JP2003069073A - GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD - Google Patents

GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Info

Publication number
JP2003069073A
JP2003069073A JP2001261081A JP2001261081A JP2003069073A JP 2003069073 A JP2003069073 A JP 2003069073A JP 2001261081 A JP2001261081 A JP 2001261081A JP 2001261081 A JP2001261081 A JP 2001261081A JP 2003069073 A JP2003069073 A JP 2003069073A
Authority
JP
Japan
Prior art keywords
gan
type
light emitting
substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001261081A
Other languages
Japanese (ja)
Inventor
Keizo Yasutomi
敬三 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001261081A priority Critical patent/JP2003069073A/en
Publication of JP2003069073A publication Critical patent/JP2003069073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a GaN light emitting element formed on an n-type SiC substrate doped with nitrogen, which can be improved in brightness by keeping the SiC substrate conductive, restraining the light emitted from a light emitting layer from being reabsorbed, and specifying the range of electron concentration in the SiC board, and to provide a method of manufacturing the same. SOLUTION: A GaN light emitting element has a laminated structure composed of an n-type GaN buffer layer 2, an n-type GaN semiconductor layer 3, a p-type GaN semiconductor layer 4, and a p-type GaN contact layer 5 which are successively laminated on an n-type SiC substrate 1 through an epitaxial growth method, where the concentration of electrons in the n-type SiC substrate 1 is regulated so as to amount to 1×10<17> cm<-3> to 1.5×10<18> cm<-3> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系発光素子
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaN-based light emitting device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】青色光領域の短波長発光が可能な半導体
発光素子は、永らく要望されてきており、最近になり、
GaN系半導体を用いた短波長発光が可能な発光素子が
実現されている。GaN系半導体は、光学遷移が直接遷
移型で、高効率で発光再結合を生じさせることが可能で
あるために、短波長半導体レーザあるいは高輝度LED
などの高効率発光素子の材料として開発が進められてい
る。
2. Description of the Related Art A semiconductor light emitting device capable of emitting light with a short wavelength in a blue light region has been desired for a long time and recently,
A light emitting device capable of emitting short wavelength light using a GaN-based semiconductor has been realized. The GaN-based semiconductor has a direct transition type optical transition and is capable of generating radiative recombination with high efficiency, and therefore has a short wavelength semiconductor laser or a high brightness LED.
Is being developed as a material for high efficiency light emitting devices such as

【0003】上記GaN系半導体よりなるLED等のデ
バイス製造には、有機金属成長(MOCVD)法や分子
線エピタキシ(MBE)法といったエピタキシャル成長
法が用いられている。これらの製造方法における基板と
しては、GaN単結晶基板を製造することが困難である
ため、サファイア(単結晶アルミナ)基板やSiC単結
晶基板などが使用されている。サファイア基板は、電気
的に絶縁性を有するので、基板の裏面に電極を設けるこ
とができず、上記デバイスにおける構造が制約されるの
に対して、SiC単結晶基板は、電気的導通性も良好で
あり、デバイス構造上の自由度が高いという利点を持ち
合わせている。
To manufacture devices such as LEDs made of the GaN-based semiconductor, epitaxial growth methods such as metal organic growth (MOCVD) method and molecular beam epitaxy (MBE) method are used. Since it is difficult to manufacture a GaN single crystal substrate as a substrate in these manufacturing methods, a sapphire (single crystal alumina) substrate, a SiC single crystal substrate, or the like is used. Since the sapphire substrate has electrical insulation, electrodes cannot be provided on the back surface of the substrate, which limits the structure of the device, whereas the SiC single crystal substrate also has good electrical conductivity. And has the advantage that the degree of freedom in device structure is high.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、GaN
系半導体LED等の発光素子を、窒素(N)ドープされ
たn型SiC基板上に形成する場合、発光層より発光さ
れた光を該基板が再吸収することにより、発光効率が低
減するという問題がある。その光の再吸収は、SiC基
板中における自由電子もしくは不純物によるものである
ため、SiC基板の導電性を保ちつつ、光吸収を十分抑
制させることのできるように、SiC基板中の電子濃度
範囲を調整する必要が生じる。
[Problems to be Solved by the Invention] However, GaN
When a light emitting element such as a semiconductor LED is formed on a nitrogen (N) -doped n-type SiC substrate, the substrate reabsorbs the light emitted from the light emitting layer, thereby reducing the luminous efficiency. There is. Since the reabsorption of light is due to free electrons or impurities in the SiC substrate, the electron concentration range in the SiC substrate should be controlled so that light absorption can be sufficiently suppressed while maintaining the conductivity of the SiC substrate. It will need to be adjusted.

【0005】本発明は、かかる問題点を考慮してなされ
たものである。すなわち、本発明は、窒素ドープされた
n型SiC基板上に形成されたGaN系半導体発光素子
において、SiC基板の導電性を保ち、かつ、その光再
吸収を抑制することが可能な、SiC基板中の電子濃度
範囲を規定することにより、発光効率の向上を可能とす
るGaN系発光素子およびその製造方法を提供すること
を目的とするものである。
The present invention has been made in consideration of such problems. That is, the present invention provides a GaN-based semiconductor light-emitting device formed on a nitrogen-doped n-type SiC substrate, the SiC substrate being capable of maintaining the conductivity of the SiC substrate and suppressing light reabsorption thereof. It is an object of the present invention to provide a GaN-based light emitting device and a method for manufacturing the same that can improve the luminous efficiency by defining the electron concentration range inside.

【0006】[0006]

【課題を解決するための手段及び作用・効果】上記課題
を解決するために本発明のGaN系発光素子は、窒素ド
ープしたn型SiC単結晶基板上に、n型GaN系半導
体層とp型GaN系半導体層とが少なくとも一層ずつ形
成されたGaN系発光素子において、前記n型SiC単
結晶基板の電子濃度が1×1017cm−3以上1.5
×10 cm−3以下であることを特徴とする。
In order to solve the above-mentioned problems, a GaN-based light-emitting device of the present invention comprises an n-type GaN-based semiconductor layer and a p-type on a nitrogen-doped n-type SiC single crystal substrate. In a GaN-based light emitting device in which at least one GaN-based semiconductor layer is formed, the n-type SiC single crystal substrate has an electron concentration of 1 × 10 17 cm −3 or more and 1.5 or more.
Wherein the × is 10 1 8 cm -3 or less.

【0007】また、本発明のGaN系発光素子の製造方
法は、窒素ドープしたn型SiC単結晶基板上に、エピ
タキシャル成長法により、n型GaN系半導体層、p型
GaN系半導体層の順に積層されたGaN系発光素子に
おいて、前記n型SiC単結晶基板の電子濃度が1×1
17cm−3以上1.5×1018cm−3以下であ
ることを特徴とする。
In the method for manufacturing a GaN-based light emitting device of the present invention, an n-type GaN-based semiconductor layer and a p-type GaN-based semiconductor layer are laminated in this order on a nitrogen-doped n-type SiC single crystal substrate by an epitaxial growth method. In the GaN-based light emitting device, the electron concentration of the n-type SiC single crystal substrate is 1 × 1.
It is characterized in that it is 0 17 cm −3 or more and 1.5 × 10 18 cm −3 or less.

【0008】上記n型SiC単結晶基板(以下、単に基
板と呼ぶこともある)の電子濃度が1×1017cm
−3未満の場合、基板における、GaN発光素子の活性
層で発光した光に対する再吸収を抑制する効果は高めら
れるが、基板の裏面にNi等の金属を蒸着させオーミッ
ク電極を形成する際、基板とのオーミック特性が悪化
し、オーミック電極の形成を困難にさせる。また、基板
自体の抵抗値が高くなるので、デバイスの動作電圧が上
昇するという問題も発生する。他方、基板の電子濃度が
1.5×1018cm−3より大きくなると、基板中の
電子による光再吸収が、過度に増加するために、光取り
出し量が低減し発光効率を抑制する不具合が生じる。こ
れらを考慮し、n型SiC単結晶基板の電子濃度を1×
1017cm −3以上1.5×1018cm−3以下に
調整することにより、該基板の導電性を保ちつつ、Ga
N系発光素子の輝度を高めることが可能となる。
The n-type SiC single crystal substrate (hereinafter, simply referred to as a substrate)
(Also called a plate) electron density is 1 × 1017cm
-3If less than, the activity of the GaN light emitting device on the substrate
The effect of suppressing re-absorption of light emitted by the layer may be increased.
However, a metal such as Ni is vapor-deposited on the back surface of the substrate
When forming the electrode, ohmic characteristics with the substrate deteriorate
However, it makes the formation of the ohmic electrode difficult. Also the substrate
The operating voltage of the device is
There is also the problem of rising. On the other hand, if the electron density of the substrate is
1.5 x 1018cm-3The larger the
The light reabsorption by the electrons is excessively increased and
There is a problem that the amount of projection is reduced and the luminous efficiency is suppressed. This
Taking these into consideration, the electron concentration of the n-type SiC single crystal substrate is set to 1 ×.
1017cm -3More than 1.5 x 1018cm-3less than
By adjusting the Ga content while maintaining the conductivity of the substrate,
It is possible to increase the brightness of the N-based light emitting element.

【0009】[0009]

【発明の実施の形態】以下、本発明に係わる一実施形態
を図面を用いて説明を行なう。図1は、本発明の一実施
形態を説明するためのGaN系半導体発光素子の積層構
造の概略断面図である。まず、図1に示すように、n型
SiC基板1(以下、単に基板1と呼ぶこともある。)
の一方の主表面上にn型GaN系バッファ層2を形成
し、次いでn型GaN半導体層3、p型GaN半導体層
4、さらにp型GaN系コンタクト層5をヘテロエピタ
キシャル成長させる。上記の層の形成は公知のMOCV
D(Metalorganic Chemical Vapor Deposition)法ある
いはMBE法(Molecular Beam Epitaxy)にて行なうこ
とができる。なお、本明細書においてMBEは、金属元
素成分源と非金属元素成分源との両方を固体とする狭義
のMBEに加え、金属元素成分源を有機金属とし非金属
元素成分源を固体とするMOMBE(Metal Organic Mo
lecular Beam Epitaxy)、金属元素成分源を固体とし非
金属元素成分源を気体とするガスソースMBE、金属元
素成分源を有機金属とし非金属元素成分源を気体とする
化学ビームエピタキシ(CBE(Chemical Beam Epitax
y))を概念として含む。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of a laminated structure of a GaN-based semiconductor light emitting device for explaining an embodiment of the present invention. First, as shown in FIG. 1, an n-type SiC substrate 1 (hereinafter sometimes simply referred to as the substrate 1).
The n-type GaN-based buffer layer 2 is formed on one of the main surfaces, and then the n-type GaN semiconductor layer 3, the p-type GaN semiconductor layer 4, and the p-type GaN-based contact layer 5 are heteroepitaxially grown. The formation of the layers described above is a known MOCV.
It can be performed by the D (Metalorganic Chemical Vapor Deposition) method or the MBE method (Molecular Beam Epitaxy). In addition, in this specification, MBE is, in addition to MBE in a narrow sense in which both a metal element component source and a non-metal element component source are solid, a MONBE in which the metal element component source is an organic metal and the non-metal element component source is a solid. (Metal Organic Mo
lecular Beam Epitaxy), a gas source MBE that uses a solid metal element source as a gas and a non-metal element source as a gas, and a chemical beam epitaxy (CBE) that uses a metal element source as an organic metal and a non-metal element source as a gas Epitax
y)) is included as a concept.

【0010】図1に示す積層構造をMOCVD法にて形
成する場合、主原料としては次のようなものを用いるこ
とができる。 ・Ga源:トリメチルガリウム(TMGa)、トリエチ
ルガリウム(TEGa)など。 N源:アンモニア(NH)など。
When the laminated structure shown in FIG. 1 is formed by the MOCVD method, the following materials can be used as main raw materials. -Ga source: trimethyl gallium (TMGa), triethyl gallium (TEGa), etc. N source: Ammonia (NH 3 ) and the like.

【0011】n型SiC基板1にはNを添加することに
より、n型GaN系バッファ層2およびn型GaN半導
体層3には、IV族元素であるSiを添加することによ
り、n型ドーピングを、また、p型GaN半導体層4お
よびp型GaN系コンタクト層5には、II族元素であ
るMgを添加することによりp型ドーピングが施されて
いる。以下にドーパント源を示す。 ・ N源:アンモニア(NH)など。 ・Si源:シランなどのシリコン水素化物など。 Mg源:ビスシクロペンタジエニルマグネシウム(Cp
Mg)など。 なお、本実施例においては、基板1以外用のドーパント
元素としてSiおよびMgを採用しているが、n型ドー
パントとしてC、Ge、SnなどのIV族元素を、p型
ドーパントとしてCa、Sr、ZnなどのII族元素を
用いてもよい。
N-type doping is performed by adding N to the n-type SiC substrate 1 and adding Si, which is a group IV element, to the n-type GaN-based buffer layer 2 and the n-type GaN semiconductor layer 3. Further, the p-type GaN semiconductor layer 4 and the p-type GaN-based contact layer 5 are p-type doped by adding Mg that is a group II element. The dopant sources are shown below. · N source: ammonia (NH 3), such as. -Si source: Silicon hydride such as silane. Mg source: Biscyclopentadienyl magnesium (Cp
2 Mg) etc. In this example, Si and Mg are used as the dopant elements other than the substrate 1. However, group IV elements such as C, Ge, and Sn are used as the n-type dopant, and Ca, Sr, and p-type dopants are used. Group II elements such as Zn may be used.

【0012】図1に示す積層構造を積層させた後、表面
にAu合金等、裏面にNi等の金属を蒸着させ、熱処理
を施しオーミック電極が形成される。その後、ダイシン
グ等により分離させることにより、GaN系半導体発光
素子が形成されることとなる。
After laminating the laminated structure shown in FIG. 1, an Au alloy or the like is vapor-deposited on the front surface and a metal such as Ni is vapor-deposited on the rear surface and heat-treated to form an ohmic electrode. After that, the GaN-based semiconductor light emitting device is formed by separating by dicing or the like.

【0013】図1における、n型SiC基板1において
は、該基板1の導電性を保ちつつ、GaN系発光素子の
輝度を高めるために、電子濃度が1×1017cm−3
以上1.5×1018cm−3以下に調整される。該電
子濃度範囲に収まるように、n型ドーピングされる基板
1中の窒素濃度を調整する必要があるが、窒素濃度が1
×1017cm−3以上1.5×1019cm−3以下
の範囲になるようにドーピングすることで、過剰な窒素
原子を形成することなく、高い活性化率を維持しなが
ら、基板1の電子濃度を上記数値範囲に収めることがで
きる。なお、基板1中のN濃度は、二次イオン質量分析
(SIMS)により、電子濃度は、ファンデルポー(va
n der Pauw)法または容量・電圧特性(C−V特性)法
により測定を行う。
In the n-type SiC substrate 1 shown in FIG. 1, the electron concentration is 1 × 10 17 cm −3 in order to increase the brightness of the GaN-based light emitting device while maintaining the conductivity of the substrate 1.
It is adjusted to 1.5 × 10 18 cm −3 or less. It is necessary to adjust the nitrogen concentration in the substrate 1 to be n-type doped so that it falls within the electron concentration range.
Doping so as to be in the range of × 10 17 cm −3 or more and 1.5 × 10 19 cm −3 or less prevents the formation of excessive nitrogen atoms and maintains a high activation rate, The electron concentration can be within the above numerical range. The N concentration in the substrate 1 was measured by secondary ion mass spectrometry (SIMS), and the electron concentration was measured by van der Pau (va
N der Pauw) method or capacity-voltage characteristic (C-V characteristic) method.

【0014】上述の製造方法により基板の電子濃度を変
化させたGaN系発光素子における、基板の電子濃度と
輝度との相関を図2に示す。図より明らかなように、電
子濃度が1.5×1018cm−3より大きくなると輝
度が低下していくことが分かる。他方、電子濃度が1×
1017cm−3未満でも、輝度の低下は見られない
が、基板裏面にNi等の金属を蒸着した後、熱処理する
ことによってオーミック電極の形成を行なう際、基板と
のオーミック特性が悪化し、オーミック電極の形成が困
難になったり、基板自体の抵抗率が高くなることにより
デバイスの動作電圧が上昇する場合があり、電子濃度を
1×1017cm−3以上とする必要がある。
FIG. 2 shows the correlation between the electron concentration of the substrate and the luminance in the GaN-based light emitting device in which the electron concentration of the substrate is changed by the above manufacturing method. As is clear from the figure, the brightness decreases when the electron concentration exceeds 1.5 × 10 18 cm −3 . On the other hand, the electron density is 1x
Even if it is less than 10 17 cm −3 , the brightness is not reduced, but after forming a metal such as Ni on the back surface of the substrate and then performing heat treatment to form an ohmic electrode, the ohmic characteristics with the substrate deteriorate. It may be difficult to form an ohmic electrode or the resistivity of the substrate itself may increase, which may increase the operating voltage of the device.
It is necessary to make it 1 × 10 17 cm −3 or more.

【0015】[0015]

【発明の効果】本発明が示すように、Nドープされたn
型SiC基板上に作製されたGaN系半導体発光素子に
おいて、該SiC基板の電子濃度を1×1017cm
−3以上1.5×1018cm−3以下に調整すること
により、その導電性を保ち、かつ、光再吸収を抑制する
ことができ、結果、発光効率が向上するとともに、輝度
のバラツキを抑制することが可能となり、生産性の観点
からも良好となる。
As shown by the present invention, N-doped n
In a GaN-based semiconductor light-emitting device fabricated on a SiC substrate of SiC type, the electron concentration of the SiC substrate is 1 × 10 17 cm 2.
By adjusting the 1.5 × 10 18 cm -3 or less than -3, maintaining its conductivity, and it is possible to suppress light resorption result, the luminous efficiency is improved, the luminance variation It becomes possible to suppress, and it becomes favorable from the viewpoint of productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示すGaN系半導体発光
素子の積層構造の概略断面図。
FIG. 1 is a schematic cross-sectional view of a laminated structure of a GaN-based semiconductor light emitting device showing an embodiment of the present invention.

【図2】本発明における基板の電子濃度と輝度との相関
図。
FIG. 2 is a correlation diagram between the electron density and the brightness of the substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1 n型SiC基板 3 n型GaN半導体層 4 p型GaN半導体層 1 n-type SiC substrate 3 n-type GaN semiconductor layer 4 p-type GaN semiconductor layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素ドープしたn型SiC単結晶基板上
に、n型GaN系半導体層とp型GaN系半導体層とが
少なくとも一層ずつ形成されたGaN系発光素子におい
て、前記n型SiC単結晶基板の電子濃度が1×10
17cm−3以上1.5×1018cm−3以下である
ことを特徴とするGaN系発光素子。
1. A GaN-based light-emitting device having at least one n-type GaN-based semiconductor layer and at least one p-type GaN-based semiconductor layer formed on a nitrogen-doped n-type SiC single-crystal substrate. The electron density of the substrate is 1 × 10
A GaN-based light-emitting device characterized by having a size of 17 cm −3 or more and 1.5 × 10 18 cm −3 or less.
【請求項2】 前記n型SiC単結晶基板における窒素
濃度が1×1017cm−3以上1.5×1019cm
−3以下であることを特徴とするGaN系発光素子。
2. The nitrogen concentration in the n-type SiC single crystal substrate is 1 × 10 17 cm −3 or more and 1.5 × 10 19 cm.
-3 or less, The GaN type light emitting element characterized by the above-mentioned.
【請求項3】 窒素ドープしたn型SiC単結晶基板上
に、エピタキシャル成長法により、n型GaN系半導体
層、p型GaN系半導体層の順に積層されたGaN系発
光素子において、前記n型SiC単結晶基板の電子濃度
が1×1017cm−3以上1.5×1018cm−3
以下であることを特徴とするGaN系発光素子の製造方
法。
3. A GaN-based light emitting device in which an n-type GaN-based semiconductor layer and a p-type GaN-based semiconductor layer are stacked in this order on a nitrogen-doped n-type SiC single crystal substrate by an epitaxial growth method, wherein The electron concentration of the crystal substrate is 1 × 10 17 cm −3 or more and 1.5 × 10 18 cm −3.
A method for manufacturing a GaN-based light-emitting device, characterized in that:
JP2001261081A 2001-08-30 2001-08-30 GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD Pending JP2003069073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261081A JP2003069073A (en) 2001-08-30 2001-08-30 GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261081A JP2003069073A (en) 2001-08-30 2001-08-30 GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2003069073A true JP2003069073A (en) 2003-03-07

Family

ID=19088180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261081A Pending JP2003069073A (en) 2001-08-30 2001-08-30 GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2003069073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629857B1 (en) 2004-04-27 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride device and method for manufacturing the same
US8026155B2 (en) 2009-02-04 2011-09-27 Empire Technology Development Llc Method for producing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629857B1 (en) 2004-04-27 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride device and method for manufacturing the same
US8026155B2 (en) 2009-02-04 2011-09-27 Empire Technology Development Llc Method for producing semiconductor device

Similar Documents

Publication Publication Date Title
US7193236B2 (en) Light emitting device using nitride semiconductor and fabrication method of the same
CN109920889B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN110718612B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN110112273B (en) Deep ultraviolet LED epitaxial structure, preparation method thereof and deep ultraviolet LED
JP2003037289A (en) Group iii nitride light-emitting element with low-drive voltage
CN114695612B (en) Gallium nitride-based light emitting diode epitaxial structure and preparation method thereof
CN116525735B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN115188863A (en) Light emitting diode epitaxial wafer and preparation method thereof
CN114824007A (en) Light emitting diode epitaxial structure and preparation method thereof
CN110364598B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN116598396A (en) LED epitaxial wafer, preparation method thereof and LED
CN109671817B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN114883464A (en) Light emitting diode epitaxial wafer capable of improving reliability and preparation method thereof
KR20130102210A (en) Nitride semiconductor light emitting device and manufacturing method thereof
CN114823999B (en) LED epitaxial structure with nitrogen polarity contact layer and preparation method thereof
CN109473511B (en) Gallium nitride-based light emitting diode epitaxial wafer and growth method thereof
CN109686821B (en) Preparation method of epitaxial wafer of light-emitting diode
CN109473521B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN217641376U (en) LED epitaxial wafer and LED chip
US7847314B2 (en) Gallium nitride-based compound semiconductor light-emitting device
CN110061104B (en) Method for manufacturing gallium nitride-based light emitting diode epitaxial wafer
CN109473525B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
JP2003069073A (en) GaN LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
CN106601878B (en) A kind of LED preparation method with high photosynthetic efficiency
CN114497306B (en) GaN-based LED epitaxial wafer, epitaxial growth method and LED chip