JP2003129264A - Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler - Google Patents

Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler

Info

Publication number
JP2003129264A
JP2003129264A JP2001329848A JP2001329848A JP2003129264A JP 2003129264 A JP2003129264 A JP 2003129264A JP 2001329848 A JP2001329848 A JP 2001329848A JP 2001329848 A JP2001329848 A JP 2001329848A JP 2003129264 A JP2003129264 A JP 2003129264A
Authority
JP
Japan
Prior art keywords
water
boiler
corrosion
heat transfer
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001329848A
Other languages
Japanese (ja)
Inventor
Junichi Nakajima
純一 中島
Takanari Kume
隆成 久米
Keita Mizogami
慶太 溝上
Junichi Kato
潤一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2001329848A priority Critical patent/JP2003129264A/en
Publication of JP2003129264A publication Critical patent/JP2003129264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a nonpassivated metallic body such as a boiler heat exchange tube from being corroded under the influence of water. SOLUTION: The method for corrosion prevention comprises the step of setting the concentration contained in water influencing a nonpassivated metallic body such as a boiler heat exchange tube to at least 150 mg/l. Corrosion controllable by this method is exemplified by local corrosion occurring in the direction of the thickness of a nonpassivated metallic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、腐食抑制方法、特
に、水分の影響によりボイラの伝熱管等の非不動態化金
属体に生じる腐食を抑制するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing corrosion, and more particularly to a method for suppressing corrosion that occurs in a non-passivated metal body such as a heat transfer tube of a boiler under the influence of moisture.

【0002】[0002]

【従来の技術とその課題】日本工業規格(JIS)に規
定された特殊循環ボイラの範疇に属する貫流ボイラは、
給水を加熱して蒸気を発生させるための伝熱管を備えて
いる。このような伝熱管は、炭素鋼等の非不動態化金属
を用いて形成されているため、ボイラ水と接触する部位
がボイラ水の影響による腐食のために破損し、貫流ボイ
ラの寿命に致命的な影響を及ぼす場合がある。このた
め、貫流ボイラを長期間安定に運転するためには、伝熱
管の腐食を効果的に抑制する必要がある。
2. Description of the Related Art Once-through boilers, which belong to the category of special circulation boilers specified in Japanese Industrial Standards (JIS), are
It is equipped with a heat transfer tube for heating the feed water to generate steam. Since such heat transfer tubes are formed using non-passivating metals such as carbon steel, the parts that come into contact with boiler water are damaged due to corrosion due to the effect of boiler water, which is fatal to the life of the once-through boiler. May have a negative impact. Therefore, in order to stably operate the once-through boiler for a long period of time, it is necessary to effectively suppress the corrosion of the heat transfer tube.

【0003】そこで、JIS B 8223:1999
は、伝熱管に生じる上述のような腐食を抑制する観点か
ら、特殊循環ボイラのボイラ水の水質に関する各種の管
理項目を設定し、その推奨基準を規定している。
Therefore, JIS B 8223: 1999
Sets various management items regarding the water quality of the boiler water of the special circulation boiler from the viewpoint of suppressing the above-mentioned corrosion that occurs in the heat transfer tubes, and stipulates the recommended standards thereof.

【0004】ところで、伝熱管の腐食は、通常、次の三
種類の指標に基づいて評価されている。 (1)mdd(mg/dm2/day):水との接触面の単
位表面積(1dm2)における1日当りの質量減少量
(mg)を表現したものである。 (2)ipy(inch/year):1年間における、
伝熱管の厚さ(肉厚)の減少量(インチ)を表現したも
のである。 (3)食孔数/cm2:水との接触面の単位表面積(1cm
2)当りに発生した食孔の数を表現したものである。な
お、食孔とは、伝熱管の水との接触面側から厚さ方向の
反対側に向かう局部的腐食、すなわち孔食により生じた
窪みを意味する(例えば、日刊工業新聞社発行、腐食防
食協会編「防食技術便覧」31〜33頁参照)。
By the way, the corrosion of the heat transfer tube is usually evaluated based on the following three types of indexes. (1) mdd (mg / dm 2 / day): It represents the amount of mass reduction (mg) per day per unit surface area (1 dm 2 ) of the contact surface with water. (2) ipy (inch / year):
This expresses the reduction amount (inch) of the thickness (wall thickness) of the heat transfer tube. (3) Number of pits / cm 2 : Unit surface area of contact surface with water (1 cm
2 ) It expresses the number of pits generated per hit. Incidentally, the pit means a localized corrosion from the contact surface side with the water of the heat transfer tube toward the opposite side in the thickness direction, that is, a pit formed by pitting corrosion (for example, issued by Nikkan Kogyo Shimbun Co., Ltd. See pages 31-33 of "Corrosion Prevention Technical Handbook" edited by the Association).

【0005】ところが、JIS B 8223:1999
において推奨されているボイラ水の管理基準に適合する
よう貫流ボイラを運転し、また、上述のような指標に基
づきながら伝熱管の腐食の進行状況を評価して、ボイラ
水との接触部位における伝熱管の腐食の状況が破損に至
る程度のものではないと判定できる場合であっても、予
想外に伝熱管の当該部位が腐食により破損してしまう場
合がある。これによると、JISにおいて推奨されてい
るボイラ水の管理基準は、必ずしも伝熱管の腐食を抑制
するために有効とは言えない。
However, JIS B 8223: 1999
The once-through boiler is operated so as to meet the boiler water management standards recommended in the above, and the progress of corrosion of the heat transfer tubes is evaluated based on the above-mentioned indicators, and the transmission at the contact point with the boiler water is evaluated. Even if it can be determined that the condition of corrosion of the heat pipe is not such that the heat pipe is damaged, the portion of the heat transfer pipe may be unexpectedly damaged due to corrosion. According to this, the boiler water management standard recommended by JIS is not always effective for suppressing the corrosion of the heat transfer tube.

【0006】本発明の目的は、水分の影響によりボイラ
の伝熱管等の非不動態化金属体に生じる腐食を抑制する
ことにある。
An object of the present invention is to suppress corrosion that occurs in a non-passivated metal body such as a heat transfer tube of a boiler due to the influence of moisture.

【0007】[0007]

【課題を解決するための手段】本発明に係る非不動態化
金属体の腐食抑制方法は、水分の影響により非不動態化
金属体に生じる腐食を抑制するための方法であり、非不
動態化金属体に影響する水分中に含まれるシリカの濃度
を少なくとも150mg/lに設定する工程を含んでい
る。この方法により抑制可能な腐食は、例えば局部的腐
食である。
A method for inhibiting corrosion of a non-passivated metal body according to the present invention is a method for inhibiting corrosion occurring in a non-passivated metal body under the influence of moisture. The method includes the step of setting the concentration of silica contained in the water that affects the metallized body to at least 150 mg / l. Corrosion that can be suppressed by this method is, for example, localized corrosion.

【0008】また、本発明の他の観点に係る腐食抑制方
法は、ボイラの伝熱管に生じる腐食を抑制するための方
法であり、ボイラ内のボイラ水中に含まれるシリカの濃
度を少なくとも150mg/lに設定する工程を含んで
いる。この方法により抑制可能な腐食は、例えば、伝熱
管の水との接触面側から厚さ方向の反対側に向かう局部
的腐食である。
A method for inhibiting corrosion according to another aspect of the present invention is a method for inhibiting corrosion occurring in a heat transfer tube of a boiler, wherein the concentration of silica contained in the boiler water in the boiler is at least 150 mg / l. It includes the step of setting. Corrosion that can be suppressed by this method is, for example, localized corrosion from the contact surface side of the heat transfer tube with water toward the opposite side in the thickness direction.

【0009】[0009]

【発明の実施の形態】図1を参照して、本発明の腐食抑
制方法を適用可能な貫流ボイラを備えた蒸気ボイラ装置
の概略を説明する。図において、蒸気ボイラ装置1は、
貫流ボイラ2と給水装置3とを主に備えている。
BEST MODE FOR CARRYING OUT THE INVENTION An outline of a steam boiler apparatus equipped with a once-through boiler to which the corrosion suppression method of the present invention can be applied will be described with reference to FIG. In the figure, the steam boiler device 1 is
The once-through boiler 2 and the water supply device 3 are mainly provided.

【0010】貫流ボイラ2は、図2に示すように、給水
装置3から供給される給水を貯留するための貯留部4
と、貯留部4に対して起立するように設けられた複数本
の伝熱管5(非不動態化金属体の一例)と、伝熱管5の
上端部に設けられかつ図示しない負荷装置に向けて蒸気
を供給するための供給路6aを有するヘッダ6と、給水
を加熱して蒸気を発生するための加熱装置7とを主に備
えている。なお、貯留部4とヘッダ6とは、平面形状が
環状に設定されている。また、貯留部4は、その内部に
貯留された給水(後述するボイラ水W)を排出するため
の、図示しない開閉弁を備えた排出口4aを有してい
る。
The once-through boiler 2 is, as shown in FIG. 2, a storage portion 4 for storing the water supply supplied from the water supply device 3.
And a plurality of heat transfer tubes 5 (an example of a non-passivating metal body) provided so as to stand upright with respect to the storage section 4, and a load device (not shown) provided at the upper end of the heat transfer tube 5 A header 6 having a supply path 6a for supplying steam and a heating device 7 for heating the supply water to generate steam are mainly provided. The storage section 4 and the header 6 are set to have an annular planar shape. Further, the storage unit 4 has a discharge port 4a provided with an opening / closing valve (not shown) for discharging the water supply (boiler water W described later) stored therein.

【0011】伝熱管5は、非不動態化金属を用いて形成
された部材、すなわち、非不動態化金属体である。ここ
で、非不動態化金属は、中性水溶液中において自然には
不動態化しない金属をいい、通常はステンレス鋼、チタ
ン、アルミニウム、クロム、ニッケルおよびジルコニウ
ム等を除く金属である。具体的には、炭素鋼、鋳鉄、銅
および銅合金等である。なお、炭素鋼は、中性水溶液中
においても、高濃度のクロム酸イオンの存在下では不動
態化する場合があるが、この不動態化はクロム酸イオン
の影響によるものであって中性水溶液中での自然な不動
態化とは言い難い。したがって、炭素鋼は、ここでの非
不動態化金属の範疇に属する。また、銅および銅合金
は、電気化学列(emf series)が貴な位置にあるため、
通常は水分の影響による腐食が生じ難い金属と考えられ
ているが、中性水溶液中において自然に不動態化するも
のではないので、ここでの非不動態化金属の範疇に属す
る。
The heat transfer tube 5 is a member formed by using a non-passivating metal, that is, a non-passivating metal body. Here, the non-passivating metal means a metal that does not passivate naturally in a neutral aqueous solution, and is usually a metal except stainless steel, titanium, aluminum, chromium, nickel, zirconium and the like. Specifically, carbon steel, cast iron, copper and copper alloys are used. Note that carbon steel may be passivated in the presence of a high concentration of chromate ion even in a neutral aqueous solution, but this passivation is due to the effect of chromate ion. It is hard to say the natural passivation inside. Therefore, carbon steel belongs to the category of non-passivating metals here. Also, for copper and copper alloys, the electrochemical series (emf series) is in a noble position,
It is usually considered to be a metal that is unlikely to corrode due to the influence of water, but it does not passivate spontaneously in a neutral aqueous solution, so it belongs to the category of non-passivating metal here.

【0012】給水装置3は、貫流ボイラ2に給水を供給
するためのものであり、補給水の注水路8、注水路8か
らの補給水を貯留するための給水タンク9および貫流ボ
イラ2の貯留部4に給水を供給するための給水路10を
主に備えている(図1)。
The water supply device 3 is for supplying water to the once-through boiler 2, and is made up of a make-up water injection channel 8, a water supply tank 9 for storing make-up water from the water injection channel 8 and a storage of the once-through boiler 2. A water supply channel 10 for supplying water to the section 4 is mainly provided (FIG. 1).

【0013】ここで、注水路8は、軟水化装置11と脱
酸素装置12とをこの順に備えている。軟水化装置11
は、補給水中に含まれる各種の硬度分等をナトリウムイ
オンに置換して補給水を軟水に変換するためのものであ
る。一方、脱酸素装置12は、補給水中に含まれる溶存
酸素を機械的に除去するためのものである。
Here, the water injection passage 8 is provided with a water softening device 11 and a deoxidizing device 12 in this order. Water softening device 11
Is for replacing various hardness components contained in the makeup water with sodium ions to convert the makeup water into soft water. On the other hand, the deoxidizer 12 is for mechanically removing dissolved oxygen contained in the makeup water.

【0014】上述の蒸気ボイラ装置1を運転する場合
は、注水路8から給水タンク9に補給水を供給し、この
補給水を給水タンク9に貯留する。ここで貯留される給
水は、軟水化装置11および脱酸素装置12で処理され
たもの、すなわち、脱酸素処理された軟水である。そし
て、図示しないポンプを作動させ、給水タンク9に貯留
された給水を、給水路10を通じて貫流ボイラ2に供給
する。
When the steam boiler device 1 described above is operated, makeup water is supplied from the water injection passage 8 to the water supply tank 9, and this makeup water is stored in the water supply tank 9. The feed water stored here is water that has been treated by the water softening device 11 and the deoxidizing device 12, that is, deoxidized soft water. Then, a pump (not shown) is operated to supply the water supply stored in the water supply tank 9 to the once-through boiler 2 through the water supply passage 10.

【0015】貫流ボイラ2において、給水路10を通じ
て供給される給水は、貯留部4内においてボイラ水Wと
して貯留される。そして、貯留部4に貯留されたボイラ
水Wは、加熱装置7により加熱されながら各伝熱管5内
を上昇し、徐々に蒸気になる。各伝熱管5において生成
した蒸気はヘッダ6において集められ、供給路6aを通
じて負荷装置に供給される。
In the once-through boiler 2, the water supply supplied through the water supply passage 10 is stored in the storage section 4 as boiler water W. The boiler water W stored in the storage unit 4 rises in each heat transfer tube 5 while being heated by the heating device 7, and gradually becomes steam. The steam generated in each heat transfer tube 5 is collected in the header 6 and supplied to the load device through the supply path 6a.

【0016】上述のような蒸気ボイラ装置1の運転中に
おいて、貫流ボイラ2で用いられる各伝熱管5は、図2
に一点鎖線IIIで示すような下端部分、すなわち、貯留
部4との連結部分が、ボイラ水Wと継続的に接触するこ
とになる。このため、伝熱管5は、そのような部分にお
いて、ボイラ水Wの影響を受け、腐食しやすい。特に、
伝熱管5は、上述の下端部分において、内周面の減肉的
な腐食に加えて局部的腐食が生じやすく、それが原因で
微小な穴開きを起こして破損する場合がある。
During operation of the steam boiler device 1 as described above, the heat transfer tubes 5 used in the once-through boiler 2 are arranged in the same manner as in FIG.
The lower end portion as indicated by the alternate long and short dash line III, that is, the connection portion with the storage portion 4 is in continuous contact with the boiler water W. Therefore, the heat transfer tube 5 is easily affected by the boiler water W and corrodes in such a portion. In particular,
At the lower end portion of the heat transfer tube 5, local corrosion is likely to occur in addition to the wall-thinning corrosion of the inner peripheral surface, which may cause minute holes to be damaged.

【0017】ここで、局部的腐食とは、図3(図2のII
I部分の拡大図)に示すように、伝熱管5の水との接触
面側から厚さ方向の反対側に向かう孔状の腐食、すなわ
ち、伝熱管5の厚さ(肉厚)方向に発生する孔状の腐食
をいう。以下、このような局部的腐食の発生現象を「孔
食」といい、この孔食により生じた孔状の腐食を「食
孔」(図3においては符号5aで示している)という。
Here, the local corrosion refers to FIG. 3 (II in FIG. 2).
As shown in (enlarged view of portion I), hole-like corrosion from the contact surface side of the heat transfer tube 5 with water toward the opposite side in the thickness direction, that is, in the thickness (wall thickness) direction of the heat transfer tube 5 occurs. Refers to the corrosion of holes. Hereinafter, such a phenomenon of occurrence of localized corrosion is referred to as "pitting corrosion", and the pitting corrosion caused by this pitting corrosion is referred to as "pitting" (indicated by reference numeral 5a in FIG. 3).

【0018】そこで、蒸気ボイラ装置1の運転中は、腐
食による伝熱管5の破損を抑制するために、ボイラ水W
に含まれるシリカの濃度を継続的に測定し、ボイラ水W
中に含まれるシリカの濃度(すなわち、二酸化ケイ素
(SiO2)の濃度)が少なくとも150mg/l(す
なわち、150mg/l以上)、好ましくは少なくとも
300mg/l(すなわち、300mg/l以上)にな
るよう設定する。
Therefore, during operation of the steam boiler device 1, in order to suppress damage to the heat transfer tube 5 due to corrosion, the boiler water W
Continuously measure the concentration of silica contained in the boiler water W
The concentration of silica contained therein (that is, the concentration of silicon dioxide (SiO 2 )) is at least 150 mg / l (that is, 150 mg / l or more), and preferably at least 300 mg / l (that is, 300 mg / l or more). Set.

【0019】なお、ボイラ水中に含まれるシリカは、伝
熱管5におけるスケール発生因子と考えられていること
から、一般に、可能な限りその濃度を抑制するのが好ま
しいと考えられている。これに対し、本発明は、ボイラ
水中のシリカを腐食抑制のための積極的因子に設定して
いる。したがって、ボイラ水の上述のようなシリカ濃度
は、JIS B 8223:1999において言及されて
おらず、本発明が初めて提案するボイラ水の水質管理基
準である。
Since silica contained in the boiler water is considered to be a scale generation factor in the heat transfer tube 5, it is generally considered preferable to suppress its concentration as much as possible. On the other hand, the present invention sets silica in boiler water as a positive factor for corrosion inhibition. Therefore, the above-mentioned silica concentration of boiler water is not mentioned in JIS B 8223: 1999, and is the water quality control standard of the boiler water proposed for the first time by the present invention.

【0020】因みに、シリカは、ボイラ水W中におい
て、アニオンまたは負電荷のミセルとして存在するもの
と考えられるが、ここで設定するシリカ濃度は、シリカ
(SiO2)としての濃度である。ボイラ水W中におけ
るこのようなシリカ濃度は、通常、JIS K 010
1:1998に記載されたモリブデン黄吸光光度法に従
って測定することができる。
Incidentally, it is considered that silica exists as anions or negatively charged micelles in the boiler water W. The silica concentration set here is the concentration as silica (SiO 2 ). Such silica concentration in the boiler water W is usually JIS K 010.
1: 1998 can be measured according to the molybdenum yellow absorptiometry.

【0021】ボイラ水W中に含まれるシリカの濃度を上
述のように調整すると、伝熱管5は、ボイラ水Wとの接
触部分における減肉的な腐食が抑制されると共に、食孔
5aの発生および成長も抑制され、腐食(特に食孔5
a)による破損を起こしにくくなる。換言すると、ボイ
ラ水Wのシリカ濃度が150mg/l未満の場合は、J
IS B 8223:1999で推奨されている他の管理
基準(例えばボイラ水のpHや塩化物イオン濃度等)を
所要の状態に設定しても、伝熱管5に腐食、特に孔食に
よる食孔5aが発生しやすくなる。
When the concentration of silica contained in the boiler water W is adjusted as described above, the heat transfer tube 5 suppresses the wall-thinning corrosion at the contact portion with the boiler water W, and the formation of the pit 5a. And growth is also suppressed, corrosion (especially pit 5
Damage due to a) is less likely to occur. In other words, if the silica concentration in the boiler water W is less than 150 mg / l, J
Even if other control standards recommended by IS B 8223: 1999 (for example, pH of boiler water, chloride ion concentration, etc.) are set to required conditions, the heat transfer tube 5 is corroded, especially the pit 5a caused by pitting corrosion. Is likely to occur.

【0022】ボイラ水Wのシリカ濃度を上述のように設
定した場合に伝熱管5の腐食が抑制されるのは、ボイラ
水W中に含まれる伝熱管5の腐食促進因子である溶存酸
素や塩化物イオン等の影響により伝熱管5から溶出する
成分にシリカが作用し、伝熱管5の内面に耐食性の皮膜
(防食皮膜)が形成されるためと考えられる。特に、溶
存酸素や塩化物イオンは、伝熱管5に局部的なアノード
を発現させ、これにより孔食を進行させる場合がある
が、ボイラ水W中に含まれるシリカは、上述のようにア
ニオンまたは負電荷のミセルとして存在しているため、
そのようなアノードに吸着しやすく、当該部分で選択的
に防食皮膜を形成しやすい。このため、ボイラ水Wのシ
リカ濃度を上述のように調整すると、伝熱管5における
孔食の進行を特に効果的に抑制することができる。
When the silica concentration of the boiler water W is set as described above, the corrosion of the heat transfer tube 5 is suppressed because the dissolved oxygen and chloride which are the corrosion promoting factors of the heat transfer tube 5 contained in the boiler water W are suppressed. It is considered that silica acts on the components eluted from the heat transfer tube 5 due to the influence of the substance ions, etc., and a corrosion resistant film (anticorrosion film) is formed on the inner surface of the heat transfer tube 5. In particular, dissolved oxygen and chloride ions may cause a local anode to appear in the heat transfer tube 5 and thereby promote pitting corrosion. However, silica contained in the boiler water W contains anions or anions as described above. Since it exists as a negatively charged micelle,
It is easy to be adsorbed on such an anode and it is easy to selectively form an anticorrosive film on the relevant part. Therefore, if the silica concentration of the boiler water W is adjusted as described above, the progress of pitting corrosion in the heat transfer tube 5 can be suppressed particularly effectively.

【0023】蒸気ボイラ装置1において、ボイラ水Wの
シリカ濃度は、例えば、給水路10を通じて貫流ボイラ
2に供給される給水の水質(特に、シリカ濃度)に応
じ、貫流ボイラ2内における当該給水(すなわち、ボイ
ラ水W)の加熱による濃縮倍率を適宜調整すると上述の
ように設定することができる。因みに、排出口4aから
のボイラ水Wの排出(いわゆるブロー)量を抑制する
と、ボイラ水Wの濃縮倍率を高めることができる。一
方、給水路10からの給水によりボイラ水Wを希釈しつ
つ、排出口4aから濃縮されたボイラ水Wを適宜排出す
ると、ボイラ水Wの濃縮倍率を低めることができる。
In the steam boiler apparatus 1, the silica concentration of the boiler water W depends on, for example, the quality of the feed water supplied to the once-through boiler 2 through the feed water passage 10 (in particular, the silica concentration), That is, it can be set as described above by appropriately adjusting the concentration ratio by heating the boiler water W). Incidentally, if the amount of discharge (so-called blow) of the boiler water W from the discharge port 4a is suppressed, the concentration ratio of the boiler water W can be increased. On the other hand, if the boiler water W is appropriately discharged from the discharge port 4a while the boiler water W is diluted by the water supplied from the water supply passage 10, the concentration ratio of the boiler water W can be reduced.

【0024】[他の実施の形態] (1)上述の実施の形態では、ボイラ水Wの濃縮倍率を
適宜調整することによりボイラ水Wに含まれるシリカの
濃度を上述の範囲に設定したが、シリカ濃度を調整する
ための薬剤を給水中に注入することにより、ボイラ水W
のシリカ濃度を上述の範囲に設定した場合も本発明を同
様に実施することができる。この場合は、図1に一点鎖
線で示すように、上記薬剤を給水中に注入するための注
入装置13を給水路10に装着し、この注入装置13か
ら給水中に薬剤を適宜注入する。ここで用いられる薬剤
は、給水中のシリカ濃度を高めることができるものであ
れば特に限定されるものではないが、通常、ケイ酸塩の
水溶液が好ましく用いられる。なお、ケイ酸塩として
は、カルシウムやマグネシウムなどの硬度成分を給水に
対して与えにくいもの、例えばケイ酸ナトリウムやケイ
酸カリウム等を用いるのが好ましい。因みに、このよう
な薬剤の注入量は、貫流ボイラ2におけるボイラ水Wの
濃縮倍率に応じて適宜調整するのが好ましい。
[Other Embodiments] (1) In the above embodiment, the concentration of silica contained in the boiler water W is set within the above range by appropriately adjusting the concentration ratio of the boiler water W. By injecting a chemical for adjusting the silica concentration into the feed water, the boiler water W
The present invention can be carried out in the same manner even when the silica concentration is set to the above range. In this case, as shown by the alternate long and short dash line in FIG. 1, an injection device 13 for injecting the drug into the water supply is attached to the water supply passage 10, and the drug is appropriately injected into the water supply from the injection device 13. The chemical used here is not particularly limited as long as it can increase the silica concentration in the feed water, but usually an aqueous solution of silicate is preferably used. As the silicate, it is preferable to use one that does not easily give hardness components such as calcium and magnesium to the feed water, for example, sodium silicate or potassium silicate. Incidentally, it is preferable that the injection amount of such a chemical agent is appropriately adjusted according to the concentration ratio of the boiler water W in the once-through boiler 2.

【0025】(2)上述の実施の形態では、本発明の腐
食抑制方法を貫流ボイラで用いられる伝熱管の腐食を抑
制する場合を例に説明したが、本発明の腐食抑制方法は
これに限定されるものではない。例えば、貫流ボイラ以
外のボイラの伝熱管、貫流ボイラ等の各種ボイラを採用
した蒸気ボイラ装置において用いられる貯水槽、復水配
管および給水配管、並びにボイラ以外のその他の各種熱
機器(例えば、湯沸かし器、吸収式冷凍器、クーリング
タワー等)において用いられる伝熱管、貯水槽および各
種の配管等、上述のような非不動態化金属からなる部材
(非不動態化金属体)であって、水や蒸気などの水分の
影響を受けて腐食する可能性があるもの、特に、上述の
ような局部的腐食(孔食)が生じる可能性があるものに
対し、本発明の腐食抑制方法は同様に適用することがで
きる。
(2) In the above-described embodiment, the corrosion suppression method of the present invention has been described by taking the case of suppressing the corrosion of the heat transfer tube used in the once-through boiler as an example. However, the corrosion suppression method of the present invention is not limited to this. It is not something that will be done. For example, heat transfer tubes of boilers other than once-through boilers, water tanks used in steam boiler devices that employ various boilers such as once-through boilers, condensate pipes and water supply pipes, and other various heat equipment other than boilers (for example, water heaters, A member (non-passivating metal body) made of the non-passivating metal as described above, such as heat transfer tubes, water storage tanks, and various pipes used in absorption refrigerators, cooling towers, etc., such as water and steam. The corrosion inhibition method of the present invention should be similarly applied to those that may be corroded under the influence of the water content, especially those that may cause the localized corrosion (pitting corrosion) as described above. You can

【0026】ボイラの伝熱管以外の非不動態化金属体に
対して本発明の腐食抑制方法を適用する場合は、当該非
不動態化金属体に対して影響を与える水分中のシリカ濃
度を上述のように(すなわち、少なくとも150mg/
l、好ましくは少なくとも300mg/l)に設定す
る。例えば、蒸気ボイラ装置の貯水槽において孔食を抑
制する場合、貯水槽に貯留する水(給水)のシリカ濃度
を上述のように設定する。
When the corrosion inhibiting method of the present invention is applied to a non-passivating metal body other than the heat transfer tube of the boiler, the silica concentration in the water which affects the non-passivating metal body is set to the above. Like (ie at least 150 mg /
l, preferably at least 300 mg / l). For example, when suppressing pitting corrosion in the water tank of the steam boiler device, the silica concentration of the water (water supply) stored in the water tank is set as described above.

【0027】[0027]

【実施例】Mアルカリ度(酸消費量(pH4.8))が
41mgCaCO3/l、硬度が0.1mgCaCO3
l、硫酸イオン濃度が30mg/lおよび溶存酸素濃度
が0.8mg/lに設定されかつ塩化物イオン濃度が
1.7mg/l、9.5mg/l、17.1mg/l、
31.0mg/lおよび39.9mg/lのいずれかに
設定された給水を供給しながら本出願人会社製のボイラ
を運転した。この際、給水中に適宜ケイ酸ナトリウム水
溶液を注入し、給水中のシリカ濃度を調整した。また、
ボイラの運転条件は、運転時間を48時間、運転圧力を
0.3MPaおよび給水温度を50℃にそれぞれ設定
し、ボイラ水の濃縮倍率を10倍に設定した。これによ
ると、ボイラ水の塩化物イオン濃度は、給水の塩化物イ
オン濃度の10倍になり、JIS B 8223:199
9において推奨されている400mg/l以下の範囲に
なる。
Example: M alkalinity (acid consumption (pH 4.8)) 41 mgCaCO 3 / l, hardness 0.1 mgCaCO 3 /
1, a sulfate ion concentration of 30 mg / l and a dissolved oxygen concentration of 0.8 mg / l and chloride ion concentrations of 1.7 mg / l, 9.5 mg / l, 17.1 mg / l,
The boiler manufactured by the applicant of the present invention was operated while supplying the feed water set to either 31.0 mg / l or 39.9 mg / l. At this time, an aqueous sodium silicate solution was appropriately injected into the feed water to adjust the silica concentration in the feed water. Also,
Regarding the operating conditions of the boiler, the operating time was set to 48 hours, the operating pressure was set to 0.3 MPa, the feed water temperature was set to 50 ° C., and the boiler water concentration ratio was set to 10 times. According to this, the chloride ion concentration of boiler water becomes 10 times the chloride ion concentration of feed water, and JIS B 8223: 199
It becomes the range of 400 mg / l or less recommended in 9.

【0028】上述の条件で運転したボイラについて、ボ
イラ水のシリカ濃度と、伝熱管に発生した食孔の深さ
(μm)の最大値との関係を調べた。結果を図4に示
す。図4によると、いずれの塩化物イオン濃度のボイラ
水についても、シリカ濃度が150mg/lを超えると
(特に、300mg/lを超えると)伝熱管に生じる食
孔の深さが小さくなる傾向にある。これより、ボイラ水
のシリカ濃度を少なくとも150mg/lに設定すれ
ば、伝熱管の腐食、特に孔食の進行によるボイラの破損
を効果的に抑制できることがわかる。
For the boiler operated under the above conditions, the relationship between the silica concentration in the boiler water and the maximum value of the depth (μm) of the pit formed in the heat transfer tube was investigated. The results are shown in Fig. 4. According to FIG. 4, with respect to boiler water having any chloride ion concentration, when the silica concentration exceeds 150 mg / l (particularly, when it exceeds 300 mg / l), the depth of the pit formed in the heat transfer tube tends to decrease. is there. From this, it can be seen that by setting the silica concentration of the boiler water to at least 150 mg / l, it is possible to effectively suppress the corrosion of the heat transfer tube, especially the damage of the boiler due to the progress of pitting corrosion.

【0029】[0029]

【発明の効果】本発明に係る非不動態化金属体の腐食抑
制方法は、非不動態化金属体に影響する水分中のシリカ
濃度を少なくとも150mg/lに設定しているので、
非不動態化金属体に生じる腐食、特に局部的腐食を抑制
することができる。
EFFECT OF THE INVENTION In the method for inhibiting corrosion of a non-passivated metal body according to the present invention, since the silica concentration in water affecting the non-passivated metal body is set to at least 150 mg / l,
Corrosion that occurs in the non-passivated metal body, especially localized corrosion, can be suppressed.

【0030】また、本発明に係るボイラの腐食抑制方法
は、ボイラ内のボイラ水のシリカ濃度を少なくとも15
0mg/lに設定しているので、伝熱管に生じる腐食、
特に局部的腐食を抑制することができる。
Further, in the method for suppressing corrosion of a boiler according to the present invention, the silica concentration in the boiler water in the boiler is at least 15%.
Since it is set to 0 mg / l, the corrosion that occurs in the heat transfer tube,
In particular, local corrosion can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の腐食抑制方法を適用可能な貫流ボイラ
を備えた蒸気ボイラ装置の概略図。
FIG. 1 is a schematic diagram of a steam boiler apparatus including a once-through boiler to which a corrosion suppression method of the present invention can be applied.

【図2】前記貫流ボイラの一部断面概略図。FIG. 2 is a schematic partial cross-sectional view of the once-through boiler.

【図3】図2のIII部分の拡大図。FIG. 3 is an enlarged view of a portion III in FIG.

【図4】ボイラ水のシリカ濃度と伝熱管に生じる食孔の
深さの最大値との関係を調べた結果を示すグラフ。
FIG. 4 is a graph showing the results of examining the relationship between the silica concentration of boiler water and the maximum depth of pits formed in the heat transfer tube.

【符号の説明】[Explanation of symbols]

2 貫流ボイラ 5 伝熱管 5a 食孔 W ボイラ水 2 once-through boiler 5 heat transfer tubes 5a pit W boiler water

フロントページの続き (72)発明者 溝上 慶太 愛媛県松山市堀江町7番地 三浦工業株式 会社内 (72)発明者 加藤 潤一 愛媛県松山市堀江町7番地 三浦工業株式 会社内 Fターム(参考) 4K062 AA03 AA10 BA14 CA05 DA10 FA06 Continued front page    (72) Inventor Keita Mizoue             7 Horie-cho, Matsuyama City, Ehime Prefecture Miura Industrial Co., Ltd.             In the company (72) Inventor Junichi Kato             7 Horie-cho, Matsuyama City, Ehime Prefecture Miura Industrial Co., Ltd.             In the company F-term (reference) 4K062 AA03 AA10 BA14 CA05 DA10                       FA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水分の影響により非不動態化金属体に生じ
る腐食を抑制するための方法であって、 前記非不動態化金属体に影響する前記水分中に含まれる
シリカの濃度を少なくとも150mg/lに設定する工
程を含む、非不動態化金属体の腐食抑制方法。
1. A method for suppressing corrosion that occurs in a non-passivated metal body under the influence of water, wherein the concentration of silica contained in the water that affects the non-passivated metal body is at least 150 mg. A method for inhibiting corrosion of a non-passivated metal body, which comprises the step of setting to 1 / l.
【請求項2】前記非不動態化金属体に生じる前記腐食が
局部的腐食である、請求項1に記載の非不動態化金属体
の腐食抑制方法。
2. The method for suppressing corrosion of a non-passivated metal body according to claim 1, wherein the corrosion occurring in the non-passivated metal body is localized corrosion.
【請求項3】ボイラの伝熱管に生じる腐食を抑制するた
めの方法であって、 前記ボイラ内のボイラ水中に含まれるシリカの濃度を少
なくとも150mg/lに設定する工程を含む、ボイラ
の腐食抑制方法。
3. A method for suppressing corrosion occurring in a heat transfer tube of a boiler, comprising the step of setting the concentration of silica contained in boiler water in the boiler to at least 150 mg / l. Method.
【請求項4】前記腐食が前記伝熱管の水との接触面側か
ら厚さ方向の反対側に向かう局部的腐食である、請求項
3に記載のボイラの腐食抑制方法。
4. The method for suppressing corrosion of a boiler according to claim 3, wherein the corrosion is localized corrosion from the contact surface side of the heat transfer tube with water toward the opposite side in the thickness direction.
JP2001329848A 2001-10-26 2001-10-26 Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler Pending JP2003129264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329848A JP2003129264A (en) 2001-10-26 2001-10-26 Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329848A JP2003129264A (en) 2001-10-26 2001-10-26 Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler

Publications (1)

Publication Number Publication Date
JP2003129264A true JP2003129264A (en) 2003-05-08

Family

ID=19145671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329848A Pending JP2003129264A (en) 2001-10-26 2001-10-26 Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler

Country Status (1)

Country Link
JP (1) JP2003129264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154221A (en) * 2005-11-30 2007-06-21 Kobelco & Materials Copper Tube Inc Pipe made from copper or copper alloy having pitting corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154221A (en) * 2005-11-30 2007-06-21 Kobelco & Materials Copper Tube Inc Pipe made from copper or copper alloy having pitting corrosion resistance

Similar Documents

Publication Publication Date Title
CN105239023B (en) A kind of high temperature resistant acidic chloride ion corrosion steel plate and its manufacture method
JP2006274427A (en) Water treating agent and water treatment method
CN104195461A (en) Corrosion-resistant steel capable of being used on upper deck and inner bottom plate for cargo oil tank of crude oil tanker simultaneously
US20080257831A1 (en) Water Treating Agent and Water Treatment Method
CN103290186B (en) Manufacturing method of corrosion-proof steel plate used for crude oil tanker cargo oil hold inner bottom plate and steel plate
CN108118240A (en) A kind of crude oil carrier Cargo Oil Ceiling anti-corrosion steel plate and its manufacturing method
CN117051326B (en) Cr-Al high corrosion-resistant steel bar for marine building structure and preparation method thereof
JP2003129264A (en) Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler
JP2003147556A (en) Method of suppressing corrosion in nonpassivated metallic body, and method of suppressing corrosion in boiler
CN102341516A (en) Ferritic stainless steel having excellent local corrosion resistance
Mudali Materials for hostile corrosive environments
JP2003129263A (en) Method for preventing corrosion of nonpassivated metallic body and method for preventing corrosion of boiler
JP2003082481A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler
CN105745349B (en) Resistance to alcohol causes point corrosion and resistance to alcohol to cause the excellent steel of SCC
JP2003129263A5 (en)
US5820763A (en) Method for inhibiting corrosion in water systems
JP2003166085A (en) Method for inhibiting corrosion of non-passivated metal body and boiler
JP2003082480A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler
JP2003105575A (en) Method of suppressing corrosion of non-passive state metallic body and method of suppressing corrosion of boiler
CN108148951A (en) Stainless steel hot treatment process
Hwang et al. Degradation of alloy 600 steam generator tubes in operating pressurized water reactor nuclear power plants
JP2004197204A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler
CN106498280B (en) A kind of high-strength corrosion-resistant steel
JP2003083872A (en) Corrosion evaluation method of non-passive metal
Bour-Beucler Different forms of corrosion in seawater heat exchanger systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050829

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509