JP2003082481A - Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler - Google Patents

Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler

Info

Publication number
JP2003082481A
JP2003082481A JP2001277230A JP2001277230A JP2003082481A JP 2003082481 A JP2003082481 A JP 2003082481A JP 2001277230 A JP2001277230 A JP 2001277230A JP 2001277230 A JP2001277230 A JP 2001277230A JP 2003082481 A JP2003082481 A JP 2003082481A
Authority
JP
Japan
Prior art keywords
boiler
water
corrosion
heat transfer
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277230A
Other languages
Japanese (ja)
Inventor
Junichi Nakajima
純一 中島
Keita Mizogami
慶太 溝上
Yasuo Nogami
康雄 野上
Junichi Kato
潤一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2001277230A priority Critical patent/JP2003082481A/en
Publication of JP2003082481A publication Critical patent/JP2003082481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress local corrosion occuring in a nonpassivated metallic body such as a heat transfer tube of a boiler caused by the influence of moisture. SOLUTION: The method for suppressing corrosion includes a stage where the pH of moisture giving an influence on a nonpassivated metallic body such as a heat transfer tube of a boiler is set in the range of 11 to 12.5. In this method, the pH of the moisture is preferably set in the above range in accordance with the concentration of dissolved oxygen in the moisture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、腐食抑制方法、特
に、水分の影響によりボイラの伝熱管等の非不動態化金
属体に生じる腐食を抑制するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing corrosion, and more particularly to a method for suppressing corrosion that occurs in a non-passivated metal body such as a heat transfer tube of a boiler under the influence of moisture.

【0002】[0002]

【従来の技術とその課題】日本工業規格(JIS)に規
定された特殊循環ボイラの範疇に属する貫流ボイラは、
給水を加熱して蒸気を発生させるための伝熱管を備えて
いる。このような伝熱管は、炭素鋼等の非不動態化金属
を用いて形成されているため、ボイラ水と接触する部位
が給水中に含まれる溶存酸素やボイラ水のpH等の影響
による腐食のために破損し、貫流ボイラの寿命に致命的
な影響を及ぼす場合がある。このため、貫流ボイラを長
期間安定に運転するためには、伝熱管の腐食を効果的に
抑制する必要がある。
2. Description of the Related Art Once-through boilers, which belong to the category of special circulation boilers specified in Japanese Industrial Standards (JIS), are
It is equipped with a heat transfer tube for heating the feed water to generate steam. Since such a heat transfer tube is formed by using a non-passivating metal such as carbon steel, the portion that comes into contact with the boiler water does not corrode due to the influence of dissolved oxygen contained in the feed water or the pH of the boiler water. Therefore, it may be damaged and may have a fatal effect on the life of the once-through boiler. Therefore, in order to stably operate the once-through boiler for a long period of time, it is necessary to effectively suppress the corrosion of the heat transfer tube.

【0003】そこで、JIS B 8223:1999
は、伝熱管に生じる上述のような腐食を抑制する観点か
ら、特殊循環ボイラのボイラ水の水質に関する管理基準
に言及し、特殊循環ボイラにおいてはボイラ水のpHを
11.0〜11.8の範囲に設定するよう推奨してい
る。
Therefore, JIS B 8223: 1999
Refers to the control standard for the water quality of the boiler water of the special circulation boiler from the viewpoint of suppressing the above-mentioned corrosion that occurs in the heat transfer tube, and in the special circulation boiler, the pH of the boiler water is from 11.0 to 11.8. It is recommended to set the range.

【0004】ところで、伝熱管の腐食は、通常、次の三
種類の指標に基づいて評価されている。 (1)mdd(mg/dm2/day):水との接触面の単
位表面積(1dm2)における1日当りの質量減少量
(mg)を表現したものである。 (2)ipy(inch/year):1年間における、
伝熱管の厚さ(肉厚)の減少量(インチ)を表現したも
のである。 (3)食孔数/cm2:水との接触面の単位表面積(1cm
2)当りに発生した食孔の数を表現したものである。な
お、食孔とは、伝熱管の水との接触面側から厚さ方向の
反対側に向かう局部的腐食、すなわち孔食により生じた
窪みを意味する(例えば、日刊工業新聞社発行、腐食防
食協会編「防食技術便覧」31〜33頁参照)。
By the way, the corrosion of the heat transfer tube is usually evaluated based on the following three types of indexes. (1) mdd (mg / dm 2 / day): It represents the amount of mass reduction (mg) per day per unit surface area (1 dm 2 ) of the contact surface with water. (2) ipy (inch / year):
This expresses the reduction amount (inch) of the thickness (wall thickness) of the heat transfer tube. (3) Number of pits / cm 2 : Unit surface area of contact surface with water (1 cm
2 ) It expresses the number of pits generated per hit. Incidentally, the pit means a localized corrosion from the contact surface side with the water of the heat transfer tube toward the opposite side in the thickness direction, that is, a pit formed by pitting corrosion (for example, issued by Nikkan Kogyo Shimbun Co., Ltd. See pages 31-33 of "Corrosion Prevention Technical Handbook" edited by the Association).

【0005】ところが、JIS B 8223:1999
において推奨されているボイラ水の管理基準に適合する
よう貫流ボイラを運転し、また、上述のような指標に基
づきながら伝熱管の腐食の進行状況を評価して、ボイラ
水との接触部位における伝熱管の腐食の状況が破損に至
る程度のものではないと判定できる場合であっても、予
想外に伝熱管の当該部位が腐食により破損してしまう場
合がある。そこで、本発明者等は、そのような事例にお
ける伝熱管の破損原因を調査した結果、伝熱管は、ボイ
ラ水との接触部分の減肉的な腐食が原因で破損したので
はなく、全ての事例において、伝熱管の水との接触面側
から厚さ方向の反対側に向かう局部的腐食(上述の孔
食)の進行で生じる食孔による微小な穴開きが原因で破
損していることを見出した。これによると、JISにお
いて推奨されているボイラ水の管理基準は、伝熱管の減
肉的な腐食を抑制するためには有効であるが、伝熱管に
発生する孔食を抑制するために効果的とはいい難い。
However, JIS B 8223: 1999
The once-through boiler is operated so as to meet the boiler water management standards recommended in the above, and the progress of corrosion of the heat transfer tubes is evaluated based on the above-mentioned indicators, and the transmission at the contact point with the boiler water is evaluated. Even if it can be determined that the condition of corrosion of the heat pipe is not such that the heat pipe is damaged, the portion of the heat transfer pipe may be unexpectedly damaged due to corrosion. Therefore, the present inventors, as a result of investigating the cause of damage to the heat transfer tube in such cases, the heat transfer tube was not damaged due to the thinning corrosion of the contact portion with the boiler water, and all In the example, it was found that the heat transfer tube was damaged due to minute pitting due to the pitting caused by the progress of localized corrosion (the above-mentioned pitting corrosion) from the water contact surface side to the opposite side in the thickness direction. I found it. According to this, the boiler water management standard recommended in JIS is effective for suppressing the wall-thinning corrosion of the heat transfer tube, but is effective for suppressing the pitting corrosion generated in the heat transfer tube. Is hard to say.

【0006】本発明の目的は、水分の影響によりボイラ
の伝熱管等の非不動態化金属体に生じる局部的腐食を抑
制することにある。
An object of the present invention is to suppress local corrosion which occurs in a non-passivated metal body such as a heat transfer tube of a boiler under the influence of moisture.

【0007】[0007]

【課題を解決するための手段】本発明に係る非不動態化
金属体の腐食抑制方法は、水分の影響により非不動態化
金属体に生じる局部的腐食を抑制するための方法であ
り、非不動態化金属体に影響する水分のpHを11〜1
2.5の範囲に設定する工程を含んでいる。この腐食抑
制方法では、通常、水分中の溶存酸素濃度に応じて水分
のpHを上記範囲に設定する。
A method for inhibiting corrosion of a non-passivated metal body according to the present invention is a method for inhibiting localized corrosion that occurs in a non-passivated metal body under the influence of moisture. The pH of the water that affects the passivated metal body is 11 to 1
It includes the step of setting to the range of 2.5. In this corrosion inhibition method, the pH of water is usually set within the above range according to the concentration of dissolved oxygen in water.

【0008】また、本発明の他の観点に係る腐食抑制方
法は、ボイラの伝熱管に生じる局部的腐食を抑制するた
めの方法であり、ボイラ内のボイラ水のpHを11〜1
2.5の範囲に設定する工程を含んでいる。この腐食抑
制方法は、通常、ボイラに供給する給水の溶存酸素濃度
に応じてボイラ水のpHを上記範囲に設定する。或い
は、この腐食抑制方法は、ボイラに供給する給水の溶存
酸素濃度を1.0mg/l以下に設定する工程をさらに
含んでいる。
Further, a corrosion inhibiting method according to another aspect of the present invention is a method for inhibiting localized corrosion occurring in a heat transfer tube of a boiler, wherein the pH of boiler water in the boiler is 11 to 1.
It includes the step of setting to the range of 2.5. In this corrosion suppression method, the pH of boiler water is usually set within the above range according to the dissolved oxygen concentration of the feed water supplied to the boiler. Alternatively, this corrosion suppression method further includes the step of setting the dissolved oxygen concentration of the feed water supplied to the boiler to 1.0 mg / l or less.

【0009】[0009]

【発明の実施の形態】図1を参照して、本発明の腐食抑
制方法を適用可能な貫流ボイラを備えた蒸気ボイラ装置
の概略を説明する。図において、蒸気ボイラ装置1は、
貫流ボイラ2と給水装置3とを主に備えている。
BEST MODE FOR CARRYING OUT THE INVENTION An outline of a steam boiler apparatus equipped with a once-through boiler to which the corrosion suppression method of the present invention can be applied will be described with reference to FIG. In the figure, the steam boiler device 1 is
The once-through boiler 2 and the water supply device 3 are mainly provided.

【0010】貫流ボイラ2は、図2に示すように、給水
装置3から供給される給水を貯留するための貯留部4
と、貯留部4に対して起立するように設けられた複数本
の伝熱管5(非不動態化金属体の一例)と、伝熱管5の
上端部に設けられかつ図示しない負荷装置に向けて蒸気
を供給するための供給路6aを有するヘッダ6と、給水
を加熱して蒸気を発生するための加熱装置7とを主に備
えている。なお、貯留部4とヘッダ6とは、平面形状が
環状に設定されている。
The once-through boiler 2 is, as shown in FIG. 2, a storage portion 4 for storing the water supply supplied from the water supply device 3.
And a plurality of heat transfer tubes 5 (an example of a non-passivating metal body) provided so as to stand upright with respect to the storage section 4, and a load device (not shown) provided at the upper end of the heat transfer tube 5 A header 6 having a supply path 6a for supplying steam and a heating device 7 for heating the supply water to generate steam are mainly provided. The storage section 4 and the header 6 are set to have an annular planar shape.

【0011】伝熱管5は、非不動態化金属を用いて形成
された部材、すなわち、非不動態化金属体である。ここ
で、非不動態化金属は、中性水溶液中において自然には
不動態化しない金属をいい、通常はステンレス鋼、チタ
ン、アルミニウム、クロム、ニッケルおよびジルコニウ
ム等を除く金属である。具体的には、炭素鋼、鋳鉄、銅
および銅合金等である。なお、炭素鋼は、中性水溶液中
においても、高濃度のクロム酸イオンの存在下では不動
態化する場合があるが、この不動態化はクロム酸イオン
の影響によるものであって中性水溶液中での自然な不動
態化とは言い難い。したがって、炭素鋼は、ここでの非
不動態化金属の範疇に属する。また、銅および銅合金
は、電気化学列(emf series)が貴な位置にあるため、
通常は水分の影響による腐食が生じ難い金属と考えられ
ているが、中性水溶液中において自然に不動態化するも
のではないので、ここでの非不動態化金属の範疇に属す
る。
The heat transfer tube 5 is a member formed by using a non-passivating metal, that is, a non-passivating metal body. Here, the non-passivating metal means a metal that does not passivate naturally in a neutral aqueous solution, and is usually a metal except stainless steel, titanium, aluminum, chromium, nickel, zirconium and the like. Specifically, carbon steel, cast iron, copper and copper alloys are used. Note that carbon steel may be passivated in the presence of a high concentration of chromate ion even in a neutral aqueous solution, but this passivation is due to the effect of chromate ion. It is hard to say the natural passivation inside. Therefore, carbon steel belongs to the category of non-passivating metals here. Also, for copper and copper alloys, the electrochemical series (emf series) is in a noble position,
It is usually considered to be a metal that is unlikely to corrode due to the influence of water, but it does not passivate spontaneously in a neutral aqueous solution, so it belongs to the category of non-passivating metal here.

【0012】給水装置3は、貫流ボイラ2に給水を供給
するためのものであり、補給水の注水路8、注水路8か
らの補給水を貯留するための給水タンク9および貫流ボ
イラ2の貯留部4に給水を供給するための給水路10を
主に備えている(図1)。ここで、注水路8は、軟水化
装置11と脱酸素装置12とをこの順に備えている。軟
水化装置11は、補給水中に含まれる各種の硬度分等を
ナトリウムイオンに置換して軟水に変換するためのもの
である。一方、脱酸素装置12は、補給水中に含まれる
溶存酸素を機械的に除去するためのものである。また、
給水路10は、給水タンク9に貯留された給水を貫流ボ
イラ2に供給するためのポンプ(図示せず)と、給水路
10中の給水に薬剤を注入するための注入装置13とを
備えている。
The water supply device 3 is for supplying water to the once-through boiler 2, and is made up of a make-up water injection channel 8, a water supply tank 9 for storing make-up water from the water injection channel 8 and a storage of the once-through boiler 2. A water supply channel 10 for supplying water to the section 4 is mainly provided (FIG. 1). Here, the water injection path 8 is provided with a water softening device 11 and a deoxidizer 12 in this order. The water softening device 11 is for replacing various hardness components and the like contained in makeup water with sodium ions to convert into soft water. On the other hand, the deoxidizer 12 is for mechanically removing dissolved oxygen contained in the makeup water. Also,
The water supply passage 10 includes a pump (not shown) for supplying the water supply stored in the water supply tank 9 to the once-through boiler 2, and an injection device 13 for injecting a drug into the water supply in the water supply passage 10. There is.

【0013】ここで、注入装置13から給水に注入する
薬剤は、主に、pH調整剤および脱酸素剤である。pH
調整剤は、貫流ボイラ2のボイラ水のpHを後述する所
定範囲に調節するためのものであり、通常、ボイラ水の
pHをアルカリ側に調節可能なもの、例えば、水酸化リ
チウム、水酸化ナトリウムまたは水酸化カリウムなどの
アルカリ金属水酸化物を含む水溶液である。一方、脱酸
素剤は、給水中に含まれる溶存酸素を化学的に除去する
ためのものであり、例えば、グルコースやデキストリン
等の還元性糖類、亜硫酸ナトリウム、亜硫酸カリウム、
アスコルビン酸およびエリソルビン酸等である。
Here, the chemicals injected from the injection device 13 into the water supply are mainly the pH adjusting agent and the oxygen scavenger. pH
The adjusting agent is for adjusting the pH of the boiler water of the once-through boiler 2 within a predetermined range described later, and is usually one that can adjust the pH of the boiler water to the alkaline side, such as lithium hydroxide and sodium hydroxide. Alternatively, it is an aqueous solution containing an alkali metal hydroxide such as potassium hydroxide. On the other hand, the oxygen scavenger is for chemically removing dissolved oxygen contained in the feed water, for example, reducing sugars such as glucose and dextrin, sodium sulfite, potassium sulfite,
Examples thereof include ascorbic acid and erythorbic acid.

【0014】上述の蒸気ボイラ装置1を運転する場合
は、注水路8から給水タンク9に補給水を供給し、この
補給水を給水タンク9に貯留する。ここで貯留される給
水は、軟水化装置11および脱酸素装置12で処理され
たもの、すなわち、脱酸素処理された軟水である。そし
て、図示しないポンプを作動させ、給水タンク9に貯留
された給水を、給水路10を通じて貫流ボイラ2に供給
する。
When the steam boiler device 1 described above is operated, makeup water is supplied from the water injection passage 8 to the water supply tank 9, and this makeup water is stored in the water supply tank 9. The feed water stored here is water that has been treated by the water softening device 11 and the deoxidizing device 12, that is, deoxidized soft water. Then, a pump (not shown) is operated to supply the water supply stored in the water supply tank 9 to the once-through boiler 2 through the water supply passage 10.

【0015】貫流ボイラ2において、給水路10を通じ
て供給される給水は、貯留部4内においてボイラ水Wと
して貯留される。そして、貯留部4に貯留されたボイラ
水Wは、加熱装置7により加熱されながら各伝熱管5内
を上昇し、徐々に蒸気になる。各伝熱管5において生成
した蒸気はヘッダ6において集められ、供給路6aを通
じて負荷装置に供給される。
In the once-through boiler 2, the water supply supplied through the water supply passage 10 is stored in the storage section 4 as boiler water W. The boiler water W stored in the storage unit 4 rises in each heat transfer tube 5 while being heated by the heating device 7, and gradually becomes steam. The steam generated in each heat transfer tube 5 is collected in the header 6 and supplied to the load device through the supply path 6a.

【0016】上述のような蒸気ボイラ装置1の運転中に
おいて、貫流ボイラ2で用いられる各伝熱管5は、図2
に一点鎖線IIIで示すような下端部分、すなわち、貯留
部4との連結部分が、ボイラ水Wと継続的に接触するこ
とになる。このため、伝熱管5は、そのような部分にお
いて、ボイラ水Wの影響による局部的腐食が生じ、それ
が原因で微小な穴開きを起こして破損する場合がある。
During operation of the steam boiler device 1 as described above, the heat transfer tubes 5 used in the once-through boiler 2 are arranged in the same manner as in FIG.
The lower end portion as indicated by the alternate long and short dash line III, that is, the connection portion with the storage portion 4 is in continuous contact with the boiler water W. For this reason, the heat transfer tube 5 may be locally corroded due to the influence of the boiler water W in such a portion, which may cause minute holes and be damaged.

【0017】ここで、局部的腐食とは、図3(図2のII
I部分の拡大図)に示すように、伝熱管5の水との接触
面側から厚さ方向の反対側に向かう孔状の腐食、すなわ
ち、伝熱管5の厚さ(肉厚)方向に発生する孔状の腐食
をいう。以下、このような局部的腐食の発生現象を「孔
食」といい、この孔食により生じた孔状の腐食を「食
孔」(図3においては符号5aで示している)という。
Here, the local corrosion refers to FIG. 3 (II in FIG. 2).
As shown in (enlarged view of portion I), hole-like corrosion from the contact surface side of the heat transfer tube 5 with water toward the opposite side in the thickness direction, that is, in the thickness (wall thickness) direction of the heat transfer tube 5 occurs. Refers to the corrosion of holes. Hereinafter, such a phenomenon of occurrence of localized corrosion is referred to as "pitting corrosion", and the pitting corrosion caused by this pitting corrosion is referred to as "pitting" (indicated by reference numeral 5a in FIG. 3).

【0018】そこで、蒸気ボイラ装置1の運転中は、上
述のような孔食で生じる食孔5aによる伝熱管5の破損
を抑制するために、貫流ボイラ2のボイラ水WのpHを
継続的に測定する。そして、注入装置13から適宜pH
調整剤を注入しながらボイラ水WのpHを調節し、その
pHが11以上12.5以下の範囲になるよう設定す
る。これにより、伝熱管5は、ボイラ水Wとの接触部分
における減肉的な腐食が抑制されると共に、食孔5aの
発生および成長も抑制され、食孔5aによる破損を起こ
しにくくなる。因みに、ここで設定するpHが11未満
の場合は、伝熱管5において、食孔5aと共に減肉的な
腐食が発生しやすくなり、伝熱管5の破損が生じやすく
なる。一方、pHが12.5を超えるように設定して
も、食孔5aの抑制効果は高まりにくいため、pH調整
剤を無駄に使用することになり不経済である。
Therefore, during the operation of the steam boiler apparatus 1, the pH of the boiler water W of the once-through boiler 2 is continuously maintained in order to prevent the heat transfer tube 5 from being damaged by the pit 5a caused by the above-mentioned pitting corrosion. taking measurement. Then, the pH is appropriately adjusted from the injection device 13.
The pH of the boiler water W is adjusted while injecting the adjusting agent, and the pH is set to be in the range of 11 or more and 12.5 or less. As a result, the heat transfer tube 5 is prevented from being corroded in a portion in contact with the boiler water W, and at the same time, the occurrence and growth of the pit 5a is also suppressed, and the pit 5a is less likely to be damaged. Incidentally, when the pH set here is less than 11, the heat transfer tube 5 is likely to be corroded together with the pit 5a, and the heat transfer tube 5 is likely to be damaged. On the other hand, even if the pH is set to exceed 12.5, the effect of suppressing the pit 5a is unlikely to increase, and the pH adjuster is wastefully used, which is uneconomical.

【0019】なお、ボイラ水WのpHは、伝熱管5の食
孔5aをより効果的に抑制する観点から、貫流ボイラ2
に供給される給水の溶存酸素濃度に応じて設定するのが
好ましい。つまり、給水の溶存酸素濃度が高めの場合、
ボイラ水WのpHは、上述の範囲においてより高めに設
定するのが好ましい。
The pH of the boiler water W is adjusted from the viewpoint of more effectively suppressing the pits 5a of the heat transfer tubes 5 from the once-through boiler 2
It is preferably set according to the dissolved oxygen concentration of the feed water supplied to the. In other words, if the dissolved oxygen concentration in the feed water is high,
The pH of the boiler water W is preferably set higher in the above range.

【0020】上述のような伝熱管5の腐食抑制方法は、
貫流ボイラ2に供給する給水の溶存酸素濃度を1.0m
g/l以下に設定した場合、より効果が高まりやすい。
このような給水の溶存酸素濃度は、脱酸素装置12にお
ける補給水の処理や注入装置13から給水に注入する脱
酸素剤の種類や量を適宜調節すると達成することができ
る。但し、給水の溶存酸素濃度が1.0mg/lを超え
るような場合でも、ボイラ水WのpHを上述の範囲内に
おいて高めに設定すると(例えば、11.8を超えかつ
12.5以下の範囲に設定すると)、伝熱管5における
食孔5aの発生および成長は効果的に抑制され得る。
The method for suppressing corrosion of the heat transfer tube 5 as described above is
Dissolved oxygen concentration of feed water supplied to once-through boiler 2 is 1.0 m
If it is set to g / l or less, the effect is likely to increase.
Such a dissolved oxygen concentration in the feed water can be achieved by appropriately adjusting the treatment of makeup water in the deoxidizer 12 and the type and amount of the oxygen scavenger injected into the feed water from the injector 13. However, even if the dissolved oxygen concentration of the feed water exceeds 1.0 mg / l, if the pH of the boiler water W is set to a high value within the above range (for example, a range of over 11.8 and under 12.5). Setting), the generation and growth of the pits 5a in the heat transfer tube 5 can be effectively suppressed.

【0021】なお、この実施の形態では、本発明の腐食
抑制方法を貫流ボイラで用いられる伝熱管の腐食を抑制
する場合を例に説明したが、本発明の腐食抑制方法はこ
れに限定されるものではない。例えば、貫流ボイラ以外
のボイラの伝熱管、貫流ボイラ等の各種ボイラを採用し
た蒸気ボイラ装置において用いられる貯水槽、復水配管
および給水配管、並びにボイラ以外のその他の各種熱機
器(例えば、湯沸かし器、吸収式冷凍器、クーリングタ
ワー等)において用いられる伝熱管、貯水槽および各種
の配管等、上述のような非不動態化金属からなる部材
(非不動態化金属体)であって、水や蒸気などの水分の
影響を受けて腐食する可能性があるもの、特に、上述の
ような局部的腐食(孔食)が生じる可能性があるものに
対し、本発明の腐食抑制方法は同様に適用することがで
きる。
In this embodiment, the corrosion suppression method of the present invention has been described by taking the case of suppressing the corrosion of the heat transfer tube used in the once-through boiler as an example, but the corrosion suppression method of the present invention is not limited to this. Not a thing. For example, heat transfer tubes of boilers other than once-through boilers, water tanks used in steam boiler devices that employ various boilers such as once-through boilers, condensate pipes and water supply pipes, and other various heat equipment other than boilers (for example, water heaters, A member (non-passivating metal body) made of the non-passivating metal as described above, such as heat transfer tubes, water storage tanks, and various pipes used in absorption refrigerators, cooling towers, etc., such as water and steam. The corrosion inhibition method of the present invention should be similarly applied to those that may be corroded under the influence of the water content, especially those that may cause the localized corrosion (pitting corrosion) as described above. You can

【0022】なお、ボイラの伝熱管以外の非不動態化金
属体に対して本発明の腐食抑制方法を適用する場合は、
当該非不動態化金属体に対して影響を与える水分のpH
を上述の範囲(すなわち、11以上12.5以下の範
囲)に設定する。例えば、蒸気ボイラ装置の貯水槽にお
いて孔食を抑制する場合、貯水槽に貯留する水(給水)
のpHを上述の範囲に設定する。また、この水分のpH
は、上述の場合と同じく、当該水分中に含まれる溶存酸
素濃度に応じて設定するのが好ましい。すなわち、当該
水分中の溶存酸素濃度が高めの場合、当該水分のpH
は、上述の範囲においてより高めに設定するのが好まし
い。因みに、当該水分中の溶存酸素濃度を1.0mg/
l以下に設定した場合、非不動態化金属体の腐食抑制効
果はより高まりやすい。
When applying the corrosion inhibiting method of the present invention to a non-passivated metal body other than the heat transfer tube of the boiler,
PH of water affecting the non-passivated metal body
Is set to the above range (that is, the range of 11 or more and 12.5 or less). For example, when suppressing pitting corrosion in a water tank of a steam boiler device, water stored in the water tank (water supply)
PH of the above is set in the above range. Also, the pH of this water
Is preferably set according to the concentration of dissolved oxygen contained in the water, as in the case described above. That is, when the dissolved oxygen concentration in the water is high, the pH of the water is
Is preferably set higher in the above range. By the way, the dissolved oxygen concentration in the water is 1.0 mg /
When it is set to 1 or less, the corrosion inhibiting effect of the non-passivated metal body is more likely to be enhanced.

【0023】検証例 1989年10月から1999年10月の10年間の間
に、本出願人会社製のボイラにおいて伝熱管の腐食破損
が29件報告された。ところが、これらの報告事例の全
てにおいて、伝熱管の減肉的な腐食の状況を示す指標
(mdd)は伝熱管の腐食破損が生じないことを示して
いた。そこで、各報告事例について伝熱管の破損形態を
調べたところ、全ての事例における破損形態は、伝熱管
の減肉的な腐食によるものではなく、孔食の進行で生じ
た食孔による微小な穴開きであることが判明した。
Verification Example During the 10 years from October 1989 to October 1999, 29 cases of corrosion damage of heat transfer tubes were reported in the boiler manufactured by the applicant. However, in all of these reported cases, the index (mdd) indicating the condition of corrosive corrosion of the heat transfer tube indicates that the heat transfer tube is not corroded and damaged. Therefore, when we examined the damage patterns of the heat transfer tubes in each reported case, the damage modes in all cases were not due to the thinning corrosion of the heat transfer tubes, but the small holes due to the pits caused by the progress of pitting corrosion. It turned out to be open.

【0024】以上の原因を調べるため、本発明者等は、
数種類の溶存酸素濃度の給水を用い、同社製の貫流ボイ
ラを運転した。この際、給水として、愛媛県松山市の水
道水(Mアルカリ度(酸消費量(pH4.8))=50
mgCaCO3/l、シリカ濃度=17mg/l、硬度
<1.0mgCaCO3/l、塩化物イオン濃度=13
mg/l、硫酸イオン濃度=30mg/l)を用いた。
また、ボイラの運転条件は、運転時間を48時間、熱負
荷を4.19kW/m2、圧力を0.29MPaおよび
給水温度を50℃にそれぞれ設定した。
In order to investigate the above causes, the present inventors have
The company's once-through boiler was operated using several types of water with dissolved oxygen concentrations. At this time, tap water of Matsuyama City, Ehime Prefecture (M alkalinity (acid consumption (pH 4.8)) = 50)
mgCaCO 3 / l, silica concentration = 17 mg / l, hardness <1.0 mgCaCO 3 / l, chloride ion concentration = 13
mg / l, sulfate ion concentration = 30 mg / l) was used.
The operating conditions of the boiler were set such that the operating time was 48 hours, the heat load was 4.19 kW / m 2 , the pressure was 0.29 MPa, and the feed water temperature was 50 ° C.

【0025】上述の条件で運転したボイラについて、先
ず、ボイラ水のpHと伝熱管の腐食減量との関係を調べ
た。なお、腐食減量は、伝熱管の質量の減少量(mg)
を意味している。結果を図4に示す。図4によれば、伝
熱管は、ボイラ水のpHが高い程、腐食減量が少なくな
る。これより、JIS B 8223:1999において
推奨されているボイラ水pHの設定目標である「11.
0〜11.8」は、伝熱管の腐食減量、すなわち減肉的
腐食の抑制を図る上では有効と言える。
Regarding the boiler operated under the above-mentioned conditions, first, the relationship between the pH of the boiler water and the corrosion weight loss of the heat transfer tube was investigated. Note that the corrosion weight loss is the weight loss of the heat transfer tube (mg)
Means The results are shown in Fig. 4. According to FIG. 4, in the heat transfer tube, the higher the pH of the boiler water, the less the corrosion weight loss. From this, the setting target of boiler water pH recommended in JIS B 8223: 1999 is "11.
It can be said that "0 to 11.8" is effective for suppressing the corrosion weight loss of the heat transfer tube, that is, suppressing the wall-thinning corrosion.

【0026】一方、上述の条件で運転したボイラについ
て、ボイラ水のpHと伝熱管に発生した食孔の深さ(μ
m)の最大値との関係を調べた。結果を図5に示す。図
5によると、ボイラ水のpHが概ね10〜12の範囲に
おいて、伝熱管に生じる食孔の深さが大きくなる。特
に、給水中の溶存酸素濃度が1.0mg/lを超える高
濃度の場合、ボイラ水のpHが概ね11〜11.8の範
囲において、伝熱管に生じる食孔の深さは顕著に大きく
なる。
On the other hand, regarding the boiler operated under the above conditions, the pH of the boiler water and the depth of the pit (μ) generated in the heat transfer tube
The relationship with the maximum value of m) was investigated. Results are shown in FIG. According to FIG. 5, when the pH of the boiler water is in the range of approximately 10 to 12, the depth of the pit formed in the heat transfer tube becomes large. In particular, when the dissolved oxygen concentration in the feed water is a high concentration exceeding 1.0 mg / l, the depth of the pit formed in the heat transfer tube becomes significantly large when the pH of the boiler water is in the range of about 11 to 11.8. .

【0027】図4と図5とを対比すると、ボイラの伝熱
管は、ボイラ水のpHをJISにおいて推奨されている
範囲に設定した場合、腐食減量は抑制されるが、孔食に
よる食孔は逆に成長する可能性のあることがわかる。こ
れより、上述の実例で生じたような伝熱管の孔食による
破損を抑制するためには、給水の溶存酸素濃度に応じ、
ボイラ水のpHを11〜12.5の範囲に設定するのが
好ましいことになる。より具体的には、給水の溶存酸素
濃度が高い程、ボイラ水のpHを11〜12.5の範囲
でより高めに設定するのが好ましいことになる。
Comparing FIG. 4 and FIG. 5, in the heat transfer tube of the boiler, when the pH of the boiler water is set in the range recommended by JIS, the corrosion weight loss is suppressed, but the pitting caused by pitting corrosion is On the contrary, it is possible to grow. From this, in order to suppress damage due to pitting corrosion of the heat transfer tube as occurred in the above-mentioned example, according to the dissolved oxygen concentration of the feed water,
It will be preferable to set the pH of the boiler water in the range of 11 to 12.5. More specifically, it is preferable that the higher the dissolved oxygen concentration of the feed water, the higher the pH of the boiler water is set within the range of 11 to 12.5.

【0028】なお、図4および図5の結果によると、ボ
イラ水のpHを11〜12.5の範囲に設定すると共
に、給水の溶存酸素濃度を1.0mg/l以下に設定す
ると、伝熱管の孔食をより効果的に抑制できることがわ
かる。一方、給水の溶存酸素濃度が1.0mg/lを超
える高濃度の場合でも、ボイラ水のpHを、11.8を
超えかつ12.5以下の範囲に設定すると、伝熱管の孔
食を効果的に抑制できることがわかる。
According to the results shown in FIGS. 4 and 5, when the pH of the boiler water is set in the range of 11 to 12.5 and the dissolved oxygen concentration of the feed water is set to 1.0 mg / l or less, the heat transfer tube is set. It can be seen that the pitting corrosion can be suppressed more effectively. On the other hand, even if the concentration of dissolved oxygen in the feed water is high, exceeding 1.0 mg / l, setting the pH of the boiler water in the range above 11.8 and below 12.5 results in effective pitting of the heat transfer tube. It can be seen that it can be suppressed.

【0029】[0029]

【発明の効果】本発明に係る非不動態化金属体の腐食抑
制方法は、非不動態化金属体に影響する水分のpHを1
1〜12.5の範囲に設定しているので、非不動態化金
属体に生じる局部的腐食を抑制することができる。
EFFECTS OF THE INVENTION The method for inhibiting corrosion of a non-passivated metal body according to the present invention sets the pH of water affecting the non-passivated metal body to 1 or less.
Since it is set in the range of 1 to 12.5, it is possible to suppress local corrosion that occurs in the non-passivated metal body.

【0030】また、本発明に係るボイラの腐食抑制方法
は、ボイラ内のボイラ水のpHを11〜12.5の範囲
に設定しているので、伝熱管に生じる局部的腐食を抑制
することができる。
Further, in the boiler corrosion inhibiting method according to the present invention, since the pH of the boiler water in the boiler is set within the range of 11 to 12.5, local corrosion occurring in the heat transfer tube can be suppressed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の腐食抑制方法を適用可能な貫流ボイラ
を備えた蒸気ボイラ装置の概略図。
FIG. 1 is a schematic diagram of a steam boiler apparatus including a once-through boiler to which a corrosion suppression method of the present invention can be applied.

【図2】前記貫流ボイラの一部断面概略図。FIG. 2 is a schematic partial cross-sectional view of the once-through boiler.

【図3】図2のIII部分の拡大図。FIG. 3 is an enlarged view of a portion III in FIG.

【図4】ボイラについて、ボイラ水のpHと伝熱管の腐
食減量との関係を調べた結果のグラフ。
FIG. 4 is a graph showing the results of investigating the relationship between the pH of boiler water and the corrosion weight loss of heat transfer tubes in a boiler.

【図5】ボイラについて、ボイラ水のpHと伝熱管に発
生した食孔の深さの最大値との関係を調べた結果のグラ
フ。
FIG. 5 is a graph showing the results of investigating the relationship between the pH of boiler water and the maximum depth of pits formed in the heat transfer tube of the boiler.

【符号の説明】[Explanation of symbols]

2 貫流ボイラ 5 伝熱管 5a 食孔 W ボイラ水 2 once-through boiler 5 heat transfer tubes 5a pit W boiler water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 康雄 愛媛県松山市堀江町7番地 三浦工業株式 会社内 (72)発明者 加藤 潤一 愛媛県松山市堀江町7番地 三浦工業株式 会社内 Fターム(参考) 4K062 AA03 BA08 BA11 BA14 BC01 BC02 CA03 DA01 FA06 FA16   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuo Nogami             7 Horie-cho, Matsuyama City, Ehime Prefecture Miura Industrial Co., Ltd.             In the company (72) Inventor Junichi Kato             7 Horie-cho, Matsuyama City, Ehime Prefecture Miura Industrial Co., Ltd.             In the company F-term (reference) 4K062 AA03 BA08 BA11 BA14 BC01                       BC02 CA03 DA01 FA06 FA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水分の影響により非不動態化金属体に生じ
る局部的腐食を抑制するための方法であって、 前記非不動態化金属体に影響する前記水分のpHを11
〜12.5の範囲に設定する工程を含む、非不動態化金
属体の腐食抑制方法。
1. A method for suppressing localized corrosion that occurs in a non-passivated metal body due to the influence of moisture, wherein the pH of the moisture that affects the non-passivated metal body is set to 11
A method for inhibiting corrosion of a non-passivated metal body, which comprises the step of setting the range to 12.5.
【請求項2】前記水分中の溶存酸素濃度に応じて前記水
分のpHを前記範囲に設定する、請求項1に記載の非不
動態化金属体の腐食抑制方法。
2. The method for inhibiting corrosion of a non-passivated metal body according to claim 1, wherein the pH of the water is set within the range according to the concentration of dissolved oxygen in the water.
【請求項3】ボイラの伝熱管に生じる局部的腐食を抑制
するための方法であって、 前記ボイラ内のボイラ水のpHを11〜12.5の範囲
に設定する工程を含む、ボイラの腐食抑制方法。
3. A method for suppressing localized corrosion that occurs in a heat transfer tube of a boiler, the method comprising the step of setting the pH of boiler water in the boiler within a range of 11 to 12.5. Suppression method.
【請求項4】前記ボイラに供給する給水の溶存酸素濃度
に応じて前記ボイラ水のpHを前記範囲に設定する、請
求項3に記載のボイラの腐食抑制方法。
4. The method for suppressing corrosion of a boiler according to claim 3, wherein the pH of the boiler water is set in the range according to the dissolved oxygen concentration of the feed water supplied to the boiler.
【請求項5】前記ボイラに供給する給水の溶存酸素濃度
を1.0mg/l以下に設定する工程をさらに含む、請
求項3に記載のボイラの腐食抑制方法。
5. The method for suppressing corrosion of a boiler according to claim 3, further comprising the step of setting the dissolved oxygen concentration of the feed water supplied to the boiler to 1.0 mg / l or less.
JP2001277230A 2001-09-12 2001-09-12 Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler Pending JP2003082481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277230A JP2003082481A (en) 2001-09-12 2001-09-12 Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277230A JP2003082481A (en) 2001-09-12 2001-09-12 Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler

Publications (1)

Publication Number Publication Date
JP2003082481A true JP2003082481A (en) 2003-03-19

Family

ID=19101795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277230A Pending JP2003082481A (en) 2001-09-12 2001-09-12 Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler

Country Status (1)

Country Link
JP (1) JP2003082481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213640A (en) * 2012-04-03 2013-10-17 Samson Co Ltd Boiler
JP2014181862A (en) * 2013-03-19 2014-09-29 Osaka Gas Co Ltd Absorbent for absorption type refrigerator, absorption type refrigerator, and operation method for absorption type refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213640A (en) * 2012-04-03 2013-10-17 Samson Co Ltd Boiler
JP2014181862A (en) * 2013-03-19 2014-09-29 Osaka Gas Co Ltd Absorbent for absorption type refrigerator, absorption type refrigerator, and operation method for absorption type refrigerator

Similar Documents

Publication Publication Date Title
JP2006274427A (en) Water treating agent and water treatment method
EP3371347B1 (en) Corrosion control for water systems using tin corrosion inhibitor with a hydroxycarboxylic acid
US8277662B2 (en) Steam boiler apparatus and operating method therefor
JP3656384B2 (en) Boiler operation
CN101195919B (en) Film inhibitor and uses thereof
US5736097A (en) Method of preventing pitting corrosion
US20080257831A1 (en) Water Treating Agent and Water Treatment Method
EP1405671B1 (en) Method of preventing corrosion in a water system
JP2003082481A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler
JP2003147556A (en) Method of suppressing corrosion in nonpassivated metallic body, and method of suppressing corrosion in boiler
JP2003129263A (en) Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler
JP2008121942A (en) Method of operating steam boiler device
JP2003129263A5 (en)
JP2003082480A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler
JP2003129264A (en) Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler
JP2003166085A (en) Method for inhibiting corrosion of non-passivated metal body and boiler
US5820763A (en) Method for inhibiting corrosion in water systems
CN1854085A (en) Scale-proofing method of boiler
JP2003105575A (en) Method of suppressing corrosion of non-passive state metallic body and method of suppressing corrosion of boiler
CN102534603B (en) Composite prefilming technique of steam condenser copper tube
JP2004197204A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler
JPS602695A (en) Power plant
JPH09176872A (en) Corrosion suppression of metal in water system and suppressing method of silica based scale
JP3896587B2 (en) Method for removing dissolved oxygen from water plants
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler