JP2007205140A - Control method of designed bearing capacity of pile - Google Patents

Control method of designed bearing capacity of pile Download PDF

Info

Publication number
JP2007205140A
JP2007205140A JP2006028571A JP2006028571A JP2007205140A JP 2007205140 A JP2007205140 A JP 2007205140A JP 2006028571 A JP2006028571 A JP 2006028571A JP 2006028571 A JP2006028571 A JP 2006028571A JP 2007205140 A JP2007205140 A JP 2007205140A
Authority
JP
Japan
Prior art keywords
tip
pile
calculated
formula
allowable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006028571A
Other languages
Japanese (ja)
Other versions
JP4993168B2 (en
Inventor
Kazuo Hori
一夫 堀
Yoshinori Sumitomo
義則 住友
Masanori Murashima
正憲 村島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2006028571A priority Critical patent/JP4993168B2/en
Publication of JP2007205140A publication Critical patent/JP2007205140A/en
Application granted granted Critical
Publication of JP4993168B2 publication Critical patent/JP4993168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a designed bearing capacity of a pile by which the designed bearing capacity of the pile can be controlled with good accuracy. <P>SOLUTION: The control method includes; a step in which an input means inputs each of a plurality of tip settlements and the tip bearing capacity obtained by a vertical load test of the pile, the largest dimension of the tip of each pile and an average N-value at the tip, respectively; a step in which a first computing means computes P, X, Q and Y and computes a mathematical formula of Y=aX+b of a linear approximation straight line 32 to a plurality of logarithmic conversion data dots 31; a step in which a second computing means computes the Q when the P is 10% and the P when the Q is Q/3, computes the allowable tip settlement of the pile, and computes the allowable head settlement of the pile; a step in which a measurement means measures the settlement of the pile 1 loaded with the load same as the designed bearing capacity by a loading device 24; and a step in which an indication means indicates the computed allowable tip settlement and the measured settlement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軟弱地盤に施工された杭の設計支持力管理方法に関するものである。   The present invention relates to a design bearing capacity management method for piles constructed on soft ground.

周知のように、軟弱地盤に施工された杭の支持力を確認する場合、地盤工学会基準の鉛直載荷試験(例えば、非特許文献1参照。)を実施するのが一般的である。
地盤工学会編さん、地盤工学会基準「杭の鉛直載荷試験方法・同解説」、第一回改訂版、2004年9月発行、土質工学会出版
As is well known, when confirming the bearing capacity of a pile constructed on soft ground, it is common to carry out a vertical loading test (for example, see Non-Patent Document 1) based on the Geotechnical Society standard.
Geotechnical Society edition, Geotechnical Society standard “Pile vertical loading test method and explanation”, first revised edition, published in September 2004, Geotechnical Society publication

しかし、上記のような鉛直載荷試験においては、載荷荷重が長期許容支持力としての設計支持力の3倍以上必要であるので、その反力を得るための反力杭や反力梁等の大掛かりな装置を設置する手間がかかるという問題点がある。   However, in the vertical loading test as described above, since the loading load is required to be at least three times the design supporting force as the long-term allowable supporting force, a large pile of reaction force piles, reaction force beams, etc. are required to obtain the reaction force. There is a problem that it takes time and effort to install a simple device.

そこで、杭の簡易載荷試験として、例えば、杭打ち機で杭を打ち込んだ後、杭打ち機で杭頭に所定の時間、載荷荷重を付与し、この載荷荷重による杭の沈下量を測定することを特徴とする杭の支持力確認方法(例えば、特許文献1参照。)が提案されている。
特開2002−69992(請求項1、図2、図3等)
Therefore, as a simple pile loading test, for example, after driving the pile with a pile driving machine, apply the loading load to the pile head for a predetermined time with the pile driving machine, and measure the amount of settlement of the pile due to this loading load A method for confirming a bearing capacity of a pile (see, for example, Patent Document 1) is proposed.
JP 2002-69992 (Claim 1, FIG. 2, FIG. 3, etc.)

上記のような従来の支持力確認方法では、杭の沈下量が短期許容頭部沈下量以下であることを確認しているが、そもそも許容頭部沈下量の算出根拠について不明確であり、杭の支持力を精度良く確認することができないという問題点がある。   In the conventional bearing capacity confirmation method as described above, it has been confirmed that the amount of settlement of the pile is less than or equal to the short-term allowable head settlement, but the basis for calculating the allowable head settlement is unclear in the first place. There is a problem that it is not possible to accurately confirm the supporting force of the.

本発明は、以上のような事情や問題点に鑑みてなされたものであり、杭の設計支持力を精度良く管理できる杭の設計支持力管理方法を提供することを目的とする。   This invention is made in view of the above situations and problems, and it aims at providing the design support force management method of a pile which can manage the design support force of a pile accurately.

上記目的を達成するための請求項1の発明は、入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第2算出手段により算出された許容先端沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The invention of claim 1 for achieving the above object is characterized in that the input means has a plurality of tip subsidence amounts and a plurality of tip support strengths respectively obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and Entering the maximum diameter of the tip of each pile and the average N value at the tip of each pile,
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And calculating P when Q is Q / 3, and calculating the allowable tip settlement amount of the pile based on the calculated P and the mathematical formula [1] stored in the storage means,
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A display means for displaying an allowable tip settlement amount calculated by the second calculation means and a settlement amount measured by the measurement means;
Design support capacity management method of pile characterized by including.

請求項2の発明は、入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出し、算出された許容先端沈下量に、設計支持力と同じ荷重を載荷した場合の杭の長手方向の歪量を加えて杭の許容頭部沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第2算出手段により算出された許容頭部沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The invention of claim 2 is characterized in that the input means has a plurality of tip subsidence amounts and a plurality of tip support strengths obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and a maximum of the tip of each pile. Inputting the diameter and the average N value at the tip of each pile,
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And P when Q is Q / 3 is calculated, the allowable tip settlement amount of the pile is calculated based on the calculated P and the mathematical expression [1] stored in the storage means, and the calculated allowable tip Calculating the allowable head settlement of the pile by adding the amount of strain in the longitudinal direction of the pile when the same load as the design support force is loaded to the settlement amount;
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A display means for displaying the allowable head squat amount calculated by the second calculator and the squat amount measured by the measuring means;
Design support capacity management method of pile characterized by including.

請求項3の発明は、入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/6となる場合のYを算出するステップ、
第3算出手段が、前記複数の対数変換データ点のうち、Y座標が前記第2算出手段により算出されたYより大きい対数変換データ点に対する線形近似直線の
数式 Y=a’X+b’ ・・〔5〕、
を算出するステップ、
第4算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第3算出手段により算出された数式〔5〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第4算出手段により算出された許容先端沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The invention of claim 3 is characterized in that the input means has a plurality of tip subsidence amounts and a plurality of tip support forces obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and the maximum of the tip of each pile. Inputting the diameter and the average N value at the tip of each pile,
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And calculating Y when Q is Q / 6,
The third calculation means calculates a linear approximation straight line for a logarithmic transformation data point whose Y coordinate is larger than Y calculated by the second calculation means among the plurality of logarithmic transformation data points. Y = a′X + b ′. 5],
Calculating steps,
Q when the fourth calculation means is 10% based on the mathematical expressions [2] and [3] stored by the storage means and the mathematical expression [5] calculated by the third calculation means, respectively. And calculating P when Q is Q / 3, and calculating the allowable tip settlement amount of the pile based on the calculated P and the mathematical formula [1] stored in the storage means,
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A step of displaying an allowable tip settlement amount calculated by the fourth calculation unit and a settlement amount measured by the measurement unit;
Design support capacity management method of pile characterized by including.

請求項4の発明は、入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/6となる場合のYを算出するステップ、
第3算出手段が、前記複数の対数変換データ点のうち、Y座標が前記第2算出手段により算出されたYより大きい対数変換データ点に対する線形近似直線の
数式 Y=a’X+b’ ・・〔5〕、
を算出するステップ、
第4算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第3算出手段により算出された数式〔5〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出し、算出された許容先端沈下量に、設計支持力と同じ荷重を載荷した場合の杭の長手方向の歪量を加えて杭の許容頭部沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第4算出手段により算出された許容頭部沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The invention of claim 4 is characterized in that the input means has a plurality of tip subsidence amounts and a plurality of tip support forces obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and the maximum of the tip of each pile. Inputting the diameter and the average N value at the tip of each pile,
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And calculating Y when Q is Q / 6,
The third calculation means calculates a linear approximation straight line for a logarithmic transformation data point whose Y coordinate is larger than Y calculated by the second calculation means among the plurality of logarithmic transformation data points. Y = a′X + b ′. 5],
Calculating steps,
Q when the fourth calculation means is 10% based on the mathematical expressions [2] and [3] stored by the storage means and the mathematical expression [5] calculated by the third calculation means, respectively. And P when Q is Q / 3 is calculated, the allowable tip settlement amount of the pile is calculated based on the calculated P and the mathematical expression [1] stored in the storage means, and the calculated allowable tip Calculating the allowable head settlement of the pile by adding the amount of strain in the longitudinal direction of the pile when the same load as the design support force is loaded to the settlement amount;
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A step of displaying an allowable head squat amount calculated by the fourth calculator and a squat amount measured by the measuring unit;
Design support capacity management method of pile characterized by including.

請求項1の発明によれば、表示された沈下量が表示された許容先端沈下量以下であるか否かを確認できるので、杭の設計支持力を精度良く管理することができる。   According to the invention of claim 1, since it can be confirmed whether or not the displayed settlement amount is equal to or less than the displayed allowable tip settlement amount, the design support force of the pile can be managed with high accuracy.

請求項2の発明によれば、請求項1記載の発明の効果に加えて、杭の長手方向の歪量を加えた許容頭部沈下量を用いて確認するので、より精度良く杭の設計支持力を管理することができる。   According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, since the confirmation is made by using the allowable head subsidence amount in which the strain amount in the longitudinal direction of the pile is added, the design support of the pile is more accurately performed. You can manage power.

請求項3の発明によれば、Y座標が、Pを10%として算出されたQがQ/6となる場合のY以下である対数変換データ点を除外した上で許容先端沈下量を決定するので、杭の設計支持力をより精度良く管理することができる。   According to the invention of claim 3, the allowable tip settlement amount is determined after excluding logarithmic transformation data points whose Y coordinate is equal to or less than Y when P calculated as 10% is Q / 6. Therefore, the design support force of the pile can be managed with higher accuracy.

請求項4の発明によれば、請求項3記載の発明の効果に加えて、杭の長手方向の歪量を加えた許容頭部沈下量を用いて確認するので、より精度良く杭の設計支持力を管理することができる。   According to the invention of claim 4, in addition to the effect of the invention of claim 3, since the confirmation is made by using the allowable head sinkage amount to which the strain amount in the longitudinal direction of the pile is added, the design support of the pile is more accurately performed. You can manage power.

以下、本発明の実施形態を図面に基づいて説明する。
本実施形態に係る図1のような杭1の設計支持力管理方法を実行するための設計支持力管理装置11は、図2に示すように、主な構成要素として、制御部12、HDD(hard disk drive)13、RAM(random access memory、随時書き込み読み出しメモリ)14、操作部15、表示部16、及び計測部17を備えたものであり、各構成要素はバス18を介して互いに通信可能に接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 2, the design support force management apparatus 11 for executing the design support force management method of the pile 1 as shown in FIG. 1 according to the present embodiment includes, as main components, a control unit 12, HDD ( Hard disk drive (RAM) 13, RAM (random access memory), operation unit 15, display unit 16, and measurement unit 17, and each component can communicate with each other via a bus 18. It is connected to the.

杭1は、図1に示すように、先端部1aの図示しない開口部が閉塞された鋼管等で構成されており、先端部1aの外周面に螺旋翼21が突設されている。この杭1は、図示しない回転圧入機により軟弱地盤22に対して回転圧入することにより、鉛直方向にかつ頭部1bが空中へ所定長さ突出するように施工される。螺旋翼21を有する杭1の先端部1aの最大径は、螺旋翼21の外径となる。なお、軟弱地盤22に対しては、螺旋翼21を有する杭1の他、螺旋翼21を有していない杭を施工してもよい。螺旋翼21を有していない杭を施工するには、従来公知の適宜の杭打ち機を利用することができる。螺旋翼21を有していない杭の先端部の最大径は、杭の先端部の外径(杭径)となる。   As shown in FIG. 1, the pile 1 is composed of a steel pipe or the like in which an opening (not shown) of the tip 1a is closed, and a spiral wing 21 projects from the outer peripheral surface of the tip 1a. This pile 1 is constructed so that the head 1b protrudes into the air in a vertical direction by rotating press-fitting into the soft ground 22 with a rotary press-fit machine (not shown). The maximum diameter of the tip 1 a of the pile 1 having the spiral blade 21 is the outer diameter of the spiral blade 21. In addition, you may construct the pile which does not have the spiral blade 21 other than the pile 1 which has the spiral blade 21 with respect to the soft ground 22. FIG. In order to construct a pile that does not have the spiral blade 21, a conventionally known appropriate pile driving machine can be used. The maximum diameter of the tip of the pile that does not have the spiral blade 21 is the outer diameter (pile diameter) of the tip of the pile.

杭1の設計支持力管理方法の実行に際しては、図1のようにして杭1の簡易載荷試験が行われる。この簡易載荷試験は、軟弱地盤22に施工した杭1の頭部1bと、軟弱地盤22上に設置した重機23のフレーム23a等の適宜の部位との間に、油圧ジャッキ等で構成された載荷装置24を介在させた状態で行われる。載荷装置24は、重機23の自重を反力として、杭1の長期許容支持力としての設計支持力と同じ荷重を杭1に載荷することができる。なお、載荷装置24による荷重の載荷時間は、杭1の沈下量が一定となる時間とする。   When executing the design support capacity management method of the pile 1, a simple loading test of the pile 1 is performed as shown in FIG. This simple loading test is performed by loading a hydraulic jack or the like between a head 1b of the pile 1 constructed on the soft ground 22 and an appropriate part such as a frame 23a of a heavy machine 23 installed on the soft ground 22. This is performed with the device 24 interposed. The loading device 24 can load the pile 1 with the same load as the design support force as the long-term allowable support force of the pile 1 using the own weight of the heavy machine 23 as a reaction force. Note that the loading time of the load by the loading device 24 is a time when the amount of settlement of the pile 1 is constant.

図2のような設計支持力管理装置11におけるHDD13は、各構成要素の動作を制御する制御プログラムとしての設計支持力管理プログラム等を記憶している。なお、設計支持力管理プログラム等を記憶する記憶手段は、HDD13の他、ROM(read only memory、読み出し専用メモリ)やフラッシュメモリ等であってもよい。   The HDD 13 in the design support force management apparatus 11 as shown in FIG. 2 stores a design support force management program as a control program for controlling the operation of each component. The storage means for storing the design support capacity management program or the like may be a ROM (read only memory), a flash memory, or the like in addition to the HDD 13.

制御部12は、CPU(central processing unit、中央処理装置)等で構成されており、HDD13上の設計支持力管理プログラム等に従って各構成要素の動作を制御する。RAM14は、設計支持力管理装置11に関する各種の情報を一時的に記憶する。   The control unit 12 is configured by a CPU (central processing unit) or the like, and controls the operation of each component according to a design support management program on the HDD 13 or the like. The RAM 14 temporarily stores various types of information related to the design support capacity management device 11.

表示部16は、LCD(liquid crystal display、液晶ディスプレイ)等で構成されており、各種の情報を表示する。操作部15は、選択や入力等の各種の操作をするための操作キーやマウス等を備えている。設計支持力管理装置11に対するユーザによる各種の操作は、この操作部15を通じて行われる。なお、表示部16をタッチパネルとしておき、このタッチパネルとしての表示部16が操作部15としても機能するように構成してもよい。   The display unit 16 is composed of an LCD (liquid crystal display) or the like, and displays various types of information. The operation unit 15 includes operation keys, a mouse, and the like for performing various operations such as selection and input. Various operations by the user with respect to the design support force management apparatus 11 are performed through the operation unit 15. The display unit 16 may be a touch panel, and the display unit 16 as the touch panel may function as the operation unit 15.

計測部17は、接触式のダイヤルゲージ又は非接触式の光学計測装置等で構成されており、適宜の位置に支持された状態で、荷重を載荷された杭1の沈下量(頭部沈下量)を計測する。   The measuring unit 17 is configured by a contact type dial gauge or a non-contact type optical measuring device, and the amount of settlement of the pile 1 loaded with the load (supported by the amount of head settlement) while being supported at an appropriate position. ).

次に、杭1の設計支持力管理処理の一例を図3に示すフローチャートに基づいて説明する。なお、この処理は、HDD13上の設計支持力管理プログラム等に基づいて制御部12が発行する命令に従って行われる。   Next, an example of the design support capacity management process of the pile 1 will be described based on the flowchart shown in FIG. This process is performed according to a command issued by the control unit 12 based on a design support management program on the HDD 13 or the like.

この処理においては、まず、操作部15により、過去に複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた先端沈下量及び先端支持力度、並びに、その杭の先端部の最大径及びその杭の先端部における平均N値が入力される(ステップS1)。杭の鉛直載荷試験としては、地盤工学会基準の鉛直載荷試験(既述の非特許文献1参照。)等が挙げられる。   In this process, first, the amount of tip settlement and tip support force obtained by the vertical loading test of the piles constructed on the soft ground in a plurality of places in the past by the operation unit 15 and the maximum diameter of the tip of the pile are obtained. And the average N value in the front-end | tip part of the pile is input (step S1). Examples of the vertical loading test of the pile include a vertical loading test (see Non-Patent Document 1 described above) based on the Geotechnical Society standard.

そして、HDD13によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=log10P ・・〔2−2〕、
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=log10Q ・・〔3−2〕、
並びに、入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYが算出された(ステップS2)後、算出されたXをX座標としかつ算出されたYをY座標とする図4のような複数の対数変換データ点31に対する線形近似直線32の
数式 Y=aX+b ・・〔4〕、
が算出される(ステップS3)。この線形近似直線32を表す数式〔4〕を算出するための近似方法としては、最小二乗法等が挙げられる。なお、数式〔2〕や数式〔3〕中の対数の底nの値は、本実施形態のように10とする他、数e(e=2.71828…)やその他の値(ただし、n≠1、n>0)としても良い。
And the numerical formula P = 100 × tip settlement amount / maximum diameter (%) respectively stored in the HDD 13 [1],
Formula X = log 10 P .. [2-2],
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log 10 Q .. [3-2],
In addition, P, X, Q, and Y are calculated based on the input tip subsidence amount, tip support force, maximum diameter, and average N value (step S2). Formula 4 of the linear approximation straight line 32 for a plurality of logarithmic transformation data points 31 as shown in FIG. 4 with the calculated Y as the Y coordinate Y = aX + b [4],
Is calculated (step S3). As an approximation method for calculating the mathematical expression [4] representing the linear approximate straight line 32, a least square method or the like can be cited. In addition, the value of the base n of the logarithm in the formula [2] and the formula [3] is set to 10 as in the present embodiment, the number e (e = 2. ≠ 1, n> 0).

次いで、記憶された数式〔2−2〕及び数式〔3−2〕、並びに算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPが算出され(ステップS4)、算出されたP及び記憶された数式〔1〕に基づいて杭1の許容先端沈下量が算出された(ステップS5)後、算出された許容先端沈下量に設計支持力と同じ荷重を載荷した場合の杭1の長手方向の歪量が加えられて杭1の許容頭部沈下量が算出される(ステップS6)。設計支持力と同じ荷重を載荷した場合の杭1の長手方向の歪量は、HDD13に記憶されている。   Next, based on the stored mathematical formula [2-2] and mathematical formula [3-2] and the calculated mathematical formula [4], Q when P is 10% and Q when Q is Q / 3 P is calculated (step S4), and the allowable tip settlement amount of the pile 1 is calculated based on the calculated P and the stored mathematical formula [1] (step S5), and then designed to the calculated allowable tip settlement amount. The amount of strain in the longitudinal direction of the pile 1 when the same load as the supporting force is loaded is added to calculate the allowable head settlement of the pile 1 (step S6). The amount of strain in the longitudinal direction of the pile 1 when the same load as the design support force is loaded is stored in the HDD 13.

そして、計測部17により、軟弱地盤22に施工した杭1の頭部1bと軟弱地盤22上に設置した重機23との間に介在する載荷装置24により設計支持力と同じ荷重を載荷された杭1の沈下量が計測された(ステップS7)後、算出された許容頭部沈下量及び計測された沈下量が表示部16に表示されて(ステップS8)、処理が終了する。   Then, the pile loaded with the same load as the design support force by the loading device 24 interposed between the head 1b of the pile 1 constructed on the soft ground 22 and the heavy machine 23 installed on the soft ground 22 by the measuring unit 17 After the 1 subsidence amount is measured (step S7), the calculated allowable head subsidence amount and the measured subsidence amount are displayed on the display unit 16 (step S8), and the process ends.

上記のような杭1の設計支持力管理方法によれば、表示された沈下量が表示された許容頭部沈下量以下であるか否かを確認できるので、杭1の設計支持力を精度良く管理できるという利点がある。   According to the design support capacity management method of the pile 1 as described above, it is possible to confirm whether or not the displayed settlement amount is equal to or less than the displayed allowable head settlement amount. There is an advantage that it can be managed.

次に、杭1の設計支持力管理処理の他例を図5に示すフローチャートに基づいて説明する。なお、この処理も、HDD13上の設計支持力管理プログラム等に基づいて制御部12が発行する命令に従って行われる。   Next, another example of the design support capacity management process of the pile 1 will be described based on the flowchart shown in FIG. This process is also performed according to a command issued by the control unit 12 based on a design support management program on the HDD 13 or the like.

この処理においても、まず、操作部15により、過去に複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた先端沈下量及び先端支持力度、並びに、その杭の先端部の最大径及びその杭の先端部における平均N値が入力される(ステップS11)。   Also in this process, first, the tip subsidence amount and the tip supporting force obtained by the vertical loading test of the piles previously constructed on the soft ground at a plurality of locations by the operation unit 15, and the maximum diameter of the tip of the pile. And the average N value in the front-end | tip part of the pile is input (step S11).

そして、HDD13によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=log10P ・・〔2−2〕、
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=log10Q ・・〔3−2〕、
並びに、入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYが算出され(ステップS12)、算出されたXをX座標としかつ算出されたYをY座標とする図4のような複数の対数変換データ点31に対する線形近似直線32の
数式 Y=aX+b ・・〔4〕、
が算出された(ステップS13)後、記憶された数式〔2−2〕及び数式〔3−2〕、並びに算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/6となる場合のYが算出される(ステップS14)。
And the numerical formula P = 100 × tip settlement amount / maximum diameter (%) respectively stored in the HDD 13 [1],
Formula X = log 10 P .. [2-2],
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log 10 Q .. [3-2],
In addition, P, X, Q, and Y are calculated based on the input tip settlement amount, tip support force, maximum diameter, and average N value (step S12), and the calculated X is set as the X coordinate. And Y = aX + b [4], a linear approximation line 32 for a plurality of logarithmic transformation data points 31 as shown in FIG.
Is calculated (step S13), Q when P is 10% based on the stored mathematical formula [2-2] and mathematical formula [3-2], and the calculated mathematical formula [4], and the Q Y is calculated when becomes Q / 6 (step S14).

次いで、複数の対数変換データ点31のうち、Y座標が、算出されたYより大きい対数変換データ点31に対する線形近似直線33の
数式 Y=a’X+b’ ・・〔5〕、
が算出された(ステップS15)後、記憶された数式〔2−2〕及び数式〔3−2〕、並びに算出された数式〔5〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPが算出され(ステップS16)、算出されたP及び記憶された数式〔1〕に基づいて杭1の許容先端沈下量が算出され(ステップS17)、算出された許容先端沈下量に、設計支持力と同じ荷重を載荷した場合の杭1の長手方向の歪量が加えられて杭1の許容頭部沈下量が算出される(ステップS18)。
Next, among the plurality of logarithmic transformation data points 31, the Y-coordinate of the linear approximation line 33 for the logarithmic transformation data point 31 that is larger than the calculated Y
Is calculated (step S15), Q when P is 10% based on the stored mathematical formula [2-2] and mathematical formula [3-2], and the calculated mathematical formula [5], and the Q P is calculated when Q is equal to Q / 3 (step S16), and the allowable tip settlement amount of the pile 1 is calculated based on the calculated P and the stored mathematical formula [1] (step S17). The amount of distortion in the longitudinal direction of the pile 1 when the same load as the design support force is loaded is added to the allowable tip settlement amount, and the allowable head settlement amount of the pile 1 is calculated (step S18).

そして、計測部17により、設計支持力と同じ荷重を載荷された杭1の沈下量が計測された(ステップS19)後、算出された許容頭部沈下量及び計測された沈下量が表示部16に表示されて(ステップS20)、処理が終了する。   Then, after the measurement unit 17 measures the settlement amount of the pile 1 loaded with the same load as the design support force (step S19), the calculated allowable head settlement amount and the measured settlement amount are displayed on the display unit 16. Is displayed (step S20), and the process ends.

上記のような杭1の設計支持力管理方法によれば、Y座標が、Pを10%として算出されたQがQ/6となる場合のY以下である対数変換データ点31を除外した上で許容頭部沈下量を決定するので、杭1の設計支持力をより精度良く管理できるという利点がある。   According to the design support capacity management method for the pile 1 as described above, after the logarithmic transformation data point 31 where the Y coordinate is equal to or less than Y when the calculated Q is Q / 6 is 10%. Since the allowable head sinking amount is determined, there is an advantage that the design support force of the pile 1 can be managed with higher accuracy.

以上のように、本発明に係る杭の設計支持力管理方法は、杭の設計支持力を精度良く管理するのに適している。   As described above, the pile design support force management method according to the present invention is suitable for accurately managing the pile design support force.

実施形態に係る杭の設計支持力管理方法を実行する際に行われる杭の簡易載荷試験の様子を示す要部拡大概略断面図。The principal part expansion schematic sectional drawing which shows the mode of the simple loading test of the pile performed when performing the design support capacity management method of the pile which concerns on embodiment. 杭の設計支持力管理装置の構成例を示すブロック図。The block diagram which shows the structural example of the design support force management apparatus of a pile. 杭の設計支持力管理処理の一例を示すフローチャート。The flowchart which shows an example of the design support capacity management process of a pile. 複数の対数変換データ点に対する線形近似直線を引いた状態を示す仮想グラフ。The virtual graph which shows the state which pulled the linear approximation straight line with respect to several logarithm transformation data points. 杭の設計支持力管理処理の他例を示すフローチャート。The flowchart which shows the other example of the design support capacity management process of a pile. Y座標が、Pを10%として算出されたQがQ/6となる場合のY以下である対数変換データ点を除外した上で線形近似直線を再度引いた状態を示す仮想グラフ。The virtual graph which shows the state which pulled the linear approximation straight line again after excluding the logarithmic transformation data point which is Y or less when Q calculated by setting P to 10% as P is Q / 6.

符号の説明Explanation of symbols

1 杭
1a 先端部
1b 頭部
11 設計支持力管理装置
12 制御部
13 HDD
14 RAM
15 操作部
16 表示部
17 計測部
22 軟弱地盤
23 重機
24 載荷装置
31 対数変換データ点
32、33 線形近似直線
DESCRIPTION OF SYMBOLS 1 Pile 1a Tip part 1b Head 11 Design support force management apparatus 12 Control part 13 HDD
14 RAM
15 Operation unit 16 Display unit 17 Measurement unit 22 Soft ground 23 Heavy machine 24 Loading device 31 Logarithmic conversion data points 32 and 33 Linear approximation line

Claims (4)

入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第2算出手段により算出された許容先端沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The input means is a plurality of tip subsidence amounts and a plurality of tip support strengths obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and the maximum diameter of the tip of each pile and the tip of each pile. Entering an average N value at
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And calculating P when Q is Q / 3, and calculating the allowable tip settlement amount of the pile based on the calculated P and the mathematical formula [1] stored in the storage means,
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A display means for displaying an allowable tip settlement amount calculated by the second calculation means and a settlement amount measured by the measurement means;
Design support capacity management method of pile characterized by including.
入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出し、算出された許容先端沈下量に、設計支持力と同じ荷重を載荷した場合の杭の長手方向の歪量を加えて杭の許容頭部沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第2算出手段により算出された許容頭部沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The input means is a plurality of tip subsidence amounts and a plurality of tip support strengths obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and the maximum diameter of the tip of each pile and the tip of each pile. Entering an average N value at
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And P when Q is Q / 3 is calculated, the allowable tip settlement amount of the pile is calculated based on the calculated P and the mathematical expression [1] stored in the storage means, and the calculated allowable tip Calculating the allowable head settlement of the pile by adding the amount of strain in the longitudinal direction of the pile when the same load as the design support force is loaded to the settlement amount;
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A display means for displaying the allowable head squat amount calculated by the second calculator and the squat amount measured by the measuring means;
Design support capacity management method of pile characterized by including.
入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/6となる場合のYを算出するステップ、
第3算出手段が、前記複数の対数変換データ点のうち、Y座標が前記第2算出手段により算出されたYより大きい対数変換データ点に対する線形近似直線の
数式 Y=a’X+b’ ・・〔5〕、
を算出するステップ、
第4算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第3算出手段により算出された数式〔5〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第4算出手段により算出された許容先端沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The input means is a plurality of tip subsidence amounts and a plurality of tip support strengths obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and the maximum diameter of the tip of each pile and the tip of each pile. Entering an average N value at
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And calculating Y when Q is Q / 6,
The third calculation means calculates a linear approximation straight line for a logarithmic transformation data point whose Y coordinate is larger than Y calculated by the second calculation means among the plurality of logarithmic transformation data points. Y = a′X + b ′. 5],
Calculating steps,
Q when the fourth calculation means is 10% based on the mathematical expressions [2] and [3] stored by the storage means and the mathematical expression [5] calculated by the third calculation means, respectively. And calculating P when Q is Q / 3, and calculating the allowable tip settlement amount of the pile based on the calculated P and the mathematical formula [1] stored in the storage means,
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A step of displaying an allowable tip settlement amount calculated by the fourth calculation unit and a settlement amount measured by the measurement unit;
Design support capacity management method of pile characterized by including.
入力手段が、複数箇所の軟弱地盤に施工した杭の鉛直載荷試験によりそれぞれ得られた複数の先端沈下量及び複数の先端支持力度、並びに、各杭の先端部の最大径及び各杭の先端部における平均N値をそれぞれ入力するステップ、
第1算出手段が、記憶手段によりそれぞれ記憶された
数式 P=100×先端沈下量/最大径(%) ・・〔1〕、
数式 X=lognP ・・〔2〕、
〔ただし、n≠1、n>0〕
数式 Q=先端支持力度/平均N値(kN/m2)、
数式 Y=lognQ ・・〔3〕、
〔ただし、n≠1、n>0〕
並びに、前記入力手段によりそれぞれ入力された先端沈下量、先端支持力度、最大径、及び平均N値に基づいてP、X、Q、及びYを算出し、算出されたXをX座標としかつ算出されたYをY座標とする複数の対数変換データ点に対する線形近似直線の
数式 Y=aX+b ・・〔4〕、
を算出するステップ、
第2算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第1算出手段により算出された数式〔4〕に基づいてPが10%となる場合のQ及びそのQがQ/6となる場合のYを算出するステップ、
第3算出手段が、前記複数の対数変換データ点のうち、Y座標が前記第2算出手段により算出されたYより大きい対数変換データ点に対する線形近似直線の
数式 Y=a’X+b’ ・・〔5〕、
を算出するステップ、
第4算出手段が、前記記憶手段によりそれぞれ記憶された数式〔2〕及び数式〔3〕、並びに前記第3算出手段により算出された数式〔5〕に基づいてPが10%となる場合のQ及びそのQがQ/3となる場合のPを算出し、算出されたP及び前記記憶手段により記憶された数式〔1〕に基づいて杭の許容先端沈下量を算出し、算出された許容先端沈下量に、設計支持力と同じ荷重を載荷した場合の杭の長手方向の歪量を加えて杭の許容頭部沈下量を算出するステップ、
計測手段が、軟弱地盤に施工した杭の頭部と前記軟弱地盤上に設置した重機との間に介在する載荷装置により設計支持力と同じ荷重を載荷された杭の沈下量を計測するステップ、並びに、
表示手段が、前記第4算出手段により算出された許容頭部沈下量、及び前記計測手段により計測された沈下量を表示するステップ、
を含むことを特徴とする杭の設計支持力管理方法。
The input means is a plurality of tip subsidence amounts and a plurality of tip support strengths obtained by vertical loading tests of piles constructed on a plurality of soft grounds, and the maximum diameter of the tip of each pile and the tip of each pile. Entering an average N value at
The first calculation means stores the mathematical expressions P = 100 × tip settlement amount / maximum diameter (%) respectively stored by the storage means [1],
Formula X = log n P (2)
[However, n ≠ 1, n> 0]
Formula Q = tip supporting force / average N value (kN / m 2 ),
Formula Y = log n Q (3)
[However, n ≠ 1, n> 0]
In addition, P, X, Q, and Y are calculated based on the tip subsidence amount, the tip support force, the maximum diameter, and the average N value respectively input by the input means, and the calculated X is set as the X coordinate. Y = aX + b [4], a linear approximation line for a plurality of logarithmically transformed data points with Y as a Y coordinate.
Calculating steps,
Q in the case where P is 10% based on the mathematical expressions [2] and [3] respectively stored by the storage means and the mathematical expression [4] calculated by the first calculation means. And calculating Y when Q is Q / 6,
The third calculation means calculates a linear approximation straight line for a logarithmic transformation data point whose Y coordinate is larger than Y calculated by the second calculation means among the plurality of logarithmic transformation data points. Y = a′X + b ′. 5],
Calculating steps,
Q when the fourth calculation means is 10% based on the mathematical expressions [2] and [3] stored by the storage means and the mathematical expression [5] calculated by the third calculation means, respectively. And P when Q is Q / 3 is calculated, the allowable tip settlement amount of the pile is calculated based on the calculated P and the mathematical expression [1] stored in the storage means, and the calculated allowable tip Calculating the allowable head settlement of the pile by adding the amount of strain in the longitudinal direction of the pile when the same load as the design support force is loaded to the settlement amount;
A step of measuring a settlement amount of a pile loaded with the same load as the design support force by a loading device interposed between a head of the pile constructed on the soft ground and a heavy machine installed on the soft ground; And
A step of displaying an allowable head squat amount calculated by the fourth calculator and a squat amount measured by the measuring unit;
Design support capacity management method of pile characterized by including.
JP2006028571A 2006-02-06 2006-02-06 Pile design bearing capacity management method Active JP4993168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028571A JP4993168B2 (en) 2006-02-06 2006-02-06 Pile design bearing capacity management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028571A JP4993168B2 (en) 2006-02-06 2006-02-06 Pile design bearing capacity management method

Publications (2)

Publication Number Publication Date
JP2007205140A true JP2007205140A (en) 2007-08-16
JP4993168B2 JP4993168B2 (en) 2012-08-08

Family

ID=38484834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028571A Active JP4993168B2 (en) 2006-02-06 2006-02-06 Pile design bearing capacity management method

Country Status (1)

Country Link
JP (1) JP4993168B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975292B1 (en) 2008-02-04 2010-08-12 주식회사 포스코건설 Medium that Program for Analyzing Pile Stress by Axial Load is stored, and Computing Device that the Program is installed
KR101017567B1 (en) 2009-01-16 2011-02-28 삼성물산 주식회사 Design and construction method of Cast in place piles
JP2014201906A (en) * 2013-04-02 2014-10-27 兼松日産農林株式会社 Construction management method of wooden pile
KR101550802B1 (en) * 2014-04-03 2015-09-08 삼성물산 주식회사 Estimate technique for the degree of soil plugging of large diameter driven steel pipe pile
CN107268693A (en) * 2017-08-15 2017-10-20 湖南联智智能科技有限公司 Pile bearing capacity automatic checkout system and detection method based on self-balancing approach
CN115305976A (en) * 2022-10-12 2022-11-08 铁科院(深圳)检测工程有限公司 Intelligent loading system for static load experiment of large-diameter pile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013266B (en) * 2016-06-12 2017-10-31 中冶集团武汉勘察研究院有限公司 A kind of vertical bearing capacity of single pile feature value detection method related to cement mixing method age

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178416A (en) * 1988-12-29 1990-07-11 Takechi Koumushiyo:Kk Judging and designing method for performance and quality of basic pile and performance measuring device for ground
JPH1113047A (en) * 1997-06-23 1999-01-19 Geotop Corp Settlement estimation method for buried pile
JP2002069992A (en) * 2000-08-25 2002-03-08 Daiwa House Ind Co Ltd Confirming method of pile supporting force
JP2003074056A (en) * 2001-09-06 2003-03-12 Asahi Kasei Corp Execution method of steel pipe pile
JP2003082648A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Bearing capacity calculation method of soil cement composite pile
JP2003138561A (en) * 2001-11-05 2003-05-14 Takenaka Komuten Co Ltd Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP2005220662A (en) * 2004-02-06 2005-08-18 Kajima Road Co Ltd Steel pipe pile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178416A (en) * 1988-12-29 1990-07-11 Takechi Koumushiyo:Kk Judging and designing method for performance and quality of basic pile and performance measuring device for ground
JPH1113047A (en) * 1997-06-23 1999-01-19 Geotop Corp Settlement estimation method for buried pile
JP2002069992A (en) * 2000-08-25 2002-03-08 Daiwa House Ind Co Ltd Confirming method of pile supporting force
JP2003082648A (en) * 2001-09-04 2003-03-19 Asahi Kasei Corp Bearing capacity calculation method of soil cement composite pile
JP2003074056A (en) * 2001-09-06 2003-03-12 Asahi Kasei Corp Execution method of steel pipe pile
JP2003138561A (en) * 2001-11-05 2003-05-14 Takenaka Komuten Co Ltd Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP2005220662A (en) * 2004-02-06 2005-08-18 Kajima Road Co Ltd Steel pipe pile

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
地盤工学会編集委員会, 杭の鉛直載荷試験方法・同解説(第一回改訂版), vol. 第2刷, JPN6011058686, 21 September 2004 (2004-09-21), pages 39 - 42, ISSN: 0002063896 *
社団法人日本建築学会, 建築基礎構造設計指針, vol. 第2版第4刷, JPN6011058685, 10 August 2004 (2004-08-10), pages 200 - 205, ISSN: 0002063895 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975292B1 (en) 2008-02-04 2010-08-12 주식회사 포스코건설 Medium that Program for Analyzing Pile Stress by Axial Load is stored, and Computing Device that the Program is installed
KR101017567B1 (en) 2009-01-16 2011-02-28 삼성물산 주식회사 Design and construction method of Cast in place piles
JP2014201906A (en) * 2013-04-02 2014-10-27 兼松日産農林株式会社 Construction management method of wooden pile
KR101550802B1 (en) * 2014-04-03 2015-09-08 삼성물산 주식회사 Estimate technique for the degree of soil plugging of large diameter driven steel pipe pile
CN107268693A (en) * 2017-08-15 2017-10-20 湖南联智智能科技有限公司 Pile bearing capacity automatic checkout system and detection method based on self-balancing approach
CN115305976A (en) * 2022-10-12 2022-11-08 铁科院(深圳)检测工程有限公司 Intelligent loading system for static load experiment of large-diameter pile
CN115305976B (en) * 2022-10-12 2022-12-06 铁科院(深圳)检测工程有限公司 Intelligent loading system for static load experiment of large-diameter pile

Also Published As

Publication number Publication date
JP4993168B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4993168B2 (en) Pile design bearing capacity management method
CN100442355C (en) Leaf spring load measuring device
JP2002296159A (en) Test apparatus for loading flat plate and recording medium
US6349590B1 (en) Method and apparatus for estimating load bearing capacity of piles
JP3223548U (en) Anchor bolt length measurement system
JP2008297870A (en) Underground construction management system and underground construction management method
JP2021167533A (en) Foundation pile bearing power calculation device considering liquefaction, and method for the same
JP2011102527A (en) Horizontal load testing method of pile
US20230131570A1 (en) Method, apparatus and processing device for determining mechanical performance of a road
JP2011247677A (en) Position measurement system
JP3809527B2 (en) Eigendeformation calculation device, computer program, recording medium, and method of calculating intrinsic deformation during welding
Guo et al. Study on the earth pressure of a foundation pit adjacent to a composite foundation with rigid-flexible and long-short piles
KR101977104B1 (en) Spreadsheet driving apparatus for performing automatic function calculation based on cell range selection and operating method thereof
JP7329166B2 (en) FOUNDATION PILE BEARING CAPACITY CALCULATION DEVICE AND METHOD
Hou et al. Stability assessment of a non-circular tunnel face with tensile strength cut-off subject to seepage flows: A comparison analysis
CN116108591B (en) Landslide stability judging method, landslide stability judging device, landslide stability judging equipment and landslide stability judging medium
JP2009235666A (en) Pile shape specifying device and pile shape specifying program
Touahmia Laboratory performance of steel mechanically stabilized earth reinforcements
CN114991833A (en) Method and device for determining roof-cutting roadway-forming unit support withdrawing strategy and electronic equipment
CN108460211A (en) Engineering method for measuring and calculating, device, computer equipment and the storage medium of communication iron tower
JP6670669B2 (en) Liquefaction strength curve generation method, liquefaction strength curve generation device, and liquefaction strength curve generation program
CN114486033B (en) Method, device, equipment and storage medium for determining supporting shaft force
KR102086343B1 (en) Apparatus for evaluating structural safety of building and method thereof
JP2011111861A (en) Support calculator of taper pile
CN108364329B (en) Boundary measuring and displaying method for underground continuous wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250