JP2003078149A - Method for manufacturing photovoltaic element - Google Patents

Method for manufacturing photovoltaic element

Info

Publication number
JP2003078149A
JP2003078149A JP2001264137A JP2001264137A JP2003078149A JP 2003078149 A JP2003078149 A JP 2003078149A JP 2001264137 A JP2001264137 A JP 2001264137A JP 2001264137 A JP2001264137 A JP 2001264137A JP 2003078149 A JP2003078149 A JP 2003078149A
Authority
JP
Japan
Prior art keywords
photovoltaic element
layer
photoelectric conversion
silicon
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001264137A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Ro
和敬 盧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2001264137A priority Critical patent/JP2003078149A/en
Publication of JP2003078149A publication Critical patent/JP2003078149A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a photovoltaic element having a higher efficiency and high reliability, by depositing an amorphous silicon or a microcrystal silicon of a photoelectric conversion layer without deteriorating light transmission characteristics of a transparent conductive film, when a silicon is deposited on the conductive film made of an oxide to form the conversion layer. SOLUTION: The method for manufacturing the photovoltaic element comprises the steps of forming an extra-thin film made of the amorphous silicon layer or the microcrystal silicon at an initial time of depositing the silicon on the transparent conductive film, and thereafter forming the photoelectric conversion layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物からなる透
明導電膜の光透過性を劣化させる事なく高効率の光起電
力素子の作製方法に関する。該光起電力素子は太陽電池
等に利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly efficient photovoltaic element without deteriorating the light transmittance of a transparent conductive film made of an oxide. The photovoltaic element is used for a solar cell or the like.

【0002】[0002]

【従来の技術】薄膜太陽電池は従来アモルファスシリコ
ン(以下、a−Siと記す)やCdTe、CuInSe
2などを用いたものが知られており、中でもa−Siは
薄く比較的低温で作製できるという特徴を持つ。このa
−Si太陽電池の作成法としてはシランや水素を原料と
したPECVD法(プラズマCVD法)が広く使われて
おり、ガラスやプラスチックなどの透明基材上にITO
やSnO2などからなる透明導電膜を堆積した基板にa
−Siからなる光電変換層を堆積させる方法が多く用い
られている。
2. Description of the Related Art Thin film solar cells are conventionally manufactured by using amorphous silicon (hereinafter referred to as a-Si), CdTe, CuInSe.
It is known to use 2 or the like. Among them, a-Si is thin and can be manufactured at a relatively low temperature. This a
A PECVD method (plasma CVD method) using silane or hydrogen as a raw material is widely used as a method for forming a -Si solar cell, and ITO is formed on a transparent substrate such as glass or plastic.
A on a substrate on which a transparent conductive film such as SnO2 or SnO2 is deposited.
A method of depositing a photoelectric conversion layer made of —Si is often used.

【0003】しかしながら、このようなPECVDによ
るa−Siの成膜では水素ラジカルによる還元雰囲気中
での反応が起こっているため、ITOやSnO2などの
酸化物透明導電膜表面が還元されて金属リッチな膜が析
出し、可視光透過率が低下することが知られている。こ
れにより、a−Siまたは微結晶シリコンからなる光電
変換層へ届く光量が低下して変換効率の低下を招いてい
ると考えられている。
However, in such a film formation of a-Si by PECVD, a reaction occurs in a reducing atmosphere due to hydrogen radicals, so that the surface of the transparent oxide conductive film such as ITO or SnO 2 is reduced and metal rich. It is known that a film is deposited and the visible light transmittance is reduced. It is considered that this reduces the amount of light that reaches the photoelectric conversion layer made of a-Si or microcrystalline silicon, resulting in a decrease in conversion efficiency.

【0004】そこで、光電変換層であるa−Siまたは
微結晶シリコンの堆積初期において、還元雰囲気を作ら
ず、透明導電膜を保護することができれば可視光透過率
を下げず、変換効率の低下を免れることができる。
Therefore, if the transparent conductive film can be protected without creating a reducing atmosphere at the initial stage of deposition of a-Si or microcrystalline silicon which is the photoelectric conversion layer, the visible light transmittance will not be lowered and the conversion efficiency will be lowered. Can escape.

【0005】[0005]

【発明が解決しようとする課題】上記の透明導電膜保護
層を形成する上で、還元雰囲気を作らない製法によりa
−Siまたは微結晶シリコンを作製しなければならな
い。さらに、そのa−Si層が厚くなるとそこで光が吸
収されてしまい、光電変換層へ届く光の量が低下してし
まうため極めて薄く堆積することが要求される。そこ
で、本発明は、透明導電膜の光透過特性を劣化させるこ
となく光電変換層であるa−Siもしくは微結晶シリコ
ンを堆積し、より高効率で信頼性の高い光電変換素子の
作製方法を提供することを目的とする。
In forming the above-mentioned transparent conductive film protective layer, a method is adopted in which a reducing atmosphere is not used.
-Si or microcrystalline silicon must be made. Further, if the a-Si layer becomes thicker, light is absorbed there, and the amount of light reaching the photoelectric conversion layer decreases, so that it is required to be deposited extremely thinly. Therefore, the present invention provides a method for producing a photoelectric conversion element having higher efficiency and higher reliability by depositing a-Si or microcrystalline silicon that is a photoelectric conversion layer without deteriorating the light transmission characteristics of the transparent conductive film. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、請求項1に係る発明は、
透明導電膜上に、シリコンを堆積する初期にアモルフ
ァスシリコン層もしくは微結晶シリコンからなる極薄膜
を成膜し、その後に光電変換層を形成する事を特徴とす
る光起電力素子の作製方法である。
The present invention has been made to solve the above problems, and the invention according to claim 1 is
A method for producing a photovoltaic element, characterized in that an ultrathin film made of an amorphous silicon layer or microcrystalline silicon is formed on a transparent conductive film at the initial stage of depositing silicon, and then a photoelectric conversion layer is formed. .

【0007】請求項2に係る発明は、請求項1に記載の
光起電力素子の作製方法において、前記アモルファスシ
リコン層もしくは微結晶シリコンからなる極薄膜を物理
蒸着法(PVD)の手段を用いて成膜する事を特徴とす
る。
According to a second aspect of the present invention, in the method of manufacturing a photovoltaic element according to the first aspect, the ultrathin film made of the amorphous silicon layer or microcrystalline silicon is formed by means of physical vapor deposition (PVD). It is characterized by forming a film.

【0008】請求項3に係る発明は、請求項1または請
求項2に記載の光起電力素子作製方法において、前記透
明導電膜が、5×10−4Ωcm以下の比抵抗を持つ酸
化物からなることを特徴とする。
The invention according to claim 3 is the method for producing a photovoltaic element according to claim 1 or 2, wherein the transparent conductive film is made of an oxide having a specific resistance of 5 × 10 −4 Ωcm or less. It is characterized by

【0009】請求項4に係る発明は、請求項1ないし請
求項3のいずれか1項に記載の光起電力素子の作製方法
において、前記アモルファスシリコン層もしくは微結晶
シリコンからなる極薄膜と光電変換層を大気暴露するこ
となく、連続的に形成する事を特徴とする。
According to a fourth aspect of the present invention, in the method of manufacturing a photovoltaic element according to any one of the first to third aspects, an ultrathin film made of the amorphous silicon layer or microcrystalline silicon and photoelectric conversion are provided. The feature is that layers are formed continuously without exposure to the atmosphere.

【0010】請求項5に係る発明は、請求項1ないし請
求項4のいずれか1項に記載の光起電力素子の作製方法
において、前記光電変換層をプラズマCVD法の手段を
用いて形成する事を特徴とする。
According to a fifth aspect of the present invention, in the method of manufacturing a photovoltaic element according to any one of the first to fourth aspects, the photoelectric conversion layer is formed by means of plasma CVD method. Characterize things.

【0011】請求項6に係る発明は、請求項1ないし請
求項5のいずれか1項に記載の光起電力素子の作製方法
において、前記アモルファスシリコン層もしくは微結晶
シリコンからなる極薄膜が、Bドープアモルファスシリ
コン、Bドープ微結晶シリコン、アモルファスシリコン
カーバイド、微結晶シリコンカーバイド、Bドープアモ
ルファスシリコンカーバイド、Bドープ微結晶シリコン
カーバイドのいずれかからなることを特徴とする。
According to a sixth aspect of the present invention, in the method of manufacturing a photovoltaic element according to any one of the first to fifth aspects, the ultrathin film made of the amorphous silicon layer or microcrystalline silicon is B It is characterized by comprising any one of doped amorphous silicon, B-doped microcrystalline silicon, amorphous silicon carbide, microcrystalline silicon carbide, B-doped amorphous silicon carbide, and B-doped microcrystalline silicon carbide.

【0012】<作用>本発明における透明導電膜上にa
−Siまたは微結晶シリコンを堆積する方法は、透明導
電膜を還元雰囲気にさらすことがないため、透明導電膜
の酸化度低下などによる金属析出で可視光の透過率が低
下する現象を抑える。また、PVD法によるa−Siも
しくは微結晶シリコンの膜厚が非常に薄いため、PVD
法による膜堆積後の水素プラズマ雰囲気下でのCVD法
による光電変換層堆積時に表面修飾によってa−Siの
欠陥低下が起こり、光電変換効率を低下させることがな
い。
<Operation> a on the transparent conductive film in the present invention
Since the method of depositing —Si or microcrystalline silicon does not expose the transparent conductive film to a reducing atmosphere, it suppresses a phenomenon in which the transmittance of visible light decreases due to metal deposition due to a decrease in the degree of oxidation of the transparent conductive film. In addition, since the film thickness of a-Si or microcrystalline silicon by the PVD method is very thin, PVD
When a photoelectric conversion layer is deposited by the CVD method in a hydrogen plasma atmosphere after the film is deposited by the method, the surface modification causes a defect in a-Si, and the photoelectric conversion efficiency is not reduced.

【0013】[0013]

【発明の実施の形態】図1(a)は、本発明の光起電力
素子の作製方法によって得られる光起電力素子の構成の
一例を示した断面図である。図1(b)は、本発明の光
電変換素子の作製方法する工程と装置の主要部の一例を
示した断面図である。本発明の光電変換素子の作製方法
によって得られる光起電力素子は、透明なガラスからな
る透明絶縁性基板1上に、順次、ITOからなる透明導
電膜2、a−Si層3、光電変換層4、下部電極層5を
積層した構成の光起電力素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a sectional view showing an example of the structure of a photovoltaic element obtained by the method for producing a photovoltaic element of the present invention. FIG. 1B is a cross-sectional view showing an example of the steps of the method for manufacturing a photoelectric conversion element of the present invention and the main part of the apparatus. The photovoltaic element obtained by the method for producing a photoelectric conversion element of the present invention comprises a transparent conductive film 2, an a-Si layer 3, and a photoelectric conversion layer, which are sequentially made of ITO on a transparent insulating substrate 1 made of transparent glass. 4 is a photovoltaic element having a structure in which a lower electrode layer 5 is laminated.

【0014】透明絶縁性基板上に透明導電膜が形成され
ている基材上に還元雰囲気を作ることなくPVD法によ
りa−Siもしくは微結晶シリコンの極薄膜を堆積し、
その後PECVD法で光電変換層を形成する事で、PE
CVDの還元雰囲気中における透明導電膜の透過率低下
を抑えることを特徴とする。ここで用いられるPVD法
とは、EB蒸着、イオンプレーティング法、マグネトロ
ンスパッタ法のいずれかであり、好ましくはクラスタイ
オンビームを用いたイオンプレーティング法によるもの
である。また、その膜厚は5Åから20Å程度の極薄膜
である。
An ultra-thin film of a-Si or microcrystalline silicon is deposited by the PVD method on a base material having a transparent conductive film formed on a transparent insulating substrate without creating a reducing atmosphere.
After that, by forming a photoelectric conversion layer by PECVD method, PE
It is characterized by suppressing a decrease in the transmittance of the transparent conductive film in the reducing atmosphere of CVD. The PVD method used here is any one of EB vapor deposition, ion plating method and magnetron sputtering method, and is preferably the ion plating method using a cluster ion beam. Further, the film thickness is an ultrathin film having a thickness of about 5Å to 20Å.

【0015】さらに、光電変換層としてはBドープ層に
アモルファスシリコン、アモルファスシリコンカーバイ
ド、微結晶シリコン、微結晶シリコンカーバイドのいず
れかを用い、イントリンシック層にアモルファスシリコ
ン、微結晶シリコン、アモルファスシリコンゲルマニウ
ム、微結晶シリコンゲルマニウム、シリコンカーバイド
のいずれかを用いており、それぞれの成膜方法にはPE
CVD法を使用し、PVD法で作製したa−Siもしく
は微結晶シリコンの極薄膜の電気特性改善を促してい
る。
Further, as the photoelectric conversion layer, any of amorphous silicon, amorphous silicon carbide, microcrystalline silicon and microcrystalline silicon carbide is used for the B-doped layer, and amorphous silicon, microcrystalline silicon, amorphous silicon germanium, and intrinsic silicon are used for the intrinsic layer. Either microcrystalline silicon germanium or silicon carbide is used, and PE is used for each film forming method.
The CVD method is used to promote the improvement of the electrical characteristics of the ultra-thin film of a-Si or microcrystalline silicon produced by the PVD method.

【0016】次ぎに、本発明の光電変換素子の作製方法
について説明する。図1(b)に示すように、透明導電
膜を堆積した基板10を予備排気室11にセットした
後、予備排気室11を10−5Pa以下まで排気し、基
板をPVD室12に搬送する。PVD室12でEB蒸着
法により透明導電膜保護層(Bドープa−Si層)を堆
積する。その後基板をCVD室13に搬送してPECV
D法により光電変換層を成膜する。上記の本発明の光電
変換素子の作製方法により、透明導電膜保護層3と光電
変換層4を大気暴露することなく連続的に作製すること
ができ、両層界面における水や酸素などの不純物の混入
を防ぎ、光電変換効率の低下を防止する。
Next, a method for manufacturing the photoelectric conversion element of the present invention will be described. As shown in FIG. 1B, after setting the substrate 10 on which the transparent conductive film is deposited in the preliminary exhaust chamber 11, the preliminary exhaust chamber 11 is exhausted to 10 −5 Pa or less, and the substrate is transferred to the PVD chamber 12. In the PVD chamber 12, a transparent conductive film protective layer (B-doped a-Si layer) is deposited by the EB vapor deposition method. After that, the substrate is transferred to the CVD chamber 13 and PECV
The photoelectric conversion layer is formed by the D method. By the method for producing a photoelectric conversion element of the present invention described above, the transparent conductive film protective layer 3 and the photoelectric conversion layer 4 can be continuously produced without exposure to the air, and impurities such as water and oxygen at the interface between both layers can be formed. Prevents mixture and prevents deterioration of photoelectric conversion efficiency.

【0017】なお、上記の透明絶縁性基板1として透明
ガラス基板を用いたが、フレキシブル性を持つフィルム
基板からなる透明絶縁性基板でも実施できるのはいうま
でもない。また、PVD法としてEB蒸着のみならず、
イオンプレーティング法、マグネトロンスパッタ法によ
るものでも適用でき、特にクラスタイオンビームを用い
たイオンプレーティング法によるa−Si層作成におい
ては透明導電膜層2へのダメージが少なく、光透過性な
らびに電気伝導性を劣化させる事のない保護層3を形成
できる。
Although the transparent glass substrate is used as the transparent insulating substrate 1 described above, it goes without saying that a transparent insulating substrate made of a flexible film substrate can also be used. Moreover, not only EB vapor deposition as PVD method,
An ion plating method or a magnetron sputtering method can also be applied. In particular, when the a-Si layer is formed by an ion plating method using a cluster ion beam, the transparent conductive film layer 2 is hardly damaged, and the light transmittance and the electrical conductivity are reduced. It is possible to form the protective layer 3 that does not deteriorate the properties.

【0018】[0018]

【実施例】以下、本発明の光起電力素子の作製方法につ
いて具体的に図1を参照して説明する。
EXAMPLES A method of manufacturing the photovoltaic element of the present invention will be specifically described below with reference to FIG.

【0019】<実施例1>透明なガラスからなる透明絶
縁性基板1上にITOからなる透明導電膜2をスパッタ
法により7000Å堆積し、光照射側電極とした。IT
Oの比抵抗は4.1×10−4Ωcmであり、可視光の
透過率は平均でおよそ80%であった。その上に、EB
蒸着法によりa−Si層3を堆積した。EB蒸着におけ
る堆積条件は、はじめに真空度を5×10−5Pa以下
にし、基材温度を100℃に設定してEBをターゲット
に照射した。ターゲットのシリコンが十分加熱された後
シャッターを開いて蒸着を開始した。蒸着速度と時間は
5Å/秒で5秒とし、蒸着後は大気開放せずにPECV
Dによる光電変換層4の堆積を行った。蒸着に用いたシ
リコンのターゲットはBドープ、比抵抗100Ωcmの
ウェハーを坩堝に入れてEBで溶かしたものである。さ
らに、a−Si層3の上にPECVDにより光電変換層
4としてBドープa−Siを30nm、イントリンシッ
クa−Siを300nm、Pドープa−Siを20nm
それぞれ堆積し、さらに下部電極層5としてAgを蒸着
法により堆積した。得られた光電変換素子の光電変換特
性(開放電圧Voc、短絡電流密度Jsc、光電変換効
率η)をAM1.5の擬似太陽光(100mW/cm
2)を用い、光起電力素子を温度25℃、湿度50%の
条件下で評価した。その結果を表1に示す。
<Example 1> A transparent conductive film 2 made of ITO was deposited on a transparent insulating substrate 1 made of transparent glass by a sputtering method to give a light irradiation side electrode. IT
The specific resistance of O was 4.1 × 10 −4 Ωcm, and the visible light transmittance was about 80% on average. On top of that, EB
The a-Si layer 3 was deposited by the vapor deposition method. Regarding the deposition conditions in the EB vapor deposition, first, the degree of vacuum was set to 5 × 10 −5 Pa or less, the substrate temperature was set to 100 ° C., and the target was irradiated with EB. After the target silicon was sufficiently heated, the shutter was opened to start vapor deposition. The deposition rate and time are 5 Å / sec for 5 seconds, and after the deposition, PECV without opening to the atmosphere.
The photoelectric conversion layer 4 was deposited by D. The silicon target used for vapor deposition is a B-doped wafer with a specific resistance of 100 Ωcm placed in a crucible and melted by EB. Further, on the a-Si layer 3, B-doped a-Si is 30 nm, intrinsic a-Si is 300 nm, and P-doped a-Si is 20 nm as a photoelectric conversion layer 4 by PECVD.
Each was deposited, and Ag was further deposited as the lower electrode layer 5 by a vapor deposition method. The photoelectric conversion characteristics (open circuit voltage Voc, short-circuit current density Jsc, photoelectric conversion efficiency η) of the obtained photoelectric conversion element were set to AM1.5 pseudo sunlight (100 mW / cm).
Using 2), the photovoltaic element was evaluated under the conditions of a temperature of 25 ° C. and a humidity of 50%. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】<比較例1>次に、実施例1と比較するた
めに、透明導電膜保護層となるBドープa−Si層3を
PECVD法により形成した光起電力素子を作製した。
この光起電力素子の作製条件はa−Si層3以外は全て
実施例1と同様とした。また、この光起電力素子におけ
るBドープa−Si層は、実施例1における光電変換層
4のBドープ層と同様の成膜条件で作成し、Bドープa
−Si層全体の膜厚は実施例1とほぼ同じ32nmとし
た。比較例1で得られた光電変換素子の光電変換特性を
実施例1と同様に評価した。その結果を表2に示す。
<Comparative Example 1> Next, for comparison with Example 1, a photovoltaic element having a B-doped a-Si layer 3 serving as a transparent conductive film protective layer formed by PECVD was produced.
The manufacturing conditions of this photovoltaic element were the same as in Example 1 except for the a-Si layer 3. The B-doped a-Si layer in this photovoltaic element was formed under the same film-forming conditions as those for the B-doped layer of the photoelectric conversion layer 4 in Example 1, and the B-doped a-Si layer was formed.
The thickness of the entire -Si layer was set to 32 nm, which is almost the same as in Example 1. The photoelectric conversion characteristics of the photoelectric conversion element obtained in Comparative Example 1 were evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】これらよりVocおよび曲線因子FFはそ
れほど変わらないが、本発明における透明導電膜保護層
3をPVD法で作製した光起電力素子では、ITO膜の
透過率低下によるJscの低下を抑えられている事がわ
かる。
From these, Voc and fill factor FF are not so different, but in the photovoltaic element in which the transparent conductive film protective layer 3 of the present invention is manufactured by the PVD method, the decrease in Jsc due to the decrease in the transmittance of the ITO film can be suppressed. I understand that.

【0024】[0024]

【発明の効果】請求項1および2に係る発明により、通
常、透明導電膜形成後の光電変換層形成時に還元雰囲気
によって透明導電膜層の光透過性が劣化するものにおい
ても、透明導電膜層を保護する事により光透過性を劣化
させる事なく、高効率の光起電力素子を提供する事がで
きる。また、請求項4に係る発明により、光電変換層に
おける水や酸素などの不純物の混入を防ぎ、光電変換特
性の劣化を防止し、高効率の光起電力素子を提供する事
ができる。また、請求項5に係る発明により、透明導電
膜保護層であるPVDにより作製されたa−Si層の欠
陥修飾作用で、良好な電気伝導特性を有するa−Si層
または微結晶シリコン層を提供することが可能である。
そして、本発明の光起電力素子の作製方法で得られる光
起電力素子は太陽電池等に使用されるものである。
EFFECTS OF THE INVENTION According to the inventions of claims 1 and 2, even when the transparent conductive film layer is deteriorated in light transmissivity due to a reducing atmosphere during formation of the photoelectric conversion layer after the transparent conductive film is formed, It is possible to provide a highly efficient photovoltaic element without deteriorating the light transmittance by protecting the photovoltaic element. Further, according to the invention of claim 4, it is possible to provide a highly efficient photovoltaic element by preventing impurities such as water and oxygen from being mixed in the photoelectric conversion layer and preventing deterioration of photoelectric conversion characteristics. Further, according to the invention of claim 5, an a-Si layer or a microcrystalline silicon layer having good electric conductivity is provided by the defect modification action of the a-Si layer made of PVD which is a transparent conductive film protective layer. It is possible to
The photovoltaic element obtained by the method for producing a photovoltaic element of the present invention is used for a solar cell or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の光起電力素子の作製方法に
よって得られる光起電力素子の構成の一例を示した断面
図である。(b)は、本発明の光電変換素子の作製工程
と装置の主要部の一例を示した断面図である。
FIG. 1A is a cross-sectional view showing an example of the configuration of a photovoltaic element obtained by the method for producing a photovoltaic element of the present invention. (B) is sectional drawing which showed an example of the manufacturing process of the photoelectric conversion element of this invention, and the principal part of an apparatus.

【符号の説明】[Explanation of symbols]

1・・・透明絶縁性基板 2・・・透明導電膜 3・・・透明導電膜保護用a−Si層 4・・・光電変換層 5・・・下部金属電極層 10・・・基板 11・・・予備排気室 12・・・PVD成膜室 13・・・CVD成膜室 14・・・予備排気室 1. Transparent insulating substrate 2 ... Transparent conductive film 3 ... a-Si layer for protecting transparent conductive film 4 ... Photoelectric conversion layer 5 ... Lower metal electrode layer 10 ... Substrate 11 ... Exhaust chamber 12 ... PVD deposition chamber 13 ... CVD film forming chamber 14 ... Preliminary exhaust chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明導電膜上に、シリコンを堆積する初期
にアモルファスシリコン層もしくは微結晶シリコンから
なる極薄膜を成膜し、その後に光電変換層を形成する事
を特徴とする光起電力素子の作製方法。
1. A photovoltaic device, comprising: forming an amorphous thin film or an ultrathin film of microcrystalline silicon on a transparent conductive film at an initial stage of depositing silicon, and then forming a photoelectric conversion layer. Of manufacturing.
【請求項2】前記アモルファスシリコン層もしくは微結
晶シリコンからなる極薄膜を物理蒸着法(PVD)の手
段を用いて成膜する事を特徴とする請求項1に記載の光
起電力素子の作製方法。
2. The method of manufacturing a photovoltaic element according to claim 1, wherein the ultrathin film made of the amorphous silicon layer or microcrystalline silicon is formed by means of physical vapor deposition (PVD). .
【請求項3】前記透明導電膜が、5×10−4Ωcm以
下の比抵抗を持つ酸化物からなることを特徴とする請求
項1または請求項2に記載の光起電力素子の作製方法。
3. The method for producing a photovoltaic element according to claim 1, wherein the transparent conductive film is made of an oxide having a specific resistance of 5 × 10 −4 Ωcm or less.
【請求項4】前記アモルファスシリコン層もしくは微結
晶シリコンからなる極薄膜と光電変換層を大気暴露する
ことなく、連続的に形成する事を特徴とする請求項1な
いし請求項3のいずれか1項に記載の光起電力素子の作
製方法。
4. The ultrathin film made of the amorphous silicon layer or microcrystalline silicon and the photoelectric conversion layer are continuously formed without exposure to the atmosphere. A method for manufacturing the photovoltaic element according to 1.
【請求項5】前記光電変換層をプラズマCVD法の手段
を用いて形成する事を特徴とする請求項1ないし請求項
4のいずれか1項に記載の光起電力素子の作製方法。
5. The method of manufacturing a photovoltaic element according to claim 1, wherein the photoelectric conversion layer is formed by using a plasma CVD method.
【請求項6】前記アモルファスシリコン層もしくは微結
晶シリコンからなる極薄膜が、Bドープアモルファスシ
リコン、Bドープ微結晶シリコン、アモルファスシリコ
ンカーバイド、微結晶シリコンカーバイド、Bドープア
モルファスシリコンカーバイド、Bドープ微結晶シリコ
ンカーバイドのいずれかからなることを特徴とする請求
項1ないし請求項5のいずれか1項にに記載の光起電力
素子の作製方法。
6. An ultrathin film comprising the amorphous silicon layer or microcrystalline silicon is B-doped amorphous silicon, B-doped microcrystalline silicon, amorphous silicon carbide, microcrystalline silicon carbide, B-doped amorphous silicon carbide, B-doped microcrystalline silicon. 6. The method for producing a photovoltaic element according to claim 1, wherein the photovoltaic element is made of any one of carbides.
JP2001264137A 2001-08-31 2001-08-31 Method for manufacturing photovoltaic element Pending JP2003078149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264137A JP2003078149A (en) 2001-08-31 2001-08-31 Method for manufacturing photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264137A JP2003078149A (en) 2001-08-31 2001-08-31 Method for manufacturing photovoltaic element

Publications (1)

Publication Number Publication Date
JP2003078149A true JP2003078149A (en) 2003-03-14

Family

ID=19090791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264137A Pending JP2003078149A (en) 2001-08-31 2001-08-31 Method for manufacturing photovoltaic element

Country Status (1)

Country Link
JP (1) JP2003078149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158603A (en) * 2007-12-25 2009-07-16 Seiko Epson Corp Photoelectric conversion device, electronic equipment, manufacturing method of photoelectric conversion device, and manufacturing method of electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158603A (en) * 2007-12-25 2009-07-16 Seiko Epson Corp Photoelectric conversion device, electronic equipment, manufacturing method of photoelectric conversion device, and manufacturing method of electronic equipment

Similar Documents

Publication Publication Date Title
JP3926800B2 (en) Manufacturing method of tandem type thin film photoelectric conversion device
US7875945B2 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
KR100659044B1 (en) Solar cell with zinc oxide thin film and fabricating method thereof
JP4171162B2 (en) Photovoltaic element and manufacturing method thereof
TW200950113A (en) Thin film silicon solar cell and manufacturing method thereof
US20120132268A1 (en) Electrode, photovoltaic device, and method of making
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP3679771B2 (en) Photovoltaic device and method for manufacturing photovoltaic device
EP2370616A1 (en) Photovoltaic devices including heterojunctions
US9859454B2 (en) Photoelectric conversion device and fabrication method thereof
JP5022341B2 (en) Photoelectric conversion device
WO2005109526A1 (en) Thin film photoelectric converter
WO2008059857A1 (en) Thin-film photoelectric conversion device
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof
JP2007258537A (en) Photoelectric conversion device and its manufacturing method
JP2004214442A (en) Photovoltaic device and its manufacturing method
JP2003078149A (en) Method for manufacturing photovoltaic element
JP3746607B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP2002222969A (en) Laminated solar battery
JP5373045B2 (en) Photoelectric conversion device
JP4215694B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5123444B2 (en) Manufacturing method of solar cell
JP4352111B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2000091607A (en) Photovoltaic element and manufacture thereof
JP2952121B2 (en) Photovoltaic element