JP2003073677A - Fuel oil composition - Google Patents

Fuel oil composition

Info

Publication number
JP2003073677A
JP2003073677A JP2001270159A JP2001270159A JP2003073677A JP 2003073677 A JP2003073677 A JP 2003073677A JP 2001270159 A JP2001270159 A JP 2001270159A JP 2001270159 A JP2001270159 A JP 2001270159A JP 2003073677 A JP2003073677 A JP 2003073677A
Authority
JP
Japan
Prior art keywords
less
fuel oil
volume
component
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001270159A
Other languages
Japanese (ja)
Other versions
JP5027971B2 (en
Inventor
Yasushi Akimoto
恭志 秋元
Hiroto Matsumoto
寛人 松本
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2001270159A priority Critical patent/JP5027971B2/en
Publication of JP2003073677A publication Critical patent/JP2003073677A/en
Application granted granted Critical
Publication of JP5027971B2 publication Critical patent/JP5027971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel oil composition for fuel cells which can efficiently produce hydrogen, does not badly affect a modification catalyst and a fuel cell electrode, and the fuel oil composition for internal combustion engines and for fuel cells which, even when used for automotive internal combustion engines, has a high octane number and can be used without causing knocking. SOLUTION: The fuel oil composition contains 5 vol.% or lower 4C hydrocarbon component, 10-40 vol.% 5C paraffin component, 15 vol.% or lower 5C olefin component, 5 vol.% or lower 5C naphthene component, 10 vol.% or lower aromatic component, and 5 wt.ppm or lower sulfur and has a Reid vapor pressure of 60 kPa or lower. Or the fuel composition contains 5 vol.% or lower 4C hydrocarbon component, 10-30 vol.% 5C paraffin component, 10 vol.% or lower 5C olefin component, 10 vol.% or lower aromatic component, and 5 wt.ppm or lower sulfur and has a Reid vapor pressure of 60 kPa or lower and a research octane number of 66 or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に使用す
る水素を製造するための燃料油組成物に関し、詳しく
は、ガソリン留分等の石油系炭化水素からなり、内燃機
関用と兼用可能な燃料電池用燃料油組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel oil composition for producing hydrogen used in a fuel cell, and more specifically, it is composed of petroleum hydrocarbon such as gasoline fraction and can be used as an internal combustion engine. The present invention relates to a fuel oil composition for fuel cells.

【0002】[0002]

【従来の技術】一般に、燃料電池用の燃料として水素が
用いられるが、このような水素としては、水素ガスをそ
のまま用いるもの、メタノールなどを改質あるいは分解
して得られる水素を用いるもの、あるいは常温、常圧下
でガス状であるメタンを主成分とする都市ガスやプロパ
ンを主成分とするLPGなどから得られる水素を用いる
もの等が提案されている。しかしながら、水素ガスをそ
のまま使用する場合はそれ自体気体であることからその
取り扱いが困難となり、また、メタノールの場合はエネ
ルギー密度が低いこと、高価であること、インフラが整
備されていないなどの問題があり、更に都市ガスやLP
Gはその利用が地域的に限定される点、また取り扱いが
困難であるなどの問題があり、特に、自動車用等輸送用
の燃料電池の燃料として用いる場合は実用上大きな課題
がある。近年、エネルギー効率が高く、環境負荷の小さ
い燃料電池を動力源とした燃料電池車が注目されてきて
おり、これに使用する燃料電池の開発が求められてい
る。一方で、自動車等の内燃機関用の燃料として従来使
用されてきたガソリンあるいはこれを構成する石油系炭
化水素留分は、通常液体でありかつエネルギー密度が高
い等の利点を有しており、燃料電池に有効に利用しうる
と考えられている。また、このようなガソリン留分に関
しては現状においてインフラも十分に整備されている。
2. Description of the Related Art Generally, hydrogen is used as a fuel for a fuel cell. As such hydrogen, hydrogen gas used as it is, hydrogen obtained by reforming or decomposing methanol or the like, or It has been proposed to use hydrogen obtained from city gas containing methane as a main component and LPG containing propane as a main component which are gaseous at room temperature and atmospheric pressure. However, when hydrogen gas is used as it is, it is difficult to handle because it is a gas itself, and in the case of methanol, there are problems such as low energy density, high cost, and lack of infrastructure. Yes, city gas and LP
G has problems that its use is limited locally and that it is difficult to handle. Especially, when G is used as a fuel for a fuel cell for transportation such as automobiles, there is a large practical problem. 2. Description of the Related Art In recent years, a fuel cell vehicle using a fuel cell having high energy efficiency and a low environmental load as a power source has been attracting attention, and development of a fuel cell to be used for the fuel cell vehicle is required. On the other hand, gasoline or a petroleum hydrocarbon fraction constituting the same, which has been conventionally used as a fuel for an internal combustion engine of an automobile or the like, has an advantage that it is usually a liquid and has a high energy density. It is thought that it can be effectively used for batteries. The infrastructure for such gasoline fractions is currently well developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ガ
ソリン留分はメタノール等に比較して、触媒のコーク劣
化あるいは触媒被毒などによりその改質が容易でなく、
また改質触媒の寿命も比較的短いという問題がある。ま
た、上記知見にも関わらず、従来自動車等に用いられて
いる内燃機関エンジンの全てを一度に燃料電池エンジン
に切り換えるのは現実的に困難であり、その過渡期にお
いては内燃機関、燃料電池の両者に共用しうる燃料油の
使用が望まれる。一般に内燃機関に用いられる燃料油を
燃料電池に用いても上記のような問題が生じ、一方で燃
料電池用に開発された燃料油を内燃機関に用いた場合、
ノッキング等の実用上好ましくない問題が生じるなど、
いずれの場合もこれらの単純な転用は困難であった。本
発明は上記課題を解決するためになされたものである。
すなわち、本発明は、水素を効率よく製造することがで
き、改質触媒、燃料電池電極に対して悪影響を及ぼすこ
となく改質触媒等の劣化が少ない燃料電池用燃料油組成
物を提供することにある。また本発明の目的は、自動車
の内燃機関エンジン用燃料油として使用した場合もオク
タン価が高く、ノッキング等を起こすことなく有効に使
用可能である内燃機関用及び燃料電池用兼用燃料油組成
物を提供することを目的とする。
However, the gasoline fraction is not easily reformed as compared with methanol or the like due to coke deterioration of the catalyst or poisoning of the catalyst.
There is also a problem that the life of the reforming catalyst is relatively short. Further, in spite of the above knowledge, it is practically difficult to switch all the internal combustion engine engines conventionally used in automobiles etc. to the fuel cell engine at one time, and in the transition period, the internal combustion engine and the fuel cell It is desirable to use fuel oil that can be shared by both parties. When the fuel oil generally used in the internal combustion engine is used in the fuel cell, the above-mentioned problems occur, while when the fuel oil developed for the fuel cell is used in the internal combustion engine,
Practically unfavorable problems such as knocking occur,
In any case, these simple diversions were difficult. The present invention has been made to solve the above problems.
That is, the present invention provides a fuel oil composition for a fuel cell, which can efficiently produce hydrogen, and which does not adversely affect the reforming catalyst and the fuel cell electrode and causes less deterioration of the reforming catalyst and the like. It is in. Further, an object of the present invention is to provide a fuel oil composition for both internal combustion engine and fuel cell, which has a high octane number even when used as a fuel oil for an internal combustion engine of an automobile and can be effectively used without causing knocking or the like. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題に
鑑みて鋭意研究の結果、特定の組成・性状のガソリン留
分を燃料油として用いることにより本発明の上記目的を
達成しうることを見出した。本発明はかかる知見に基づ
いて完成されたものである。すなわち、本発明は、 (1)炭素数4の炭化水素分を5容量%以下、炭素数5
のパラフィン分を10〜40容量%、炭素数5のオレフ
ィン分を15容量%以下、炭素数5のナフテン分を5容
量%以下、芳香族分を10容量%以下、硫黄分を5重量
ppm以下含み、かつリード蒸気圧が60kPa以下で
ある燃料油組成物、及び(2)炭素数4の炭化水素分を
5容量%以下、炭素数5のパラフィン分を10〜30容
量%、炭素数5のオレフィン分を10容量%以下、炭素
数5のナフテン分を5容量%以下、芳香族分を10容量
%以下、硫黄分を5重量ppm以下含み、かつリード蒸
気圧が60kPa以下で、リサーチ法オクタン価が66
以上である燃料油組成物、に関するものである。
Means for Solving the Problems As a result of earnest research in view of the above problems, the present inventors can achieve the above object of the present invention by using a gasoline fraction having a specific composition and properties as fuel oil. Found. The present invention has been completed based on such findings. That is, the present invention provides (1) a hydrocarbon component having 4 carbon atoms of 5% by volume or less,
Paraffin content of 10 to 40% by volume, C5 olefin content of 15% or less, C5 naphthene content of 5% or less, aromatic content of 10% or less, and sulfur content of 5 ppm by weight or less. A fuel oil composition containing a Reid vapor pressure of 60 kPa or less, and (2) a hydrocarbon component having 4 carbon atoms of 5% by volume or less, a paraffin component having 5 carbon atoms of 10 to 30% by volume, and having 5 carbon atoms. Contains 10% by volume or less of olefins, 5% or less by volume of naphthenes having 5 carbon atoms, 10% by volume or less of aromatics, 5 ppm by weight or less of sulfur, and has a Reid vapor pressure of 60 kPa or less and a research method octane number Is 66
The present invention relates to the above fuel oil composition.

【0005】[0005]

【発明の実施の形態】以下に、本発明を更に詳細に説明
する。本発明は、炭素数4の炭化水素分を5容量%以
下、炭素数5のパラフィン分を10〜40容量%、炭素
数5のオレフィン分を15容量%以下、炭素数5のナフ
テン分を5容量%以下、芳香族分を10容量%以下、硫
黄分を5重量ppm以下含み、かつリード蒸気圧が60
kPa以下である燃料油組成物(燃料油1)に係るもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. According to the present invention, hydrocarbons having 4 carbon atoms are 5% by volume or less, paraffins having 5 carbon atoms are 10 to 40% by volume, olefins having 5 carbon atoms are 15% by volume or less, and naphthenes having 5 carbon atoms are 5% by volume. Volume% or less, aromatic content is 10 volume% or less, sulfur content is 5 ppm by weight or less, and Reid vapor pressure is 60.
It relates to a fuel oil composition (fuel oil 1) having a kPa or less.

【0006】本発明の燃料油1において、炭素数4の炭
化水素分としては、例えば、ブタン、n−ブテン、is
o−ブテン等が挙げられ、これらは当該分野において通
常の方法により得られるものを適宜使用することが出来
る。また、炭素数5のパラフィン分としては、例えば、
n−ペンタン、iso−ペンタン等が挙げられ、炭素数
5のオレフィン分としては、例えば、2−メチルー2−
ブテン、t−2−ペンテン等が挙げられ、炭素数5のナ
フテン分としては、例えば、シクロペンタン等が挙げら
れる。更に、芳香族分としては、例えば、ベンゼン、ト
ルエン、キシレン、エチルベンゼン等が挙げられる。
In the fuel oil 1 of the present invention, examples of the hydrocarbon component having 4 carbon atoms include butane, n-butene, is
Examples thereof include o-butene, and those obtained by a usual method in the field can be appropriately used. Moreover, as the paraffin component having 5 carbon atoms, for example,
Examples of the olefin component having 5 carbon atoms include n-pentane and iso-pentane. For example, 2-methyl-2-
Examples thereof include butene and t-2-pentene, and examples of the naphthene component having 5 carbon atoms include cyclopentane. Furthermore, examples of the aromatic component include benzene, toluene, xylene, ethylbenzene and the like.

【0007】本発明においては、各成分の含有量が前記
範囲内であれば、本発明の上記効果を有効に奏すること
ができる。特に、炭素数4の炭化水素化合物が3容量%
以下、炭素数5のパラフィン分が10〜35容量%、炭
素数5のオレフィン分が15容量%以下、炭素数5のナ
フテン分が5容量%以下であることが好ましい。特に、
炭素数5のオレフィン分が上記範囲内にあることが、触
媒の硫黄被毒による改質触媒、部分酸化触媒の劣化など
を改善しうる点で好ましい。また、芳香族分が10容量
%以下であることが改質反応に有利などの点で好まし
い。更に、硫黄分が5重量ppm以下、更に1重量pp
m以下であることが、触媒の硫黄被毒による改質触媒、
部分酸化触媒の劣化などを改善しうる点で好ましい。本
発明の燃料油1は、そのリード蒸気圧が60kPa以
下、更に、44〜60kPaであることが、蒸発ガスを
低減せしめ、タンクの耐久性、炭化水素の大気への放出
の抑制の点で好ましい。
In the present invention, if the content of each component is within the above range, the above effects of the present invention can be effectively exhibited. Particularly, the hydrocarbon compound having 4 carbon atoms is 3% by volume.
Hereinafter, it is preferable that the paraffin having 5 carbon atoms is 10 to 35% by volume, the olefin content having 5 carbon atoms is 15% by volume or less, and the naphthene content having 5 carbon atoms is 5% by volume or less. In particular,
It is preferable that the olefin component having 5 carbon atoms is within the above range, because deterioration of the reforming catalyst and partial oxidation catalyst due to sulfur poisoning of the catalyst can be improved. Further, the aromatic content is preferably 10% by volume or less from the viewpoint of being advantageous for the reforming reaction. Further, the sulfur content is 5 ppm by weight or less, further 1 weight pp
m or less, a reforming catalyst due to sulfur poisoning of the catalyst,
It is preferable in that the deterioration of the partial oxidation catalyst can be improved. The fuel oil 1 of the present invention preferably has a Reid vapor pressure of 60 kPa or less, and further 44 to 60 kPa from the viewpoints of reducing evaporative emission, durability of the tank, and suppression of release of hydrocarbons to the atmosphere. .

【0008】また、本発明は、炭素数4の炭化水素分を
5容量%以下、炭素数5のパラフィン分を10〜30容
量%、炭素数5のオレフィン分を10容量%以下、炭素
数5のナフテン分を5容量%以下、芳香族分を10容量
%以下、硫黄分を5重量ppm以下含み、かつリード蒸
気圧が60kPa以下で、リサーチ法オクタン価が66
以上である燃料油組成物(燃料油2)に係るものであ
る。該燃料油2は、そのオクタン価が高いなどの点か
ら、燃料電池用燃料油として用いられる外、内燃機関用
燃料油としても有利に使用することができる。上記燃料
油2において、炭素数4の炭化水素分、炭素数5のパラ
フィン分、炭素数5のオレフィン分、炭素数5のナフテ
ン分、芳香族分については、上記燃料油1と同様のもの
を挙げることが出来る。
In the present invention, the hydrocarbon content having 4 carbon atoms is 5% by volume or less, the paraffin content having 5 carbon atoms is 10 to 30% by volume, the olefin content having 5 carbon atoms is 10% by volume or less, and the carbon number is 5%. Of which the naphthene content is 5% by volume or less, the aromatic content is 10% by volume or less, the sulfur content is 5 ppm by weight or less, and the Reed vapor pressure is 60 kPa or less, and the research octane number is 66.
The present invention relates to the above fuel oil composition (fuel oil 2). The fuel oil 2 can be advantageously used not only as fuel oil for fuel cells but also as fuel oil for internal combustion engines because of its high octane number. Regarding the above fuel oil 2, the same hydrocarbon content as C4, paraffin content of C5, olefin content of C5, naphthene content of C5 and aromatic content are the same as those of the fuel oil 1. I can name it.

【0009】本発明においては、各成分の含有量が上記
範囲内であれば、本発明の効果を有効に奏することがで
きる。特に、炭素数4の炭化水素分が5容量%以下、炭
素数5のパラフィン分が15〜25容量%、炭素数5の
オレフィン分が6容量%以下、炭素数5のナフテン分が
2容量%以下、芳香族分が10容量%以下であることが
好ましい。また、硫黄分は5重量ppm以下、更に1重
量ppm以下であることが好ましい。特に、炭素数4の
炭化水素が上記範囲内にあれば、内燃機関用燃料として
使用する際に蒸気圧が増し、エンジンの始動性が向上す
るという効果を得ることができ、一方で、蒸気圧が高過
ぎてベーパーロック現象を引き起こすこともない。ま
た、炭素数5のパラフィン分、オレフィン分及びナフテ
ン分がいずれも上記範囲内にあることで内燃機関用燃料
として必要なオクタン価を維持できることとなり好まし
い。特に、炭素数5のパラフィン分が上記範囲内にある
ことが内燃機関用燃料として使用する際にノッキング等
を抑制することができ好ましい。更に、芳香族分含有量
が上記範囲内にあれば改質反応に有利であり、硫黄含有
量が上記範囲内であれば、触媒の硫黄被毒による改質触
媒、部分酸化触媒の劣化などを改善することができる点
で好ましい。
In the present invention, if the content of each component is within the above range, the effects of the present invention can be effectively exhibited. In particular, hydrocarbons having 4 carbon atoms are 5% by volume or less, paraffin components having 5 carbon atoms are 15 to 25% by volume, olefin components having 5 carbon atoms are 6% by volume or less, and naphthene components having 5 carbon atoms are 2% by volume. The aromatic content is preferably 10% by volume or less. The sulfur content is preferably 5 ppm by weight or less, more preferably 1 ppm by weight or less. In particular, if the hydrocarbon having 4 carbon atoms is within the above range, it is possible to obtain the effect of increasing the vapor pressure when used as a fuel for an internal combustion engine and improving the startability of the engine. Is not too high to cause the vapor lock phenomenon. In addition, it is preferable that the paraffin component having 5 carbon atoms, the olefin component, and the naphthene component are all within the above ranges because the octane number required as the fuel for the internal combustion engine can be maintained. In particular, it is preferable that the paraffin component having 5 carbon atoms is within the above range because knocking and the like can be suppressed when used as a fuel for an internal combustion engine. Further, if the aromatic content is within the above range, it is advantageous for the reforming reaction, and if the sulfur content is within the above range, deterioration of the reforming catalyst and partial oxidation catalyst due to sulfur poisoning of the catalyst may occur. It is preferable because it can be improved.

【0010】更に本発明の燃料油2は、リード蒸気圧が
60kPa以下、好ましくは、44〜60kPaである
ことが、蒸発ガス量を低減でき、この結果、内燃機関用
燃料として使用する際にエンジンの始動性に優れ、また
タンクの耐久性、炭化水素の大気への放出の抑制などの
点で好ましい。本発明の燃料油2は、そのリサーチ法オ
クタン価が66以上である。リサーチ法オクタン価が6
6以上であれば、内燃機関用燃料として使用する際にノ
ッキングを起こすことなく実用上有利である。この点か
ら、上記リサーチ法オクタン価は、80以上、更に89
以上であることが好ましい。本発明の燃料油2は、上記
の点から、内燃機関用と燃料電池用のいずれにも用いる
ことができる。すなわち、内燃機関用に用いた場合は、
オクタン価が高く、ノッキング等を起こすことなく有利
に使用可能であり、燃料電池用に用いた場合も、水素を
効率よく製造することができ、改質触媒、燃料電池電極
に対して悪影響を及ぼすことなく改質触媒等の劣化を低
減することができる。
Further, the fuel oil 2 of the present invention has a Reid vapor pressure of 60 kPa or less, preferably 44 to 60 kPa, so that the amount of vaporized gas can be reduced, and as a result, when used as a fuel for an internal combustion engine, Is preferable in terms of durability of the tank, suppression of release of hydrocarbons to the atmosphere, and the like. The fuel oil 2 of the present invention has a research octane number of 66 or more. Research octane number 6
When it is 6 or more, knocking does not occur when used as a fuel for an internal combustion engine, which is practically advantageous. From this point, the research octane number is 80 or more, and further 89
The above is preferable. From the above points, the fuel oil 2 of the present invention can be used for both internal combustion engines and fuel cells. That is, when used for an internal combustion engine,
It has a high octane number and can be advantageously used without causing knocking, etc. Even when used for fuel cells, hydrogen can be efficiently produced, and it has an adverse effect on the reforming catalyst and fuel cell electrodes. It is possible to reduce deterioration of the reforming catalyst and the like.

【0011】本発明の燃料油を調製するために用いられ
る基材としては、例えば、脱硫軽質ナフサ(DLN),
低蒸気圧DLN、異性化DLN、低蒸気圧・異性化DL
N、軽質分解ガソリン(LFG)、脱硫LFG、脱硫・
低蒸気圧LFG、脱硫・水添LFG、アルキレートガソ
リン(ALG)、脱硫重質ナフサ(DHN)等を使用す
ることができる。ここで、脱硫軽質ナフサ(DLN)と
は、C4 〜C7 のノルマルパラフィン、イソパラフィ
ン、ナフテン等から構成され、通常、原油を常圧蒸留装
置でライトナフサとして分留し、ナフサ脱硫装置で脱硫
するか、あるいは原油を常圧蒸留装置でフルレンジナフ
サとして分留し、ナフサ脱硫装置で脱硫した後、ライト
ナフサを分留することにより得られるものである。低蒸
気圧DLNとは、DLNの軽質留分をスプリッター等で
除去して得られたものであり、異性化DLNとは、例え
ば、白金担持アルミナ系触媒、白金担持ゼオライト触
媒、白金担持強酸性担体触媒等の白金系触媒に脱硫軽質
ナフサを通油するなどの方法により異性化処理して得ら
れたものをいう。また、低蒸気圧・異性化DLNとは、
上記低蒸気圧処理及び異性化処理の双方を行なって得ら
れたものをいう。
Examples of the base material used for preparing the fuel oil of the present invention include desulfurized light naphtha (DLN),
Low vapor pressure DLN, isomerized DLN, low vapor pressure / isomerized DL
N, light cracked gasoline (LFG), desulfurization LFG, desulfurization
Low vapor pressure LFG, desulfurization / hydrogenation LFG, alkylate gasoline (ALG), desulfurization heavy naphtha (DHN) and the like can be used. Here, desulfurization light naphtha (DLN) is composed of C 4 to C 7 normal paraffins, isoparaffins, naphthenes, etc. Normally, crude oil is fractionated as light naphtha by an atmospheric distillation device and desulfurized by a naphtha desulfurization device. Alternatively, the crude naphtha is obtained by fractionating the crude oil as a full-range naphtha in an atmospheric distillation device, desulfurizing it in a naphtha desulfurizing device, and then distilling the light naphtha. The low vapor pressure DLN is obtained by removing a light fraction of DLN with a splitter or the like, and the isomerized DLN is, for example, a platinum-supported alumina-based catalyst, a platinum-supported zeolite catalyst, a platinum-supported strongly acidic carrier. It refers to the one obtained by isomerizing by a method such as passing a desulfurized light naphtha through a platinum catalyst such as a catalyst. What is low vapor pressure / isomerized DLN?
It is obtained by performing both the low vapor pressure treatment and the isomerization treatment.

【0012】アルキレートガソリン(ALG)とは、一
般に、アルキル化反応により得られるアルキル化ガソリ
ンをいい、高オクタン価のイソパラフィンに富み、芳香
族分やオレフィン留分を含まないものをいう。更に、脱
硫重質ナフサ(DHN)とは、C6 〜C10のノルマルパ
ラフィン、イソパラフィン、ナフテン等から構成される
石油炭化水素留分をいい、通常、原油を常圧蒸留装置で
重質ナフサとして分留し、ナフサ脱硫装置で脱硫する
か、あるいは原油を常圧蒸留装置でフルレンジナフサと
して分留し、ナフサ脱硫装置で脱硫した後、重質ナフサ
を分留することにより得られるものをいう。また、軽質
分解ガソリン(LFG)とは、従来から知られている接
触分解法、特に流動接触分解法により、固体酸触媒で分
解して得られる接触分解ガソリンのうちの軽質分であ
る。このLFGは必要に応じて脱硫処理を行なったもの
(脱硫LFG)を使用することができる。脱硫LFG
は、Ni系等の吸着脱硫剤にLFGを通油することによ
り得られる。なお、脱硫・低蒸気圧LFGとは、脱硫L
FGの軽質部分をスプリッター等で除去して得られるも
のをいい、脱硫・水添LFGとは、Co−Mo/アルミ
ナ、Ni−Mo/アルミナ系触媒等にLFGを通油する
ことにより得られたものをいう。
Alkylate gasoline (ALG) generally means an alkylated gasoline obtained by an alkylation reaction, and is rich in isoparaffin having a high octane number and does not contain an aromatic component or an olefinic fraction. Further, desulfurized heavy naphtha (DHN) means a petroleum hydrocarbon fraction composed of C 6 to C 10 normal paraffins, isoparaffins, naphthenes, etc. Usually, crude oil is converted into heavy naphtha by an atmospheric distillation apparatus. It is obtained by fractional distillation and desulfurization by a naphtha desulfurization apparatus, or by fractionating crude oil as a full range naphtha by an atmospheric distillation apparatus, desulfurizing by a naphtha desulfurization apparatus, and then distilling heavy naphtha. Further, light cracked gasoline (LFG) is a light fraction of catalytically cracked gasoline obtained by cracking with a solid acid catalyst by a conventionally known catalytic cracking method, particularly a fluid catalytic cracking method. As this LFG, a desulfurized product (desulfurized LFG) may be used if necessary. Desulfurization LFG
Is obtained by passing LFG through an adsorbing desulfurizing agent such as Ni-based. Desulfurization / low vapor pressure LFG means desulfurization L
The light portion of FG is obtained by removing the light portion with a splitter or the like. Desulfurization / hydrogenation LFG is obtained by passing LFG through a Co-Mo / alumina, Ni-Mo / alumina catalyst or the like. Say something.

【0013】本発明の燃料油組成物は、上記基材を適宜
組合せ調製することができるが、燃料油1は、例えば、
異性化DLNを30〜60容量%、DHNを30〜60
容量%及びALGを混合するなどの方法により得ること
ができる。また、燃料油2は、例えば、低蒸気圧・異性
化DLNを30〜70容量%、DHNを30〜40容量
%及びALGを混合するなどの方法により得ることがで
きる。本発明の燃料油は、これにより製造される水素の
純度が高く、水素分圧の低下が小さいなどの特徴を有す
るため、燃料電池用の水素の製造に好適である。上記燃
料油から水素を生成するには、先ず燃料油を必要に応じ
て脱硫する。脱硫法としては、通常、吸着脱硫法あるい
は水素化脱硫法が用いられる。吸着脱硫法は、Niを主
成分とする吸着材を用い、室温〜200℃、常圧〜5M
Paの条件で実施する。水素化脱硫法は、Co−Mo/
アルミナあるいはNi−Mo/アルミナなどの水素化脱
硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5
MPaの圧力下,温度200〜400℃の条件で行う。
次いで、脱硫した燃料油に水蒸気改質、部分酸化及び/
又はオートサーマルリフォーミング(ATR)を行う。
本発明によれば、水蒸気改質触媒等への炭素析出がなく
効率的に水素を製造できる燃料油を得ることができる。
The fuel oil composition of the present invention can be prepared by appropriately combining the above base materials.
Isomerized DLN 30-60% by volume, DHN 30-60
It can be obtained by a method such as mixing volume% and ALG. The fuel oil 2 can be obtained by, for example, mixing low vapor pressure / isomerized DLN in an amount of 30 to 70% by volume, DHN in an amount of 30 to 40% by volume, and ALG. The fuel oil of the present invention is suitable for the production of hydrogen for fuel cells, since it has characteristics such as high purity of hydrogen produced thereby and a small decrease in hydrogen partial pressure. In order to generate hydrogen from the fuel oil, the fuel oil is first desulfurized as needed. As the desulfurization method, an adsorption desulfurization method or a hydrodesulfurization method is usually used. The adsorptive desulfurization method uses an adsorbent containing Ni as a main component, and is at room temperature to 200 ° C. and normal pressure to 5 M.
It is carried out under the condition of Pa. The hydrodesulfurization method uses Co-Mo /
Using a hydrodesulfurization catalyst such as alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO, at atmospheric pressure to 5
It is performed under a pressure of MPa and a temperature of 200 to 400 ° C.
Then desulfurized fuel oil is steam reformed, partially oxidized and / or
Alternatively, perform auto thermal reforming (ATR).
According to the present invention, it is possible to obtain a fuel oil capable of efficiently producing hydrogen without carbon deposition on a steam reforming catalyst or the like.

【0014】水蒸気改質の方法には特に制限はないが、
通常以下のような方法で行われる。まず、この水素製造
方法に用いる水蒸気改質触媒としては、特に制限はない
が、その担持金属として、Ni、ジルコニウムあるいは
ルテニウム(Ru),ロジウム(Rh),白金(Pt)
などの貴金属を用いたものが挙げられる。これらの担持
金属は単独でもよいし、2種以上を組合わせて用いても
よい。上記担持金属の中でも、Ruが特に望ましく、水
蒸気改質反応中の炭素析出を抑制する効果が大きい。こ
のRuの担持量については、担体基準で0.05〜20
重量%、さらには、0.05〜15重量%が好ましい。
担持量が0.05重量%未満では、水蒸気改質反応の活
性が極度に低下する場合があり、20重量%を越えても
活性の顕著な増加は得られ難い。
The steam reforming method is not particularly limited,
Usually, the following method is used. First, the steam reforming catalyst used in this hydrogen production method is not particularly limited, but Ni, zirconium or ruthenium (Ru), rhodium (Rh), platinum (Pt) can be used as the supported metal.
Those using precious metals such as. These supported metals may be used alone or in combination of two or more. Among the above-mentioned supported metals, Ru is particularly desirable and has a great effect of suppressing carbon precipitation during the steam reforming reaction. The supported amount of Ru is 0.05 to 20 based on the carrier.
%, And more preferably 0.05 to 15% by weight.
If the supported amount is less than 0.05% by weight, the activity of the steam reforming reaction may be extremely lowered, and if it exceeds 20% by weight, it is difficult to obtain a significant increase in the activity.

【0015】また、担持金属の組合わせの具体例として
は、Ruとジルコニウムとを担持したものが挙げられ
る。Ruとジルコニウムは同時に担持してもよく、別々
に担持してもよい。ジルコニウムの含量は、ZrO2
換算して、担体基準で0.5〜20重量%,さらには、
0.5〜15重量%が好ましい。この種の担持金属の場
合、さらにコバルトおよび/またはマグネシウムを添加
したものが好適なものとして挙げられる。ここでコバル
トの含有量は、コバルト/ルテニウムの原子比で、0.
01〜30,さらには、0.1〜30が好ましく、マグ
ネシウムの含有量は、マグネシア(MgO)換算で0.
5〜20重量%,さらには0.5〜15重量%が好適で
ある。一方、水蒸気改質に使用する触媒の担体として
は、無機酸化物が用いれ、具体的には、アルミナ、シリ
カ、ジルコニア、マグネシア及びそれらの混合物が挙げ
られる。これらの中でもアルミナとジルコニアが特に好
ましい。
Further, as a specific example of the combination of the supported metals, there may be mentioned one in which Ru and zirconium are supported. Ru and zirconium may be loaded simultaneously or separately. The content of zirconium is 0.5 to 20% by weight based on the carrier, converted to ZrO 2 , and further,
0.5 to 15% by weight is preferable. In the case of this type of supported metal, those to which cobalt and / or magnesium are further added are preferable. Here, the content of cobalt is an atomic ratio of cobalt / ruthenium of 0.
01 to 30, more preferably 0.1 to 30, and the content of magnesium is 0.1 in terms of magnesia (MgO).
5 to 20% by weight, more preferably 0.5 to 15% by weight are suitable. On the other hand, an inorganic oxide is used as a carrier of a catalyst used for steam reforming, and specific examples thereof include alumina, silica, zirconia, magnesia and a mixture thereof. Of these, alumina and zirconia are particularly preferable.

【0016】水蒸気改質用触媒の好ましい態様の一つと
して、Ruをジルコニアに担持した触媒がある。このジ
ルコニアは、単体のジルコニア(ZrO2 )でも良い
し、マグネシアのような安定化成分を含む安定化ジルコ
ニアでも良い。安定化ジルコニアとしては、マグネシ
ア、イットリア、セリア等を含むものが好適である。水
蒸気改質用触媒の別の好ましい態様の一つとしては、R
uとジルコニウム、又はRuとジルコニウムの他にさら
にコバルトおよび/またはマグネシウムとをアルミナ担
体に担持した触媒を挙げることができる。アルミナとし
ては特に耐熱性と機械的強度に優れるα−アルミナが好
ましい。次に、水素の製造においては、水蒸気(S)と
燃料油に由来する炭素(C)との比S/C(モル比)が
2〜5、さらには2〜4の状態で水蒸気改質を行う方法
が好ましい。S/C(モル比)が5以上の高い状態で水
蒸気改質を行うと過剰の水蒸気を作る必要があり、熱ロ
スが大きく、水素製造の効率が低下する場合がある。ま
た、S/Cが2を下回ると水素の発生量が低下してしま
うことがある。
One of the preferable embodiments of the steam reforming catalyst is a catalyst in which Ru is supported on zirconia. This zirconia may be a simple substance of zirconia (ZrO 2 ) or a stabilized zirconia containing a stabilizing component such as magnesia. As the stabilized zirconia, those containing magnesia, yttria, ceria and the like are preferable. As another preferred embodiment of the steam reforming catalyst, R is
Examples of the catalyst include u and zirconium, or Ru and zirconium, and further cobalt and / or magnesium supported on an alumina carrier. As alumina, α-alumina, which is particularly excellent in heat resistance and mechanical strength, is preferable. Next, in the production of hydrogen, steam reforming is performed in a state where the ratio S / C (molar ratio) of steam (S) and carbon (C) derived from fuel oil is 2 to 5, and further 2 to 4. The method of carrying out is preferred. If steam reforming is performed in a state where the S / C (molar ratio) is high of 5 or more, excess steam needs to be produced, heat loss is large, and the efficiency of hydrogen production may decrease. If the S / C is less than 2, the amount of hydrogen generated may decrease.

【0017】さらに水素の製造においては、水蒸気改質
触媒層の入口温度を630℃以下に保って水蒸気改質を
行う方法が好ましい。水蒸気改質触媒層入口温度は、酸
素添加により上昇する傾向にあるので、これをコントロ
ールする必要がある。入口温度が630℃を超えると、
原料炭化水素の熱分解が促進され、生成したラジカル経
由で触媒あるいは反応管壁に炭素が析出し運転が困難に
なる場合があるためである。なお、触媒層出口温度は、
特に制限はないが、好ましくは650〜800℃で行
う。触媒層出口温度が650℃未満では水素の生成量が
充分でなく、800℃を越える温度で反応するにはリア
クターを特に耐熱性材料にする必要がある場合があり、
経済性の点で好ましくないからである。水素の製造にお
いては、反応圧力は常圧〜3MPa,さらには常圧〜1
MPaであることが好ましい。また、燃料油の流量につ
いては、LHSVで0.1〜100h-1である。
Further, in the production of hydrogen, a method of carrying out steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower is preferable. Since the steam reforming catalyst layer inlet temperature tends to increase due to the addition of oxygen, it is necessary to control this. When the inlet temperature exceeds 630 ° C,
This is because the thermal decomposition of the raw material hydrocarbon is promoted and carbon may be deposited on the catalyst or the wall of the reaction tube via the generated radicals to make operation difficult. The catalyst layer outlet temperature is
Although not particularly limited, it is preferably carried out at 650 to 800 ° C. If the catalyst layer outlet temperature is lower than 650 ° C, the amount of hydrogen produced is not sufficient, and in order to react at a temperature higher than 800 ° C, the reactor may need to be made of a particularly heat resistant material.
This is because it is not preferable in terms of economy. In the production of hydrogen, the reaction pressure is normal pressure to 3 MPa, and further normal pressure to 1
It is preferably MPa. The flow rate of fuel oil is 0.1 to 100 h −1 in LHSV.

【0018】部分酸化反応は、好ましくはルテニウムな
どの貴金属やニッケルなどを耐熱性酸化物に担持した触
媒下、反応圧力が常圧〜5MPa,反応温度400〜1
100℃、酸素/炭素比0.2〜0.8,LHSV0.
1〜100h-1で行われる。上記水素の製造方法におい
ては、上記水蒸気改質により得られるCOが水素生成に
悪影響を及ぼすため、これを反応によりCO2 としてC
Oを除くことが好ましい。オートサーマル反応は、部分
酸化と水蒸気改質を組み合わせた方法である。触媒は、
ルテニウムなどの貴金属やニッケルなどを耐熱性酸化物
に担持した触媒を用いる。一種の触媒で行なうこともあ
るが、部分酸化と水蒸気改質それぞれ別の触媒を組み合
わせてもよい。反応圧力は常圧〜5MPa,反応温度は
400〜1100℃、酸素/炭素比0.4〜0.6、硫
黄/炭素比0.5〜2.0,LHSV 0.1〜100
-1で行われる。
The partial oxidation reaction is preferably carried out under a catalyst in which a noble metal such as ruthenium or nickel is supported on a heat-resistant oxide, the reaction pressure is atmospheric pressure to 5 MPa, and the reaction temperature is 400 to 1
100 ° C., oxygen / carbon ratio 0.2 to 0.8, LHSV0.
It is carried out for 1 to 100 h -1 . In the production method of the hydrogen, since the CO obtained by the steam reforming adversely affect the hydrogen generation, C this as CO 2 by reaction
It is preferable to remove O. The autothermal reaction is a method that combines partial oxidation and steam reforming. The catalyst is
A catalyst in which a noble metal such as ruthenium or nickel is supported on a heat resistant oxide is used. It may be carried out with one kind of catalyst, but partial oxidation and steam reforming may be combined with different catalysts. The reaction pressure is atmospheric pressure to 5 MPa, the reaction temperature is 400 to 1100 ° C., the oxygen / carbon ratio is 0.4 to 0.6, the sulfur / carbon ratio is 0.5 to 2.0, and the LHSV is 0.1 to 100.
done at h -1 .

【0019】[0019]

【実施例】次に、本発明を実施例によりさらに具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1〜18及び比較例1〜3 第1表に示す組成及び性状を有する基材を第2表に示す
配合割合で用い、第3表に示す組成及び性状を有する燃
料油を調製し、その各々のリサーチオクタン価及びリー
ド蒸気圧等をそれぞれJIS K2280、JIS K
2258などに準じて測定した。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples. Examples 1 to 18 and Comparative Examples 1 to 3 Base materials having the compositions and properties shown in Table 1 were used in the blending ratios shown in Table 2 to prepare fuel oils having the compositions and properties shown in Table 3, The research octane number and the Reid vapor pressure, etc. of each are specified in JIS K2280 and JIS K
2258 and the like.

【0020】水素製造実験 2基の固定床流通式反応器を連結し、下記条件にて1段
目で脱硫を行い、2段目で水蒸気改質を行った。 (1段目) 脱硫 脱硫剤:Ni系吸着剤(Ni:60wt%含有) 条件:常圧、温度90℃、LHSV=0.1h-1 (2段目) 改質 触媒:α−アルミナ粉末に水20重量%を加え、
ニーダーで混合・圧縮成形し直径5mm、長さ5mmの
円柱状成形体とした。200℃で3時間乾燥後、128
0℃で26時間焼成しアルミナ担体を得た。一方、ジル
コニウムオキシ塩化物(ZrO(OH)Cl)の水溶液
(ZrO2 換算で2.5g)に、3塩化ルテニウム(R
uCl3 /nH2 O)(Ru38%含有)0.66g、
硝酸コバルト(Co(NO3 2 ・36H2 O)2.4
7g及び硝酸マグネシウム(Mg(NO3 2 ・26H
2 O)6.36gを加え、溶解するまで攪拌した。溶液
の総量は10ccであった。この溶液を上記アルミナ担
体50gに含浸(ポアフィリング法)した後、120℃
で5時間乾燥し、500℃で2時間焼成し、更に16〜
32メッシュに粒径調整した。この触媒は、担体基準で
Ruを0.5重量%,Zrをジルコニア換算で5重量
%,Coを1.0重量%,Mgをマグネシア換算で2重
量%含有する。 ATR条件:水蒸気/炭素比1.2、酸素/炭素比0.
5,LHSV=2.5h-1、常圧、反応温度750℃ 上記反応を100時間連続して行った後に二段目の触媒
を抜き出し、触媒上の炭素析出率を下記のようにして測
定し評価した。 炭素析出率(%)=炭素析出した部分の長さ/全触媒の
長さ ○: 5%以下 ×: 20%以上
Hydrogen Production Experiment Two fixed bed flow reactors were connected, desulfurization was performed in the first stage and steam reforming was performed in the second stage under the following conditions. (1st stage) Desulfurization Desulfurization agent: Ni-based adsorbent (containing Ni: 60 wt%) Conditions: Normal pressure, temperature 90 ° C., LHSV = 0.1 h −1 (2nd stage) Reforming catalyst: α-alumina powder Add 20% by weight of water,
Mixing and compression molding were performed with a kneader to obtain a cylindrical molded body having a diameter of 5 mm and a length of 5 mm. 128 after drying at 200 ℃ for 3 hours
It was calcined at 0 ° C. for 26 hours to obtain an alumina carrier. On the other hand, an aqueous solution of zirconium oxychloride (ZrO (OH) Cl) (2.5 g in terms of ZrO 2 ) contains ruthenium trichloride (R
uCl 3 / nH 2 O) (Ru 38% content) 0.66 g,
Cobalt nitrate (Co (NO 3) 2 · 36H 2 O) 2.4
7g and magnesium nitrate (Mg (NO 3) 2 · 26H
2 O) 6.36 g was added and stirred until dissolved. The total amount of solution was 10 cc. After impregnating 50 g of the above alumina carrier with this solution (Pore filling method), 120 ° C.
For 5 hours, calcination at 500 ° C for 2 hours, and then 16-
The particle size was adjusted to 32 mesh. This catalyst contains 0.5 wt% of Ru based on the carrier, 5 wt% of Zr in terms of zirconia, 1.0 wt% of Co, and 2 wt% of Mg in terms of magnesia. ATR conditions: steam / carbon ratio 1.2, oxygen / carbon ratio 0.
5, LHSV = 2.5 h −1 , normal pressure, reaction temperature 750 ° C. After the above reaction was continuously carried out for 100 hours, the second stage catalyst was taken out, and the carbon deposition rate on the catalyst was measured as follows. evaluated. Carbon deposition rate (%) = length of carbon deposited portion / total catalyst length ○: 5% or less ×: 20% or more

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 *RON:リサーチ法オクタン価 *MON:モーター法オクタン価[Table 6] * RON: Research method octane number * MON: Motor method octane number

【0027】[0027]

【発明の効果】以上詳細に説明したように、本発明によ
れば、水素を効率よく製造することができ、改質触媒、
燃料電池電極に対して悪影響を及ぼすことなく改質触媒
等の劣化が少ない燃料電池用燃料油組成物を提供すると
ともに、これを自動車の内燃機関エンジン用燃料油とし
て使用した場合もオクタン価が高く、ノッキング等を起
こすことなく使用可能である内燃機関用及び燃料電池用
兼用燃料油組成物を提供することができる。
As described above in detail, according to the present invention, hydrogen can be efficiently produced, and the reforming catalyst,
Provided is a fuel oil composition for a fuel cell that does not deteriorate the reforming catalyst or the like without adversely affecting the fuel cell electrode, and has a high octane number when used as a fuel oil for an internal combustion engine of an automobile, It is possible to provide a fuel oil composition for internal combustion engines and fuel cells, which can be used without causing knocking or the like.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭素数4の炭化水素分を5容量%以下、
炭素数5のパラフィン分を10〜40容量%、炭素数5
のオレフィン分を15容量%以下、炭素数5のナフテン
分を5容量%以下、芳香族分を10容量%以下、硫黄分
を5重量ppm以下含み、かつリード蒸気圧が60kP
a以下である燃料油組成物。
1. A hydrocarbon content having 4 carbon atoms is 5% by volume or less,
10-40% by volume of paraffin having 5 carbon atoms, 5 carbon atoms
Containing 15% by volume or less of olefins, 5% by volume or less of naphthenes having 5 carbon atoms, 10% by volume or less of aromatics, and 5 ppm by weight or less of sulfur, and having a reed vapor pressure of 60 kP.
Fuel oil composition which is a or less.
【請求項2】 燃料電池用に用いる請求項1記載の燃料
油組成物。
2. The fuel oil composition according to claim 1, which is used for a fuel cell.
【請求項3】 炭素数4の炭化水素分を5容量%以下、
炭素数5のパラフィン分を10〜30容量%、炭素数5
のオレフィン分を10容量%以下、炭素数5のナフテン
分を5容量%以下、芳香族分を10容量%以下、硫黄分
を5重量ppm以下含み、かつリード蒸気圧が60kP
a以下で、リサーチ法オクタン価が66以上である燃料
油組成物。
3. The hydrocarbon component having 4 carbon atoms is 5% by volume or less,
10 to 30% by volume of paraffins having 5 carbon atoms, 5 carbon atoms
Containing 10% by volume or less of olefins, 5% by volume or less of naphthenes having 5 carbon atoms, 10% by volume or less of aromatics, and 5 ppm by weight or less of sulfur, and having a reed vapor pressure of 60 kP.
A fuel oil composition having an a or less of a and a research octane number of 66 or more.
【請求項4】 リサーチ法オクタン価が80以上である
請求項3記載の燃料油組成物。
4. The fuel oil composition according to claim 3, which has a research octane number of 80 or more.
【請求項5】 リサーチ法オクタン価が89以上である
請求項3記載の燃料油組成物。
5. The fuel oil composition according to claim 3, which has a research octane number of 89 or more.
【請求項6】 内燃機関用及び燃料電池用兼用の請求項
3〜5のいずれかに記載の燃料油組成物。
6. The fuel oil composition according to claim 3, which is used for both an internal combustion engine and a fuel cell.
JP2001270159A 2001-09-06 2001-09-06 Fuel oil composition Expired - Fee Related JP5027971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270159A JP5027971B2 (en) 2001-09-06 2001-09-06 Fuel oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270159A JP5027971B2 (en) 2001-09-06 2001-09-06 Fuel oil composition

Publications (2)

Publication Number Publication Date
JP2003073677A true JP2003073677A (en) 2003-03-12
JP5027971B2 JP5027971B2 (en) 2012-09-19

Family

ID=19095854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270159A Expired - Fee Related JP5027971B2 (en) 2001-09-06 2001-09-06 Fuel oil composition

Country Status (1)

Country Link
JP (1) JP5027971B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044959A1 (en) 2003-11-07 2005-05-19 Japan Energy Corporation Lead-free gasoline composition and method for production thereof
JP2006083366A (en) * 2004-08-19 2006-03-30 Japan Energy Corp Gasoline composition and method for producing the same
JP2006111502A (en) * 2004-10-15 2006-04-27 Nippon Oil Corp Hydrogen manufacturing system
JP2006152243A (en) * 2004-10-26 2006-06-15 Japan Energy Corp Environment-responsive gasoline composition and its production process
JP2009227694A (en) * 2008-03-19 2009-10-08 Cosmo Oil Co Ltd Gasoline composition
JP2009227693A (en) * 2008-03-19 2009-10-08 Cosmo Oil Co Ltd Gasoline composition
JP2011213902A (en) * 2010-03-31 2011-10-27 Jx Nippon Oil & Energy Corp Gasoline composition
JP2013040349A (en) * 2012-11-21 2013-02-28 Cosmo Oil Co Ltd Gasoline composition
KR20150062575A (en) * 2013-11-29 2015-06-08 지에스칼텍스 주식회사 Aviation gasoline composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor
JP2001172651A (en) * 1999-12-17 2001-06-26 Idemitsu Kosan Co Ltd Fuel oil for fuel cell
WO2001046341A1 (en) * 1999-12-22 2001-06-28 International Fuel Cells, Llc Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor
JP2001172651A (en) * 1999-12-17 2001-06-26 Idemitsu Kosan Co Ltd Fuel oil for fuel cell
WO2001046341A1 (en) * 1999-12-22 2001-06-28 International Fuel Cells, Llc Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044959A1 (en) 2003-11-07 2005-05-19 Japan Energy Corporation Lead-free gasoline composition and method for production thereof
JP2008156663A (en) * 2003-11-07 2008-07-10 Japan Energy Corp Unleaded gasoline composition and process for producing it
JP4932257B2 (en) * 2003-11-07 2012-05-16 Jx日鉱日石エネルギー株式会社 Unleaded gasoline composition and method for producing the same
JP2006083366A (en) * 2004-08-19 2006-03-30 Japan Energy Corp Gasoline composition and method for producing the same
JP2006111502A (en) * 2004-10-15 2006-04-27 Nippon Oil Corp Hydrogen manufacturing system
JP2006152243A (en) * 2004-10-26 2006-06-15 Japan Energy Corp Environment-responsive gasoline composition and its production process
JP2009227694A (en) * 2008-03-19 2009-10-08 Cosmo Oil Co Ltd Gasoline composition
JP2009227693A (en) * 2008-03-19 2009-10-08 Cosmo Oil Co Ltd Gasoline composition
JP2011213902A (en) * 2010-03-31 2011-10-27 Jx Nippon Oil & Energy Corp Gasoline composition
JP2013040349A (en) * 2012-11-21 2013-02-28 Cosmo Oil Co Ltd Gasoline composition
KR20150062575A (en) * 2013-11-29 2015-06-08 지에스칼텍스 주식회사 Aviation gasoline composition
KR101579654B1 (en) 2013-11-29 2015-12-22 지에스칼텍스 주식회사 Aviation gasoline composition

Also Published As

Publication number Publication date
JP5027971B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5114164B2 (en) Method for producing gasoline composition
WO2001070914A1 (en) Fuel oil for use both in internal combustion in engine and fuel cell
JP5027971B2 (en) Fuel oil composition
WO2001044412A1 (en) Fuel oil for fuel cell, fuel oil composition and automobile driving system
JP4776287B2 (en) Clean gasoline composition and method for producing the same
WO2002031090A1 (en) Dual purpose fuel for gasoline-driven automobile and fuel cell system, and system for storage and/or supply thereof
JP4803790B2 (en) Clean gasoline composition
JP4490533B2 (en) Fuel oil for fuel cells
JP5467890B2 (en) Method for producing fuel oil for premixed compression ignition engine with reformer
JP4426039B2 (en) Fuel oil for fuel cell and method for producing the same
JP4213062B2 (en) Environmentally friendly clean gasoline and its manufacturing method
JP4418063B2 (en) Method for producing hydrogen
JP2001262164A (en) Fuel oil for fuel cell
WO2004035468A1 (en) A process for the catalytic conversion of a gasoline composition
JP4804769B2 (en) Carbon dioxide low emission gasoline composition
WO2001077263A9 (en) Fuel for use in fuel cell system
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
JP3973191B2 (en) Hydrocarbon fuel for hydrogen generation and method for producing the same
JP2001262161A (en) Fuel oil for fuel cell
JP2001214179A (en) Fuel oil
JPS6116985A (en) Manufacture of unleaded gasoline of high octane value
JP4798649B2 (en) Eco-friendly gasoline composition and method for producing the same
WO2001082401A1 (en) Fuel oil composition
WO2001057162A1 (en) Fuel oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees