地盤の強度を敏感に反映せず地盤
全体が平均化された状態で機能しているものと予想され
る。 【0018】次に、図により本発明のソイルセメント合
成杭施工方法の好ましい実施形態について説明する。図
1は本実施例に係る施工方法の施工工程の概要を示す地
盤の断面図である。この実施例においては、既製杭とし
て鋼管杭を用いた例を示すが、鋼管杭の代わりにコンク
リート杭を用いることもできる。コンクリート杭の場合
には、金属製バンド等を介してらせん状羽根を取りつけ
ることが好ましい。 【0019】先ず、図1(a)に示すように、地盤1に
於ける目的の位置にソイルセメント柱体造成装置5を設
置し、機械式深層混合処理工法によってソイルセメント
柱体3を造成するのが好ましい。ここで、機械式深層混
合処理工法とは、セメント或いはセメントを主成分とし
た固化材と水を混練して作製したスラリーを地盤中に注
入しながら、掘削翼と攪拌翼を備えた攪拌混合装置によ
り、地盤とスラリーを機械的に攪拌混合してソイルセメ
ント柱体を造成する地盤改良工法のことをいう。 【0020】ソイルセメント柱体を造成する方法は機械
式深層混合処理工法のみならず、既製杭を用いる従来の
プレボーリング工法等でも良い。プレボーリング工法と
は既製杭沈設に先立ちオーガーを用いて杭沈設孔を予め
掘削し水やセメントを主成分とする固化材を注入して掘
削孔ソイルセメント柱体とするものである。柱体造成装
置5を地中に貫入させるにあたり、地表部分にソイルセ
メント柱体3を造成しない所定長さの非造成層6を設け
ることが好ましく、その場合ここではセメントミルクや
水も使用しない。柱体造成装置5が非造成層6以上の深
さに達したらソイルセメント柱体2の造成を開始する。
同図(b)に示すように、ソイルセメント柱体3を完成
させるにあたり柱体造成装置5を引き上げるとき、地表
面に近い非造成層6では回転やセメントミルク注入を止
めて引き抜くのが好ましい。 【0021】同図(c)に示すように、所定位置に複数
のらせん状羽根4を設けたらせん状羽根付鋼管杭(以
下、単に「鋼管杭」という)2を回転させつつ未硬化の
ソイルセメント柱体3にねじ込み貫入させる。鋼管杭2
をソイルセメント柱体3に貫入させて両者を一体化する
ことよって、同図(d)に示すようなソイルセメント合
成鋼管杭が造成される。鋼管杭2の周囲に設けられるら
せん状羽根4は、鋼管杭に溶接される根元部分は肉厚
に、外周に向かうほど薄肉になるよう形成されているこ
とが好ましい。このらせん状羽根は、例えば、等厚帯鋼
鈑をロール加工により面内で曲げて製作することにより
得られる。内周側は帯鋼鈑厚より厚く、外周側は薄く形
成される。 【0022】また、当初から不等厚帯板を用いこれをロ
ール加工して内面へ曲げ内径を更に厚く、外周側を更に
薄くして不等厚の差を大きくすることも可能である。強
度設計上、外周側の厚みを1としたとき、内周側厚みを
1.2〜3.0とすることが好ましく、より好ましくは
1.2〜1.5である。設計強度は、羽根の根元厚で決
まるので、等厚羽根を用いる場合に比し相対的に鋼材量
を減らすことができる。 【0023】また、らせん状羽根を平鋼鈑から切り出す
場合に発生する切り出しロスも生じさせずに済む。鋼管
杭2は、杭頭部近傍および下端部近傍にらせん状羽根
を、さらにそれらの中間にも少なくとも1枚のらせん状
羽根を有していることが好ましい。従って、鋼管杭2に
は少なくとも3枚のらせん状羽根4が設けられることが
好ましい。また、らせん状羽根の直径は、同一でも異な
っていてもよい。 【0024】ここで、杭頭部近傍とは、鋼管杭2が接続
されているフーチング、或いは布基礎の底面からソイル
セメント柱体3の直径Dcと等しい範囲内をいう。ま
た、杭下端部近傍とは、杭下端部先端からソイルセメン
ト柱体3の直径Dcと等しい範囲内をいう。一般に土木
・建築構造物の基礎杭には、杭頭部に於いて最も大きな
鉛直荷重が作用する。このため、鋼管杭2の杭頭部近傍
にらせん状羽根4を有していると、らせん状羽根4の押
さえ効果により該らせん状羽根4の下方のソイルセメン
ト柱体3が圧縮され、鉛直荷重に対して鋼管杭2のみな
らず、ソイルセメント柱体3と共に抵抗することが可能
となる。更に、水平荷重に対しても、らせん状羽根4の
押さえ効果と、ソイルセメント柱体3による拘束効果と
により水平剛性を高めることが可能となる。 【0025】本実施例に係るソイルセメント合成鋼管杭
にあっては、鋼管杭2の杭頭部近傍及び下端部近傍に夫
々らせん状羽根4を設けると共に、両者の間にも少なく
とも1枚のらせん状羽根4を設けているため、荷重が各
らせん状羽根4から分散し、全体の鉛直支持荷重を大き
くすることが可能である。尚、鋼管杭2の杭頭部の近傍
及び下端部近傍に設けたらせん状羽根4の間に於けるら
せん状羽根4の設置間隔は特に限定するものではなく、
1m〜3m程度で適宜設定することが好ましい。 【0026】尚、本実施例では、鋼管杭2の下端部近
傍,杭頭部近傍以外に2枚のらせん状羽根4が設けられ
ており、全体では4枚のらせん状羽根4が設けられてい
る。本実施例では非造成層6が存在することによりこれ
が蓋となり、掘削時に掘削土砂がほとんど地上へ排出し
ない。また、杭埋設も回転による埋設であるから地盤を
乱すことなく羽根のピッチで貫入するので、非造成層は
蓋として十分機能し、杭貫入によって土砂が地上へ排出
されることはほとんどない。 【0027】非造成層6の厚みはソイルセメント柱体の
外径の半分以上であることが好ましく、より好ましくは
外径以上である。また鋼管杭2は、単体で用いる場合も
あるが、必ずしも単体での使用に限定するものではな
く、長手方向に連続させて溶接或いはネジ込み等の手段
によって複数本を接続した継杭を用いても良い。上記の
如く構成された鋼管杭2では、下端部が底板によって閉
塞されていれば鋼管杭2がソイルセメント柱体3に貫入
するのに従って貫入した体積分のソイルセメントが加圧
され、ソイルセメントの強度を増加させることが可能で
ある。 【0028】また、空洞状態である鋼管杭2内部に、良
質なセメントミルク、モルタル、コンクリートを充填す
ることも可能であり、鋼管杭2の内部に充填物を充填す
ると、鋼管杭2の有効断面積を大きくすると共に断面形
状の変形を防止することが可能である。この結果、ソイ
ルセメント合成杭が負担し得る鉛直荷重や水平荷重をよ
り大きくすることができる。ソイルセメント柱体3と鋼
管杭2との一体性や、鉛直荷重の分散を効果的にするた
めには、図1(d)に示すように、鋼管杭2の本体の直
径をdとし、最大径を有するらせん状羽根4の直径をD
とし、ソイルセメント柱体3の直径をDcとしたとき、
最大径を有するらせん状羽根4の直径Dは、荷重の分散
および鋼管杭とソイルセメントの一体効果の観点から鋼
管杭2の直径dの1.5倍以上が好ましく、らせん状羽根
4に発生する曲げ応力を抑制する観点から3.0倍以下の
範囲が好ましい。 【0029】ソイルセメント柱体3と鋼管杭2との一体
性や鉛直荷重の分散を効果的にするには、ソイルセメン
ト柱体3の直径Dcを最大径を有するらせん状羽根4の
直径Dの1.0倍〜2.0倍の範囲にすることが好ましく、
1.2倍〜1.5倍の範囲にすることがより好ましい。鋼管
杭2のソイルセメント柱体3への貫入速度をVp(m/
分)、鋼管杭2のねじ込み時の回転数をRp(回/
分)、らせん状羽根4のらせんピッチをtp(m)とし
たとき、鋼管杭2をソイルセメント柱体3に貫入させる
方法としては鋼管杭2が1回転する間にらせん状羽根4
のピッチ分、或いはピッチ分以下だけ貫入させる方法、
即ち、鋼管杭2のソイルセメント柱体2への貫入速度V
pを、Vp≦Rp・tpとすることが望ましい。鋼管杭
2の貫入速度を前記の如く設定することで、鋼管杭2と
ソイルセメント柱体3との一体性を効果的に確保するこ
とができる。 【0030】また、本発明においてソイルセメント柱体
と鋼管杭の頭部は一致させる必要は無く、鋼管杭頭部は
ソイルセメント柱体から飛び出て、地表付近まで出てい
てもかまわない。以上、実施例を鋼管杭を用いる場合に
ついて説明したが、コンクリート杭の場合にも同じこと
がいえる。 【0031】 【発明の効果】本発明により、従来の算定方法が適用で
きないソイルセメント合成杭の支持力算定を簡便、かつ
的確に実施できる。本発明の算定方法では、砂質土、粘
性土という地盤の種類を考慮する必要がなく、N値と地
盤の層厚のみで算定できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a bearing capacity of a soil cement composite pile in which a ready-made pile having a spiral blade is inserted into a soil cement column. About. 2. Description of the Related Art The vertical supporting force P of a pile installed in the ground can be obtained as the sum of the tip supporting force Po of the pile and the peripheral frictional force Pf of the pile P = Po + Pf. Among them, the peripheral frictional force Pf of the pile acting on the boundary surface between the pile and the ground is obtained as Pf = τ · Af.
τ is the friction stress at the interface between the pile and the ground, and Af is the area of the interface. In the conventional pile method, the value of τ differs depending on the type of the ground. For sandy ground, τ = 10N / 3, for viscous ground, τ = Qu / 2 (where N is the standard penetration test of sandy ground. The value and Qu were determined using empirical formulas such as the uniaxial compressive strength of cohesive soil. [0003] For this reason, piles are generally installed through a plurality of strata, so that it is necessary to divide each stratum into sandy soil and cohesive soil, determine the peripheral frictional force for each stratum, and perform a complicated calculation for summing them. there were. When the bearing capacity of the soil cement composite pile by this method was evaluated using these conventional formulas, it became 1/5 to 1/10 of the actual test result, and it was found that the bearing capacity calculation formula was not applicable at all. SUMMARY OF THE INVENTION An object of the present invention is to provide a new formula capable of accurately calculating the bearing capacity of a soil cement composite pile by a simple calculation. SUMMARY OF THE INVENTION The present inventor has focused on the fact that a pile supporting mechanism of a ready-made pile having a soil cement column and a spiral blade is different from that of a conventional pile construction method. Reached. That is, the present invention is as follows. In calculating the bearing capacity of a soil cement composite pile obtained by screwing a ready-made pile with spiral blades into the soil cement column, the calculation of friction stress τ acting on the peripheral surface of the composite pile is independent of the type of ground, It is characterized by a formula τ = α + βN (α and β are constants obtained by the correlation between the diameter of the ready-made pile body, the diameter of the spiral blade, and the diameter of the soil cement column) using the N value obtained by the standard penetration test. Calculation method for bearing capacity of soil cement composite pile. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The supporting force calculation method according to the present invention will be described below using examples. FIG. 2 is a diagram showing a general outline of the soil cement composite pile method. In FIG. 2, this composite pile is installed through four types of ground. Type of soil are alternating layers of sandy soil and cohesive soil from the top, respectively N 1 from the mean is the surface portion of each layer of the N-value by SPT indicating the strength of the ground, N 2, N 3, N 4 Further, the layer thickness is L 4 from L 1. According to the conventional bearing capacity calculation formula, L 2 layer and L 4 layer is not used N values in the calculation of skin friction Pf of piles for a cohesive soil layer, cohesive soil in place of N value It was necessary to obtain and calculate the uniaxial compressive strength Qu by some method. The peripheral friction force Pc of the sandy soil part obtained from the N value and the peripheral friction force Ps of the sandy soil part obtained from the N value are added to obtain the peripheral friction force Pf of the pile.
Has to be obtained by Pf = Pc + Ps. Specifically, in the sandy soil portion of the ground, the peripheral frictional force Ps of the sandy soil is represented by Ps = τ · Af
= (10 · N 1/3 · L 1 +10 · N 3/3 · L 3) ψ, (Af wherein
Is the peripheral surface area of the pile, and 杭 is the peripheral length of the pile.
The unconfined compressive strength Qu value of the ground is obtained by any method without using the value, and the peripheral friction force Pc of the cohesive soil portion is calculated as Pc = τ · Af = (Qu 2
/ 2 · L 2 + Qu 4 /2 · L 4) determining the [psi. Thereafter, the peripheral frictional force of the pile, Pf = Pc + Ps, was calculated as the sum of the two. Therefore, conventionally, it has been necessary to use two formulas, and it has been very complicated to change the N value to the Qu value in the cohesive soil. The bearing capacity calculation method of the present invention does not need to consider the type of the ground such as sandy soil and cohesive soil, and can be calculated only by the N value and the layer thickness L of the ground. That is, the formula for calculating the frictional force on the peripheral surface of a pile according to the present construction method can be easily obtained by one calculation formula represented by Pf = τ · Af = (α + βN) · Af. Here, N is the average N value of all layers, so that N = (N 1 · L 1 +
N 2 · L 2 + N 3 · L 3 + N 4 · L 4 ) / L (L is the sum of L 1 to L 4 )
You can ask for it. α and β are constants that are experimentally determined if the correlation between the outer diameters of the pile (the diameter of the ready-made pile main body, the diameter of the spiral blade, and the diameter of the soil cement column) is determined. Conventionally, the empirical value of the ground friction stress τ obtained from the N value and the Qu value has been obtained by performing a vertical loading test. In the present invention, a load test may be performed in the same manner as in the prior art. For example, when the spiral blade diameter D is set to 1.5 times the outer diameter d of the pile body and the diameter of the soil cement column is set to a constant value such as 3 times, a vertical loading test is carried out at several sites with different N values. The stress τ can be obtained as an empirical value using α and β as constants. A specific method for obtaining α and β will be described in the following examples. [0010] Table 1 shows an example of the results of a vertical loading test at six sites. [Table 1] The pile uses a steel pipe pile, and the pile outer diameter d is 190.
7mm to 216.3mm, the length L of the pile is 4.3m to 22m, and the spiral blades having the outer diameter D of about twice the outer diameter d of the pile body are fixed at equal pitches of about 2m. . The outer diameter Dc of the soil cement column is 200 mm larger than the outer diameter D of the blade.
600 mm and 650 mm. Therefore, the correlation between the pile outer diameters in the present embodiment is that D / d is about 2, and Dc /
D is about 1.5. As shown in Table 1, the average N value of each area where the pile was installed was in the range of 2.3 to 8.4. The perimeter area of the pile was calculated in two types. One is the area surrounded by the outer diameter D of the spiral blade as shown by the broken line in FIG. 2, and Aw = π · DL. The other is the area surrounded by the outer diameter Dc of the soil cement column. Ac = π ・
Dc · L. Aw and Ac of each pile are as shown in Table 1. Friction stress τ acting on the pile is obtained by dividing the peripheral frictional force Pf of the pile obtained from the load test result by the surface area of the pile. Friction stress τw acting on the part surrounded by the spiral blade
Is τw = Pf / Aw, and the frictional stress τc acting on the outer peripheral portion of the soil cement is obtained by τc = Pf / Ac. FIGS. 3 and 4 show the relationship between τw and τc and the average N value.
It is. As is clear from all the figures, τ is a straight line proportional to the N value when approximated by the least squares method, and it can be found that τ can be obtained by almost one straight line regardless of the type of ground or the pile length. As is apparent from this embodiment, when the frictional stress acting on the outer diameter portion of the spiral blade shown in FIG. 3 is τw, it can be obtained by a linear equation of τc = α + βN = 50 + 10N. On the other hand, when the friction stress τc acting on the outer peripheral portion of the soil cement shown in FIG. 4 is obtained, τc = 30 + 8N is obtained. Although the values of α and β differ depending on where the friction stress τ is calculated on the soil cement composite pile,
In any case, it can be obtained by a simple equation of τ = α + βN. A comparison between the test results shown in Table 1 and the frictional force obtained by the conventional formula for calculating the frictional force revealed that they were quite different. In the conventional formula for calculating sandy soil using the N value, τ = 10/3 · N.
= 16.7, and N = 10, τ = 33.3. On the other hand, in the proposed formula, the frictional stress at the portion of the spiral blade diameter is τ = 50 + 10N as shown in FIG. 3, so when the N value is 5, τ = 100,
When the N value is 10, τ = 150, which is about five times different from the conventional type. The conventional formula is τ calculated from the outer diameter of the ready-made pile main body, and the proposed formula is τ calculated at the outer diameter portion of the spiral blade. The ratio of the outer diameters of the spiral blades is about 2, and the value of τ in the proposed formula is twice the above, and τ = 200 and 300, respectively. This value is about 10 times the value obtained from the conventional formula, and it is understood that the conventional formula cannot be applied to the soil cement composite pile at all. Conventionally, the frictional force acting on the peripheral surface of the pile differs depending on the type of the ground, and it has been necessary to calculate the ground separately for two types of clay soil and sandy soil. The inventor of the present invention has found a calculation formula that does not need to be divided into two types and can be obtained by a simple calculation formula and that can easily calculate an actual friction stress that is about 10 times the value obtained by the conventional formula. . The reason that the conventional method cannot be applied is that, in many cases, the pile and the ground are in contact with each other in the conventional pile method, whereas the soil cement composite pile has a relatively large soil cement column around the ready-made pile body. Covering. As a result, ready-made piles and ground are not in direct contact. Further, the ground is agitated at the time of forming the soil cement, and it is expected that a hard ground having a large N value and a viscous ground having a small N value are mixed to form a soil cement column having an average strength. As a result, it is expected that the frictional force acting on the peripheral surface of the ready-made pile does not reflect the strength of the ground sensitively and that the entire ground functions in an averaged state. Next, a preferred embodiment of the soil cement composite pile construction method of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of the ground showing an outline of a construction process of a construction method according to the present embodiment. In this embodiment, an example is shown in which a steel pipe pile is used as a ready-made pile, but a concrete pile can be used instead of the steel pipe pile. In the case of a concrete pile, it is preferable to attach a spiral blade via a metal band or the like. First, as shown in FIG. 1A, a soil cement column forming apparatus 5 is installed at a target position on the ground 1, and a soil cement column 3 is formed by a mechanical deep mixing method. Is preferred. Here, the mechanical deep mixing method is a stirring and mixing device equipped with an excavating blade and a stirring blade while pouring a slurry prepared by kneading cement or a solidifying material containing cement as a main component and water into the ground. Means a soil improvement method for mechanically stirring and mixing the ground and slurry to form a soil cement column. The method for forming the soil cement column may be not only the mechanical deep mixing method, but also a conventional pre-boring method using a ready-made pile. The pre-boring method is to excavate a pile pit using an auger before laying a ready-made pile, and inject a solidifying material containing water or cement as a main component to form a soil cement column of a pit. In penetrating the column forming apparatus 5 into the ground, it is preferable to provide a non-forming layer 6 of a predetermined length which does not form the soil cement column 3 on the surface of the ground. In this case, neither cement milk nor water is used. When the column forming device 5 reaches the depth of the non-formed layer 6 or more, the formation of the soil cement column 2 is started.
As shown in FIG. 3B, when the column building apparatus 5 is pulled up to complete the soil cement column 3, it is preferable to stop the rotation and the cement milk injection and pull out the non-formation layer 6 near the ground surface. As shown in FIG. 1C, a plurality of spiral blades 4 are provided at predetermined positions, and a steel pipe pile with a spiral blade (hereinafter, simply referred to as a "steel pipe pile") 2 is rotated while the uncured soil is rotated. The cement column 3 is screwed and penetrated. Steel pipe pile 2
Is penetrated into the soil cement column 3 to integrate the two into a soil cement composite steel pipe pile as shown in FIG. The spiral blade 4 provided around the steel pipe pile 2 is preferably formed such that the root portion welded to the steel pipe pile is thicker and thinner toward the outer periphery. The spiral blade is obtained, for example, by bending an in-plane steel plate with equal thickness in a plane by rolling. The inner peripheral side is formed thicker than the strip steel sheet thickness, and the outer peripheral side is formed thinner. It is also possible to use an unequal thickness strip from the beginning and roll it and bend it to the inner surface to further increase the inner diameter, and further reduce the outer circumference to increase the difference in unequal thickness. In terms of strength design, when the thickness on the outer peripheral side is 1, the thickness on the inner peripheral side is preferably 1.2 to 3.0, and more preferably 1.2 to 1.5. Since the design strength is determined by the root thickness of the blades, the amount of steel material can be relatively reduced as compared with the case of using blades of equal thickness. Further, it is possible to prevent the occurrence of a cutting loss that occurs when the spiral blade is cut from a flat steel plate. The steel pipe pile 2 preferably has spiral blades near the pile head and near the lower end, and at least one spiral blade between them. Therefore, it is preferable that the steel pipe pile 2 is provided with at least three spiral blades 4. The diameters of the spiral blades may be the same or different. Here, the vicinity of the pile head refers to a footing to which the steel pipe pile 2 is connected, or an area within a range equal to the diameter Dc of the soil cement column 3 from the bottom surface of the cloth foundation. In addition, the vicinity of the lower end of the pile refers to a range equal to the diameter Dc of the soil cement column 3 from the lower end of the pile. Generally, the largest vertical load acts on the foundation pile of civil engineering and building structures at the pile head. Therefore, when the steel pipe pile 2 has the spiral blades 4 near the pile head, the soil cement column 3 below the spiral blades 4 is compressed by the pressing effect of the spiral blades 4, and the vertical load is increased. It is possible to resist not only the steel pipe pile 2 but also the soil cement column 3. Further, even with respect to a horizontal load, the horizontal rigidity can be increased by the pressing effect of the spiral blade 4 and the restraining effect of the soil cement column 3. In the soil cement composite steel pipe pile according to the present embodiment, spiral blades 4 are provided near the pile head and the lower end of the steel pipe pile 2 and at least one spiral is provided between the two. Since the blades 4 are provided, the load is dispersed from the spiral blades 4, and the entire vertical supporting load can be increased. In addition, the installation interval of the spiral blade 4 between the spiral blades 4 provided near the pile head and the lower end of the steel pipe pile 2 is not particularly limited.
It is preferable to appropriately set the length to about 1 m to 3 m. In this embodiment, two spiral blades 4 are provided near the lower end of the steel pipe pile 2 and near the pile head, and a total of four spiral blades 4 are provided. I have. In the present embodiment, the presence of the non-formation layer 6 serves as a lid, so that the excavated soil is hardly discharged to the ground during excavation. In addition, since piles are also buried by rotation, they penetrate at the pitch of the blades without disturbing the ground, so that the non-formation layer functions sufficiently as a lid, and the piles hardly discharge earth and sand to the ground. The thickness of the non-formation layer 6 is preferably at least half the outer diameter of the soil cement column, more preferably at least the outer diameter. In some cases, the steel pipe pile 2 may be used alone, but is not necessarily limited to the use of a single piece, and a plurality of steel pipe piles connected by means of welding or screwing in the longitudinal direction are used. Is also good. In the steel pipe pile 2 configured as described above, if the lower end is closed by the bottom plate, as the steel pipe pile 2 penetrates into the soil cement column 3, the soil cement of the volume penetrated is pressurized, and It is possible to increase the strength. It is also possible to fill the hollow steel pipe pile 2 with high quality cement milk, mortar and concrete. When the filler is filled inside the steel pipe pile 2, the effective cutting of the steel pipe pile 2 can be achieved. It is possible to increase the area and prevent deformation of the cross-sectional shape. As a result, the vertical load and the horizontal load that the soil cement composite pile can bear can be further increased. In order to effectively integrate the soil cement column 3 with the steel pipe pile 2 and to disperse the vertical load, as shown in FIG. The diameter of the spiral blade 4 having a diameter is D
And when the diameter of the soil cement column 3 is Dc,
The diameter D of the spiral blade 4 having the largest diameter is preferably at least 1.5 times the diameter d of the steel pipe pile 2 from the viewpoint of load distribution and the effect of integrating the steel pipe pile and soil cement, and the bending stress generated in the spiral blade 4 The range of 3.0 times or less is preferable from the viewpoint of suppressing the above. In order to effectively integrate the soil cement column 3 with the steel pipe pile 2 and to disperse the vertical load, the diameter Dc of the soil cement column 3 is set to the diameter D of the spiral blade 4 having the maximum diameter. It is preferable to be in the range of 1.0 to 2.0 times,
It is more preferable to set the range of 1.2 times to 1.5 times. The penetration speed of the steel pipe pile 2 into the soil cement column 3 is Vp (m /
), The rotation speed at the time of screwing the steel pipe pile 2 is Rp (times /
Minute), when the spiral pitch of the spiral blades 4 is tp (m), a method of penetrating the steel pipe pile 2 into the soil cement column 3 is as follows.
Method to penetrate only the pitch or less than the pitch,
That is, the penetration speed V of the steel pipe pile 2 into the soil cement column 2
It is desirable that p be Vp ≦ Rp · tp. By setting the penetration speed of the steel pipe pile 2 as described above, the integrity of the steel pipe pile 2 and the soil cement column 3 can be effectively secured. Further, in the present invention, it is not necessary that the head of the soil cement column and the head of the steel pipe pile coincide with each other, and the head of the steel pipe pile may jump out of the soil cement column and protrude to near the ground surface. Although the embodiment has been described above using the steel pipe pile, the same can be said for a concrete pile. According to the present invention, it is possible to simply and accurately calculate the bearing capacity of a soil cement composite pile to which the conventional calculation method cannot be applied. In the calculation method of the present invention, it is not necessary to consider the types of the ground such as sandy soil and clayey soil, and the calculation can be performed only by the N value and the layer thickness of the ground.

【図面の簡単な説明】 【図1】実施例に係るソイルセメント鋼管杭の施工工程
概要を示す地盤の断面図である。 【図2】実施例における粘性土と砂質土の互層地盤に施
工された場合の断面図である。 【図3】杭周面に作用する摩擦力τを複数の試験結果か
ら求め、これを地盤全体の平均N値との関係で示したτ
―N相関図である。図3ではτの値として図2に示す螺
旋翼外径Dwで囲まれる面に作用する摩擦力τwとして計
算している。 【図4】図3と同様のτ―N相関図である。図4では図
2に示すソイルセメントコラムの外径Dcで囲まれる面に
作用する摩擦力τcとして計算している。 【符号の説明】 D 最大径を有するらせん
状羽根4の直径 d 鋼管杭本体の直径 Dc ソイルセメント柱体の
直径 1 地盤 2 鋼管杭 3 ソイルセメント柱体 4 らせん状羽根 5 ソイルセメント柱体造
成装置 6 非造成層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a ground showing an outline of a construction process of a soil cement steel pipe pile according to an embodiment. FIG. 2 is a cross-sectional view of a case where the present invention is applied to an alternate layer of clayey soil and sandy soil in the embodiment. FIG. 3 shows the frictional force τ acting on the pile peripheral surface obtained from a plurality of test results, which is shown in relation to the average N value of the entire ground.
FIG. 14 is a -N correlation diagram. In FIG. 3, the value of τ is calculated as the frictional force τw acting on the surface surrounded by the spiral blade outer diameter Dw shown in FIG. FIG. 4 is a τ-N correlation diagram similar to FIG. 3; In FIG. 4, calculation is made as a frictional force τc acting on a surface surrounded by the outer diameter Dc of the soil cement column shown in FIG. [Description of Signs] D Diameter of spiral blade 4 having maximum diameter d Diameter of steel pipe pile body Dc Diameter of soil cement column 1 Ground 2 Steel pipe pile 3 Soil cement column 4 Spiral blade 5 Soil cement column forming device 6 Non-stratified layer

Claims (1)

【特許請求の範囲】 【請求項1】 ソイルセメント柱体に、らせん状羽根付
き既製杭をねじ込み貫入させて得られるソイルセメント
合成杭の支持力算定に際し、合成杭の周面に作用する摩
擦応力τの計算を地盤の種別によらず標準貫入試験によ
るN値を用いた一式τ=α+βN(α、βは既製杭本体
径、らせん状羽根径、及びソイルセメント柱体径の相関
関係で求められる定数)で算定することを特徴とするソ
イルセメント合成杭の支持力算定方法。
Claims: 1. Friction stress acting on the peripheral surface of a composite pile in calculating the bearing force of a composite pile made of soil cement obtained by screwing a prefabricated pile with spiral blades into a soil cement column. τ is calculated by using a standard penetration test N value regardless of the type of ground. A method for calculating the bearing capacity of a soil-cement composite pile, characterized in that it is calculated using a constant.
JP2001267665A 2001-09-04 2001-09-04 Bearing capacity calculation method of soil cement composite pile Pending JP2003082648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267665A JP2003082648A (en) 2001-09-04 2001-09-04 Bearing capacity calculation method of soil cement composite pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267665A JP2003082648A (en) 2001-09-04 2001-09-04 Bearing capacity calculation method of soil cement composite pile

Publications (1)

Publication Number Publication Date
JP2003082648A true JP2003082648A (en) 2003-03-19

Family

ID=19093768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267665A Pending JP2003082648A (en) 2001-09-04 2001-09-04 Bearing capacity calculation method of soil cement composite pile

Country Status (1)

Country Link
JP (1) JP2003082648A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205140A (en) * 2006-02-06 2007-08-16 Sekisui House Ltd Control method of designed bearing capacity of pile
JP2008088746A (en) * 2006-10-04 2008-04-17 Tenox Corp Replacing construction method of column
JP2010133114A (en) * 2008-12-03 2010-06-17 Asahi Kasei Construction Materials Co Ltd Piling method accompanying soil improvement
US20110044766A1 (en) * 2009-08-18 2011-02-24 Crux Subsurface, Inc. Micropile Foundation Matrix
US9828739B2 (en) 2015-11-04 2017-11-28 Crux Subsurface, Inc. In-line battered composite foundations
CN112396130A (en) * 2020-12-09 2021-02-23 中国能源建设集团江苏省电力设计院有限公司 Intelligent identification method and system for rock stratum in static sounding test, computer equipment and medium
CN114169064A (en) * 2021-12-28 2022-03-11 中国铁道科学研究院集团有限公司 Size optimization combination method for down-the-hole impact cement-soil composite precast pile and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339940A (en) * 1992-06-09 1993-12-21 Michio Tanaka Cast-in-place concrete pile
JPH1113047A (en) * 1997-06-23 1999-01-19 Geotop Corp Settlement estimation method for buried pile
JP2000352048A (en) * 1999-06-09 2000-12-19 Kokudo Kiso:Kk Steel pipe pile and method of burying the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339940A (en) * 1992-06-09 1993-12-21 Michio Tanaka Cast-in-place concrete pile
JPH1113047A (en) * 1997-06-23 1999-01-19 Geotop Corp Settlement estimation method for buried pile
JP2000352048A (en) * 1999-06-09 2000-12-19 Kokudo Kiso:Kk Steel pipe pile and method of burying the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205140A (en) * 2006-02-06 2007-08-16 Sekisui House Ltd Control method of designed bearing capacity of pile
JP2008088746A (en) * 2006-10-04 2008-04-17 Tenox Corp Replacing construction method of column
JP2010133114A (en) * 2008-12-03 2010-06-17 Asahi Kasei Construction Materials Co Ltd Piling method accompanying soil improvement
US20110044766A1 (en) * 2009-08-18 2011-02-24 Crux Subsurface, Inc. Micropile Foundation Matrix
US8974150B2 (en) * 2009-08-18 2015-03-10 Crux Subsurface, Inc. Micropile foundation matrix
US9290901B2 (en) 2009-08-18 2016-03-22 Crux Subsurface, Inc. Micropile foundation matrix
US9828739B2 (en) 2015-11-04 2017-11-28 Crux Subsurface, Inc. In-line battered composite foundations
CN112396130A (en) * 2020-12-09 2021-02-23 中国能源建设集团江苏省电力设计院有限公司 Intelligent identification method and system for rock stratum in static sounding test, computer equipment and medium
CN114169064A (en) * 2021-12-28 2022-03-11 中国铁道科学研究院集团有限公司 Size optimization combination method for down-the-hole impact cement-soil composite precast pile and application thereof
CN114169064B (en) * 2021-12-28 2022-09-16 中国铁道科学研究院集团有限公司 Size optimization combination method for down-the-hole impact cement-soil composite precast pile and application thereof

Similar Documents

Publication Publication Date Title
CN206721870U (en) A kind of long auger guncreting pile steel reinforcement cage
JP2003082648A (en) Bearing capacity calculation method of soil cement composite pile
CN107100164A (en) A kind of long auger guncreting pile construction method
JP3372627B2 (en) Burying method of inverted conical multi-wing steel pipe pile
JPS5985028A (en) Steel pipe pile and laying work thereof
JPH11140869A (en) Screwed-in type steel pipe pile with wing
KR101620789B1 (en) Small bore drain pipe burial method of soft ground condition
JP4029191B2 (en) Subsidence suppression structure, construction method of settlement suppression structure
JPH10331156A (en) Steel pipe pile and method for foundation work using the same
JP3448629B2 (en) Seismic retrofitting method for existing structure foundation
CN111254939A (en) Foundation pit enclosure strengthening method for soft soil foundation
JP2003055965A (en) Soil cement columnar body with thin steel pipe present as core material and its construction method
CN213233417U (en) Combined pile and combined foundation
JPH07279171A (en) Soil cement composite pile, and execution method and execution device therefor
JPH0953237A (en) Pit and constructing method of basement utilizing the pit
JP4566400B2 (en) Construction method of soil cement synthetic pile and soil cement synthetic pile
JP3306527B2 (en) Open cut method of soft ground by deep mixing method
JP4635114B2 (en) Steel pipe pile
Al-Recaby Assessing the increase in bearing capacity of bored piles in sandy soil using expansive additives
JP2599299B2 (en) Retaining wall and retaining method in soft ground
JP2003049425A (en) Soil-cement composite jointed pile
JP2003171949A (en) Excavating bottom surface-stabilizing construction method and underground building construction method
JP2003027470A (en) Soil cement composite pile
JP4189078B2 (en) Construction method of underground structure in liquefied ground
KR101976263B1 (en) Construction method of small-calibre sewer pipe using steel pipe working hole and precast concrete slab into flimsy ground

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20080213

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Effective date: 20100902

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A02