JP2003064386A - Desulfurizing agent for removing sulfur compound in fuel gas, and fuel cell power generation system utilizing the agent - Google Patents
Desulfurizing agent for removing sulfur compound in fuel gas, and fuel cell power generation system utilizing the agentInfo
- Publication number
- JP2003064386A JP2003064386A JP2001252696A JP2001252696A JP2003064386A JP 2003064386 A JP2003064386 A JP 2003064386A JP 2001252696 A JP2001252696 A JP 2001252696A JP 2001252696 A JP2001252696 A JP 2001252696A JP 2003064386 A JP2003064386 A JP 2003064386A
- Authority
- JP
- Japan
- Prior art keywords
- desulfurizing agent
- fuel gas
- sulfur compound
- gas
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 49
- 230000003009 desulfurizing effect Effects 0.000 title claims abstract description 43
- 239000002737 fuel gas Substances 0.000 title claims abstract description 43
- 150000003464 sulfur compounds Chemical class 0.000 title claims abstract description 32
- 239000000446 fuel Substances 0.000 title claims abstract description 31
- 238000010248 power generation Methods 0.000 title claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229920000642 polymer Polymers 0.000 claims abstract 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 34
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 22
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims description 15
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 9
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 8
- 229910021536 Zeolite Inorganic materials 0.000 claims description 6
- 239000001273 butane Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 6
- 239000001294 propane Substances 0.000 claims description 6
- 239000010457 zeolite Substances 0.000 claims description 6
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910021472 group 8 element Inorganic materials 0.000 claims description 4
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical group 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 24
- 239000003915 liquefied petroleum gas Substances 0.000 abstract description 15
- 239000003205 fragrance Substances 0.000 abstract description 14
- 239000003054 catalyst Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 238000006477 desulfuration reaction Methods 0.000 description 10
- 230000023556 desulfurization Effects 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 9
- 238000005342 ion exchange Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002407 reforming Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000003949 liquefied natural gas Substances 0.000 description 3
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 2
- 229960005147 calcium acetate Drugs 0.000 description 2
- 239000001639 calcium acetate Substances 0.000 description 2
- 235000011092 calcium acetate Nutrition 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910001849 group 12 element Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052713 technetium Inorganic materials 0.000 description 2
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 101150076749 C10L gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 101100321669 Fagopyrum esculentum FA02 gene Proteins 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 229910021474 group 7 element Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- -1 naphtha Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料ガス中の硫黄
化合物を除去するための脱硫剤に関するものである。さ
らに、詳細には、都市ガス、LPG(Liquefie
d Petroleum Gas:液化石油ガス)など
の燃料ガスを水素原料とする固体高分子型燃料電池
(Polymer Electrolyte Fuel
Cell:PEFC)の前段で用いられる脱硫剤に関
する。TECHNICAL FIELD The present invention relates to a desulfurizing agent for removing sulfur compounds in fuel gas. Further, in detail, city gas, LPG (Liquifie)
d Petroleum Gas: liquefied petroleum gas) as a hydrogen raw material
(Polymer Electrolyte Fuel
Cell: PEFC) relating to a desulfurizing agent used in the preceding stage.
【0002】[0002]
【従来の技術】近年、地球温暖化防止が強く叫ばれてい
る中で、エネルギー問題を環境問題を考慮しながら解決
するために数々の試みが行われている。中でも、都市ガ
スやLPGなどの一次エネルギーを電気や動力と、温水
や蒸気などの複数の二次エネルギーに変換させ、効率よ
くエネルギーを利用するシステムであるコージェネレー
ションシステムが注目を浴びている。コージェネレーシ
ョンシステムは、エネルギーを必要とするその場所で製
造するため、送電など、エネルギー輸送に伴うロスがな
く、また従来の発電方式では廃棄していた排熱を回収し
有効に利用することもできる。2. Description of the Related Art In recent years, with the strong demand for prevention of global warming, various attempts have been made to solve energy problems in consideration of environmental problems. Above all, a cogeneration system, which is a system that efficiently uses energy by converting primary energy such as city gas and LPG into electricity and power and a plurality of secondary energy such as hot water and steam, has attracted attention. Since the cogeneration system is manufactured at the place where energy is needed, there is no loss due to energy transportation such as power transmission, and it is also possible to recover and effectively use the waste heat that was discarded by the conventional power generation method. .
【0003】さらに、このコージェネレーションシステ
ムの中でも理想的なシステムといわれているのが、分散
電源として機能する燃料電池発電システムである。燃料
電池発電システムは、排気が非常にきれいで環境にやさ
しい特性を持ち、かつ小容量でも発電効率が高く、さら
には排熱の有効利用により総合的なエネルギー効率の向
上がはかれるシステムといわれ、新エネルギーの一つと
して位置づけられ、普及促進が大いに望まれている。現
在、燃料電池発電システムは、工場や集合住宅、病院な
どで使用される例がある。Further, among the cogeneration systems, what is said to be an ideal system is a fuel cell power generation system which functions as a distributed power source. It is said that the fuel cell power generation system has very clean exhaust gas, has environmentally friendly characteristics, has high power generation efficiency even with a small capacity, and further improves overall energy efficiency by effectively using exhaust heat. It is positioned as one of the energy sources, and it is highly desired to promote it. Currently, there are examples of fuel cell power generation systems used in factories, housing complexes, hospitals, and the like.
【0004】都市ガスやLPGなどの燃料ガスを水素原
料とする燃料電池発電システムは、電気化学反応によっ
て燃料の持つ化学エネルギーを直接電気エネルギーに変
換するため、エネルギー変換に伴って発生する損失が少
なく、高い発電効率が得ることができる。しかし、都市
ガスやLPGには、付臭剤といわれる硫黄化合物が含ま
れており、これが燃料電池発電システム内で使用されて
いる各種触媒にダメージを与える被毒物質として機能し
てしまうという問題がある。ここで各種触媒とは、燃料
ガスから水素を生成する改質触媒や、水素と酸素とから
電力を得るための触媒のことである。燃料電池発電シス
テム中の各種触媒が効率よく機能するのには、付臭剤の
硫黄化合物をppbオーダーになるまで除去する必要が
ある。In a fuel cell power generation system using a fuel gas such as city gas or LPG as a hydrogen raw material, the chemical energy of the fuel is directly converted into electric energy by an electrochemical reaction, so that the loss caused by the energy conversion is small. , High power generation efficiency can be obtained. However, city gas and LPG contain a sulfur compound called an odorant, which causes a problem that it functions as a poisoning substance that damages various catalysts used in the fuel cell power generation system. is there. Here, the various catalysts are a reforming catalyst that produces hydrogen from fuel gas and a catalyst that obtains electric power from hydrogen and oxygen. In order for various catalysts in the fuel cell power generation system to function efficiently, it is necessary to remove the sulfur compound of the odorant until it reaches the ppb order.
【0005】しかし、付臭剤は、そもそも、燃料ガスが
漏れたときに人が気づくように安全のために添加された
ものであるので、燃料ガスをユーザに供給する段階では
取り除くことは安全問題上困難である。一般に、付臭剤
としては、悪臭を有するターシャリーブチルメルカプタ
ンや、ジメチルサルファイド、あるいはテトラヒドロチ
オフェンのような微量でも特有な臭いが感じられる硫黄
化合物が使用されている。However, since the odorant is originally added for safety so that a person may notice when the fuel gas leaks, it is a safety problem to remove it at the stage of supplying the fuel gas to the user. It's difficult. Generally, as the odorant, a sulfur compound such as tertiary butyl mercaptan having a malodor, dimethyl sulfide, or tetrahydrothiophene, which has a peculiar odor even in a small amount, is used.
【0006】[0006]
【発明が解決しようとする課題】以上のように、燃料電
池発電システムでは、都市ガス、LPGガスなどの燃料
ガスに供給段階で付臭剤として添加されている硫黄化合
物を燃料ガスの中からppbオーダーになるまで脱硫す
る必要がある。また、経済性を考えると、長時間(16
00時間以上)、−20℃〜300℃で、硫黄化合物を
脱硫できる必要がある。これらの必要性から、本発明
は、都市ガスやLPGなどの燃料ガスから、付臭剤とし
て使用された硫黄化合物を長時間、−20℃〜300℃
で除去できるような脱硫剤を提供することを目的とす
る。さらに、本発明は、都市ガスやLPGなどの燃料ガ
スから、付臭剤として使用された硫黄化合物を長時間
(1600時間以上)、−20℃〜300℃で除去でき
るような脱硫剤を利用した燃料電池発電システムを提供
することを目的とする。As described above, in the fuel cell power generation system, the sulfur compound added as the odorant at the supply stage to the fuel gas such as city gas and LPG gas is added to the fuel gas by ppb. Must be desulfurized to order. In addition, considering economic efficiency,
00 hours or more), it is necessary to be able to desulfurize the sulfur compound at -20 ° C to 300 ° C. In view of these needs, the present invention provides a sulfur compound used as an odorant from a fuel gas such as city gas or LPG for a long time at -20 ° C to 300 ° C.
The purpose is to provide a desulfurizing agent that can be removed by. Further, the present invention utilizes a desulfurizing agent capable of removing a sulfur compound used as an odorant from a fuel gas such as city gas or LPG at -20 ° C to 300 ° C for a long time (1600 hours or more). An object is to provide a fuel cell power generation system.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明の脱硫剤は、硫黄化合物を含有する燃料ガス
から硫黄化合物を吸着除去する脱硫剤であって、ゼオラ
イト系担体と、該ゼオライト系担体に担持した触媒活性
金属とを含む。In order to achieve the above object, the desulfurizing agent of the present invention is a desulfurizing agent for adsorbing and removing a sulfur compound from a fuel gas containing a sulfur compound. And a catalytically active metal supported on a zeolite-based carrier.
【0008】前記燃料ガスが、C1(炭素を1個含む化
合物、例えばCH4)〜C12(炭素を12個含む化合
物、例えばC12H26)によって構成される炭化水素系ガ
スより選択される一種以上の化合物を含む。例えば、前
記燃料ガスが、CH4(メタン)と、C2H6(エタン)
と、C3H8(プロパン)と、C4H10(ブタン)と、C5
H12(ペンタン)と、C6H14(ヘキサン)と、C7H16
(ヘプタン)と、C8H18(オクタン)と、C9H20(ノ
ナン)と、C10H22(デカン)、C11H24、C12H26で
構成される炭化水素系ガスより選択される一種以上の化
合物を含む。本発明における燃料ガスは、一般的な都市
ガス、LPG(液化石油ガス)、LNG(液化天然ガ
ス)、メタンガス、灯油や、ガソリンなどのいわゆる化
石燃料をも広く含むものとする。本発明における都市ガ
スとは、導管で不特定多数の需要者に供給される気体燃
料をいい、天然ガス、原油、ナフサあるいは石炭などを
変性あるいは混合して製造されたガスを広く含む。限定
することを目的としないが、都市ガスは、標準的な成分
として、例えば、メタンを約70重量%以上約80重量
%以下、エタンを約10重量%以下、プロパンを約10
重量%以上約20重量%以下、ブタンを約10重量%以
下を含むものが多い。また、本発明におけるLPG(液
化石油ガス)は、プロパン、ブタンなどの炭化水素の混
合物である。本発明におけるLPG(液化天然ガス)
は、メタンを主成分とする天然ガスを加圧、冷却したも
のをいう。The fuel gas is a kind selected from a hydrocarbon-based gas composed of C1 (compound containing one carbon, such as CH 4 ) to C12 (compound containing 12 carbons, such as C 12 H 26 ). Including the above compounds. For example, the fuel gas is CH 4 (methane) and C 2 H 6 (ethane)
, C 3 H 8 (propane), C 4 H 10 (butane), C 5
H 12 (pentane), C 6 H 14 (hexane), C 7 H 16
(Heptane), C 8 H 18 (octane), C 9 H 20 (nonane), C 10 H 22 (decane), C 11 H 24, C 12 H 26 selected from hydrocarbon gases One or more compounds that are The fuel gas in the present invention includes a wide range of general city gas, LPG (liquefied petroleum gas), LNG (liquefied natural gas), methane gas, kerosene, and so-called fossil fuels such as gasoline. The city gas in the present invention refers to a gaseous fuel supplied to an unspecified number of consumers through a conduit, and broadly includes a gas produced by modifying or mixing natural gas, crude oil, naphtha, coal or the like. Although not intended to be limiting, city gas may include, as standard components, for example, methane at about 70 wt% or more and about 80 wt% or less, ethane at about 10 wt% or less, and propane at about 10 wt%.
In many cases, the content is not less than about 20% by weight and not more than about 10% by weight butane. Further, LPG (liquefied petroleum gas) in the present invention is a mixture of hydrocarbons such as propane and butane. LPG (liquefied natural gas) in the present invention
Refers to pressurized natural gas containing methane as a main component and cooled.
【0009】上述の本発明の脱硫剤に用いられる前記ゼ
オライト系担体が結晶性シリケートであり、該結晶性シ
リケートが、(1±0.8)R2O・[aM2O3・bL
O・cAl2O3]・ySiO2の化学式で表され、該化
学式中、Rがアルカリ金属およびHからなるグループか
ら選択される少なくとも1種の元素であり、Mが8族元
素、希土類元素、Ti、V、Cr、Nb、SbおよびG
aからなるグループから選択される少なくとも一種の元
素であり、LがMg、Ca、SrおよびBaからなるグ
ループから選択される少なくとも一種の元素であり、モ
ル比a、b、cおよびyが0≦a、0≦b≦20、a+
b=1および11≦y≦3000であり、CuKα線を
用いる粉末X線回折で格子面間隔3.65±0.1Å、
3.75±0.1Å、3.85±0.1Å、10.0±
0.3Åおよび11.2±0.3Åに最強ピークから第
5位までのピークが現れることを特徴とするものである
ことが好適である。The zeolite-based carrier used in the desulfurizing agent of the present invention is a crystalline silicate, and the crystalline silicate is (1 ± 0.8) R 2 O. [aM 2 O 3 .bL
O.cAl 2 O 3 ] .ySiO 2 in which R is at least one element selected from the group consisting of alkali metals and H, M is a Group 8 element, a rare earth element, Ti, V, Cr, Nb, Sb and G
at least one element selected from the group consisting of a, L is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, and the molar ratios a, b, c and y are 0 ≦ a, 0 ≦ b ≦ 20, a +
b = 1 and 11 ≦ y ≦ 3000, and the lattice plane spacing is 3.65 ± 0.1Å in powder X-ray diffraction using CuKα ray.
3.75 ± 0.1Å, 3.85 ± 0.1Å, 10.0 ±
It is preferable that peaks from the strongest peak to the fifth place appear at 0.3Å and 11.2 ± 0.3Å.
【0010】前記触媒活性金属が、4〜12族の元素か
ら選択される少なくとも一種であることが好適である。
なお、4〜12族の元素とは、例えば、4族としてT
i、Zr、Hfの元素と、5族としてV、Nb、Taの
元素と、6族としてCr、Mo、Wの元素と、7族とし
てMn、Tc、Reの元素と、8族としてFe、Ru、
Osの元素と、9族としてCo、Rh、Irの元素と、
10族としてNi、Pd、Ptの元素と、11族として
Cu、Ag、Auの元素、12族の元素としてZn、C
d、Hgの元素を含む。前記触媒活性金属として、4〜
12族の元素から選択される2種以上の触媒活性金属を
用いることが望ましい。具体的には、亜鉛(Zn)と鉄
(Fe)を同時に用いることが好適である。It is preferable that the catalytically active metal is at least one selected from the elements of Groups 4 to 12.
The elements of Groups 4 to 12 are, for example, T as Group 4
elements of i, Zr, and Hf, elements of V, Nb, and Ta as a group 5, elements of Cr, Mo, and W as a group 6, elements of Mn, Tc, and Re as a group 7, Fe as a group 8, Ru,
An element of Os, and elements of Co, Rh, and Ir as Group 9
Ni, Pd, and Pt elements as the 10th group, Cu, Ag, and Au elements as the 11th group, and Zn and C as the 12th group element
It contains the elements d and Hg. As the catalytically active metal, 4 to
It is desirable to use two or more kinds of catalytically active metals selected from Group 12 elements. Specifically, it is preferable to use zinc (Zn) and iron (Fe) at the same time.
【0011】本発明の脱硫剤は、燃料ガス中の硫黄化合
物を除去する際に、通常−20℃〜300℃、好ましく
は−20℃〜50℃で用いられることを特徴とする。前
記硫黄化合物が、硫化ジメチルと、ターシャルブチルメ
ルカプタンと、テトラヒドロチオフェンとからなるグル
ープより選択される一種以上の化合物を含む。The desulfurizing agent of the present invention is characterized in that it is usually used at -20 ° C to 300 ° C, preferably -20 ° C to 50 ° C when removing sulfur compounds in fuel gas. The sulfur compound contains one or more compounds selected from the group consisting of dimethyl sulfide, tertiary butyl mercaptan, and tetrahydrothiophene.
【0012】本発明の燃料電池システムは、硫黄化合物
を含有する燃料ガスから硫黄化合物を吸着除去する上述
の脱硫剤と、該脱硫剤によって脱硫された燃料ガスと、
水とを反応させることにより、水素含有ガスを生成する
改質器と、該改質器の後段にあり、水素含有ガスと酸素
含有ガスをそれぞれのガス導入部より導入して電力を得
る固体高分子型燃料電池とを含むことを特徴とする。酸
素含有ガスは空気を用いて、空気中の酸素を利用するこ
とが好ましい。前記燃料ガスが、メタンと、エタンと、
プロパンと、ブタンとからなるグループより選択される
一種以上の化合物を含む。The fuel cell system of the present invention comprises the above desulfurizing agent for adsorbing and removing the sulfur compound from the fuel gas containing the sulfur compound, and the fuel gas desulfurized by the desulfurizing agent.
A reformer that produces a hydrogen-containing gas by reacting with water, and a solid-state reactor that is in the latter stage of the reformer and that obtains electric power by introducing the hydrogen-containing gas and the oxygen-containing gas from their respective gas introduction parts. And a molecular fuel cell. Air is preferably used as the oxygen-containing gas, and oxygen in the air is preferably used. The fuel gas is methane, ethane,
It contains one or more compounds selected from the group consisting of propane and butane.
【0013】以上のように、本発明に係る脱硫剤を提供
することによって、付臭剤の硫黄化合物を含有する燃料
ガスから硫黄化合物をppbオーダーまで、長時間(1
600時間以上)、−20℃〜300℃で、吸着除去す
ることができるようになる。また、本発明に係る燃料電
池発電システムにより、燃料ガスに含まれる付臭剤の硫
黄化合物を除去でき、効率的に、長時間、通常400℃
以上で、燃料ガスを改質し、水素を取り出し、この水素
から効率的に発電できるようになる。As described above, by providing the desulfurizing agent according to the present invention, from the fuel gas containing the sulfur compound of the odorant to the sulfur compound up to the ppb order for a long time (1
It becomes possible to remove by adsorption at -20 ° C to 300 ° C for 600 hours or more). Further, the fuel cell power generation system according to the present invention can remove the sulfur compound of the odorant contained in the fuel gas, efficiently at a normal temperature of 400 ° C. for a long time.
As described above, it becomes possible to reform the fuel gas, take out hydrogen, and efficiently generate power from this hydrogen.
【0014】[0014]
【発明の実施の形態】本発明に係る脱硫剤と燃料電池発
電システムの実施の形態を図面を用いて以下に説明す
る。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a desulfurizing agent and a fuel cell power generation system according to the present invention will be described below with reference to the drawings.
【0015】[脱硫剤の調製]本実施の形態に係る脱硫
剤は、結晶性シリケートを調製するステップと、結晶性
シリケートに触媒活性金属を担持するステップと、担持
後乾燥および焼成し加圧成型するステップを経て調製さ
れる。[Preparation of Desulfurizing Agent] The desulfurizing agent according to the present embodiment comprises a step of preparing a crystalline silicate, a step of supporting a catalytically active metal on the crystalline silicate, a drying and baking after supporting, and a pressure molding. It is prepared through the steps of
【0016】[結晶性シリケートの調製]次に、ゼオラ
イト系担体である結晶性シリケートの調製方法を説明す
る。水ガラス1号(SiO2含有)560重量部を水5
30〜550重量部に溶解し、この溶液を溶液Aとす
る。一方、水400重量部に硫酸アルミニウム70〜7
5重量部、塩化第二鉄10〜12重量部、酢酸カルシウ
ム4〜6重量部、塩化ナトリウム24〜28重量部、濃
塩酸190〜210重量部を溶解し、この溶液を溶液B
とする。溶液Aと溶液Bを一定の割合で供給し、沈殿を
生成させ、充分攪拌してPH8のスラリーを得る。この
スラリーをオートクレーブに仕込み、さらにテトラプロ
ピルアンモニウムブロマイド48〜52重量部を添加
し、100℃〜200℃で1時間〜100時間水熱合成
し、合成後、水洗し、乾燥した後、さらに、300℃〜
600℃で1時間〜12時間、焼成することにより、脱
水された状態において結晶性シリケートを得る。[Preparation of Crystalline Silicate] Next, a method for preparing crystalline silicate which is a zeolite-based carrier will be described. Water glass No. 1 (containing SiO 2 ) 560 parts by weight of water 5
It is dissolved in 30 to 550 parts by weight, and this solution is referred to as solution A. On the other hand, aluminum sulfate 70 to 7 is added to 400 parts by weight of water.
5 parts by weight, 10 to 12 parts by weight of ferric chloride, 4 to 6 parts by weight of calcium acetate, 24 to 28 parts by weight of sodium chloride, and 190 to 210 parts by weight of concentrated hydrochloric acid are dissolved, and this solution is used as solution B.
And Solution A and solution B are supplied at a constant ratio to form a precipitate, which is sufficiently stirred to obtain a PH8 slurry. This slurry was charged into an autoclave, 48 to 52 parts by weight of tetrapropylammonium bromide was further added, and hydrothermal synthesis was performed at 100 ° C. to 200 ° C. for 1 hour to 100 hours. After synthesis, washing with water and drying were performed, and further 300 ℃ ~
The crystalline silicate is obtained in a dehydrated state by baking at 600 ° C. for 1 to 12 hours.
【0017】この結晶性シリケートの化学式は、結晶性
シリケートが、(1±0.8)R2O・[aM2O3・b
LO・cAl2O3]・ySiO2の化学式で表され、該
化学式中、Rがアルカリ金属およびHからなるグループ
から選択される少なくとも1種の元素であり、Mが8族
元素、希土類元素、Ti、V、Cr、Nb、Sbおよび
Gaからなるグループから選択される少なくとも一種の
元素であり、LがMg、Ca、SrおよびBaからなる
グループから選択される少なくとも一種の元素であり、
モル比a、b、cおよびyが0≦a、0≦b≦20、a
+b=1および11≦y≦3000であり、CuKα線
を用いる粉末X線回折で格子面間隔3.65±0.1
Å、3.75±0.1Å、3.85±0.1Å、10.
0±0.3Åおよび11.2±0.3Åに最強ピークか
ら第5位までのピークが現れることを特徴とする。The chemical formula of this crystalline silicate is that the crystalline silicate is (1 ± 0.8) R 2 O. [aM 2 O 3 .b
LO.cAl 2 O 3 ] .ySiO 2 where R is at least one element selected from the group consisting of alkali metals and H, M is a Group 8 element, a rare earth element, Ti, V, Cr, Nb, Sb and at least one element selected from the group consisting of Ga, L is at least one element selected from the group consisting of Mg, Ca, Sr and Ba,
The molar ratios a, b, c and y are 0 ≦ a, 0 ≦ b ≦ 20, a
+ B = 1 and 11 ≦ y ≦ 3000, and the lattice spacing is 3.65 ± 0.1 in powder X-ray diffraction using CuKα rays.
Å, 3.75 ± 0.1 Å, 3.85 ± 0.1 Å, 10.
It is characterized in that peaks from the strongest peak to the fifth place appear at 0 ± 0.3Å and 11.2 ± 0.3Å.
【0018】この結晶性シリケートを30〜50℃で、
2〜6NのNH4Cl水溶液に浸漬し、2〜4時間攪拌
してNH4イオン交換をする。イオン交換後、洗浄して
80℃〜120℃、22〜26時間乾燥させた後、38
0〜420℃、2〜4時間焼成することにより、H型の
結晶性シリケートを得る。H型とは結晶性シリケート中
のイオン交換サイトの活性種がH+(プロトン)である
という意味です。結晶性シリケートの形状は、円柱状、
球状、リング状、ハニカム状(ソリッド型、コート型)
がよい。しかしながら、本発明の結晶性シリケートは、
これらの形状に限定されるものではない。This crystalline silicate was prepared at 30 to 50 ° C.
It is immersed in a 2 to 6N aqueous NH 4 Cl solution and stirred for 2 to 4 hours to perform NH 4 ion exchange. After ion exchange, washing and drying at 80 ° C to 120 ° C for 22 to 26 hours, 38
H-type crystalline silicate is obtained by firing at 0 to 420 ° C. for 2 to 4 hours. The H type means that the active species of the ion exchange site in the crystalline silicate is H + (proton). The crystalline silicate has a cylindrical shape,
Spherical, ring-shaped, honeycomb-shaped (solid type, coated type)
Is good. However, the crystalline silicate of the present invention is
It is not limited to these shapes.
【0019】[触媒活性金属の結晶性シリケート上への
担持]得られたH型の結晶性シリケート上に担持する触
媒活性金属は、4族から12族の金属が好ましい。な
お、4〜12族の元素とは、例えば、4族としてTi、
Zr、Hfの元素と、5族としてV、Nb、Taの元素
と、6族としてCr、Mo、Wの元素と、7族としてM
n、Tc、Reの元素と、8族としてFe、Ru、Os
の元素と、9族としてCo、Rh、Irの元素と、10
族としてNi、Pd、Ptの元素と、11族としてC
u、Ag、Auの元素、12族の元素としてZn、C
d、Hgの元素を含む。[Support of catalytically active metal on crystalline silicate] The catalytically active metal supported on the obtained H-type crystalline silicate is preferably a metal of Groups 4 to 12. The elements of Groups 4 to 12 are, for example, Ti of Group 4 and
Zr and Hf elements, V, Nb and Ta elements as group 5, Cr, Mo and W elements as group 6 and M as group 7
Elements of n, Tc, Re, and Fe, Ru, Os as Group 8
Element, Co, Rh, Ir element as group 9 and 10
Ni, Pd, and Pt elements as group and C as group 11
u, Ag, Au elements, Zn and C as Group 12 elements
It contains the elements d and Hg.
【0020】触媒活性金属が存在する金属塩の溶液の例
として、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸
銅、硝酸亜鉛、硝酸マンガン、硝酸クロムなどの硝酸塩
類を用いることが好ましい。As an example of the solution of the metal salt containing the catalytically active metal, it is preferable to use nitrates such as iron nitrate, cobalt nitrate, nickel nitrate, copper nitrate, zinc nitrate, manganese nitrate, and chromium nitrate.
【0021】本実施の形態では、触媒活性金属が存在す
る金属塩の溶液を用いて、含浸法にて触媒活性金属を結
晶性シリケートに担持する。なお、活性金属を結晶性シ
リケートに担持する方法は、含浸法のほかにも、あらか
じめ球状、円柱状に成型した結晶性シリケートを活性金
属溶液に浸漬させ、吸水含浸させる方法がある。In the present embodiment, a solution of a metal salt containing a catalytically active metal is used to support the catalytically active metal on the crystalline silicate by an impregnation method. As a method of supporting the active metal on the crystalline silicate, other than the impregnation method, there is a method of immersing the crystalline silicate previously molded into a spherical shape or a cylindrical shape in an active metal solution to impregnate it with water.
【0022】[担持後乾燥および焼成し加圧成型]次
に、触媒活性金属を担持したH型結晶性シリケートを乾
燥および焼成して得られた触媒粉末である加圧成型し
て、固形型の脱硫剤を得る。固形型には、円柱状、球
状、リング状、ハニカム状(ソリッド型、コート型)が
あるが、これらに限定されるものではない。[Drying and firing after loading and pressure molding] Next, the catalyst powder obtained by drying and firing the H-type crystalline silicate carrying the catalytically active metal is pressure-molded into a solid type. Obtain a desulfurizing agent. The solid type includes, but is not limited to, a cylindrical shape, a spherical shape, a ring shape, and a honeycomb shape (solid type, coat type).
【0023】[燃料電池発電システム]次に、本実施の
形態の脱硫剤を、固体高分子型燃料電池(PEFC装置
ともいう)の前段部に設置した際の本発明に係る燃料電
池発電システムの実施の形態について説明する。図1
は、低温酸化触媒が好適に適用される燃料電池発電シス
テムの一実施の形態に関し、その概要を説明するブロッ
ク図である。図1に示すように、本実施の形態の燃料電
池発電システムの構成は、都市ガスなどの燃料ガスの供
給導管(図に示さず)につながり、上述した本実施の形
態の脱硫剤からなる脱琉器1と、脱硫器1につながった
改質器2と、改質器2につながったHTS(high
temperature shift)装置3および/
またはLTS(low temperature sh
ift)装置3と、HTS装置3および/またはLTS
装置3につながったPROx装置4と、PROx装置4
につながったPEFC装置5とからなる。[Fuel Cell Power Generation System] Next, the fuel cell power generation system according to the present invention when the desulfurizing agent of the present embodiment is installed in the front stage part of a polymer electrolyte fuel cell (also referred to as PEFC device) An embodiment will be described. Figure 1
FIG. 1 is a block diagram illustrating an outline of an embodiment of a fuel cell power generation system to which a low temperature oxidation catalyst is preferably applied. As shown in FIG. 1, the configuration of the fuel cell power generation system according to the present embodiment is connected to a supply conduit (not shown) for fuel gas such as city gas, and the desulfurizing agent according to the present embodiment described above is used. Ryukyu 1, reformer 2 connected to desulfurizer 1, and HTS (high
temperature shift) device 3 and / or
Or LTS (low temperature sh
ift) device 3 and HTS device 3 and / or LTS
PROx device 4 connected to device 3 and PROx device 4
And a PEFC device 5 connected to the.
【0024】次に本実施の形態の燃料電池発電システム
の作用を説明する。都市ガスなどの燃料ガスは供給導管
(図に示さず)から脱硫器1に供給される。脱硫器1中
に設けられている本実施の形態の脱硫剤によって、燃料
ガス中の付臭剤であるターシャリーブチルメルカプタン
や、ジメチルサルファイドや、テトラヒドロチオフェン
などの硫黄化合物は吸着除去される。Next, the operation of the fuel cell power generation system of this embodiment will be described. Fuel gas such as city gas is supplied to the desulfurizer 1 from a supply conduit (not shown). The desulfurizing agent of the present embodiment provided in the desulfurizer 1 adsorbs and removes sulfur compounds such as tertiary butyl mercaptan, dimethyl sulfide, and tetrahydrothiophene, which are odorants in the fuel gas.
【0025】次に、脱硫された燃料ガスは、改質器2
は、燃料ガス改質触媒によって、燃料ガスの改質を行う
ための装置である。例えば、改質器2では、燃料ガス中
のメタンから、以下のような反応によって水素を得るよ
うにしている。燃料ガス中の他のエタン、プロパン、ブ
タンなどの炭化水素も、メタンと同様に、以下の化学反
応(1)〜(6)のように水素供給原料として作用す
る。この改質温度は700℃〜800℃で好適であるた
め、改質器2はこの温度範囲になるよう上昇される。
CH4+2H2O → CO2+4H2 (1)
CH4+O2 → CO+H2+H2O (2)
CH4+H2O→ CO+3H2 (3)
反応(1)は、メタンを改質して水素を得るための反応
である。この反応(1)は、吸熱反応である。そこで、
発熱反応である反応(2)によって改質反応を維持する
ための熱を得ている。ただし、この反応(2)では、C
Oを生じる。COは、PEFC装置5の発電するための
触媒の働きを阻害してしまう。式(3)の反応は水蒸気
改質反応の副反応であり、生成したCOが後流側の燃料
電池に悪影響を及ぼすことから、以下に述べるように、
改質器2とPEFC装置5との間に、HTS装置および
/またはLTS装置3と、PROx装置4における反応
(4)、(5)のようにCOを除去できるようにしてい
る。Next, the desulfurized fuel gas is supplied to the reformer 2
Is a device for reforming fuel gas with a fuel gas reforming catalyst. For example, in the reformer 2, hydrogen is obtained from methane in the fuel gas by the following reaction. Similar to methane, other hydrocarbons such as ethane, propane, butane in the fuel gas also act as hydrogen feedstocks as in the following chemical reactions (1) to (6). Since this reforming temperature is preferably 700 ° C. to 800 ° C., the reformer 2 is raised to fall within this temperature range. CH 4 + 2H 2 O → CO 2 + 4H 2 (1) CH 4 + O 2 → CO + H 2 + H 2 O (2) CH 4 + H 2 O → CO + 3H 2 (3) Reaction (1) is a reaction for reforming methane to obtain hydrogen. This reaction (1) is an endothermic reaction. Therefore,
The heat (2), which is an exothermic reaction, is used to maintain the reforming reaction. However, in this reaction (2), C
Produces O. CO hinders the function of the catalyst for power generation of the PEFC device 5. The reaction of the formula (3) is a side reaction of the steam reforming reaction, and the generated CO adversely affects the fuel cell on the downstream side. Therefore, as described below,
CO is removed between the reformer 2 and the PEFC device 5 as in the reactions (4) and (5) in the HTS device and / or LTS device 3 and the PROx device 4.
【0026】そこで、燃料ガスはHTS装置3および/
またはLTS装置3に送られ、HTS装置3および/ま
たはLTS装置3によって、反応(4)のようにCOを
除去されるようにしている。
CO+H2O → CO2+H2 (4)
ここで、HTS装置3の反応温度は500℃程度、LT
S装置3の温度は200℃程度である。Therefore, the fuel gas is the HTS device 3 and / or
Alternatively, it is sent to the LTS device 3, and CO is removed by the HTS device 3 and / or the LTS device 3 as in the reaction (4). CO + H 2 O → CO 2 + H 2 (4) Here, the reaction temperature of the HTS device 3 is about 500 ° C., LT
The temperature of the S device 3 is about 200 ° C.
【0027】HTS装置3および/またはLTS装置3
からの燃料ガスは、空気を加え、PROx装置4に送ら
れる。PROx装置4は、一酸化炭素選択酸化触媒によ
って、COを選択除去するための装置であり、以下のよ
うな反応によってCOを除去する。
CO+1/2O2 → CO2 (5)
前記反応(4)によってHTS装置3および/またはL
TS装置3で発生するCOが除去される。ただし、HT
S装置3および/またはLTS装置3では、0.3〜
0.4%まで除去している。このHTS装置3および/
またはLTS装置3では、さらに、10ppm以下まで
COを除去する。HTS device 3 and / or LTS device 3
The fuel gas from is added to air and is sent to the PROx device 4. The PROx device 4 is a device for selectively removing CO with a carbon monoxide selective oxidation catalyst, and removes CO by the following reaction. CO + 1 / 2O 2 → CO 2 (5) By the reaction (4), the HTS device 3 and / or L
CO generated in the TS device 3 is removed. However, HT
In the S device 3 and / or the LTS device 3, 0.3-
It is removed up to 0.4%. This HTS device 3 and /
Alternatively, the LTS device 3 further removes CO to 10 ppm or less.
【0028】PROx装置4からの水素を含む気体は、
PEFC装置5に送られる。PEFC装置5は、アノー
ド電極においてアノード電極触媒により、以下の反応を
起こさせる。
H2 → 2H++2e- (6)
この反応(6)によって生じるH+が拡散する。一方、
カソード電極においてカソード電極触媒により、以下の
反応を起こさせる。
2H++2e―+1/2O2 → H2O (7)
これらの反応(6)と(7)を合わせて電池反応が構成
され、起電力を得ることができる。The gas containing hydrogen from the PROx device 4 is
It is sent to the PEFC device 5. The PEFC device 5 causes the following reactions in the anode electrode by the anode electrode catalyst. H 2 → 2H + + 2e − (6) H + generated by this reaction (6) diffuses. on the other hand,
At the cathode electrode, the following reaction is caused by the cathode electrode catalyst. 2H + + 2e − + 1 / 2O 2 → H 2 O (7) These reactions (6) and (7) are combined to form a battery reaction, and an electromotive force can be obtained.
【0029】[0029]
【実施例】次に本発明に係る脱硫剤の実施例について説
明する。
[実施例1:結晶性シリケート調製、含浸法による触媒
調製]次に、結晶性シリケートを原料として含浸法によ
り触媒を調製した結果について説明する。水ガラス1号
(SiO2:30wt%含有)5616gを水5429
gに溶解し、この溶液を溶液Aとした。一方、水417
5gに硫酸アルミニウム718.9g、塩化第二鉄11
0g、酢酸カルシウム47.2g、塩化ナトリウム26
2g、濃塩酸2020gを溶解し、この溶液を溶液Bと
した。溶液Aと溶液Bを一定割合で供給し、沈殿を生成
させ、充分攪拌してpHが8のスラリーを得た。このス
ラリーを20リットルのオートクレーブに仕込み、さら
にテトラプロピルアンモニウムブロマイドを500g添
加し、160℃で72時間水熱合成し、合成後水洗し乾
燥した後、さらに500℃で3時間焼成することによ
り、脱水された状態においてH2O[0.25Fe2O3
・0.8Al2O3・0.2CaO]27SiO2の組成
を有する結晶性シリケートを得た。EXAMPLES Next, examples of the desulfurizing agent according to the present invention will be described. [Example 1: Preparation of crystalline silicate, preparation of catalyst by impregnation method] Next, the results of preparing a catalyst by the impregnation method using crystalline silicate as a raw material will be described. Water glass No. 1 (SiO 2 : 30 wt% content) 5616 g was added to water 5429
g, and this solution was designated as solution A. On the other hand, water 417
Aluminum sulfate 718.9g, ferric chloride 11 to 5g
0 g, calcium acetate 47.2 g, sodium chloride 26
2 g and 2020 g of concentrated hydrochloric acid were dissolved, and this solution was designated as solution B. Solution A and solution B were supplied at a constant ratio to form a precipitate, which was sufficiently stirred to obtain a slurry having a pH of 8. This slurry was charged into a 20-liter autoclave, 500 g of tetrapropylammonium bromide was further added, hydrothermally synthesized at 160 ° C. for 72 hours, washed with water after synthesis, dried and then calcined at 500 ° C. for 3 hours for dehydration. H 2 O [0.25Fe 2 O 3
A crystalline silicate having a composition of 0.8Al 2 O 3 .0.2CaO] 27SiO 2 was obtained.
【0030】得られた結晶性シリケートについて、Cu
Kα線を用いる粉末X線回折測定を行い、最強線から第
15位までのピークの格子面間隔(d値)および相対強
度を下記表1に示す。Regarding the obtained crystalline silicate, Cu
Powder X-ray diffraction measurement using Kα ray was performed, and the lattice plane spacing (d value) of peaks from the strongest line to the 15th position and the relative intensity are shown in Table 1 below.
【表1】 [Table 1]
【0031】表1から明らかなように、結晶性シリケー
ト1は、CuKα線を用いる粉末X線回折測定において
格子面間隔3.65±0.1Å、3.75±0.1Å、
3.85±0.1Å、10.0±0.3Åおよび11.
2±0.3Åに最強ピークから第5位までのピークを示
し、格子面間隔3.0±0.1Å、3.3±0.1Å、
4.25±0.1Å、5.6±0.2Å、6.0±0.
2Åおよび6.4±0.2Åに第6位から第11位まで
のピークを示し、かつ3.05±0.1Å、4.6±
0.1Å、5.7±0.2Åおよび6.7±0.2Åに
第12位から第15位までのピークを示した。As is clear from Table 1, crystalline silicate 1 has a lattice spacing of 3.65 ± 0.1Å, 3.75 ± 0.1Å, in powder X-ray diffraction measurement using CuKα rays.
3.85 ± 0.1Å, 10.0 ± 0.3Å and 11.
The peak from the strongest peak to the 5th place is shown at 2 ± 0.3Å, and the lattice spacing is 3.0 ± 0.1Å, 3.3 ± 0.1Å
4.25 ± 0.1Å, 5.6 ± 0.2Å, 6.0 ± 0.
Peaks from 6th to 11th at 2Å and 6.4 ± 0.2Å and 3.05 ± 0.1Å, 4.6 ±
The peaks from the 12th place to the 15th place were shown at 0.1Å, 5.7 ± 0.2Å and 6.7 ± 0.2Å.
【0032】前記結晶性シリケートを40℃で、4Nの
NH4Cl水溶液に浸漬し、3時間攪拌してNH4イオン
交換を実施した。イオン交換後、洗浄して100℃、2
4時間乾燥させた後、400℃、3時間焼成することに
よりH型の結晶性シリケートを得た。前記H型結晶性シ
リケートに硝酸鉄(II)水溶液を用いた含浸法にて酸化
鉄を3%担持後、乾燥および焼成して得られた触媒粉末
を加圧成型して固形型の脱硫剤を得た。The above crystalline silicate was immersed in a 4N NH 4 Cl aqueous solution at 40 ° C. and stirred for 3 hours to carry out NH 4 ion exchange. After ion exchange, wash at 100 ℃, 2
After being dried for 4 hours, H-type crystalline silicate was obtained by baking at 400 ° C. for 3 hours. The H-type crystalline silicate was loaded with 3% of iron oxide by an impregnation method using an aqueous solution of iron (II) nitrate, dried and calcined to obtain a catalyst powder, which was press-molded to obtain a solid desulfurizing agent. Obtained.
【0033】[実施例2:含浸法による調製]実施例1
の含浸法にて、硝酸鉄水溶液の代わりに硝酸コバルト、
硝酸ニッケル、硝酸銅、硝酸亜鉛、硝酸マンガンおよび
硝酸クロムを用いる事以外は、前述に記載した実施例1
と同様にして固形型脱硫剤2〜7を得た。(表2参照)[Example 2: Preparation by impregnation method] Example 1
In the impregnation method, instead of the iron nitrate aqueous solution, cobalt nitrate,
Example 1 described above, except that nickel nitrate, copper nitrate, zinc nitrate, manganese nitrate and chromium nitrate were used.
Solid type desulfurizing agents 2 to 7 were obtained in the same manner as in. (See Table 2)
【表2】 [Table 2]
【0034】[実施例3:含浸法による調製]実施例1
の含浸法にて、硝酸鉄水溶液と同時に硝酸コバルト、硝
酸ニッケル、硝酸銅、硝酸亜鉛、硝酸マンガンまたは硝
酸クロムを添加した事以外は、前述に記載した実施例1
と同様にして固形型脱硫剤8〜13を得た。(表2参
照)[Example 3: Preparation by impregnation method] Example 1
Example 1 described above, except that cobalt nitrate, nickel nitrate, copper nitrate, zinc nitrate, manganese nitrate or chromium nitrate was added simultaneously with the iron nitrate aqueous solution by the impregnation method of 1.
Solid type desulfurizing agents 8 to 13 were obtained in the same manner as in. (See Table 2)
【0035】[実施例4]実施例1で得られた結晶性シ
リケートを用いて、75℃でFeが10mmol存在す
る塩化鉄水溶液に浸漬し、12時間攪拌してFeイオン
交換を実施した。イオン交換後、ろ過、水洗、110℃
で一晩乾燥させた後、触媒粉末を加圧成型して固形型脱
硫剤14を得た。(表2参照)Example 4 Using the crystalline silicate obtained in Example 1, it was immersed in an iron chloride aqueous solution containing 10 mmol of Fe at 75 ° C. and stirred for 12 hours to carry out Fe ion exchange. After ion exchange, filtration, washing with water, 110 ° C
After drying overnight in, the catalyst powder was pressure-molded to obtain a solid desulfurization agent 14. (See Table 2)
【0036】[実施例5]実施例4のイオン交換する触
媒活性金属の原料として塩化コバルト、塩化ニッケル、
塩化銅、塩化亜鉛、塩化マンガンまたは塩化クロムを用
いること以外は前述した実施例1と同様にして固形型脱
硫剤15〜20を得た。(表2参照)[Embodiment 5] Cobalt chloride, nickel chloride, as raw materials for the ion-exchange catalytically active metal of Embodiment 4,
Solid type desulfurizing agents 15 to 20 were obtained in the same manner as in Example 1 except that copper chloride, zinc chloride, manganese chloride or chromium chloride was used. (See Table 2)
【0037】[比較例1]実施例1のH型結晶性シリケ
ートの代わりに、Al2O3を用いたこと以外は実施例1
と同様にして比較固形型触媒1を得た。(表2参照)[Comparative Example 1] Example 1 except that Al 2 O 3 was used in place of the H-type crystalline silicate of Example 1.
Comparative solid catalyst 1 was obtained in the same manner as in. (See Table 2)
【0038】[実施例6]固形型脱硫剤1〜20につい
て、都市ガス中に含まれる硫黄分の除去試験を実施し
た。試験条件を表3に記載する。表3に示すように、脱
硫剤の量を10CC、圧力を常圧(1気圧程度:101
3.25hPa(ヘクトパスカル)程度)、反応管入口
温度を常温(15℃〜35℃)、GHSV(Gas H
ourlySpace Velocity:1時間当た
りで触媒単位体積当たりの処理ガス容積(m3/m3・
h))を7000h−1、使用ガスを都市ガスとした。
このときの都市ガスの組成は、CH4が約88%、C2H
6が約6%、C3H8が約4%、i−C4H9が約2%、硫
化ジメチルが約1ppm、ターシャルブチルメルカプタ
ンが約1ppmであった。[Example 6] With respect to the solid desulfurizing agents 1 to 20, a test for removing sulfur contained in city gas was carried out. The test conditions are listed in Table 3. As shown in Table 3, the amount of desulfurizing agent is 10 CC and the pressure is normal pressure (about 1 atm: 101
3.25 hPa (hectopascals), reaction tube inlet temperature is room temperature (15 ° C to 35 ° C), GHSV (Gas H)
ourrySpace Velocity: Processing gas volume per unit volume of catalyst per hour (m 3 / m 3 ·
h)) was 7000 h-1, and the gas used was city gas.
At this time, the composition of the city gas is as follows: CH 4 is about 88%, C 2 H
6 was about 6%, C 3 H 8 was about 4%, i-C 4 H 9 was about 2%, dimethyl sulfide was about 1 ppm, and tert-butyl mercaptan was about 1 ppm.
【表3】
試験中、反応管出口から排出されたガスのS濃度を定期
的にサンプリング後、FPD方式のガスクロマトグラフ
によってS濃度を測定し、反応管出入り口のS濃度が等
しくなるまで連続的にガスを流通させた。出入り口のS
濃度が等しくなるまでの時間を、触媒の脱硫性能(h:
時間)とした。[Table 3] During the test, after periodically sampling the S concentration of the gas discharged from the reaction tube outlet, measure the S concentration with a gas chromatograph of the FPD method, and let the gas flow continuously until the S concentration at the inlet and outlet of the reaction tube becomes equal. It was Doorway S
The desulfurization performance of the catalyst (h:
Time).
【0039】その脱硫性能評価結果を触媒調製リストと
併せて表2に示した通り、結晶性シリケート用いた脱硫
剤は比較触媒よりも都市ガス中のS分をppbオーダー
まで長時間、15℃〜35℃で除去可能であることがわ
かる。特に、No.11のFeとZnの両活性金属を担
持した脱硫剤が、1620時間の脱硫性能を有し最も優
れていることが分かった。また、No.10のFeとC
uの両活性金属を担持した脱硫剤が、1400時間の脱
硫性能を有し優れていることが分かった。ところが、比
較例1の担体としてAl2O3を用いた例では、脱硫性能
は120時間しかなく、本発明の結晶性シリケートを担
体に用いた脱硫剤に比べ、脱硫性能が落ちている。As shown in Table 2 together with the results of the desulfurization performance evaluation, together with the catalyst preparation list, the desulfurizing agent using the crystalline silicate was used for 15 hours at 15 ° C. for a long time until the ppb order of the S content in city gas was higher than that of the comparative catalyst. It can be seen that it can be removed at 35 ° C. In particular, No. It was found that 11 of the desulfurization agents carrying both active metals of Fe and Zn had the desulfurization performance of 1620 hours and were the best. In addition, No. 10 Fe and C
It was found that the desulfurization agent supporting both active metals of u has a desulfurization performance of 1400 hours and is excellent. However, in the example using Al 2 O 3 as the carrier of Comparative Example 1, the desulfurization performance was only 120 hours, and the desulfurization performance was lower than that of the desulfurization agent using the crystalline silicate of the present invention as the carrier.
【0040】[0040]
【発明の効果】以上の説明から明らかなように、本発明
に係る脱硫剤によれば、付臭剤の硫黄化合物を含有する
燃料ガスから硫黄化合物をppbオーダーまで、長時間
(1600時間以上)、−20℃から300℃で、吸着
除去することができるようになる。また、本発明に係る
燃料電池発電システムにより、燃料ガスに含まれる付臭
剤の硫黄化合物を除去でき、効率的に、長時間、通常4
00℃以上で、燃料ガスを改質し、水素を取り出し、こ
の水素から効率的に発電できるようになる。As is apparent from the above description, according to the desulfurizing agent according to the present invention, from the fuel gas containing the sulfur compound of the odorant to the sulfur compound in the ppb order, for a long time (1600 hours or more). , −20 ° C. to 300 ° C. can be removed by adsorption. In addition, the fuel cell power generation system according to the present invention can remove the sulfur compound of the odorant contained in the fuel gas, and efficiently removes the sulfur compound from the odorant for a long time, usually 4
At 00 ° C. or higher, the fuel gas is reformed, hydrogen is taken out, and it becomes possible to efficiently generate electricity from this hydrogen.
【図1】本発明に係る脱硫剤を使用する燃料電池発電シ
ステムの一実施の形態を説明するブロック図である。FIG. 1 is a block diagram illustrating an embodiment of a fuel cell power generation system using a desulfurizing agent according to the present invention.
1 脱硫器 2 改質器 3 HTS装置および/またはLTS装置 4 PROx装置 5 PEFC装置 1 desulfurizer 2 reformer 3 HTS device and / or LTS device 4 PROx device 5 PEFC equipment
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/06 H01M 8/06 Z 8/10 8/10 C10L 3/00 B (72)発明者 安武 聡信 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA03 EA06 EB01 4G066 AA61B BA31 BA36 CA25 DA04 FA37 4G069 AA03 AA08 BA07A BC01A BC09A BC09B BC12A BC13A BC17A BC26A BC30A BC31B BC34A BC35B BC38A BC49A BC50A BC53A BC54A BC55A BC57A BC58A BC58B BC61A BC62B BC65A BC66B BC67B BC68B BC69A CC02 DA06 EA02Y EC25 FA01 FA02 FB14 FB61 FC08 ZA33A ZA33B 5H026 AA06 5H027 AA06 BA01 BA16 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/06 H01M 8/06 Z 8/10 8/10 C10L 3/00 B (72) Inventor Satoshi Abutake 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory F-term (reference) 4G040 EA03 EA06 EB01 4G066 AA61B BA31 BA36 CA25 DA04 FA37 4G069 AA03 AA08 BA07A BC01A BC09A BC09B BC12A BC13A BC17A BC26A BC26A BC26A BC26A BC26A BC26A BC35B BC38A BC49A BC50A BC53A BC54A BC55A BC57A BC58A BC58B BC61A BC62B BC65A BC66B BC67B BC68B BC69A CC02 DA06 EA02Y EC25 FA01 FA02 FB14 FB61 FC08 ZA33A ZA33B 5H026 AA06 5H016 AA06 BA01
Claims (9)
化合物を吸着除去する脱硫剤であって、 ゼオライト系担体と、 該ゼオライト系担体に担持した触媒活性金属とを含む脱
硫剤。1. A desulfurizing agent for adsorbing and removing a sulfur compound from a fuel gas containing a sulfur compound, the desulfurizing agent comprising a zeolite-based carrier and a catalytically active metal supported on the zeolite-based carrier.
構成される炭化水素系ガスより選択される一種以上の化
合物を含む請求項1に記載の脱硫剤。2. The desulfurizing agent according to claim 1, wherein the fuel gas contains one or more compounds selected from hydrocarbon-based gases composed of C1 to C12.
トであり、該結晶性シリケートが、(1±0.8)R2
O・[aM2O3・bLO・cAl2O3]・ySiO2の
化学式で表され、該化学式中、Rがアルカリ金属および
Hからなるグループから選択される少なくとも1種の元
素であり、Mが8族元素、希土類元素、Ti、V、C
r、Nb、SbおよびGaからなるグループから選択さ
れる少なくとも一種の元素であり、LがMg、Ca、S
rおよびBaからなるグループから選択される少なくと
も一種の元素であり、モル比a、b、cおよびyが0≦
a、0≦b≦20、a+b=1および11≦y≦300
0であり、CuKα線を用いる粉末X線回折で格子面間
隔3.65±0.1Å、3.75±0.1Å、3.85
±0.1Å、10.0±0.3Åおよび11.2±0.
3Åに最強ピークから第5位までのピークが現れること
を特徴とする請求項1または2に記載の脱硫剤。3. The zeolite-based carrier is a crystalline silicate, and the crystalline silicate is (1 ± 0.8) R 2
O · represented by the chemical formula [aM 2 O 3 · bLO · cAl 2 O 3] · ySiO 2, in chemical formula, at least one element R is selected from the group consisting of alkali metal and H, M Is a Group 8 element, rare earth element, Ti, V, C
At least one element selected from the group consisting of r, Nb, Sb and Ga, and L is Mg, Ca, S
It is at least one element selected from the group consisting of r and Ba, and the molar ratios a, b, c and y are 0 ≦.
a, 0 ≦ b ≦ 20, a + b = 1 and 11 ≦ y ≦ 300
0, and the lattice plane spacing was 3.65 ± 0.1Å, 3.75 ± 0.1Å, 3.85 in powder X-ray diffraction using CuKα rays.
± 0.1Å, 10.0 ± 0.3Å and 11.2 ± 0.
The desulfurizing agent according to claim 1 or 2, wherein peaks from the strongest peak to the fifth position appear at 3Å.
から選択される少なくとも一種である請求項1〜3のい
ずれかに記載の脱硫剤。4. The desulfurizing agent according to claim 1, wherein the catalytically active metal is at least one selected from elements of Groups 4 to 12.
元素から選択される2種以上の触媒活性金属を同時に用
いることを特徴とする請求項1〜4のいずれかに記載の
脱硫剤。5. The desulfurizing agent according to claim 1, wherein two or more kinds of catalytically active metals selected from elements of Groups 4 to 12 are simultaneously used as the catalytically active metals.
に、−20℃〜300℃で用いられることを特徴とする
請求項1〜5のいずれかに記載の脱硫剤。6. The desulfurizing agent according to claim 1, which is used at −20 ° C. to 300 ° C. when removing the sulfur compounds in the fuel gas.
ーシャルブチルメルカプタンと、テトラヒドロチオフェ
ンとからなるグループより選択される一種以上の化合物
を含む請求項1〜6のいずれかに記載の脱硫剤。7. The desulfurizing agent according to claim 1, wherein the sulfur compound contains one or more compounds selected from the group consisting of dimethyl sulfide, tertiary butyl mercaptan, and tetrahydrothiophene.
化合物を吸着除去する請求項1〜7のいずれかに記載の
脱硫剤と、 該脱硫剤によって脱硫された燃料ガスと、水とを反応さ
せることにより、水素含有ガスを生成する改質器と、 該改質器の後段にあり、該水素含有ガスと酸素含有ガス
をそれぞれのガス導入部より導入して電力を得る固体高
分子型燃料電池とを含むことを特徴とする燃料電池発電
システム。8. The desulfurizing agent according to claim 1, wherein the sulfur compound is adsorbed and removed from the fuel gas containing the sulfur compound, and the fuel gas desulfurized by the desulfurizing agent is reacted with water. As a result, a reformer that generates a hydrogen-containing gas, and a solid polymer fuel cell that is located after the reformer and that introduces the hydrogen-containing gas and the oxygen-containing gas from their respective gas introduction parts to obtain electric power A fuel cell power generation system comprising:
プロパンと、ブタンとからなるグループより選択される
一種以上の化合物を含む請求項8に記載の燃料電池発電
システム。9. The fuel gas comprises methane, ethane,
The fuel cell power generation system according to claim 8, comprising one or more compounds selected from the group consisting of propane and butane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001252696A JP4745557B2 (en) | 2001-08-23 | 2001-08-23 | Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001252696A JP4745557B2 (en) | 2001-08-23 | 2001-08-23 | Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003064386A true JP2003064386A (en) | 2003-03-05 |
JP4745557B2 JP4745557B2 (en) | 2011-08-10 |
Family
ID=19081128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001252696A Expired - Fee Related JP4745557B2 (en) | 2001-08-23 | 2001-08-23 | Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4745557B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006143754A (en) * | 2004-11-16 | 2006-06-08 | Mitsubishi Heavy Ind Ltd | Desulfurization method, fuel cell system and hydrogen production system |
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
CN105838476A (en) * | 2016-06-22 | 2016-08-10 | 王璐 | High-temperature sulphur-fixing agent |
CN105838475A (en) * | 2016-06-22 | 2016-08-10 | 王璐 | Compound sulfur fixing agent |
CN105907443A (en) * | 2016-06-22 | 2016-08-31 | 王璐 | Fuel-coal sulfur fixing agent |
CN105907442A (en) * | 2016-06-22 | 2016-08-31 | 王璐 | Novel sulphur-fixing agent |
CN105950258A (en) * | 2016-06-22 | 2016-09-21 | 王璐 | Nano sulfur-fixing agent |
CN106693883A (en) * | 2016-12-02 | 2017-05-24 | 郑州源冉生物技术有限公司 | Gasoline desulfurization adsorbent, and preparation method and application thereof |
CN106732388A (en) * | 2016-12-02 | 2017-05-31 | 郑州源冉生物技术有限公司 | A kind of desulfuration adsorbent and its preparation method and application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302302A (en) * | 1989-05-16 | 1990-12-14 | Osaka Gas Co Ltd | Power generation system of fuel cell |
JPH06306377A (en) * | 1993-04-23 | 1994-11-01 | Nippon Steel Corp | Removal of odorant from odorized gas |
JPH10237473A (en) * | 1997-02-21 | 1998-09-08 | Tokyo Gas Co Ltd | Process for desulfurizing hydrocarbon gas |
JPH119673A (en) * | 1997-06-25 | 1999-01-19 | Matsushita Electric Ind Co Ltd | Sulfur compound adsorbent and sulfur compound removing method |
JPH11309371A (en) * | 1998-04-28 | 1999-11-09 | Matsushita Electric Ind Co Ltd | Sulfur compound adsorber and removal of sulfur compound |
JP2000233901A (en) * | 1999-02-10 | 2000-08-29 | Sanyo Electric Co Ltd | Hydrogen production device, fuel cell system and their operation |
-
2001
- 2001-08-23 JP JP2001252696A patent/JP4745557B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302302A (en) * | 1989-05-16 | 1990-12-14 | Osaka Gas Co Ltd | Power generation system of fuel cell |
JPH06306377A (en) * | 1993-04-23 | 1994-11-01 | Nippon Steel Corp | Removal of odorant from odorized gas |
JPH10237473A (en) * | 1997-02-21 | 1998-09-08 | Tokyo Gas Co Ltd | Process for desulfurizing hydrocarbon gas |
JPH119673A (en) * | 1997-06-25 | 1999-01-19 | Matsushita Electric Ind Co Ltd | Sulfur compound adsorbent and sulfur compound removing method |
JPH11309371A (en) * | 1998-04-28 | 1999-11-09 | Matsushita Electric Ind Co Ltd | Sulfur compound adsorber and removal of sulfur compound |
JP2000233901A (en) * | 1999-02-10 | 2000-08-29 | Sanyo Electric Co Ltd | Hydrogen production device, fuel cell system and their operation |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006143754A (en) * | 2004-11-16 | 2006-06-08 | Mitsubishi Heavy Ind Ltd | Desulfurization method, fuel cell system and hydrogen production system |
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
CN105838476A (en) * | 2016-06-22 | 2016-08-10 | 王璐 | High-temperature sulphur-fixing agent |
CN105838475A (en) * | 2016-06-22 | 2016-08-10 | 王璐 | Compound sulfur fixing agent |
CN105907443A (en) * | 2016-06-22 | 2016-08-31 | 王璐 | Fuel-coal sulfur fixing agent |
CN105907442A (en) * | 2016-06-22 | 2016-08-31 | 王璐 | Novel sulphur-fixing agent |
CN105950258A (en) * | 2016-06-22 | 2016-09-21 | 王璐 | Nano sulfur-fixing agent |
CN106693883A (en) * | 2016-12-02 | 2017-05-24 | 郑州源冉生物技术有限公司 | Gasoline desulfurization adsorbent, and preparation method and application thereof |
CN106732388A (en) * | 2016-12-02 | 2017-05-31 | 郑州源冉生物技术有限公司 | A kind of desulfuration adsorbent and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP4745557B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7556872B2 (en) | Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system | |
TW200836833A (en) | Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same | |
WO2006101079A1 (en) | Desulfurizing agent and method of desulfurization with the same | |
JP4722429B2 (en) | Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite | |
JP4676690B2 (en) | METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE | |
JP4745557B2 (en) | Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent | |
JP2003017109A (en) | Polymer electrolyte fuel cell power generating system, and power generating method of polymer electrolyte fuel cell | |
JP4267483B2 (en) | Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells | |
JP2006036616A (en) | Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound | |
JP2018108927A (en) | Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system | |
JP4754844B2 (en) | Method for producing desulfurizing agent for hydrocarbon fuel, desulfurizing agent for hydrocarbon fuel | |
KR101486095B1 (en) | Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst | |
JP6317909B2 (en) | Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system | |
JP4961102B2 (en) | Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite | |
JP4822692B2 (en) | Desulfurization method, and operation method of fuel cell system and hydrogen production system | |
JP4339134B2 (en) | Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method | |
JP2005034682A (en) | Co modification catalyst and its production method | |
JP2002121006A (en) | Reforming catalyst and hydrogen generating device | |
JP4569408B2 (en) | Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same | |
JP5462686B2 (en) | Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system | |
JP5741510B2 (en) | Fuel cell power generation system | |
JP4335505B2 (en) | Dimethyl ether reforming catalyst and dimethyl ether reforming system | |
JP2006277980A (en) | Desulfurization method of fuel for fuel cell | |
JP4953584B2 (en) | Fuel cell system | |
JP2006316154A (en) | Liquefied petroleum gas for lp gas fuel cell, its desulfurization method and fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110422 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110512 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4745557 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |