JP4219210B2 - Advanced ground improvement pile and its construction method - Google Patents

Advanced ground improvement pile and its construction method Download PDF

Info

Publication number
JP4219210B2
JP4219210B2 JP2003126291A JP2003126291A JP4219210B2 JP 4219210 B2 JP4219210 B2 JP 4219210B2 JP 2003126291 A JP2003126291 A JP 2003126291A JP 2003126291 A JP2003126291 A JP 2003126291A JP 4219210 B2 JP4219210 B2 JP 4219210B2
Authority
JP
Japan
Prior art keywords
pile
support layer
column
soil cement
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003126291A
Other languages
Japanese (ja)
Other versions
JP2004332262A (en
Inventor
満丸 後庵
智子 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pile Corp
Original Assignee
Japan Pile Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pile Corp filed Critical Japan Pile Corp
Priority to JP2003126291A priority Critical patent/JP4219210B2/en
Publication of JP2004332262A publication Critical patent/JP2004332262A/en
Application granted granted Critical
Publication of JP4219210B2 publication Critical patent/JP4219210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、先端地盤改良杭およびその施工方法に関し、特に杭先端支持力の増大を可能にしたものである。
【0002】
【従来の技術】
PHC杭などの既製杭をプレボーリング工法などの埋込み工法によって地中に埋設した場合、埋設後の既製杭は、そのままでは杭先端が支持層に載置されているにすぎないため支持力はきわめて小さい。このため「根固め」を行って支持力の増大が図られている。
【0003】
この場合の根固めとしては、杭先端の支持層中にセメントミルクを注入することにより杭の先端と支持層とを一体化させる方法が行われている。
【0004】
杭先端の根固め部(余掘り部)については、根固めの主な目的が杭からの荷重を支持層にスムーズに伝えることにあること等から、一般に根固めの深さ(長さ)は杭の最大径の2倍程度と浅く(短く)施工されているため、従来、根固め部の周面摩擦力は杭の支持力として特に考えられていなかった。
【0005】
【特許文献1】
特開2000−64275
【特許文献2】
特開2002−201638
【特許文献3】
特開平1−250523
【0006】
【発明が解決しようとする課題】
従来、杭の設計に際し、杭の支持力が杭先端支持力と周面摩擦力とからなっているため、支持力をとるために強固な支持層に必要以上に杭を根入れさせていた。
【0007】
また、例えば図3(a)に図示するように、支持層20に不陸があるような場合で、高い支持層20aの場所においては、既製杭21の杭長を短くせざるを得ず、その分、杭の周面摩擦力が小さくなってしまうという問題があった。
【0008】
一方、低い支持層20bの場所においては、例えば図3(b)に図示するように、既製杭21の杭長を支持層20まで長くする必要があり、その分、コストが嵩むという問題があった。
【0009】
また、例えば図4(a),(b)に図示するように、途中までを既製杭21で施工し、残る支持層20までをソイルセメント柱22で施工するソイルセメント合成杭も知られている(特許文献1,2参照)。
【0010】
しかし、いずれの例においても、ソイルセメント柱22の一部または全長が支持層20より上の比較的軟弱な地層23に形成されているため、周囲からの拘束力が小さく、このため地震時の過大な変形による力によってソイルセメント柱22が破壊する恐れがあった。
【0011】
本願発明は、以上の課題を解決するためになされたもので、特に杭先端地盤の支持力を大きくすることができ、しかも杭先端支持力を自由に設定することができる先端地盤改良杭およびその施工方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
請求項1記載の先端地盤改良杭は高い支持層と低い支持層とからなる不陸地盤に施工された先端地盤改良杭であって、前記支持層に形成された余掘り部に杭体とみなせる程度の強度を有して形成されたソイルセメント柱またはモルタル柱と、当該ソイルセメント柱またはモルタル柱より上方の地層内に形成された既製杭とから構成され、前記既製杭は前記低い支持層までの深さより長く形成され、高い支持層側の既製杭と低い支持層側の既製杭は同等の長さに形成され、前記高い支持層側の既製杭の先端と低い支持層側の既製杭の先端は前記支持層の余掘り部に形成されたソイルセメント柱またはモルタル柱内に設置され、かつ前記ソイルセメント柱またはモルタル柱の長さおよび/または径を変更することにより高い支持層側の杭の支持力と低い支持層側の杭の支持力を同等にしてあることを特徴とするものである。
【0014】
請求項記載の先端地盤改良杭の施工方法は、高い支持層と低い支持層からなる不陸地盤に施工される先端地盤改良杭の施工方法であって、前記支持層に余掘り部を形成し、当該余掘り部にソイルセメント柱またはモルタル柱を、当該ソイルセメント柱またはモルタル柱より上方の地層内に既製杭をそれぞれ施工し、当該既製杭の先端は前記余掘り部のソイルセメント柱またはモルタル柱内に設置し、かつ前記ソイルセメント柱またはモルタル柱の長さおよび/または径を変更することにより高い支持層側の杭の支持力と低い支持層側の杭の支持力を同等に設定することを特徴とするものである。
【0015】
本願発明は、杭先端以深の支持層内に形成されたソイルセメント柱またはモルタル柱の周面摩擦力を杭の支持力とみなし、これを杭の支持力として加算することで実際の杭長以上に杭の支持力を大きくとれるようにしたものである。
この場合、ソイルセメント柱またはモルタル柱の径を掘削径以上、長さ(深さ)を既製杭の先端からその最大径の少なくとも3倍以上とすることにより、ソイルセメント柱またはモルタル柱の周面摩擦力を既製杭の支持力とみなして既製杭の先端支持力に加算することができる。また、必要に応じてソイルセメント柱またはモルタル柱の径と長さ(深さ)を調節することで、支持力を任意に設定することができる。
【0016】
また特に、ソイルセメント柱またはモルタル柱を形成するセメントミルクには、原則としてソイルセメント柱またはモルタル柱を杭体とみなせる程度の強度に形成できるセメントミルクが使用されているが、ソイルセメント柱またはモルタル柱を杭体とみなせる程度の強度に形成することが可能であれば、既製杭周面部のソイルセメントに使用されたセメントミルクと同じでよい。
【0017】
また、ソイルセメント柱またはモルタル柱は良好な支持層内に形成されていることで、周囲の支持層による拘束効果により十分な強度を得ることができ、また杭先端には曲げがかからないので、ソイルセメント柱またはモルタル柱を鉄筋などで補強する必要もない。
一般に、ここにいう支持層としては、平均N値が30〜40程度の地層を想定することができる。また、既製杭としては、コンクリート杭や鋼管杭などを用いることができる。
【0018】
なお、ここにいう支持層は、上部荷重との関係から相対的に決まる地層をいい、少なくとも上部構造物を安定して支持し得る地層を想定している。したがって、たとえN値が小さくても上部構造物を安定的に支持できる地層であれば、その地層はここにいう支持層である。
【0022】
【発明の実施の形態】
図1(a),(b)は、本願発明の先端地盤改良杭およびその施工方法の一例を示し、先端地盤改良杭(以下「杭」という)1は、杭先端以深の良好な支持層2内に形成されたソイルセメント柱またはモルタル柱(以下「ソイルセメント柱」という)3と、それより上方の地層4内に既製杭として埋設された節杭5とから連続かつ一体的に形成されている。
【0023】
ソイルセメント柱3は、支持層2が砂層か礫層の良好な支持層の場合で、径が杭1の外径(掘削径)以上、深さが節杭5の先端からその最大径の3倍以上にそれぞれ形成されている。
【0024】
なお、ソイルセメント柱3は杭先端以深の支持層2を余掘りし、この余掘りした部分にセメントミルクを注入して形成されている。
【0025】
この場合のセメントミルクには、原則としてソイルセメント柱3を杭体とみなせる程度の強度に形成できるセメントミルクが使用されているが、ソイルセメント柱3を杭体とみなせる程度の強度に形成することが可能であれば、節杭5周面部のソイルセメント5aに使用されたセメントミルクと同じでよい。
【0026】
節杭5は、セメントミルクを注入してソイルセメント5aを形成しながらソイルセメント5a内に埋設され、節杭5の先端5bはソイルセメント柱3の上端部に節杭5の径程度かそれ以上根入れされていることで、ソイルセメント柱3と節杭5との連続かつ一体化が図られている。
【0027】
なお、図1(b)は、ソイルセメント柱3が拡径されている例を示したもので、特に余掘りが十分にできない場合に、拡径することで必要な周面摩擦力を確保することができる。
【0028】
このような構成において、次に本願発明の杭の支持力について検討すると、通常のこの種の杭の先端支持力をRp1 とした場合、本願発明の杭の先端支持力はRp2 は、
Rp2 =Rp1 +ΔRf となる。
ここで、ΔRf は増加摩擦力(ソイルセメント柱の周面摩擦力)である。
【0029】
また、ソイルセメント柱(余掘り部)3の摩擦力について(長期支持力の場合)について検討すると、
平均N値が50の良好な地盤に既成杭として最大径D=600の節杭5をφ700の掘削径で埋設し、ソイルセメント柱(余掘り部)3の径は掘削径φ700、その深さは節杭5の径の5倍の3000mmとした場合を想定する。
【0030】
ソイルセメント柱(余掘り部)3の強度は杭体とみなせる程度なので、摩擦力は掘削径で評価できる。
【0031】
仮に、周面摩擦力度をfs =(30+5Ns )/3[kN/m2 ]の節杭5の砂層に対応する認定式から算出する場合を考える。ただし、Ns はソイルセメント柱(余掘り部)3の周囲地盤の平均N値とする。
【0032】
s =(30+5×50)/3
=93.3[kN/m2
より、掘削径がφ700mm、深さLが3000mmのソイルセメント柱(余掘り部)3の摩擦力Rfは、
Rf=fs ×φ×(L−D)
=93.3×0.7π×(3.0−0.6)
=492[kN]
となる。つまり、同径、同長の杭より支持力が492[kN]増加する。
【0033】
また、掘削径がφ700mmの単位長さ辺りの増加摩擦力△Rfは、
△Rf=93.3×0.7π×1.0
=205[kN/m]
となる。これを利用すれば、節杭5の杭長にかかわらずソイルセメント柱(余掘り部)3の長さ(深さ)を調節することで容易に支持力を設定することができる。
【0034】
同様に、既成杭として最大径がφ600mmの直杭をφ700mmの掘削径で埋設した場合は、仮に周面摩擦力度をfs =10/3Ns の告示式から算出すれば、支持力設定が容易に行える。
【0035】
次に、不陸の対処法について説明すると、良好な支持層に不陸のある場合を想定する。
【0036】
従来の施工法では、図3(a)に図示するように、高い支持層20aの場所においては、既製杭21の杭長を短くせざるを得ず、支持力(周面摩擦力)が小さくなってしまうが、本願発明では、図2(a)に図示するように、高い支持層2aの場所においては、節杭5の杭長が短くても、ソイルセメント柱(余掘り部)3を長く(深く)することにより同等の支持力が得られる。
【0037】
同様に、従来の施工法では、図3(b)に図示するように、低い支持層20bの場所においては、既製杭21の杭長を長くするしかないが、本発明では図2(b)に図示するように、低い支持層2bの場所においては、節杭5の杭長をそのままにしてソイルセメント柱(余掘り部)3を長く(深く)することで、同じ杭長でも同等以上の支持力が得られる。
【0038】
【発明の効果】
本願発明は以上説明した通りであり、特に既製杭の先端以深の支持層内に形成されたソイルセメント柱が、その周面摩擦力を前記既製杭の支持力とみなせるように形成されているので、既製杭の長さが一定であっても実際の杭長以上に杭の支持力を大きくとることができる。
【0039】
また、ソイルセメント柱の径と長さ(余掘り部の深さ)を調節することにより、杭の先端支持力を自由に設定することができる。
【0040】
また、ソイルセメント柱は、杭先端以深の良好な支持層内に形成されていることで、良好な支持層の拘束効果により十分な強度を確保することができ、地震時の過大な変形による力にも十分耐え得る強度を備えている。
【0041】
また、支持層に不陸がある場合でも、ソイルセメント柱(余掘り部)の長さと径を調節することにより、同等の強度を得ることができる。
【0042】
また、既製杭のソイルセメント柱(余掘り部)への根入れ(飲込み)を調節することにより、杭頭を揃えることも簡単に行うことができるため、不陸のある支持層に対しても杭長を変更せずに対応することができる。
【図面の簡単な説明】
【図1】(a),(b)は先端地盤改良杭の一例を示す縦断面図である。
【図2】(a),(b)は先端地盤改良杭の施工例を示す縦断面図である。
【図3】(a),(b)は従来の既製杭の施工例を示す縦断面図である。
【図4】(a),(b)は従来の既製杭の施工例を示す縦断面図である。
【符号の説明】
1 杭(先端地盤改良杭)
2 支持層
3 ソイルセメント柱(ソイルセメント柱またはモルタル柱)
4 支持層より上の地層
5 節杭(既製杭)
5a ソイルセメント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tip ground improved pile and a construction method thereof, and particularly enables an increase in pile tip supporting force.
[0002]
[Prior art]
When a prefabricated pile such as a PHC pile is embedded in the ground by an embedding method such as a pre-boring method, the prefabricated pile after embedding is simply mounted on the support layer as it is. small. For this reason, "rooting" is performed to increase the supporting force.
[0003]
In this case, a method of integrating the tip of the pile and the support layer by injecting cement milk into the support layer at the tip of the pile is performed.
[0004]
As for the root consolidation part (overexcavation part) of the pile tip, the main purpose of root consolidation is to smoothly transmit the load from the pile to the support layer. Since the construction is shallow (short) about twice the maximum diameter of the pile, conventionally, the peripheral frictional force of the rooting portion has not been particularly considered as a support force of the pile.
[0005]
[Patent Document 1]
JP 2000-64275 A
[Patent Document 2]
JP2002-201638
[Patent Document 3]
JP-A-1-250523
[0006]
[Problems to be solved by the invention]
Conventionally, when designing a pile, the pile support force is composed of a pile tip support force and a peripheral surface friction force. Therefore, in order to obtain the support force, the pile is deeply embedded in a strong support layer.
[0007]
Further, for example, as illustrated in FIG. 3A, in the case where the support layer 20 is uneven, in the place of the high support layer 20a, the pile length of the ready-made pile 21 must be shortened, There was a problem that the peripheral frictional force of the pile would be reduced accordingly.
[0008]
On the other hand, in the place of the low support layer 20b, for example, as shown in FIG. 3B, it is necessary to lengthen the pile length of the ready-made pile 21 to the support layer 20, and there is a problem that the cost increases accordingly. It was.
[0009]
For example, as shown in FIGS. 4 (a) and 4 (b), a soil cement synthetic pile in which up to the middle is constructed with the ready-made pile 21 and the remaining support layer 20 is constructed with the soil cement pillar 22 is also known. (See Patent Documents 1 and 2).
[0010]
However, in any example, part or the entire length of the soil cement column 22 is formed in the relatively soft formation 23 above the support layer 20, so that the restraining force from the surroundings is small. There was a possibility that the soil cement pillar 22 would be broken by a force due to excessive deformation.
[0011]
The invention of the present application was made to solve the above problems, and in particular, the tip ground improved pile capable of increasing the support force of the pile tip ground, and capable of freely setting the pile tip support force, and its The object is to provide a construction method.
[0012]
[Means for Solving the Problems]
The tip ground improvement pile according to claim 1 is a tip ground improvement pile constructed on a non-land surface composed of a high support layer and a low support layer, and can be regarded as a pile body in an overexcavated portion formed in the support layer. It is composed of a soil cement column or mortar column formed with a certain degree of strength, and a ready-made pile formed in the formation above the soil cement column or mortar column, and the ready-made pile extends to the lower support layer The prefabricated pile on the high support layer side and the prefabricated pile on the low support layer side are formed in the same length, and the tip of the prefabricated pile on the high support layer side and the ready pile on the low support layer side are formed. The tip is installed in a soil cement column or mortar column formed in the overexcavated portion of the support layer, and the pile on the high support layer side is changed by changing the length and / or diameter of the soil cement column or mortar column Supportive power It is characterized in that you have to equalize the supporting force of the lower support layer side piles.
[0014]
The construction method of the tip ground improvement pile according to claim 2 is a construction method of the tip ground improvement pile which is constructed on the non-land ground composed of a high support layer and a low support layer, and an overexcavation portion is formed in the support layer. Then, a soil cement column or a mortar column is constructed in the surplus digging portion , and a prefabricated pile is constructed in the formation above the soil cement column or the mortar column, and the tip of the prefabricated pile is a soil cement column or By installing the mortar column and changing the length and / or diameter of the soil cement column or mortar column, the bearing capacity of the pile on the high support layer side and the support capacity of the pile on the low support layer side are set equal. It is characterized by doing.
[0015]
The present invention regards the peripheral frictional force of the soil cement column or mortar column formed in the support layer deeper than the tip of the pile as the support force of the pile, and adds this as the support force of the pile to add more than the actual pile length. In addition, the bearing capacity of the pile can be greatly increased.
In this case, by setting the diameter of the soil cement column or mortar column to be equal to or greater than the excavated diameter and the length (depth) to be at least three times the maximum diameter from the tip of the ready-made pile, the peripheral surface of the soil cement column or mortar column The frictional force can be regarded as the support force of the ready-made pile and added to the tip support force of the ready-made pile. Further, the supporting force can be arbitrarily set by adjusting the diameter and length (depth) of the soil cement column or the mortar column as necessary.
[0016]
In particular, cement milk that forms soil cement columns or mortar columns, in principle, cement milk that can form soil cement columns or mortar columns as strong as piles is used, but soil cement columns or mortar columns are used. As long as it is possible to form the column with a strength that can be regarded as a pile body, it may be the same as the cement milk used for the soil cement of the pre-made pile peripheral surface portion.
[0017]
In addition, since the soil cement column or mortar column is formed in a good support layer, sufficient strength can be obtained due to the restraining effect of the surrounding support layer, and the tip of the pile is not bent. There is no need to reinforce the cement or mortar columns with reinforcing bars.
In general, as the support layer referred to here, a formation having an average N value of about 30 to 40 can be assumed. Moreover, a concrete pile, a steel pipe pile, etc. can be used as a ready-made pile.
[0018]
In addition, the support layer here refers to a formation relatively determined from the relationship with the upper load, and assumes a formation capable of stably supporting at least the upper structure. Therefore, if the formation can stably support the superstructure even if the N value is small, the formation is the support layer referred to here.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1 (a) and 1 (b) show an example of a tip ground improved pile and its construction method according to the present invention. A tip ground improved pile (hereinafter referred to as “pile”) 1 is a good support layer 2 deeper than the tip of the pile. It is formed continuously and integrally from a soil cement column or mortar column (hereinafter referred to as “soil cement column”) 3 formed inside and a node pile 5 embedded as a ready-made pile in the formation 4 above it. Yes.
[0023]
The soil cement column 3 is a case where the support layer 2 is a good support layer such as a sand layer or a gravel layer, the diameter is equal to or greater than the outer diameter (excavation diameter) of the pile 1 and the depth is 3 from the tip of the joint pile 5 to its maximum diameter. Each is formed more than double.
[0024]
The soil cement pillar 3 is formed by overexcavating the support layer 2 deeper than the pile tip and injecting cement milk into the overexcavated portion.
[0025]
In this case, cement milk that can be formed to have a strength sufficient to allow the soil cement pillar 3 to be regarded as a pile body is used as a principle. However, the soil cement pillar 3 must be formed to have a strength that can be regarded as a pile body. If possible, it may be the same as the cement milk used for the soil cement 5a on the peripheral surface portion of the joint pile 5.
[0026]
The joint pile 5 is embedded in the soil cement 5a while injecting cement milk to form the soil cement 5a, and the tip 5b of the joint pile 5 is about the diameter of the joint pile 5 or more at the upper end of the soil cement column 3. By being rooted, the soil cement pillar 3 and the joint pile 5 are continuously and integrated.
[0027]
In addition, FIG.1 (b) shows the example by which the soil cement pillar 3 is diameter-expanded, and when the surplus digging cannot fully be carried out especially, a required peripheral surface friction force is ensured by diameter-expanding. be able to.
[0028]
In such a configuration, when examining the support force of the pile of the present invention next, when the tip support force of a normal pile of this type is Rp 1 , the tip support force of the pile of the present invention is Rp 2 ,
Rp 2 = Rp 1 + ΔR f .
Here, ΔR f is an increased frictional force (a peripheral frictional force of the soil cement column).
[0029]
In addition, when considering the frictional force of the soil cement column (overexcavated part) 3 (in the case of long-term support),
On the good ground with an average N value of 50, the pile 5 with a maximum diameter D = 600 is buried as an existing pile with an excavation diameter of φ700, and the diameter of the soil cement column (excavated part) 3 is the excavation diameter φ700, its depth Is assumed to be 3000 mm, which is five times the diameter of the joint pile 5.
[0030]
Since the strength of the soil cement column (overexcavated portion) 3 can be regarded as a pile body, the frictional force can be evaluated by the excavation diameter.
[0031]
Suppose that the peripheral frictional force is calculated from the authorization formula corresponding to the sand layer of the joint pile 5 of f s = (30 + 5N s ) / 3 [kN / m 2 ]. However, N s is an average N value of the surrounding ground of the soil cement column (overexcavated portion) 3.
[0032]
f s = (30 + 5 × 50) / 3
= 93.3 [kN / m 2 ]
From the above, the frictional force Rf of the soil cement column (excess dug portion) 3 having an excavation diameter of φ700 mm and a depth L of 3000 mm is:
Rf = f s × φ × (LD)
= 93.3 × 0.7π × (3.0−0.6)
= 492 [kN]
It becomes. That is, the supporting force is increased by 492 [kN] from the pile having the same diameter and the same length.
[0033]
Further, the increased frictional force ΔRf per unit length of the excavation diameter of φ700 mm is
ΔRf = 93.3 × 0.7π × 1.0
= 205 [kN / m]
It becomes. If this is utilized, a supporting force can be easily set by adjusting the length (depth) of the soil cement pillar (excavated part) 3 irrespective of the pile length of the joint pile 5.
[0034]
Similarly, if a straight pile with a maximum diameter of φ600 mm is embedded as an existing pile with an excavation diameter of φ700 mm, the bearing force can be set easily if the peripheral frictional force is calculated from the notification formula of f s = 10/3 N s. Can be done.
[0035]
Next, a method for dealing with unevenness will be described. It is assumed that there is unevenness in a good support layer.
[0036]
In the conventional construction method, as shown in FIG. 3A, in the place of the high support layer 20a, the pile length of the ready-made pile 21 must be shortened, and the support force (circumferential frictional force) is small. However, in the present invention, as shown in FIG. 2A, in the place of the high support layer 2a, even if the pile length of the joint pile 5 is short, the soil cement column (excavated portion) 3 is provided. By making it long (deep), equivalent support force can be obtained.
[0037]
Similarly, in the conventional construction method, as shown in FIG. 3B, the pile length of the ready-made pile 21 can only be increased in the place of the low support layer 20b. However, in the present invention, FIG. As shown in Fig. 2, in the place of the lower support layer 2b, the pile length of the joint pile 5 is left as it is, and the soil cement column (excavated portion) 3 is lengthened (deeply), so that the same pile length or more Support force is obtained.
[0038]
【The invention's effect】
The present invention is as described above, and in particular, the soil cement column formed in the support layer deeper than the tip of the ready-made pile is formed so that the peripheral friction force can be regarded as the support force of the ready-made pile. Even if the length of the ready-made pile is constant, the bearing capacity of the pile can be increased more than the actual pile length.
[0039]
Moreover, the front-end | tip support force of a pile can be freely set by adjusting the diameter and length (depth of a surplus digging part) of a soil cement pillar.
[0040]
In addition, the soil cement pillar is formed in a good support layer deeper than the pile tip, so that sufficient strength can be secured by the restraining effect of the good support layer, and the force caused by excessive deformation during an earthquake. It has enough strength to withstand.
[0041]
Even when the support layer is uneven, it is possible to obtain the same strength by adjusting the length and diameter of the soil cement column (overexcavated portion).
[0042]
In addition, by adjusting the penetration (swallowing) of the ready-made piles into the soil cement pillar (overexcavated part), it is also possible to easily align the pile heads. Can cope without changing the pile length.
[Brief description of the drawings]
1A and 1B are longitudinal sectional views showing an example of a tip ground improvement pile. FIG.
FIGS. 2A and 2B are longitudinal sectional views showing a construction example of a tip ground improvement pile. FIG.
FIGS. 3A and 3B are longitudinal sectional views showing an example of construction of a conventional ready-made pile.
FIGS. 4A and 4B are longitudinal sectional views showing an example of construction of a conventional ready-made pile.
[Explanation of symbols]
1 pile (tip ground improvement pile)
2 Support layer 3 Soil cement pillar (Soil cement pillar or mortar pillar)
4 The stratum above the support layer 5 Node pile (ready-made pile)
5a soil cement

Claims (2)

高い支持層と低い支持層とからなる不陸地盤に施工された先端地盤改良杭であって、前記支持層に形成された余掘り部に杭体とみなせる程度の強度を有して形成されたソイルセメント柱またはモルタル柱と、当該ソイルセメント柱またはモルタル柱より上方の地層内に形成された既製杭とから構成され、前記既製杭は前記低い支持層までの深さより長く形成され、高い支持層側の既製杭と低い支持層側の既製杭は同等の長さに形成され、前記高い支持層側の既製杭の先端と低い支持層側の既製杭の先端は前記支持層に形成されたソイルセメント柱またはモルタル柱内に設置され、かつソイルセメント柱またはモルタル柱の長さおよび/または径を変更することにより高い支持層側の杭の支持力と低い支持層側の杭の支持力を同等にしてあることを特徴とする先端地盤改良杭。It is a tip ground improvement pile constructed on a non-land surface consisting of a high support layer and a low support layer, and is formed with a strength that can be regarded as a pile body in the overexcavated part formed in the support layer It is composed of a soil cement column or mortar column and a pre-made pile formed in the formation above the soil cement column or mortar column, and the pre-made pile is formed longer than the depth to the low support layer, and a high support layer The ready-made pile on the side and the ready-made pile on the lower support layer side are formed to the same length, and the tip of the ready-made pile on the high support layer side and the tip of the ready-made pile on the lower support layer side are formed on the support layer. The bearing capacity of the pile on the high support layer side and the support capacity of the pile on the low support layer side are equalized by changing the length and / or diameter of the soil cement column or mortar pillar installed in the cement column or mortar column It is Tip ground improvement pile characterized by. 高い支持層と低い支持層からなる不陸地盤に施工される先端地盤改良杭の施工方法であって、前記支持層に余掘り部を形成し、当該余掘り部にソイルセメント柱またはモルタル柱を、当該ソイルセメント柱またはモルタル柱より上方の地層内に既製杭をそれぞれ施工し、当該既製杭の先端は前記余掘り部のソイルセメント柱またはモルタル柱内に設置し、かつ前記ソイルセメント柱またはモルタル柱の長さおよび/または径を変更することにより高い支持層側の杭の支持力と低い支持層側の杭の支持力を同等に設定することを特徴とする先端地盤改良杭の施工方法。It is a construction method of the tip ground improvement pile constructed on the uneven ground consisting of a high support layer and a low support layer, and an overexcavation part is formed in the support layer , and a soil cement column or a mortar column is formed in the overexcavation part. The ready-made piles are respectively constructed in the stratum above the soil cement column or the mortar column, the tip of the ready-made pile is installed in the soil cement column or the mortar column of the overexcavated portion, and the soil cement column or the mortar A method for constructing a tip-up ground improved pile characterized in that the support force of a pile on the high support layer side and the support force of a pile on the low support layer side are set equal by changing the length and / or diameter of the column.
JP2003126291A 2003-05-01 2003-05-01 Advanced ground improvement pile and its construction method Expired - Lifetime JP4219210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126291A JP4219210B2 (en) 2003-05-01 2003-05-01 Advanced ground improvement pile and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126291A JP4219210B2 (en) 2003-05-01 2003-05-01 Advanced ground improvement pile and its construction method

Publications (2)

Publication Number Publication Date
JP2004332262A JP2004332262A (en) 2004-11-25
JP4219210B2 true JP4219210B2 (en) 2009-02-04

Family

ID=33503265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126291A Expired - Lifetime JP4219210B2 (en) 2003-05-01 2003-05-01 Advanced ground improvement pile and its construction method

Country Status (1)

Country Link
JP (1) JP4219210B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787595A (en) * 2012-08-16 2012-11-21 岳建伟 Double-acting self-stressing combined uplift pile and pile forming method
CN106592586A (en) * 2016-12-03 2017-04-26 浙江大学 Prefabricated pile with external hoops and filled with sand-gravel aggregates, and construction method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260931B2 (en) * 2013-12-04 2018-01-17 株式会社大林組 Steel pipe pile and its embedding method
JP6885669B2 (en) * 2015-11-27 2021-06-16 ジャパンパイル株式会社 Construction method of pile foundation and pile foundation
JP6004298B1 (en) * 2015-11-27 2016-10-05 ジャパンパイル株式会社 Pile foundation design method
JP6740276B2 (en) * 2018-04-11 2020-08-12 株式会社トーヨーアサノ Foundation pile and method of constructing foundation using the foundation pile
JP7256367B2 (en) * 2019-01-31 2023-04-12 ジャパンパイル株式会社 Evaluation method of tip bearing capacity of pile foundation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787595A (en) * 2012-08-16 2012-11-21 岳建伟 Double-acting self-stressing combined uplift pile and pile forming method
CN102787595B (en) * 2012-08-16 2014-06-04 河南大学 Double-acting self-stressing combined uplift pile and pile forming method
CN106592586A (en) * 2016-12-03 2017-04-26 浙江大学 Prefabricated pile with external hoops and filled with sand-gravel aggregates, and construction method thereof
CN106592586B (en) * 2016-12-03 2018-12-04 浙江大学 Additional cuff back-up sand building stones prefabricated pile and its construction method

Also Published As

Publication number Publication date
JP2004332262A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP5520347B2 (en) Pile digging method
KR101620380B1 (en) Spiral steel pipe pile
JP4219210B2 (en) Advanced ground improvement pile and its construction method
JP4984308B2 (en) Ready-made pile
JP4599511B2 (en) Foundation pile construction method, foundation pile structure, foundation pile design method
JP2007113270A (en) Foundation structure and construction method of the foundation structure
JP5406628B2 (en) Cast-in-place pile installation method
JP6158398B1 (en) Composite foundation pile
JP5109532B2 (en) Double pipe type pile head structure
KR20120102480A (en) Phc pile with improved end bearing capacity and piling method of phc pile using the same
JP4863120B2 (en) Foundation pile
KR100714060B1 (en) Construction method of two-step supporting pile
JP4724879B2 (en) Foundation pile structure
JPH08184037A (en) Double pipe steel pipe pile
JP4572284B2 (en) Method of burying ready-made piles
JP5606727B2 (en) Foundation pile
JP5204692B2 (en) Pre-boring H-section steel pile
JP2006207320A (en) Structure of steel pipe pile end for pile installation by inner excavation
JP4724878B2 (en) Foundation pile structure
JP7119892B2 (en) Construction methods of structures and structures
CN207987929U (en) Shallow embedding tilts basement rock unsymmetrial loading tunnel ruggedized construction
JP6462298B2 (en) Foundation pile structure
JP4092410B2 (en) Ready-made pile and foundation pile structure
JP2000192456A (en) Foundation pile structure in soft ground and foundation pile method
JP4441774B2 (en) Ready-made pile and foundation pile structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term