JPH05339940A - Cast-in-place concrete pile - Google Patents

Cast-in-place concrete pile

Info

Publication number
JPH05339940A
JPH05339940A JP14961092A JP14961092A JPH05339940A JP H05339940 A JPH05339940 A JP H05339940A JP 14961092 A JP14961092 A JP 14961092A JP 14961092 A JP14961092 A JP 14961092A JP H05339940 A JPH05339940 A JP H05339940A
Authority
JP
Japan
Prior art keywords
pile
ground
force
cast
place concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14961092A
Other languages
Japanese (ja)
Other versions
JP2548661B2 (en
Inventor
Michio Tanaka
理夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4149610A priority Critical patent/JP2548661B2/en
Publication of JPH05339940A publication Critical patent/JPH05339940A/en
Application granted granted Critical
Publication of JP2548661B2 publication Critical patent/JP2548661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To increase the supporting force, by providing continuous ribs to form rings at a part or the whole outer peripheral face of a cast-in-place concrete pile to actuate the shearing force of the applied ground of the pile on the outer peripheral face of the pile body. CONSTITUTION:Continuous ring-form ribs with semi-spherical section surrounding the whole periphery of a pile body 1 are provided at a part or on the whole outer peripheral face of the pile body 1 of a cast-in-place concrete pile. In this way, the bearing force of the pile can be increased because the adhesive force between the pile and the ground is not brought by the sum of frictional forces but the shearing force of the ground is actuated on the peripheral face of the pile.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は場所打ちコンクリート杭
の改良に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of cast-in-place concrete piles.

【0002】[0002]

【従来の技術】従来、場所打ちコンクリート杭の杭周面
抵抗値は、杭の極限周面摩擦力度fuは、杭の土との間
の付着力及び摩擦力の和として次式で示される。 fu=Ca+Ph・tanδ ここにCa:杭と地盤との間の付着力 Ph:杭と周面に作用する側圧 δ:杭周面と地盤との間の摩擦角 一般に砂層の極限周面摩擦力fuを求める場合には、杭
と地盤との間の付着力を0として、fu=Ph・tan
δとしている。また粘性土層の極限周面摩擦力fuを求
めるには、砂層の摩擦角δを0としてfu=Caとして
いる。
2. Description of the Related Art Conventionally, a pile peripheral surface resistance value of a cast-in-place concrete pile, an ultimate peripheral surface frictional force fu of the pile is expressed by the following equation as a sum of adhesion force and frictional force between the pile and soil. fu = Ca + Ph · tanδ where Ca: adhesive force between pile and ground Ph: lateral pressure acting on pile and peripheral surface δ: friction angle between pile peripheral surface and ground Generally, the ultimate peripheral surface friction force fu In order to obtain, the adhesive force between the pile and the ground is set to 0, and fu = Ph · tan
δ. Further, in order to obtain the ultimate circumferential surface frictional force fu of the cohesive soil layer, the friction angle δ of the sand layer is set to 0 and fu = Ca.

【0003】一方、地盤の持っている強度をそのまま利
用する方法として低騒音、低振動工法では、既製杭の一
種であるねじり込み杭が開発されている。場所打ち杭で
はコルゲート殻を地盤に埋設したのち、内部にコンクリ
ートを打設する方法、あるいはコルゲート殻を徐々に地
盤から抜きながらコンクリートを打設する方法、この他
コルゲート管を地盤に埋設して、廻りにセメントミルク
を注入する方法がある。
On the other hand, as a method of utilizing the strength of the ground as it is, a twisted pile, which is a kind of ready-made pile, has been developed in the low noise and low vibration construction method. In the case of cast-in-place pile, after burying the corrugated shell in the ground, concrete is placed inside, or the concrete is poured while gradually pulling out the corrugated shell from the ground. There is a method to inject cement milk around.

【0004】[0004]

【発明が解決しようとする課題】しかしながらねじり込
み杭を地盤内にねじ込み埋設しても、同杭躯体外周にお
ける上下に相隣るリブ間の土が攪乱され、同リブ間の地
盤の耐力は期待できず杭周面耐力は付着力か摩擦力、若
しくはそれ以下で、本来地盤が持っている土の剪断力を
期待することができない。またコルゲート殻を利用する
前記従来の方法も同様である。
However, even if a screwed pile is buried in the ground by screwing, soil between adjacent ribs on the outer circumference of the pile is disturbed, and the yield strength of the ground between the ribs is expected. It cannot be done and the pile peripheral strength is adhesive force, frictional force, or less, and the shearing force of the soil originally possessed by the ground cannot be expected. The same applies to the above-mentioned conventional method using a corrugated shell.

【0005】また通常の直杭(ストレート杭)において
は、地盤強度が増大するのに伴って土の固結性が増し、
杭外周面と周辺地盤との間に辷りが生じるため、地盤の
強度に応じた杭周面耐力は期待できない。一方、杭の支
持力を増大させるため、通常杭先端部を拡幅する方法が
採用されているが、杭の沈下量を考慮すると、拡幅に応
じた支持耐力は期待できない。
Further, in a normal straight pile (straight pile), as the ground strength increases, the solidification property of soil increases,
Since slumping occurs between the outer peripheral surface of the pile and the surrounding ground, the pile peripheral strength corresponding to the strength of the ground cannot be expected. On the other hand, in order to increase the bearing capacity of the pile, a method of widening the tip of the pile is usually adopted, but considering the amount of subsidence of the pile, the bearing capacity corresponding to the widening cannot be expected.

【0006】本発明は前記従来技術の有する問題点に鑑
みて提案されたもので、その目的とする処は、場所打ち
コンクリート杭の支持耐力を地盤強度に応じて、大幅に
増大せしめることができ、杭頭での沈下量を制御しうる
場所打ちコンクリート杭を提供する点にある。
The present invention has been proposed in view of the above problems of the prior art, and the object thereof is to significantly increase the bearing strength of cast-in-place concrete piles according to the ground strength. The point is to provide a cast-in-place concrete pile that can control the amount of subsidence at the pile head.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、場所打ちコンクリート杭は、杭躯体外周面の一部
分、または全部にリング状に連続リブを設けてなり、前
記杭躯体外周面に同杭の施工地盤の剪断力を作用せしめ
るように構成されている。
In order to achieve the above object, a cast-in-place concrete pile has a ring-shaped continuous rib provided on a part or all of the outer peripheral surface of the pile body, and the continuous rib is formed on the outer peripheral surface of the pile body. Construction of piles It is configured to exert a shearing force on the ground.

【0008】[0008]

【作用】本発明に係る場所打ちコンクリート杭は前記し
たように、杭躯体外周面の一部分または全部にリング状
に杭躯体全周を囲繞する連続リブを設けたことによっ
て、前記場所打ちコンクリート杭の周面耐力を、同杭と
同杭が施工された地盤との間の付着力と摩擦力との和で
はなく、前記コンクリート杭が施工される地盤の剪断力
を杭周面で作用させることによって、前記杭の支持力を
大幅に増大させることができる。
As described above, the cast-in-place concrete pile according to the present invention is provided with a continuous rib that surrounds the entire circumference of the pile-body in a ring shape in a part or all of the outer peripheral surface of the pile-body, so that Peripheral surface strength, by applying the shearing force of the soil on which the concrete pile is constructed on the pile circumferential surface, not the sum of the adhesive force and the frictional force between the pile and the soil on which the pile is constructed. The bearing capacity of the pile can be greatly increased.

【0009】なおより大きな支持力が必要な場合には、
柱状拡幅杭の杭外周面にリング状に連続リブを設ける。
If a larger supporting force is required,
A ring-shaped continuous rib is provided on the outer peripheral surface of the pillar widened pile.

【0010】[0010]

【実施例】以下本発明を図示の実施例について説明す
る。図1は場所打ちコンクリート杭の杭躯体1外周面に
一部分または全部に亘って杭躯体1の全周を囲繞する半
球状断面のリング状の連続リブ2が設けられている。図
2に示す実施例においては前記リブが角錐状断面に形成
されている。図3に示す実施例においては図3のリブの
下面が平面に形成されている。
The present invention will be described below with reference to the illustrated embodiments. In FIG. 1, a ring-shaped continuous rib 2 having a hemispherical cross section is provided on the outer peripheral surface of a pile body 1 of a cast-in-place concrete pile so as to surround the entire circumference of the pile body 1 partially or entirely. In the embodiment shown in FIG. 2, the ribs have a pyramidal cross section. In the embodiment shown in FIG. 3, the lower surface of the rib of FIG. 3 is formed into a flat surface.

【0011】場所打ちコンクリート杭における外力と杭
の抵抗としての釣合式は下記の(1)式で示される。
(図4参照) P=RF +RP …(1)式 ここにP:外力又は杭の極限支持力(tf) RF :杭の周面摩擦力(tf) RP :杭の先端支持力(tf) また前記杭の周面摩擦力RF は下式で示される。(図4
参照) RF =UΣfi ・Li …(2)式 ここにU:杭の周長(m) fi :土層を深さ方向にn等分したときの第i番目の土
層中における杭の周面摩擦応力度(tf/m2 ) Li :第i番目の土層中の杭長(m) 而して第i番目の土層中における杭の周面摩擦応力度f
i は杭と同杭周面地盤との間の付着力と摩擦力の和とし
て次の(3)式で与えられる。
The balance equation as the external force and the resistance of the pile in the cast-in-place concrete pile is shown by the following equation (1).
(Refer to FIG. 4) P = R F + R P (1) where P: External force or ultimate bearing force of pile (tf) R F : Peripheral friction force of pile (tf) R P : Tip bearing force of pile (Tf) Further, the peripheral frictional force R F of the pile is expressed by the following formula. (Fig. 4
Reference) R F = UΣf i · L i (2) where U: Perimeter of pile (m) f i : in the i-th soil layer when the soil layer is divided into n equal parts in the depth direction Peripheral frictional stress of pile (tf / m 2 ) L i : Pile length in the i-th soil layer (m) Therefore, peripheral frictional stress f of the pile in the i-th soil layer f
i is given by the following equation (3) as the sum of the adhesive force and the frictional force between the pile and the soil around the pile.

【0012】fi =Ca+Ph・tan δ…(3)式 ここにfi :第i番目の土層の周面摩擦応力度(tf/
2 ) Ca:杭と地盤との間の付着力(tf/m2 ) Ph:杭の周面に作用する側圧(tf/m2 ) (Ph=PK ・PV ,K:側圧係数、PV :上載圧) δ:杭周面と地盤との間の摩擦角(°) 前記(3)式において粘土性地盤の極限周面摩擦力度
は、摩擦角δを0としてfi =Caで示される。
F i = Ca + Ph · tan δ (3) where f i is the frictional stress on the peripheral surface of the i-th soil layer (tf /
m 2 ) Ca: Adhesive force between the pile and the ground (tf / m 2 ) Ph: Lateral pressure acting on the peripheral surface of the pile (tf / m 2 ) (Ph = P K · P V , K: Lateral pressure coefficient, P V : Overlay pressure) δ: Friction angle between pile peripheral surface and ground (°) In formula (3), the ultimate peripheral surface frictional force of clay ground is f i = Ca when the friction angle δ is 0. Shown.

【0013】fi =Ca=αCu…(4)式 ここでα:付着力係数(α<1) Cu:杭の埋込み部分の土の平均非排水剪断強度 また砂質土地盤の極限周面摩擦度は付着力Caを0とし
て(3)式より fi =Ph・tanδで表わされる。
F i = Ca = αCu (4) where α: Adhesive force coefficient (α <1) Cu: Average undrained shear strength of soil in the embedded part of piles and ultimate surface friction of sandy ground The degree is expressed by f i = Ph · tan δ from the equation (3) with the adhesive force Ca being 0.

【0014】このように通常の直杭(ストレート杭)の
杭周面抵抗は地盤の剪断強さτが増すと地盤が固結性
(セメンテーション現象)を有してくるため杭と同杭周
面地盤の間で辷りが生じるため、硬い粘性土地盤等は杭
材とは付着しにくくなり、地盤強度が強くなると杭周面
抵抗は低下する。一方本発明の実施例に示すように杭躯
体1の外周面に同面全周に亘って囲繞するリング状の連
続リブ2を設けると、下記の(5)式に示した地盤の剪
断強さτに準じた杭周面抵抗がとれる。
As described above, the normal pile pile surface resistance of a normal straight pile (straight pile) is that the soil has a consolidation property (cementation phenomenon) when the shear strength τ of the soil increases, so that the pile circumference is the same as that of the pile. Since shavings occur between the surface soils, hard cohesive soils, etc. are less likely to adhere to the pile material, and as the soil strength increases, the pile surface resistance decreases. On the other hand, when a ring-shaped continuous rib 2 surrounding the entire surface of the pile body 1 is provided on the outer peripheral surface of the pile body 1 as shown in the embodiment of the present invention, the shear strength of the ground represented by the following formula (5) is obtained. The pile surface resistance can be obtained according to τ.

【0015】τ=Cu+σ・tanφu …(5)式 ここに σ:全垂直応力 Cu,φu:夫々の全応力で表わした粘着力と内部摩擦
角 ここで前掲(3)式(5)式を比較検討すると、 (3)式 fi =Ca+Ph・tanδ (5)式 τ=Cu+σ・tanφ Ph・tanδ=Pk・Pv・tanδ≒0.5Pv・
2/3tanφ≒0.3Pvtanφ Ca=αCu≒(1.0〜0.2)Cu で示される。即ちfi ≒(1〜0.2)Cu+0.3P
vtanφ≒0.3τで示されそのうえ通常の杭では付
着力と摩擦力に夫々上限がある。
Τ = Cu + σ · tanφ u (5) where σ: total vertical stress Cu, φu: adhesive force and internal friction angle expressed by total stress of each of them. A comparative study shows that formula (3) is f i = Ca + Ph · tan δ Formula (5) is τ = Cu + σ · tan φ Ph · tan δ = Pk · Pv · tan δ≈0.5 Pv ·
2/3 tanφ≈0.3 Pvtanφ Ca = αCu≈ (1.0 to 0.2) Cu. That is, f i ≈ (1 to 0.2) Cu + 0.3P
It is represented by vtanφ≈0.3τ and, in addition, the normal pile has an upper limit for the adhesive force and the upper limit for the friction force.

【0016】なお前記リブは例えば本発明者の提案に係
る特願平4−126203号(場所打ちコンクリート杭
の杭躯体拡幅装置)によって施工される。
The ribs are constructed by, for example, Japanese Patent Application No. 4-126203 (a pile body widening device for cast-in-place concrete piles) proposed by the present inventor.

【0017】[0017]

【発明の効果】本発明によれば前記したように、場所打
ちコンクリート杭の杭躯体外周面の一部、または全部
を、同杭躯体全周を囲繞するリング状の連続リブを設け
たことによって、杭周面での抵抗力に、同杭と土との摩
擦力ではなく、地盤強度に準じた杭外周の土の剪断強度
を利用することができるので、杭の支持力を大幅に増大
することができる。
As described above, according to the present invention, by providing a ring-shaped continuous rib that surrounds a part or all of the outer surface of the pile body of a cast-in-place concrete pile, the entire circumference of the pile body is provided. , The shear strength of the soil around the pile, which is based on the ground strength, can be used for the resistance force on the pile peripheral surface, rather than the frictional force between the pile and the soil, thus significantly increasing the bearing capacity of the pile. be able to.

【0018】また本発明によれば杭の支持力を杭躯体、
周面に大きく依存しているため、杭先端部の支持層厚は
薄くてもよく、特に固結性を有する粘性土地盤の強さを
そのまま評価できるため合理的で経済的な杭の構築が可
能となる。なお杭躯体部径を拡幅することによって更に
大きな支持力を得ることができ、しかも杭頭での沈下量
が制御できるので、建物の不等沈下をなくすことができ
る。
Further, according to the present invention, the supporting force of the pile is
Since it depends heavily on the peripheral surface, the support layer thickness at the tip of the pile may be thin. In particular, the strength of the cohesive ground with solidification can be evaluated as it is, which makes it possible to construct a rational and economical pile. It will be possible. By increasing the diameter of the pile body part, a larger supporting force can be obtained, and since the amount of subsidence at the pile head can be controlled, it is possible to eliminate uneven settlement of the building.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る場所打ちコンクリート杭の一実施
例を示す左半部縦断正面図である。
FIG. 1 is a left half longitudinal sectional front view showing an embodiment of a cast-in-place concrete pile according to the present invention.

【図2】本発明に係る場所打ちコンクリート杭の他の実
施例を示す左半部縦断正面図である。
FIG. 2 is a left half longitudinal sectional front view showing another embodiment of the cast-in-place concrete pile according to the present invention.

【図3】本発明に係る場所打ちコンクリート杭の更に他
の実施例を示す左半部縦断正面図である。
FIG. 3 is a left half vertical sectional front view showing still another embodiment of the cast-in-place concrete pile according to the present invention.

【図4】直杭の力学的性状説明図である。FIG. 4 is an explanatory diagram of mechanical properties of a straight pile.

【図5】本発明に係る場所打ちコンクリートの力学的性
状説明図である。
FIG. 5 is an explanatory view of mechanical properties of cast-in-place concrete according to the present invention.

【符号の説明】[Explanation of symbols]

1 杭躯体 2 リブ 1 pile structure 2 rib

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月29日[Submission date] October 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来、場所打ちコンクリート杭の杭周面
抵抗値は、杭の極限周面摩擦力度fiは、杭の土との間
の付着力及び摩擦力の和として次式で示される。 fi =Ca+Ph・tanδ ここにCa:杭と地盤との間の付着力 Ph:杭と周面に作用する側圧 δ:杭周面と地盤との間の摩擦角 一般に砂層の極限周面摩擦力fi を求める場合には、杭
と地盤との間の付着力を0として、fi =Ph・tan
δとしている。また粘性土層の極限周面摩擦力fi を求
めるには、砂層の摩擦角δを0としてfi =Caとして
いる。
2. Description of the Related Art Conventionally, a pile peripheral surface resistance value of a cast-in-place concrete pile, an ultimate peripheral surface frictional force fi of the pile is expressed by the following equation as a sum of adhesion force and frictional force between the pile and soil. fi = Ca + Ph · tan δ where Ca: Adhesive force between pile and ground Ph: Lateral pressure acting on pile and surrounding surface δ: Friction angle between pile peripheral surface and ground Generally, the limit circumferential surface friction force of sand layer fi To obtain, fi = Ph · tan with the adhesive force between the pile and the ground as 0
δ. Further, in order to obtain the limit circumferential frictional force fi of the cohesive soil layer, the friction angle δ of the sand layer is set to 0 and fi = Ca.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】fi =Ca+Ph・tan δ…(3)式 ここにfi :第i番目の土層の周面摩擦応力度(tf/
2 ) Ca:杭と地盤との間の付着力(tf/m2 ) Ph:杭の周面に作用する側圧(tf/m2 ) (Ph=K・PV ,K:側圧係数、PV :上載圧) δ:杭周面と地盤との間の摩擦角(°) 前記(3)式において粘土性地盤の極限周面摩擦力度
は、摩擦角δを0としてfi =Caで示される。
F i = Ca + Ph · tan δ (3) where f i is the frictional stress on the peripheral surface of the i-th soil layer (tf /
m 2 ) Ca: Adhesive force between pile and ground (tf / m 2 ) Ph: Lateral pressure acting on the peripheral surface of the pile (tf / m 2 ) (Ph = K · P V , K: Lateral pressure coefficient, P V : Top load pressure) δ: Friction angle between pile peripheral surface and ground (°) In formula (3), the ultimate peripheral surface frictional force of clay ground is indicated by f i = Ca, where the friction angle δ is 0. Be done.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】τ=Cu+σ・tanφu …(5)式 ここに σ:全垂直応力 Cu,φu :夫々の全応力で表わした粘着力と内部摩擦
角 ここで前掲(3)式(5)式を比較検討すると、 (3)式 fi =Ca+Ph・tanδ (5)式 τ=Cu+σ・tanφu Ph・tanδ=K・Pv・tanδ≒0.5Pv・2
/3tanφu ≒0.3Pvtanφu Ca=αCu≒(1.0〜0.2)Cu で示される。即ちfi ≒(1〜0.2)Cu+0.3P
vtanφ≒0.3τで示されそのうえ通常の杭では付
着力と摩擦力に夫々上限がある。
Τ = Cu + σtanφ u (5) where σ: total normal stress Cu, φ u : adhesive force and internal friction angle expressed by respective total stresses. Here, equation (3) above (5) (3) Equation f i = Ca + Ph · tan δ Equation (5) τ = Cu + σ · tan φ u Ph · tan δ = K · Pv · tan δ≈0.5 Pv · 2
/ 3 tanφ u ≈0.3 Pvtanφ u Ca = αCu≈ (1.0 to 0.2) Cu. That is, f i ≈ (1 to 0.2) Cu + 0.3P
It is represented by vtanφ≈0.3τ and, in addition, the normal pile has an upper limit for the adhesive force and the upper limit for the friction force.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 場所打ちコンクリート杭の杭躯体外周面
の一部分、または全部にリング状に連続リブを設けてな
り、前記杭躯体外周面に同杭の施工地盤の剪断力を作用
せしめるように構成してなることを特徴とする場所打ち
コンクリート杭。
1. A ring-shaped continuous rib is provided on a part or all of the outer surface of the pile body of a cast-in-place concrete pile so that the shearing force of the construction ground of the pile can be applied to the outer surface of the pile body. Cast-in-place concrete pile characterized by being made.
JP4149610A 1992-06-09 1992-06-09 Cast-in-place concrete pile Expired - Fee Related JP2548661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149610A JP2548661B2 (en) 1992-06-09 1992-06-09 Cast-in-place concrete pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149610A JP2548661B2 (en) 1992-06-09 1992-06-09 Cast-in-place concrete pile

Publications (2)

Publication Number Publication Date
JPH05339940A true JPH05339940A (en) 1993-12-21
JP2548661B2 JP2548661B2 (en) 1996-10-30

Family

ID=15478974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149610A Expired - Fee Related JP2548661B2 (en) 1992-06-09 1992-06-09 Cast-in-place concrete pile

Country Status (1)

Country Link
JP (1) JP2548661B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001849A (en) * 1998-06-12 2000-01-07 Geotop Corp Cast-in-place knot pile
JP2003082648A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Bearing capacity calculation method of soil cement composite pile
CN102359102A (en) * 2011-08-17 2012-02-22 上海奥米制药装备有限公司 Square cylindrical corrugated tube pile and processing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49140906U (en) * 1973-03-29 1974-12-04
JPS51148802U (en) * 1975-05-22 1976-11-29
JPS53125216U (en) * 1977-03-11 1978-10-05
JPS5918487A (en) * 1982-07-23 1984-01-30 株式会社東芝 Fast breeder reactor container
JPS6334256A (en) * 1986-07-30 1988-02-13 Yonetsu Koubou:Kk Coffin and the like loading device for vehicle
JPS6351210A (en) * 1986-08-21 1988-03-04 Hokkai Bane Kk Vertical transfer device
JPH036021U (en) * 1989-06-08 1991-01-22

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49140906U (en) * 1973-03-29 1974-12-04
JPS51148802U (en) * 1975-05-22 1976-11-29
JPS53125216U (en) * 1977-03-11 1978-10-05
JPS5918487A (en) * 1982-07-23 1984-01-30 株式会社東芝 Fast breeder reactor container
JPS6334256A (en) * 1986-07-30 1988-02-13 Yonetsu Koubou:Kk Coffin and the like loading device for vehicle
JPS6351210A (en) * 1986-08-21 1988-03-04 Hokkai Bane Kk Vertical transfer device
JPH036021U (en) * 1989-06-08 1991-01-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001849A (en) * 1998-06-12 2000-01-07 Geotop Corp Cast-in-place knot pile
JP2003082648A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Bearing capacity calculation method of soil cement composite pile
CN102359102A (en) * 2011-08-17 2012-02-22 上海奥米制药装备有限公司 Square cylindrical corrugated tube pile and processing method thereof

Also Published As

Publication number Publication date
JP2548661B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US5713701A (en) Foundation piling
JPH05339940A (en) Cast-in-place concrete pile
JP2005320692A (en) Pile foundation and its construction method
CN212612585U (en) Anti-freezing pile foundation in severe cold area
JP2759126B2 (en) Embedded structure of anchor
JPH06280261A (en) Front end consolidating pile
JP2002363980A (en) Steel pipe pile and pile construction method with drain layer using the same
JP4207263B2 (en) Threaded steel pipe pile and construction method of screwed steel pipe pile
JPH0617579B2 (en) Soil cement composite pile
JP5798376B2 (en) Method for determining structural specifications of embedded piles
US5931604A (en) Reduced skin friction driven pile
JP2730705B2 (en) Improvement method for soft ground
JP4219210B2 (en) Advanced ground improvement pile and its construction method
GB2261456A (en) A shoe for a concrete pile
JP2946443B2 (en) Embedded pile method
JP4057873B2 (en) Foundation pile structure on support ground and construction method of foundation pile
JPS6397711A (en) Soil cement composite pile
CN110029665A (en) Resist the mini pile pile foundation and its construction method of the bad engineering characteristic of expansive soil foundation
JP3320049B2 (en) Manufacturing method of pile
JPS6030715A (en) Concrete foundation pile
JP7090051B2 (en) Foundation pile and foundation pile structure
JP4202548B2 (en) Pile foundation
JP3680953B2 (en) Root structure of ready-made piles by embedded pile method
JP3600885B2 (en) Highly reliable pile and manufacturing method thereof
JPS603320A (en) Composite foundation of structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees