JP2003077470A - Manufacturing method of nickel electrode material - Google Patents

Manufacturing method of nickel electrode material

Info

Publication number
JP2003077470A
JP2003077470A JP2001265631A JP2001265631A JP2003077470A JP 2003077470 A JP2003077470 A JP 2003077470A JP 2001265631 A JP2001265631 A JP 2001265631A JP 2001265631 A JP2001265631 A JP 2001265631A JP 2003077470 A JP2003077470 A JP 2003077470A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
active material
electrode material
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001265631A
Other languages
Japanese (ja)
Other versions
JP4479136B2 (en
Inventor
Shinji Ogiyama
真治 荻山
Kengo Furukawa
健吾 古川
Seijiro Ochiai
誠二郎 落合
Mitsuhiro Kodama
充浩 児玉
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2001265631A priority Critical patent/JP4479136B2/en
Publication of JP2003077470A publication Critical patent/JP2003077470A/en
Application granted granted Critical
Publication of JP4479136B2 publication Critical patent/JP4479136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of obtaining a nickel electrode material in which the discharge reserve can be reduced and a high utilization rate of the active material can be obtained. SOLUTION: This is a manufacturing method of a nickel electrode material that comprises an oxidation treatment process in which a positive electrode active material, in which a covering layer made of a lower-grade cobalt compound is formed on the surface of the positive electrode active material particles made of nickel hydroxide solid solution, is wetted in a water solution of an oxidizer and an alkaline water solution of 30-40 wt.%, and heated at a temperature of 70-120 deg.C in the wet condition.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、アルカリ蓄電池の
ニッケル電極に用いる電極材料を製造する方法に関する
ものである。 【0002】 【従来の技術】近年、アルカリ蓄電池は、携帯電話、ノ
ートパソコン、ハンディービデオカメラなどの携帯機器
の普及に伴って、稼動時間の延長が要求されており、高
容量化が強く望まれている。特に、ニッケル水素蓄電池
は、水酸化ニッケルを主成分とする正極活物質を有する
ニッケル電極と、水素吸蔵合金を主材料とする負極と、
を備えた二次電池であり、高容量且つ高信頼性の二次電
池として、急速に普及してきている。 【0003】アルカリ蓄電池のニッケル電極には、焼結
式電極と非焼結式電極の2種類がある。焼結式電極は、
活物質保持体としての多孔性ニッケル焼結基板を、硝酸
ニッケルなどの酸性ニッケル塩水溶液に浸漬し、該基板
の孔中にニッケル塩を含漬させ、その後、該ニッケル塩
をアルカリ中で水酸化ニッケルに変化させる、という充
填操作を繰り返し行うことにより得られる。しかるに、
焼結式電極では、基板の多孔度を80%程度以上に大き
くすることが困難であるため、充填される活物質量を増
加させることができず、高容量化に限界がある。 【0004】一方、非焼結式電極は、硫酸ニッケルなど
の酸性ニッケル塩水溶液と水酸化ナトリウム水溶液とか
ら生成された水酸化ニッケル粒子に、カルボキシメチル
セルロースなどの結着剤を水に溶解してなる粘調液を加
えて、ペーストを作製し、該ペーストを、多孔度95%
以上の発泡基板又は繊維基板に、直接に充填することに
より得られる。非焼結式電極によれば、高容量化を望む
ことができる。 【0005】ところで、水酸化ニッケル自体は導電性に
乏しいため、非焼結式電極においては、一般に、活物質
粒子間の集電を改善する目的で、水酸化コバルトのよう
な、コバルトの酸化数が2価のコバルト化合物が使用さ
れている。2価のコバルト化合物は、それ自身導電性を
有しないが、電池内での初期充電によって電気化学的に
酸化されて導電性を有する高次コバルト化合物となり、
導電性ネットワークとして有効に機能するようになる。
特に、水酸化ニッケルからなる正極活物質の表面が水酸
化コバルトで被覆されてなる正極材料を使用すれば、導
電性ネットワークがより形成されやすくなり、高密度に
充填した活物質の利用率を大幅に高めることが可能とな
る。なお、高次コバルト化合物とは、コバルトの酸化数
が2価以上であるコバルト化合物のことであり、具体的
には、オキシ水酸化コバルト(CoOOH)であると考
えられる。 【0006】初期充電による水酸化コバルトの酸化は不
可逆反応であり、放電時に還元されないため、この不可
逆分に相当する負極活物質が放電されずに残ってしま
う。この放電されずに残る電気量を放電リザーブと言
う。放電リザーブが生成すると、充電末期において、負
極の未充電容量即ち充電リザーブが減少し、水素ガス発
生が促進され、電池の内圧が増加し、サイクル寿命が短
くなる。 【0007】また、ニッケル水素蓄電池においては、負
極合金の腐食によっても放電リザーブが生成する。更
に、正極活物質である水酸化ニッケルの酸化還元におい
て生じる不可逆生成物によっても、放電リザーブが生成
する。 【0008】従って、放電リザーブを削減できれば、充
電末期における電池内圧の低下、サイクル寿命の向上、
及び電池の高容量化、を図ることができる。 【0009】そこで、特開平8−148146では、水
酸化ニッケル粒子表面に予め高次コバルト化合物を偏在
させることによって、初期充電による酸化によって放電
リザーブが生成するのを抑制している。しかしながら、
上述のように、放電リザーブ生成の原因は水酸化コバル
トの不可逆容量だけではないので、これだけでは十分で
はない。 【0010】更に、放電リザーブを削減するために、正
極活物質である水酸化ニッケルの一部を酸化する試みが
なされている。例えば、特開2000−223119で
は、水酸化ニッケル粒子表面に高次コバルト化合物を保
持させ、アルカリ水溶液中で水酸化ニッケルを部分酸化
する方法が、示されている。 【0011】 【発明が解決しようとする課題】しかしながら、上述の
方法を、高濃度のアルカリ水溶液中で行った場合には、
水酸化ニッケルの一部がγ−オキシ水酸化ニッケル(γ
−NiOOH)まで酸化されて、粒子のタップ密度が低
下し、高容量化に反する恐れがある。逆に、低濃度のア
ルカリ水溶液中で行った場合には、不活性なニッケル酸
化物の副生成を生じ、水酸化ニッケル自体の活性が損な
われて、活物質利用率が低下する恐れがある。 【0012】本発明は、放電リザーブを削減できると共
に、高い活物質利用率を得ることができる、ニッケル電
極材料、を得ることのできる製造方法を提供することを
目的とする。 【0013】 【課題を解決するための手段】請求項1記載の発明は、
水酸化ニッケル又は異種元素が固溶された水酸化ニッケ
ル固溶体からなる正極活物質粒子の表面に、コバルトの
酸化数が2価以下である低次コバルト化合物からなる被
覆層が形成されている、正極材料を、酸化剤の水溶液と
30〜40重量%のアルカリ水溶液とで、又は、酸化剤
を含有した30〜40重量%のアルカリ水溶液で、湿潤
状態とし、該湿潤状態にて、70〜120℃の温度で加
熱する、酸化処理工程、を備えたことを特徴とするニッ
ケル電極材料の製造方法である。 【0014】請求項1記載の発明においては、アルカリ
水溶液の濃度が30〜40重量%であり、加熱温度が7
0〜120℃であるので、アルカリ水溶液中への低次コ
バルト化合物の溶解性が高く維持され、酸化反応が円滑
に進行し、従って、低次コバルト化合物が酸化されて、
コバルトの酸化数が2価より大きい高次コバルト化合物
に変化すると共に、水酸化ニッケルの一部が酸化され
る。 【0015】しかも、湿潤状態にて酸化処理するので、
上記濃度のアルカリ水溶液で処理しても、不活性なニッ
ケル酸化物の生成が抑制され、従って、水酸化ニッケル
自体の活性は損なわれず、また、γ−NiOOHの生成
も抑制され、従って、タップ密度の低下が防止される。 【0016】従って、請求項1記載の製造方法によれ
ば、正極活物質の水酸化ニッケルの一部が酸化されてお
り、被覆層が高次コバルト化合物からなっており、タッ
プ密度が高く、更に、正極活物質の活性が損なわれてい
ない、ニッケル電極材料が得られる。このようなニッケ
ル電極材料は、ニッケル電極、ひいてはニッケル水素蓄
電池に用いた場合、次の(1)〜(3)に示す作用効果を奏す
る。 【0017】(1) 正極活物質の水酸化ニッケルの一部が
酸化されているので、その分だけ、電池組立後の初期充
電による不可逆電気量の生成が防止される。また、被覆
層が高次コバルト化合物からなっているので、その分だ
け、電池組立後の初期充電による不可逆電気量の生成が
防止される。従って、このニッケル電極材料を用いた電
池においては、放電リザーブが充分に削減される。 【0018】そして、放電リザーブを削減できるので、
負極容量を実質的に増大させることができ、それ故、電
池のサイズを同じに維持しながら高容量化を図ることが
でき、或いは、電池の容量を同じに維持しながら小型化
を図ることができ、従って、小型化及び高容量化を共に
図ることができる。 【0019】また、放電リザーブを削減できるので、充
電リザーブを増大でき、それ故、過充電時に発生するガ
スを充電リザーブによって効果的に吸収でき、従って、
内圧上昇を抑制でき、充放電サイクル寿命を改善でき
る。 【0020】(2) タップ密度が高いので、集電体に対し
て電極材料を高密度に充填できる。従って、高容量化を
図ることができる。 【0021】(3) 正極活物質の活性が損なわれることな
く維持されているので、活物質利用率を向上できる。 【0022】更に、請求項1記載の発明においては、湿
潤状態で処理しているので、浸漬処理に比して、処理に
用いる水溶液の量が少なくて済む。従って、製造コスト
が低減される。 【0023】固溶される異種元素としては、コバルト、
亜鉛、マグネシウム、カドミウム、アルミニウム、及び
マンガンの内の1種以上が好ましい。コバルトが固溶さ
れた場合には、ニッケル電極材料における充電電位を卑
側にシフトでき、充電電位と酸素発生電位との電位差を
大きく設定できるので、電池における高温下での充電効
率を向上できる。亜鉛、マグネシウム、及びカドミウム
のいずれかが固溶された場合には、特に充電末期におけ
るγ−NiOOHの生成を抑制でき、ニッケル電極の膨
潤を抑制できるので、電解液がニッケル電極に偏在する
のを防止して充放電サイクル寿命を改善できる。 【0024】例えば亜鉛及びコバルトが固溶された水酸
化ニッケル固溶体からなる正極活物質粒子の製造は、次
のように行う。硫酸ニッケル、硫酸亜鉛、及び硫酸コバ
ルトからなる混合水溶液に、硫酸アンモニウム水溶液を
加え、更にpHをアルカリ側へ調整することにより、ニ
ッケル、亜鉛、及びコバルトのアンミン錯イオンを生成
させ、この水溶液を反応浴中の水酸化ナトリウム水溶液
に撹拌しながら供給するとともに、反応浴のpHを11
〜13及び温度を40〜50℃に維持する。これによ
り、水酸化亜鉛及び水酸化コバルトが固溶された水酸化
ニッケル固溶体粒子即ち正極活物質粒子が生成する。な
お、硫酸亜鉛及び硫酸コバルトを省けば、水酸化ニッケ
ルからなる正極活物質粒子が生成する。 【0025】低次コバルト化合物からなる被覆層の形成
は、次のように行う。反応浴中の硫酸コバルト水溶液に
上記正極活物質粒子を浸漬させて撹拌しながら、反応浴
に水酸化ナトリウム水溶液を加えてpH11〜13を維
持する。これにより、上記正極活物質粒子の表面に水酸
化コバルトからなる被覆層が形成される。即ち、正極材
料粒子が生成する。 【0026】低次コバルト化合物としては、コバルト単
体、一酸化コバルト、水酸化コバルトなどが挙げられ
る。特に、オキシ水酸化コバルトを生成しやすい点か
ら、水酸化コバルトが好ましい。 【0027】アルカリ水溶液としては、水酸化リチウ
ム、水酸化ナトリウム、水酸化カリウムの内の1種以上
が溶解された水溶液を用いるのが好ましい。 【0028】酸化剤としては、ペルオキソ二硫酸カリウ
ム(K)、ペルオキソ二硫酸ナトリウム(N
)、ペルオキソ二硫酸アンモニウム((N
)、及び次亜塩素酸ナトリウム(Na
OCl)の内の1種以上を用いるのが好ましい。これら
の酸化剤は、2価のコバルト及び2価のニッケルを酸化
できるものであるので、低次コバルト化合物だけでな
く、水酸化ニッケルも確実に酸化される。 【0029】 【発明の実施の形態】{ニッケル電極材料の製造} (実施例1) 【0030】[正極活物質の生成]硫酸ニッケル、硫酸
亜鉛、及び硫酸コバルトからなる混合水溶液に、硫酸ア
ンモニウム水溶液を加え、更にpHをアルカリ側へ調整
することにより、ニッケル、亜鉛、及びコバルトのアン
ミン錯イオンを生成させ、この水溶液を反応浴中の水酸
化ナトリウム水溶液に撹拌しながら供給するとともに、
反応浴のpHを11〜13及び温度を40〜50℃に維
持した。これにより、水酸化亜鉛及び水酸化コバルトが
固溶された水酸化ニッケル固溶体粒子即ち正極活物質粒
子が生成した。正極活物質におけるニッケル、亜鉛、及
びコバルトの含有割合は、それぞれ、58重量%、3.
7重量%、及び1.2重量%とした。 【0031】[正極材料の生成(水酸化コバルトの被
覆)]次に、反応浴中の硫酸コバルト水溶液に上記正極
活物質粒子を浸漬させて撹拌しながら、反応浴に水酸化
ナトリウム水溶液を加えてpH11〜13を維持した。
これにより、上記正極活物質粒子の表面に水酸化コバル
トからなる被覆層が形成された。即ち、正極材料粒子が
生成した。この正極材料における、水酸化コバルトから
なる被覆層の含有割合は、7重量%とした。 【0032】[酸化処理工程]正極材料粒子100g
に、10重量%次亜塩素酸ナトリウム(NaClO)水
溶液70ml及び30重量%水酸化ナトリウム水溶液1
0mlを噴霧し、それによって、正極材料粒子を湿潤状
態とし、その状態にて、70℃の温度で加熱処理した。
その後、正極材料粒子を水洗し乾燥した。こうして得ら
れた正極材料を実施例1のニッケル電極材料とした。 【0033】なお、ニッケル電極材料におけるニッケル
及びコバルトの平均酸化数は、2.20であった。この
平均酸化数は、以下の方法により求めた。 [平均酸化数の求め方]まず、所定量の正極材料粒子と
硫酸第一鉄アンモニウム(Fe(NH(SO
)とを20体積%の酢酸水溶液に溶解させ、過マンガ
ン酸カリウム溶液を用いた酸化還元滴定を行う。そし
て、得られた滴定値から、2価以上のニッケル及びコバ
ルトの量を求め、その値と、所定量の正極材料中に含ま
れるニッケル及びコバルトの総量とから、ニッケル及び
コバルトの平均酸化数を求める。 【0034】{ニッケル電極の作製}ニッケル電極材料
と、0.6重量%CMC(カルボキシメチルセルロー
ス)溶液と、40重量%PTFE(ポリテトラフルオロ
エチレン)とを、重量比76.7:22.9:0.4で
混合して、電極材料ペーストを得た。そして、その電極
材料ペーストを多孔性発泡ニッケル基体に充填し、乾燥
した後、圧延して、電極材料充填密度2.6g/cc、
正極容量1450mAhの、ニッケル電極を作製した。 【0035】{アルカリ蓄電池の作製}ニッケル電極
と、組成式Mm1.0Ni4.0Co0.7Mn0.3
Al0. で表される水素吸蔵合金を主材料とする負極
とを、厚さ100μmのポリプロピレン製不織布を介し
て渦巻き状に巻き込み、電池ケースに挿入し、水酸化カ
リウム及び水酸化リチウムの水溶液からなる電解液を注
入し、封口し、これにより、理論容量1450mAhの
AAサイズニッケル水素蓄電池を作製した。 【0036】(比較例1)実施例1と同様にして、正極
活物質、更には正極材料を生成し、その後の酸化処理工
程は省略した。得られた正極材料を比較例1のニッケル
電極材料とした。 【0037】(比較例2)実施例1と同様にして、正極
活物質、更には正極材料を生成した。そして、その後の
酸化処理工程においては、水酸化ナトリウム水溶液の使
用を省略し、その他は実施例1と同様とした。即ち、酸
化処理工程では次亜塩素酸ナトリウム水溶液のみで湿潤
状態とした。得られた正極材料を比較例2のニッケル電
極材料とした。 【0038】(比較例3)実施例1と同様にして、正極
活物質、更には正極材料を生成した。そして、その後の
酸化処理工程においては、次亜塩素酸ナトリウム水溶液
の使用を省略し、その他は実施例1と同様とした。即
ち、酸化処理工程では水酸化ナトリウム水溶液のみで湿
潤状態とした。得られた正極材料を比較例3のニッケル
電極材料とした。 【0039】(比較例4)実施例1と同様にして、正極
活物質、更には正極材料を生成した。そして、その後の
酸化処理工程においては、正極材料を、10重量%次亜
塩素酸ナトリウム水溶液350g及び30重量%水酸化
ナトリウム水溶液50gからなる混合溶液400g中に
浸漬させ、その状態にて、70℃の温度で加熱処理し
た。その後、正極材料粒子を水洗し乾燥した。即ち、酸
化処理工程では、湿潤状態ではなく、浸漬状態とした。
得られた正極材料を比較例4のニッケル電極材料とし
た。 【0040】(比較例5)実施例1と同様にして、正極
活物質、更には正極材料を生成した。そして、その後の
酸化処理工程においては、次亜塩素酸ナトリウム水溶液
の代わりに過マンガン酸カリウム(KMnO)水溶液
を使用し、その他は実施例1と同様とした。即ち、酸化
処理工程では酸化剤として過マンガン酸カリウムを用い
た。得られた正極材料を比較例5のニッケル電極材料と
した。 【0041】(比較例6)実施例1と同様にして、正極
活物質、更には正極材料を生成した。そして、その後の
酸化処理工程においては、正極材料粒子100gを、3
0重量%水酸化ナトリウム水溶液20gによって湿潤状
態とし、120℃で加熱して、被覆している水酸化コバ
ルトを酸化処理し、その後、正極材料粒子を反応浴中の
15重量%水酸化ナトリウム水溶液に投入し、浴温度6
0℃で撹拌しながら、次亜塩素酸ナトリウム溶液10m
lを反応浴に加えて、正極活物質中の水酸化ニッケルを
酸化処理した。その後、正極材料粒子を水洗し乾燥し
た。得られた正極材料を比較例6のニッケル電極材料と
した。 【0042】(比較例7)比較例6の15重量%水酸化
ナトリウム水溶液の代わりに30重量%水酸化ナトリウ
ム水溶液を用い、その他は比較例6と同様にした。得ら
れた正極材料を比較例7のニッケル電極材料とした。 【0043】そして、比較例1〜7のニッケル電極材料
を用いて、実施例1の場合と同様にして、ニッケル電
極、ひいてはニッケル水素蓄電池を作製した。なお、比
較例4、7のニッケル電極材料を用いた場合は、正極容
量を1250mAhとした。 【0044】(タップ密度の測定)実施例1及び比較例
1〜7のニッケル電極材料のタップ密度を測定した。タ
ップ密度は、具体的には、所定量の電極材料粒子をメス
シリンダーに投入し、約10cmの高さから落下させる
動作を100〜200回繰り返した後に、電極材料粒子
の占める容積を測定することにより、求めた。その結果
を表1に示す。なお、表1では、実施例1のタップ密度
を100として相対値を示した。 【0045】(活物質利用率の測定)実施例1及び比較
例1〜7のニッケル電極材料を用いた電池について、活
物質利用率を測定した。具体的には、次のようにして測
定した。即ち、電池において、20℃にて、充電電流1
45mA(0.1C)で15時間充電した後、290m
A(0.2C)で放電し、電池電圧1.0Vで放電を終
了した。この終了時の放電容量を求め、その求めた容量
と、電池公称容量である1450mAhとから、次式に
よって求めた。その結果を表1に示す。 (活物質利用率)=100×(0.2C放電の放電容
量)/正極充填容量 【0046】(過放電後の利用率の測定)実施例1及び
比較例1〜7のニッケル電極材料を用いた電池につい
て、過放電後の利用率を測定した。具体的には、次のよ
うにして測定した。即ち、電池において、0.1C充電
及び0.2C放電を3サイクル繰り返した後、放電後の
電池を、4Ωの抵抗を介して外部短絡させ、60℃にて
3日間放置した。過放電後、抵抗を外し、20℃にて、
充電電流145mA(0.1C)で15時間充電した
後、290mA(0.2C)で放電し、電池電圧1.0
Vで放電を終了した。この終了時の放電容量を求め、そ
の求めた容量と、電池公称容量である1450mAhと
から、次式によって求めた。その結果を表1に示す。 (過放電後の利用率)=100×(過放電後の放電容
量)/正極充填容量 【0047】 【表1】 【0048】(サイクル特性の測定)実施例1と比較例
3のニッケル電極材料を用いた電池について、活物質利
用率のサイクル特性を測定した。その結果を図1に示
す。活物質利用率は上述と同様に測定した。 【0049】(検討)表1からわかるように、実施例1
は、比較例1、2、5と比較して、活物質利用率が高
く、過放電後の利用率も高い。また、実施例1は、比較
例6と比較しても、活物質利用率が高い。これは、比較
例6においては、水酸化ニッケルの酸化処理で用いたア
ルカリ水溶液の濃度が低いために、不活性なニッケル酸
化物が生成したからである、と考えられる。 【0050】実施例1は、比較例4、7と比較して、タ
ップ密度が大きい。これは、比較例4では、アルカリ水
溶液の濃度が高いために、また、比較例7では、水酸化
ニッケルの酸化処理で用いたアルカリ水溶液の濃度が高
いために、γ−NiOOHが生成したからである、と考
えられる。なお、タップ密度が低い比較例4、7のニッ
ケル電極材料を用いた電池では、所定量の電極材料を充
填することができず、容量が低下した。 【0051】また、図1からわかるように、実施例1
は、比較例3よりも、サイクル特性が優れている。これ
は、実施例1のニッケル電極材料によれば、水酸化ニッ
ケルが酸化されていることにより、放電リザーブを削減
でき、それ故、充電リザーブの減少を抑制して内圧特性
を改善できるからである、と考えられる。 【0052】(アルカリ水溶液の濃度と活物質利用率と
の関係の検討)実施例1の酸化処理工程における水酸化
ナトリウム水溶液の濃度を種々設定し、その他は実施例
1と同様にして、ニッケル電極材料を得、該ニッケル電
極材料を用いて、上述と同様にしてニッケル水素蓄電池
を作製し、活物質利用率を上述と同様にして測定した。
なお、設定した濃度は、重量%で、10、20、30、
40、50とした。その結果を図2に示す。 【0053】図2からわかるように、水酸化ナトリウム
水溶液の濃度即ちアルカリ濃度は、30〜40重量%が
好ましい。30重量%未満の場合には、アルカリ水溶液
中への水酸化コバルトの溶解性が低くなり、そのために
処理効果が認められなかった、と考えられる。40重量
%を越える場合には、水酸化ナトリウム水溶液の粘度が
高くなり、正極活物質中への水酸化ナトリウムの浸透が
低下し、そのために処理効果が認められなかった、と考
えられる。 【0054】なお、アルカリの種類については、水酸化
カリウム水溶液についても同様の作用効果が認められ
た。また、水酸化ナトリウム水溶液又は水酸化カリウム
水溶液に、水酸化リチウムを含有させてなるものについ
ても、同様の作用効果が認められた。 【0055】(加熱温度と活物質利用率との関係の検
討)実施例1の酸化処理工程における加熱温度を種々設
定し、その他は実施例1と同様にして、ニッケル電極材
料を得、該ニッケル電極材料を用いて、上述と同様にし
てニッケル水素蓄電池を作製し、活物質利用率を上述と
同様にして測定した。なお、設定した加熱温度は、45
℃、70℃、95℃、120℃、145℃とした。その
結果を図3に示す。 【0056】図3からわかるように、加熱温度は70〜
120℃が好ましい。70℃未満の場合には、アルカリ
水溶液中への水酸化コバルトの溶解性が低くなり、その
ために処理効果が認められなかった、と考えられる。ま
た、120℃を越える場合には、酸化処理工程の処理水
溶液における水分の気化が著しくなり、処理水溶液の粘
度が向上して酸化反応が抑制され、そのために活物質利
用率が低下した、と考えられる。 【0057】なお、上述した実施例及び比較例では、処
理に用いる水溶液として、酸化剤の水溶液とアルカリ水
溶液との2種類の水溶液を用いているが、酸化剤をアル
カリ水溶液に溶解してなる1種類の水溶液を用いてもよ
い。 【0058】 【発明の効果】請求項1記載の発明によれば、放電リザ
ーブを削減できると共に、高い活物質利用率を得ること
ができる、ニッケル電極材料、を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material used for a nickel electrode of an alkaline storage battery. 2. Description of the Related Art In recent years, with the spread of portable devices such as portable telephones, notebook computers, and handy video cameras, alkaline storage batteries have been required to be extended in operating time, and high capacity is strongly desired. ing. In particular, a nickel-metal hydride battery has a nickel electrode having a positive electrode active material containing nickel hydroxide as a main component, a negative electrode containing a hydrogen storage alloy as a main material,
And is rapidly spreading as a secondary battery having high capacity and high reliability. There are two types of nickel electrodes for alkaline storage batteries: sintered electrodes and non-sintered electrodes. Sintered electrodes are
A porous nickel sintered substrate as an active material holder is immersed in an aqueous solution of an acidic nickel salt such as nickel nitrate to impregnate the nickel salt in the holes of the substrate, and then the nickel salt is hydroxylated in an alkali. It is obtained by repeatedly performing a filling operation of changing to nickel. However,
In the case of the sintered electrode, it is difficult to increase the porosity of the substrate to about 80% or more, so that the amount of the filled active material cannot be increased, and there is a limit to increasing the capacity. On the other hand, non-sintered electrodes are prepared by dissolving a binder such as carboxymethyl cellulose in water in nickel hydroxide particles formed from an aqueous solution of an acidic nickel salt such as nickel sulfate and an aqueous solution of sodium hydroxide. A paste is prepared by adding a viscous liquid, and the paste is porosity 95%.
It is obtained by directly filling the above foam substrate or fiber substrate. According to the non-sintered electrode, a higher capacity can be expected. [0005] Since nickel hydroxide itself has poor conductivity, non-sintered electrodes generally have an oxidation number of cobalt such as cobalt hydroxide in order to improve current collection between active material particles. Is a divalent cobalt compound. The divalent cobalt compound does not have conductivity by itself, but is electrochemically oxidized by initial charging in the battery to become a higher-order cobalt compound having conductivity,
It effectively functions as a conductive network.
In particular, if a positive electrode material in which the surface of a positive electrode active material made of nickel hydroxide is coated with cobalt hydroxide is used, a conductive network is more easily formed, and the utilization rate of the densely packed active material is greatly increased. Can be increased. Note that the higher-order cobalt compound is a cobalt compound having an oxidation number of cobalt of 2 or more, and specifically, is considered to be cobalt oxyhydroxide (CoOOH). The oxidation of cobalt hydroxide by the initial charge is an irreversible reaction and is not reduced at the time of discharging, so that the negative electrode active material corresponding to the irreversible component remains without being discharged. The amount of electricity remaining without being discharged is called a discharge reserve. When the discharge reserve is generated, the uncharged capacity of the negative electrode, that is, the charge reserve is reduced at the end of charging, the generation of hydrogen gas is promoted, the internal pressure of the battery is increased, and the cycle life is shortened. [0007] In the nickel-metal hydride storage battery, a discharge reserve is also generated by corrosion of the negative electrode alloy. Further, an irreversible product generated in the oxidation-reduction of nickel hydroxide, which is a positive electrode active material, also generates a discharge reserve. Therefore, if the discharge reserve can be reduced, the internal pressure of the battery at the end of charging decreases, the cycle life improves,
In addition, the capacity of the battery can be increased. In view of this, Japanese Patent Application Laid-Open No. 8-148146 discloses that a higher cobalt compound is unevenly distributed on the surface of nickel hydroxide particles in advance, thereby suppressing generation of a discharge reserve due to oxidation due to initial charging. However,
As described above, since the cause of the discharge reserve is not only the irreversible capacity of cobalt hydroxide, this alone is not sufficient. Further, in order to reduce the discharge reserve, attempts have been made to oxidize a part of nickel hydroxide which is a positive electrode active material. For example, Japanese Patent Application Laid-Open No. 2000-223119 discloses a method in which a high-order cobalt compound is retained on the surface of nickel hydroxide particles and nickel hydroxide is partially oxidized in an aqueous alkaline solution. However, when the above-mentioned method is performed in a high-concentration aqueous alkaline solution,
Part of the nickel hydroxide is γ-nickel oxyhydroxide (γ
—NiOOH), which reduces the tap density of the particles and may be contrary to the increase in capacity. Conversely, when the reaction is carried out in a low-concentration aqueous alkaline solution, inactive nickel oxide is produced as a by-product, and the activity of nickel hydroxide itself is impaired, and the active material utilization rate may be reduced. An object of the present invention is to provide a manufacturing method capable of obtaining a nickel electrode material capable of reducing a discharge reserve and obtaining a high active material utilization rate. Means for Solving the Problems The invention according to claim 1 is:
A positive electrode in which a coating layer made of a low-order cobalt compound having an oxidation number of cobalt of 2 or less is formed on the surface of positive electrode active material particles made of nickel hydroxide or a solid solution of nickel hydroxide in which dissimilar elements are dissolved. The material is wetted with an aqueous solution of an oxidizing agent and a 30 to 40% by weight alkaline aqueous solution, or with a 30 to 40% by weight alkaline aqueous solution containing an oxidizing agent. A nickel electrode material, comprising an oxidation treatment step of heating at a temperature. According to the first aspect of the present invention, the concentration of the aqueous alkali solution is 30 to 40% by weight, and the heating temperature is 7%.
Since the temperature is 0 to 120 ° C., the solubility of the low-order cobalt compound in the aqueous alkali solution is maintained high, and the oxidation reaction proceeds smoothly. Therefore, the low-order cobalt compound is oxidized,
The oxidation number of cobalt changes to a higher-order cobalt compound larger than divalent, and a part of nickel hydroxide is oxidized. In addition, since the oxidation treatment is performed in a wet state,
The treatment with the alkaline aqueous solution having the above concentration suppresses the formation of inactive nickel oxide, and thus does not impair the activity of nickel hydroxide itself, and also suppresses the formation of γ-NiOOH. Is prevented from decreasing. Therefore, according to the first aspect of the present invention, nickel hydroxide as a positive electrode active material is partially oxidized, the coating layer is made of a high-order cobalt compound, and the tap density is high. Thus, a nickel electrode material in which the activity of the positive electrode active material is not impaired is obtained. When such a nickel electrode material is used for a nickel electrode, and eventually for a nickel-metal hydride battery, the following effects (1) to (3) are exhibited. (1) Since a part of nickel hydroxide of the positive electrode active material is oxidized, generation of irreversible electricity by initial charging after battery assembly is prevented. In addition, since the coating layer is made of a higher-order cobalt compound, generation of irreversible electricity by initial charging after battery assembly is prevented. Therefore, in the battery using this nickel electrode material, the discharge reserve is sufficiently reduced. Since the discharge reserve can be reduced,
The capacity of the negative electrode can be substantially increased, and therefore the capacity can be increased while maintaining the same size of the battery, or the size can be reduced while maintaining the same capacity of the battery. Therefore, both miniaturization and high capacity can be achieved. Further, since the discharge reserve can be reduced, the charge reserve can be increased, and therefore, the gas generated at the time of overcharge can be effectively absorbed by the charge reserve.
The internal pressure rise can be suppressed, and the charge / discharge cycle life can be improved. (2) Since the tap density is high, the current collector can be filled with the electrode material at high density. Therefore, high capacity can be achieved. (3) Since the activity of the positive electrode active material is maintained without being impaired, the utilization rate of the active material can be improved. Further, according to the first aspect of the present invention, since the treatment is performed in a wet state, the amount of the aqueous solution used for the treatment can be reduced as compared with the immersion treatment. Therefore, manufacturing costs are reduced. The different elements to be dissolved are cobalt,
One or more of zinc, magnesium, cadmium, aluminum, and manganese are preferred. When cobalt is dissolved, the charging potential of the nickel electrode material can be shifted to the base side, and the potential difference between the charging potential and the oxygen generation potential can be set large, so that the charging efficiency of the battery at high temperatures can be improved. When any of zinc, magnesium, and cadmium is dissolved, it is possible to suppress generation of γ-NiOOH, particularly at the end of charging, and to suppress swelling of the nickel electrode. Prevention to improve the charge / discharge cycle life. For example, the production of positive electrode active material particles comprising a solid solution of nickel hydroxide in which zinc and cobalt are dissolved is performed as follows. An aqueous solution of ammonium sulfate is added to a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate, and the pH is further adjusted to an alkaline side to generate an ammine complex ion of nickel, zinc, and cobalt. While stirring and supplying to the aqueous sodium hydroxide solution, the pH of the reaction bath was adjusted to 11
1313 and the temperature is maintained at 40-50 ° C. Thereby, nickel hydroxide solid solution particles in which zinc hydroxide and cobalt hydroxide are dissolved, that is, positive electrode active material particles are generated. When zinc sulfate and cobalt sulfate are omitted, positive electrode active material particles composed of nickel hydroxide are generated. The formation of the coating layer made of a low-order cobalt compound is performed as follows. The aqueous solution of sodium hydroxide is added to the reaction bath while the positive electrode active material particles are immersed and stirred in the aqueous solution of cobalt sulfate in the reaction bath, and the pH is maintained at 11 to 13. Thereby, a coating layer made of cobalt hydroxide is formed on the surfaces of the positive electrode active material particles. That is, positive electrode material particles are generated. Examples of the low-order cobalt compound include simple cobalt, cobalt monoxide, and cobalt hydroxide. In particular, cobalt hydroxide is preferable because cobalt oxyhydroxide is easily generated. As the alkaline aqueous solution, it is preferable to use an aqueous solution in which at least one of lithium hydroxide, sodium hydroxide and potassium hydroxide is dissolved. As the oxidizing agent, potassium peroxodisulfate (K 2 S 2 O 8 ) and sodium peroxodisulfate (N
a 2 S 2 O 8 ), ammonium peroxodisulfate ((N
H 4 ) 2 S 2 O 8 ) and sodium hypochlorite (Na
It is preferable to use at least one of OCI). Since these oxidizing agents can oxidize divalent cobalt and divalent nickel, not only low-order cobalt compounds but also nickel hydroxide are reliably oxidized. DESCRIPTION OF THE PREFERRED EMBODIMENTS << Production of Nickel Electrode Material >> (Example 1) [Production of Positive Electrode Active Material] An aqueous solution of ammonium sulfate was added to a mixed aqueous solution comprising nickel sulfate, zinc sulfate and cobalt sulfate. In addition, by further adjusting the pH to the alkaline side, nickel, zinc, and an ammine complex ion of cobalt are generated, and this aqueous solution is supplied to the aqueous sodium hydroxide solution in the reaction bath while stirring,
The pH of the reaction bath was maintained at 11-13 and the temperature at 40-50 ° C. As a result, nickel hydroxide solid solution particles in which zinc hydroxide and cobalt hydroxide were dissolved, that is, positive electrode active material particles were produced. The contents of nickel, zinc, and cobalt in the positive electrode active material were 58% by weight and 3, respectively.
7% by weight and 1.2% by weight. [Formation of Positive Electrode Material (Coating with Cobalt Hydroxide)] Next, an aqueous solution of sodium hydroxide was added to the reaction bath while the positive electrode active material particles were immersed and stirred in an aqueous solution of cobalt sulfate in the reaction bath. pH 11-13 was maintained.
As a result, a coating layer made of cobalt hydroxide was formed on the surfaces of the positive electrode active material particles. That is, positive electrode material particles were generated. The content ratio of the coating layer made of cobalt hydroxide in this positive electrode material was 7% by weight. [Oxidation treatment step] 100 g of positive electrode material particles
70 ml of a 10% by weight aqueous solution of sodium hypochlorite (NaClO) and a 30% by weight aqueous solution of sodium hydroxide 1
0 ml was sprayed, thereby bringing the positive electrode material particles into a wet state, and then heated at a temperature of 70 ° C. in that state.
Thereafter, the positive electrode material particles were washed with water and dried. The positive electrode material thus obtained was used as the nickel electrode material of Example 1. The average oxidation number of nickel and cobalt in the nickel electrode material was 2.20. This average oxidation number was determined by the following method. [Method of Obtaining Average Oxidation Number] First, a predetermined amount of positive electrode material particles and ferrous ammonium sulfate (Fe (NH 4 ) 2 (SO 4 )
2 ) is dissolved in a 20% by volume aqueous acetic acid solution, and redox titration is performed using a potassium permanganate solution. Then, from the obtained titration values, the amounts of nickel and cobalt having two or more valences are obtained, and the average oxidation number of nickel and cobalt is calculated from the values and the total amount of nickel and cobalt contained in a predetermined amount of the cathode material. Ask. {Preparation of Nickel Electrode} A nickel electrode material, a 0.6% by weight CMC (carboxymethylcellulose) solution, and a 40% by weight PTFE (polytetrafluoroethylene) were mixed at a weight ratio of 76.7: 22.9: The mixture was mixed at 0.4 to obtain an electrode material paste. Then, the electrode material paste is filled in a porous nickel foam substrate, dried, and then rolled to obtain an electrode material packing density of 2.6 g / cc.
A nickel electrode having a positive electrode capacity of 1450 mAh was produced. {Preparation of Alkaline Storage Battery} Nickel electrode and composition formula Mm 1.0 Ni 4.0 Co 0.7 Mn 0.3
Al 0. A negative electrode composed mainly of a hydrogen storage alloy represented by No. 3 is spirally wound through a 100-μm-thick polypropylene nonwoven fabric, inserted into a battery case, and subjected to electrolysis comprising an aqueous solution of potassium hydroxide and lithium hydroxide. The solution was injected and sealed, thereby producing an AA-size nickel-metal hydride storage battery having a theoretical capacity of 1450 mAh. Comparative Example 1 In the same manner as in Example 1, a positive electrode active material and further a positive electrode material were produced, and the subsequent oxidation treatment step was omitted. The obtained positive electrode material was used as a nickel electrode material of Comparative Example 1. Comparative Example 2 A positive electrode active material and further a positive electrode material were produced in the same manner as in Example 1. Then, in the subsequent oxidation treatment step, the use of the aqueous sodium hydroxide solution was omitted, and the other conditions were the same as in Example 1. That is, in the oxidation treatment step, the wet state was achieved only with the aqueous solution of sodium hypochlorite. The obtained positive electrode material was used as a nickel electrode material of Comparative Example 2. Comparative Example 3 In the same manner as in Example 1, a positive electrode active material and further a positive electrode material were produced. Then, in the subsequent oxidation treatment step, the use of the sodium hypochlorite aqueous solution was omitted, and the other conditions were the same as in Example 1. That is, in the oxidation treatment step, a wet state was obtained only with the aqueous sodium hydroxide solution. The obtained positive electrode material was used as a nickel electrode material of Comparative Example 3. Comparative Example 4 In the same manner as in Example 1, a positive electrode active material and further a positive electrode material were produced. Then, in the subsequent oxidation treatment step, the positive electrode material was immersed in 400 g of a mixed solution composed of 350 g of a 10% by weight aqueous solution of sodium hypochlorite and 50 g of a 30% by weight aqueous solution of sodium hydroxide. Heat treatment at a temperature of Thereafter, the positive electrode material particles were washed with water and dried. That is, in the oxidation treatment step, the immersion state was used instead of the wet state.
The obtained positive electrode material was used as a nickel electrode material of Comparative Example 4. Comparative Example 5 In the same manner as in Example 1, a positive electrode active material and further a positive electrode material were produced. Then, in the subsequent oxidation treatment step, an aqueous solution of potassium permanganate (KMnO 4 ) was used instead of the aqueous solution of sodium hypochlorite, and the other conditions were the same as in Example 1. That is, in the oxidation treatment step, potassium permanganate was used as the oxidizing agent. The obtained positive electrode material was used as a nickel electrode material of Comparative Example 5. Comparative Example 6 In the same manner as in Example 1, a positive electrode active material and further a positive electrode material were produced. Then, in the subsequent oxidation treatment step, 100 g of the positive electrode material particles
The coated cobalt hydroxide is oxidized by heating at 120 ° C. by moistening with 20 g of a 0% by weight aqueous sodium hydroxide solution, and then the positive electrode material particles are converted into a 15% by weight aqueous sodium hydroxide solution in a reaction bath. Charge, bath temperature 6
While stirring at 0 ° C., 10 m of sodium hypochlorite solution
was added to the reaction bath to oxidize nickel hydroxide in the positive electrode active material. Thereafter, the positive electrode material particles were washed with water and dried. The obtained positive electrode material was used as a nickel electrode material of Comparative Example 6. Comparative Example 7 A 30% by weight aqueous sodium hydroxide solution was used in place of the 15% by weight aqueous sodium hydroxide solution of Comparative Example 6, and the other conditions were the same as in Comparative Example 6. The obtained positive electrode material was used as a nickel electrode material of Comparative Example 7. Then, using the nickel electrode materials of Comparative Examples 1 to 7, in the same manner as in Example 1, a nickel electrode and eventually a nickel-metal hydride storage battery were produced. When the nickel electrode materials of Comparative Examples 4 and 7 were used, the positive electrode capacity was set to 1250 mAh. (Measurement of Tap Density) The tap densities of the nickel electrode materials of Example 1 and Comparative Examples 1 to 7 were measured. Tap density, specifically, after a predetermined amount of electrode material particles are put into a measuring cylinder and the operation of dropping from a height of about 10 cm is repeated 100 to 200 times, the volume occupied by the electrode material particles is measured. Sought. Table 1 shows the results. In Table 1, relative values are shown with the tap density of Example 1 as 100. (Measurement of Active Material Utilization) The active material utilization was measured for the batteries using the nickel electrode materials of Example 1 and Comparative Examples 1 to 7. Specifically, the measurement was performed as follows. That is, at 20 ° C., a charging current of 1
After charging at 45mA (0.1C) for 15 hours, 290m
The battery was discharged at A (0.2 C), and was terminated at a battery voltage of 1.0 V. The discharge capacity at the end of this time was obtained, and from the obtained capacity and 1450 mAh, which is the nominal capacity of the battery, was obtained by the following equation. Table 1 shows the results. (Active material utilization rate) = 100 × (discharge capacity of 0.2 C discharge) / positive electrode filling capacity (Measurement of utilization rate after overdischarge) Using nickel electrode materials of Example 1 and Comparative Examples 1 to 7 The utilization rate after overdischarge was measured for the batteries that had been discharged. Specifically, the measurement was performed as follows. That is, the battery was repeatedly subjected to 0.1 C charge and 0.2 C discharge for 3 cycles, then externally short-circuited through a 4Ω resistor and left at 60 ° C. for 3 days. After overdischarge, remove the resistor and at 20 ° C,
After charging for 15 hours at a charging current of 145 mA (0.1 C), discharging at 290 mA (0.2 C),
The discharge was terminated at V. The discharge capacity at the end of this time was obtained, and from the obtained capacity and 1450 mAh, which is the nominal capacity of the battery, was obtained by the following equation. Table 1 shows the results. (Utilization rate after overdischarge) = 100 × (discharge capacity after overdischarge) / positive capacity of positive electrode (Measurement of Cycle Characteristics) For the batteries using the nickel electrode materials of Example 1 and Comparative Example 3, the cycle characteristics of the active material utilization were measured. The result is shown in FIG. The active material utilization was measured in the same manner as described above. (Study) As can be seen from Table 1, Example 1
Has a higher active material utilization rate than Comparative Examples 1, 2, and 5, and a higher utilization rate after overdischarge. In addition, Example 1 has a higher active material utilization rate than Comparative Example 6. This is considered to be because in Comparative Example 6, the concentration of the aqueous alkali solution used in the oxidation treatment of the nickel hydroxide was low, so that an inactive nickel oxide was generated. Example 1 has a higher tap density than Comparative Examples 4 and 7. This is because γ-NiOOH was generated in Comparative Example 4 because the concentration of the aqueous alkaline solution was high, and in Comparative Example 7 because the concentration of the aqueous alkaline solution used in the oxidation treatment of nickel hydroxide was high. It is believed that there is. In the batteries using the nickel electrode materials of Comparative Examples 4 and 7 having a low tap density, a predetermined amount of the electrode material could not be filled, and the capacity was reduced. Also, as can be seen from FIG.
Has better cycle characteristics than Comparative Example 3. This is because, according to the nickel electrode material of Example 1, since nickel hydroxide is oxidized, the discharge reserve can be reduced, and therefore, the decrease in the charge reserve can be suppressed and the internal pressure characteristics can be improved. ,it is conceivable that. (Study on Relationship between Concentration of Alkaline Aqueous Solution and Utilization Rate of Active Material) A nickel electrode was prepared in the same manner as in Example 1 except that the concentration of the aqueous sodium hydroxide solution in the oxidation treatment step of Example 1 was variously set. A nickel-metal hydride storage battery was manufactured in the same manner as described above using the nickel electrode material, and the active material utilization was measured in the same manner as described above.
The set concentrations were 10, 20, 30, and 30% by weight.
40 and 50. The result is shown in FIG. As can be seen from FIG. 2, the concentration of the aqueous sodium hydroxide solution, that is, the alkali concentration is preferably 30 to 40% by weight. When the content is less than 30% by weight, it is considered that the solubility of cobalt hydroxide in the aqueous alkali solution was low, and no treatment effect was observed. If the amount exceeds 40% by weight, it is considered that the viscosity of the aqueous solution of sodium hydroxide increases, and the penetration of sodium hydroxide into the positive electrode active material decreases, so that no treatment effect was observed. With respect to the kind of alkali, the same action and effect were observed for potassium hydroxide aqueous solution. In addition, the same effect was also obtained in the case where an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide contained lithium hydroxide. (Examination of Relationship between Heating Temperature and Active Material Utilization) The heating temperature in the oxidation treatment step of Example 1 was set variously, and otherwise the same as in Example 1 to obtain a nickel electrode material. Using the electrode material, a nickel-metal hydride storage battery was manufactured in the same manner as described above, and the active material utilization was measured in the same manner as described above. The set heating temperature is 45
° C, 70 ° C, 95 ° C, 120 ° C, and 145 ° C. The result is shown in FIG. As can be seen from FIG.
120 ° C. is preferred. If the temperature is lower than 70 ° C., it is considered that the solubility of cobalt hydroxide in the aqueous alkali solution was low, and no treatment effect was observed. On the other hand, when the temperature exceeds 120 ° C., it is considered that the vaporization of water in the treatment aqueous solution in the oxidation treatment step becomes remarkable, the viscosity of the treatment aqueous solution is improved and the oxidation reaction is suppressed, and therefore, the active material utilization rate is reduced. Can be In the examples and comparative examples described above, two types of aqueous solutions, an aqueous solution of an oxidizing agent and an aqueous alkaline solution, are used as the aqueous solution used for the treatment. Various types of aqueous solutions may be used. According to the first aspect of the present invention, it is possible to obtain a nickel electrode material capable of reducing a discharge reserve and obtaining a high active material utilization rate.

【図面の簡単な説明】 【図1】 実施例1と比較例3との充放電サイクルと活
物質利用率との関係を示す図である。 【図2】 本発明の製造方法における水酸化ナトリウム
水溶液濃度と活物質利用率との関係を示す図である。 【図3】 本発明の製造方法における加熱温度と活物質
利用率との関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the charge / discharge cycle and the active material utilization rate in Example 1 and Comparative Example 3. FIG. 2 is a diagram showing the relationship between the concentration of an aqueous solution of sodium hydroxide and the utilization rate of an active material in the production method of the present invention. FIG. 3 is a diagram showing a relationship between a heating temperature and an active material utilization rate in the production method of the present invention.

フロントページの続き (72)発明者 落合 誠二郎 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 児玉 充浩 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 綿田 正治 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 押谷 政彦 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H028 BB05 BB10 EE05 EE10 HH01 HH08 5H050 AA02 AA08 CA03 CA04 CB16 DA02 GA02 GA15 GA22 HA01 HA14 Continuation of front page    (72) Inventor Seijiro Ochiai             2-3-21 Kosobe-cho, Takatsuki-shi, Osaka             In the formula company Yuasa Corporation (72) Inventor Mitsuhiro Kodama             2-3-21 Kosobe-cho, Takatsuki-shi, Osaka             In the formula company Yuasa Corporation (72) Inventor Masaharu Watada             2-3-21 Kosobe-cho, Takatsuki-shi, Osaka             In the formula company Yuasa Corporation (72) Inventor Masahiko Oshitani             2-3-21 Kosobe-cho, Takatsuki-shi, Osaka             In the formula company Yuasa Corporation F term (reference) 5H028 BB05 BB10 EE05 EE10 HH01                       HH08                 5H050 AA02 AA08 CA03 CA04 CB16                       DA02 GA02 GA15 GA22 HA01                       HA14

Claims (1)

【特許請求の範囲】 【請求項1】 水酸化ニッケル又は異種元素が固溶され
た水酸化ニッケル固溶体からなる正極活物質粒子の表面
に、コバルトの酸化数が2価以下である低次コバルト化
合物からなる被覆層が形成されている、正極材料を、酸
化剤の水溶液と30〜40重量%のアルカリ水溶液と
で、又は、酸化剤を含有した30〜40重量%のアルカ
リ水溶液で、湿潤状態とし、該湿潤状態にて、70〜1
20℃の温度で加熱する、酸化処理工程、を備えたこと
を特徴とするニッケル電極材料の製造方法。
Claims: 1. A low-order cobalt compound having a cobalt oxidation number of 2 or less on the surface of positive electrode active material particles composed of nickel hydroxide or a solid solution of nickel hydroxide in which dissimilar elements are dissolved. The positive electrode material on which the coating layer made of is formed is wetted with an aqueous solution of an oxidizing agent and a 30 to 40% by weight alkaline aqueous solution, or with a 30 to 40% by weight alkaline aqueous solution containing an oxidizing agent. , 70-1 in the wet state
A method for producing a nickel electrode material, comprising: an oxidation treatment step of heating at a temperature of 20 ° C.
JP2001265631A 2001-09-03 2001-09-03 Method for producing nickel electrode material Expired - Lifetime JP4479136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265631A JP4479136B2 (en) 2001-09-03 2001-09-03 Method for producing nickel electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265631A JP4479136B2 (en) 2001-09-03 2001-09-03 Method for producing nickel electrode material

Publications (2)

Publication Number Publication Date
JP2003077470A true JP2003077470A (en) 2003-03-14
JP4479136B2 JP4479136B2 (en) 2010-06-09

Family

ID=19092069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265631A Expired - Lifetime JP4479136B2 (en) 2001-09-03 2001-09-03 Method for producing nickel electrode material

Country Status (1)

Country Link
JP (1) JP4479136B2 (en)

Also Published As

Publication number Publication date
JP4479136B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4710225B2 (en) Method for producing nickel electrode material
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP2002110154A (en) Manufacturing method of positive pole active material for alkaline battery
WO1993008611A1 (en) Method for production of nickel plate and alkali storage battery
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP2000003707A (en) Alkaline storage battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP4479136B2 (en) Method for producing nickel electrode material
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3543607B2 (en) Alkaline storage battery
JP4370746B2 (en) Method for producing nickel electrode active material and method for producing active material paste for nickel electrode
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11238507A (en) Alkaline storage battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP4305029B2 (en) Alkaline storage battery with non-sintered nickel positive electrode
JP2003109586A (en) Manufacturing method of nickel electrode active material paste, nickel electrode active material paste, nickel electrode and alkali storage battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3061303B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP2001345099A (en) Active material for nickel positive electrode and nickel- hydrogen secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4479136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

EXPY Cancellation because of completion of term