JP2002121006A - Reforming catalyst and hydrogen generating device - Google Patents

Reforming catalyst and hydrogen generating device

Info

Publication number
JP2002121006A
JP2002121006A JP2000311575A JP2000311575A JP2002121006A JP 2002121006 A JP2002121006 A JP 2002121006A JP 2000311575 A JP2000311575 A JP 2000311575A JP 2000311575 A JP2000311575 A JP 2000311575A JP 2002121006 A JP2002121006 A JP 2002121006A
Authority
JP
Japan
Prior art keywords
catalyst
composite oxide
hydrogen
reforming catalyst
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000311575A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujii
康浩 藤井
Masato Hosaka
正人 保坂
Takeshi Tomizawa
猛 富澤
Kunihiro Ukai
邦弘 鵜飼
Kiyoshi Taguchi
清 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000311575A priority Critical patent/JP2002121006A/en
Publication of JP2002121006A publication Critical patent/JP2002121006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate highly efficiently hydrogen by suppressing the deterioration of a catalyst due to sulfur poisoning in a hydrogen generating device using a hydrocarbon based compound such as natural gas and LPG, water and air as raw materials and for supplying hydrogen to hydrogen utilization equipment such as a fuel cell. SOLUTION: Hydrogen is generated by bringing a gaseous mixture of a hydrocarbon such as city gas and LPG containing a sulfur based compound as an odorant, water and air into contact with a reforming catalyst carrying at least platinum and containing a multiple oxide of at least one kind of element selected from a group composed of La, Ce, Al, Ga, Ti, Mg, Ca, Sr, and Ba with Zr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガス、LPG
等の炭化水素系化合物、水、空気を原料とする水素発生
装置に関する。
The present invention relates to natural gas, LPG
The present invention relates to a hydrogen generator using a hydrocarbon-based compound, water, and air as raw materials.

【0002】[0002]

【従来の技術】化石燃料に替わるエネルギー源の有力候
補の一つとして水素が注目されているが、その有効利用
のためには水素パイプライン等の社会インフラの整備が
必要とされている。その一つの方法として、天然ガス、
その他化石燃料、アルコール等の現状既に構築されてい
る運送、搬送などのインフラを利用し、水素を必要とす
る場所でそれら燃料を改質して水素を発生させる方法が
検討されている。
2. Description of the Related Art Hydrogen has attracted attention as one of the promising candidates for an energy source to replace fossil fuels, but it is necessary to improve social infrastructure such as a hydrogen pipeline for its effective use. One way is to use natural gas,
In addition, a method of generating hydrogen by reforming the fuel at a place where hydrogen is needed by utilizing the already established transportation and transportation infrastructure such as fossil fuels and alcohols is being studied.

【0003】例えば中小規模でのオンサイト発電装置と
して、燃料電池のための天然ガス(都市ガス)改質技
術、自動車の動力源用の燃料電池のためのメタノール改
質技術等が様々な形で提案されている。それらの原料に
は微量の含硫黄化合物を含んでおり、これらの原料を直
接導入すると、改質触媒、CO変成触媒等が被毒、性能
劣化に至ることが確認されている。したがって、改質触
媒の上流側に酸化亜鉛などの遷移金属酸化物やゼオライ
トなどを位置させ脱硫する方法が一般的に採択されてい
る。
For example, as on-site power generators for small and medium scale, there are various forms such as a natural gas (city gas) reforming technology for a fuel cell and a methanol reforming technology for a fuel cell for a power source of an automobile. Proposed. These raw materials contain a trace amount of a sulfur-containing compound, and it has been confirmed that if these raw materials are directly introduced, the reforming catalyst, the CO shift catalyst, and the like are poisoned and the performance is deteriorated. Therefore, a method of desulfurization by arranging a transition metal oxide such as zinc oxide or zeolite on the upstream side of the reforming catalyst is generally adopted.

【0004】[0004]

【発明が解決しようとする課題】一般に硫黄系化合物は
触媒に対し被毒作用を有する。硫黄系化合物を含む原料
ガスの改質装置は、ほとんどの場合上記従来例のように
触媒上流側に脱硫部を具備させる方法が採択されてい
た。酸化亜鉛など金属酸化物を用いる化学反応脱硫で
は、金属酸化物を高温(約400℃)に保持することか
ら熱供給の必要を生じる。また、ゼオライトなどの吸着
剤による脱硫では、原料ガスに含有される水蒸気などに
より吸着置換が起こり、吸着した硫黄系化合物の脱離が
生じ、下流の触媒が硫黄により被毒される可能性が懸念
される。また、ゼオライト系吸着剤を用いる場合、酸化
亜鉛などの化学反応脱硫に比べ脱硫量に対する吸着剤容
積が大きくなり、装置のコンパクト化という点では好ま
しくない。したがって、改質部、もしくはCO変成部の
既存の熱を用い、改質部下流側で金属酸化物により化学
反応脱硫する方法が望まれ、そのためには硫黄系化合物
の触媒被毒に対し耐久性を有する改質触媒およびその触
媒使用条件の確立が急務であった。
Generally, sulfur compounds have a poisoning effect on the catalyst. In most cases, a reformer for a raw material gas containing a sulfur-based compound employs a method in which a desulfurization unit is provided upstream of the catalyst as in the above-described conventional example. In the chemical reaction desulfurization using a metal oxide such as zinc oxide, a heat supply is required because the metal oxide is maintained at a high temperature (about 400 ° C.). In addition, in desulfurization using an adsorbent such as zeolite, adsorption displacement occurs due to water vapor contained in the raw material gas, desorption of the adsorbed sulfur-based compounds occurs, and there is a concern that the downstream catalyst may be poisoned by sulfur. Is done. Further, when a zeolite-based adsorbent is used, the volume of the adsorbent with respect to the desulfurization amount is larger than that of the chemical reaction desulfurization of zinc oxide or the like, which is not preferable in terms of downsizing the apparatus. Therefore, a method is desired in which the existing heat of the reforming section or the CO shift section is used, and a chemical reaction desulfurization is performed with a metal oxide downstream of the reforming section. There is an urgent need to establish a reforming catalyst having the above conditions and conditions for using the catalyst.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、含硫黄化合物を含む原料ガスを硫黄による
被毒に対し耐久性の高い白金を担持したZr系複合酸化
物からなる改質触媒に接触させ水素を生成する都市ガ
ス、LPGの改質触媒および改質方法である。このと
き、Zr系複合酸化物はLa、Ce,Al、Ga,T
i、Mg、Ca、Sr、Baからなる群より選択される
少なくとも1種の元素を含有することが不可欠である。
Zrの含有率は60〜99モル%が有効であり、複合酸
化物は共沈法で得られた場合、触媒は高い耐久性を有す
る。さらに、改質触媒の使用温度が600℃以上である
ことが有効である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a modified gas containing a sulfur-containing compound and a platinum-supported Zr-based composite oxide having high durability against poisoning by sulfur. The present invention relates to a reforming catalyst and a reforming method for city gas and LPG which generate hydrogen by contact with a quality catalyst. At this time, the Zr-based composite oxide is La, Ce, Al, Ga, T
It is essential to contain at least one element selected from the group consisting of i, Mg, Ca, Sr, and Ba.
The effective content of Zr is 60 to 99 mol%, and when the composite oxide is obtained by a coprecipitation method, the catalyst has high durability. Further, it is effective that the use temperature of the reforming catalyst is 600 ° C. or higher.

【0006】[0006]

【発明の実施の形態】(実施の形態1)まず、触媒金属
種と含硫黄化合物に対する触媒の耐久性について調べ
た。Pt,Pd,Rh,Ir,Ru,Co,Ni,Cuの6種の元素につき、アル
ミナに3wt%担持した触媒を調製した。Ptはジニトロジア
ンミン錯塩を用い、その他の元素については硝酸塩を用
い、アルミナを金属塩溶液に含浸し、500℃にて1時間熱
分解して調製した。このような金属担持アルミナ粉末を
圧縮、破砕し8〜15メッシュの粒状に成型した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) First, the durability of a catalyst to a catalyst metal species and a sulfur-containing compound was examined. A catalyst was prepared in which 3 wt% of alumina was supported on six elements of Pt, Pd, Rh, Ir, Ru, Co, Ni and Cu. Pt was prepared by using a dinitrodiammine complex salt, nitrate for other elements, impregnating alumina with a metal salt solution, and thermally decomposing at 500 ° C. for 1 hour. Such a metal-carrying alumina powder was compressed, crushed, and formed into particles of 8 to 15 mesh.

【0007】これを石英管に充填し、空間速度が10000h
-1になるようメタン、水蒸気、空気の混合ガスを導入し
た。この際、メタン1に対しモル比で水蒸気3、空気2.5
とした。また、都市ガスを想定し付臭剤成分であるター
シャリーブチルメルカプタン(以下TBM)とジメチルス
ルフィド(以下DMS)をそれぞれ2.5ppmになるよう添加
した。石英管を管状炉に挿入、炉温を800℃に保持しメ
タン転化率の経時変化を観察した。なお、触媒は原料ガ
ス導入前に10%H2/Heにて空間速度10000h-1、400℃、1時
間水素還元を行った。これら一連の実験を実験1とす
る。上記実験結果を(表1)に示す。
This is filled in a quartz tube, and the space velocity is 10,000h
A mixed gas of methane, steam and air was introduced so as to be -1. At this time, water vapor 3 and air 2.5
And Assuming city gas, tertiary butyl mercaptan (hereinafter referred to as TBM) and dimethyl sulfide (hereinafter referred to as DMS), which are odorant components, were added to 2.5 ppm each. A quartz tube was inserted into a tube furnace, the furnace temperature was maintained at 800 ° C., and the change over time in the methane conversion was observed. The catalyst was subjected to hydrogen reduction at 10% H2 / He at a space velocity of 10,000 h-1 at 400 ° C. for 1 hour before introducing the raw material gas. This series of experiments is referred to as Experiment 1. The experimental results are shown in (Table 1).

【0008】[0008]

【表1】 [Table 1]

【0009】(表1)に示す通り、Pt触媒は他の金属種
に比べ含硫黄化合物に対する耐久性が高いことが示され
た。なお、TBM、DMSは改質触媒に接触した後、硫化水素
に転化した。硫化水素は酸化亜鉛により改質触媒下流側
での脱硫が可能である。
[0009] As shown in Table 1, it was shown that the Pt catalyst has higher durability against sulfur-containing compounds than other metal species. TBM and DMS were converted to hydrogen sulfide after contacting the reforming catalyst. Hydrogen sulfide can be desulfurized downstream of the reforming catalyst by zinc oxide.

【0010】次にPtの担体種と含硫黄化合物に対する触
媒の耐久性との相関について調べた。Al2O3,TiO2,SiO2,
ZrO2,MgO,La-Zr複合酸化物,Ce-Zr複合酸化物,Al-Zr複合
酸化物,Ga-Zr複合酸化物,Ti-Zr複合酸化物,Mg-Zr複合酸
化物,Ca-Zr複合酸化物,Sr-Zr複合酸化物,Ba-Zr複合酸化
物の14種の担体につき、各担体に3wt%担持した触媒を調
製した。
Next, the correlation between the type of Pt carrier and the durability of the catalyst to sulfur-containing compounds was examined. Al 2 O 3 , TiO 2 , SiO 2 ,
ZrO 2 , MgO, La-Zr composite oxide, Ce-Zr composite oxide, Al-Zr composite oxide, Ga-Zr composite oxide, Ti-Zr composite oxide, Mg-Zr composite oxide, Ca-Zr For 14 types of composite oxide, Sr-Zr composite oxide, and Ba-Zr composite oxide, a catalyst was prepared in which 3 wt% was supported on each support.

【0011】なお、Zr系複合酸化物は硫酸ジルコニウム
と各種硝酸塩とからなる水溶液にアンモニア水を滴下、
沈殿を生成、洗浄、分離した後、これを1000℃で1時間
焼成することにより得た。Zr含有率は95モル%とした。
The Zr-based composite oxide is obtained by adding aqueous ammonia dropwise to an aqueous solution comprising zirconium sulfate and various nitrates.
After forming, washing and separating the precipitate, it was obtained by calcining it at 1000 ° C. for 1 hour. The Zr content was 95 mol%.

【0012】つぎに、ジニトロジアンミン白金を用い担
体に含浸し、500℃にて1時間熱分解することにより白金
を担持した。このように作製したPt担持触媒を圧縮、破
砕し8〜15メッシュの粒状に成型、石英管に充填し、空
間速度が10000h-1になるようメタン、水蒸気、空気の混
合ガスを導入した。この際、メタン1に対しモル比で水
蒸気3、空気2.5とした。また、原料ガス中にTBMとDMSを
それぞれ2.5ppmになるよう添加した。石英管を管状炉に
挿入、炉温を800℃に保持しメタン転化率の経時変化を
観察した。なお、触媒は原料ガス導入前に10%H2/Heにて
空間速度10000h-1、400℃、1時間水素還元を行った。上
記実験結果を(表2)に示す。
Next, the carrier was impregnated with dinitrodiammine platinum and pyrolyzed at 500 ° C. for 1 hour to carry platinum. The Pt-supported catalyst thus prepared was compressed and crushed, formed into granules of 8 to 15 mesh, filled in a quartz tube, and a mixed gas of methane, steam and air was introduced so that the space velocity became 10,000 h-1. At this time, the molar ratio of water vapor was 3 and air was 2.5 with respect to 1 methane. Further, TBM and DMS were added to the raw material gas so as to be 2.5 ppm each. A quartz tube was inserted into a tube furnace, the furnace temperature was maintained at 800 ° C., and the change over time in the methane conversion was observed. The catalyst was subjected to hydrogen reduction at 10% H2 / He at a space velocity of 10,000 h-1 at 400 ° C. for 1 hour before introducing the raw material gas. The experimental results are shown in (Table 2).

【0013】[0013]

【表2】 [Table 2]

【0014】(表2)に示す通り、Zrに他元素を導入し
た複合酸化物を担体に選択した場合、触媒の耐久性が向
上した。
As shown in Table 2, when a composite oxide obtained by introducing another element into Zr was selected as the carrier, the durability of the catalyst was improved.

【0015】なお、実験1において原料ガスがメタンと
水のみの場合で実験1と同様の試験を行った(メタンと
水の混合比も実験1と同様)。この場合、(表2)に示
す各触媒のメタン転化率の低下はメタンと水と空気が原
料ガスである場合よりも著しいものとなった。
The same test as in Experiment 1 was carried out in Experiment 1 when the raw material gas was only methane and water (the mixing ratio of methane and water was the same as in Experiment 1). In this case, the reduction in the methane conversion rate of each catalyst shown in (Table 2) was more remarkable than when methane, water and air were the raw material gases.

【0016】さらに、実験1において原料ガスがメタン
と空気のみの場合で実験1と同様の試験を行った(メタ
ンと空気の混合比も実験1と同様)。この場合も、(表
2)に示す各触媒の性能劣化はメタンと水と空気が原料
ガスである場合よりも著しいものとなった。この傾向は
LPGでも同様であった。したがって、硫黄系化合物を含
有したメタンおよびLPGの改質には、原料ガスに水およ
び空気を含有することが、硫黄被毒に対する触媒の耐久
性を確保する点で必須である。
Further, the same test as in Experiment 1 was performed in Experiment 1 in which the raw material gas was only methane and air (the mixing ratio of methane and air was the same as in Experiment 1). Also in this case, the performance deterioration of each catalyst shown in (Table 2) was more remarkable than when methane, water and air were the raw material gases. This trend is
The same was true for LPG. Therefore, for reforming methane and LPG containing a sulfur-based compound, it is essential to include water and air in the raw material gas in order to ensure the durability of the catalyst against sulfur poisoning.

【0017】(実施の形態2)次にZr系複合酸化物にお
けるZr含有率と触媒の耐久性との相関を調べた。La-Zr
複合酸化物、Al-Zr複合酸化物、Mg-Zr複合酸化物の3種
類を用い、Zr含有率を変化させた試料につき、実験1と
同様の試験を行った。各種複合酸化物は、硫酸ジルコニ
ウムと各種硝酸塩とからなる水溶液にアンモニア水を滴
下、沈殿を生成、洗浄、分離した後、これを1000℃で1
時間焼成することにより得た。試験 の結果を(表3〜
5)に示す。
Embodiment 2 Next, the correlation between the Zr content in the Zr-based composite oxide and the durability of the catalyst was examined. La-Zr
The same test as in Experiment 1 was performed on samples using three types of composite oxide, Al-Zr composite oxide, and Mg-Zr composite oxide and varying the Zr content. Various composite oxides are obtained by adding ammonia water dropwise to an aqueous solution composed of zirconium sulfate and various nitrates, forming a precipitate, washing and separating, and then subjecting this to 1000 ° C. for 1 hour.
Obtained by baking for hours. Table 3-
It is shown in 5).

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】(表3〜5)に示す通り、Zr系複合酸化物
のZr含有率が60モル%以上99モル%以下である場合、硫
黄系化合物に対する触媒の耐久性が高い。
As shown in Tables 3 to 5, when the Zr content of the Zr-based composite oxide is 60 mol% or more and 99 mol% or less, the durability of the catalyst to sulfur-based compounds is high.

【0022】(実施の形態3)次に、Zr系複合酸化物の
調製方法が触媒の耐久性に及ぼす効果について検討し
た。まず、実施の形態1、2と同様に硫酸ジルコニウム
と硝酸塩の混合溶液にアンモニア水を滴下し、沈殿を得
る共沈法にてAl-Zr複合酸化物、La-Zr複合酸化物、Mg−
Zr複合酸化物の3種類を調製した。
(Embodiment 3) Next, the effect of the method for preparing a Zr-based composite oxide on the durability of the catalyst was examined. First, similarly to Embodiments 1 and 2, ammonia water is dropped into a mixed solution of zirconium sulfate and nitrate, and an Al-Zr composite oxide, a La-Zr composite oxide, an Mg-
Three types of Zr composite oxide were prepared.

【0023】一方、硝酸ジルコニルを各種硝酸塩水溶液
に懸濁させ、これを1000℃で1時間焼成する熱分解法に
てAl-Zr複合酸化物、La-Zr複合酸化物、Mg−Zr複合酸化
物の3種類を調製した。Zrの含有率は95モル%、Ptの担
持方法、触媒の耐久性を評価する試験は実験1と同様に
した。試験の結果を(表6)に示す。
On the other hand, Al-Zr composite oxide, La-Zr composite oxide, Mg-Zr composite oxide are suspended by a thermal decomposition method in which zirconyl nitrate is suspended in various nitrate aqueous solutions and calcined at 1000 ° C. for 1 hour. Were prepared. The Zr content was 95 mol%, the method for supporting Pt, and the test for evaluating the durability of the catalyst were the same as those in Experiment 1. The test results are shown in (Table 6).

【0024】[0024]

【表6】 [Table 6]

【0025】(表6)に示す通り、共沈法によって担体
を調製する方が触媒の耐久性は高いものとなった。
As shown in Table 6, the durability of the catalyst was higher when the carrier was prepared by the coprecipitation method.

【0026】(実施の形態4)次にLPG改質に対するPt
を担持したZr系複合酸化物の効果を調べた。Al2O3,Ti
O 2,SiO2,ZrO2,MgO,La-Zr複合酸化物,Ce-Zr複合酸化物,A
l-Zr複合酸化物,Ga-Zr複合酸化物,Ti-Zr複合酸化物,Mg-
Zr複合酸化物,Ca-Zr複合酸化物,Sr-Zr複合酸化物,Ba-Zr
複合酸化物の14種の担体につき、各担体にPtを3wt%担持
した触媒を調製した。なお、Zr系複合酸化物は硫酸ジル
コニウムと各種硝酸塩とからなる水溶液にアンモニア水
を滴下、沈殿を生成、洗浄、分離した後、これを1000℃
で1時間焼成することにより得た。Zr含有率は95モル%
とした。さらに、ジニトロジアンミン白金を用い担体に
含浸し、500℃にて1時間熱分解することにより白金を担
持した。
(Embodiment 4) Next, Pt for LPG reforming
The effect of Zr-based composite oxides loaded with was investigated. AlTwoOThree, Ti
O Two, SiOTwo, ZrOTwo, MgO, La-Zr composite oxide, Ce-Zr composite oxide, A
l-Zr composite oxide, Ga-Zr composite oxide, Ti-Zr composite oxide, Mg-
Zr composite oxide, Ca-Zr composite oxide, Sr-Zr composite oxide, Ba-Zr
3wt% Pt supported on each carrier for 14 types of composite oxide carrier
A prepared catalyst was prepared. In addition, Zr-based composite oxide is
Ammonia water in an aqueous solution consisting of conium and various nitrates
After dropping, generating a precipitate, washing, and separating,
For 1 hour. Zr content is 95 mol%
And Furthermore, using dinitrodiammine platinum as a carrier
Impregnated and pyrolyzed at 500 ° C for 1 hour to support platinum
I carried it.

【0027】このようなPt担持触媒粉末を圧縮、破砕し
8〜15メッシュの粒状に成型した。これを石英管に充填
し、空間速度が10000h-1になるようプロパン、水蒸気、
空気の混合ガスを導入した。この際、プロパン1に対し
モル比で水蒸気2、空気5とした。また、原料ガス中にTB
MとDMSをそれぞれ2.5ppmになるよう添加した。石英管を
管状炉に挿入、炉温を800℃に保持しプロパン転化率の
経時変化を観察した。なお、触媒は原料ガス導入前に10
%H2/Heにて空間速度10000h-1、400℃、1時間水素還元を
行った。これら一連の実験を実験2とする。上記実験結
果を(表7)に示す。
The Pt-supported catalyst powder is compressed and crushed.
It was molded into 8-15 mesh granules. This is filled in a quartz tube, and propane, steam,
A gas mixture of air was introduced. At this time, water vapor 2 and air 5 were used in a molar ratio to propane 1. In addition, TB
M and DMS were added so that each became 2.5 ppm. A quartz tube was inserted into a tubular furnace, the furnace temperature was maintained at 800 ° C., and the change over time in the propane conversion was observed. The catalyst should be 10
Hydrogen reduction was performed at 10000h-1 at 400 ° C for 1 hour at% H2 / He. This series of experiments is referred to as Experiment 2. The results of the above experiments are shown in (Table 7).

【0028】[0028]

【表7】 [Table 7]

【0029】(表7)に示す通り、LPG改質においてもZ
rに他元素を導入したZr系複合酸化物を担体としたPt触
媒は耐久性を有していることがわかった。
As shown in (Table 7), even in LPG reforming, Z
It was found that a Pt catalyst using a Zr-based composite oxide in which r was introduced with another element as a carrier had durability.

【0030】次に実施の形態2と同様に、Zr系複合酸化
物におけるZr含有率と触媒の耐久性との相関を調べた。
Al-Zr複合酸化物を用い、Zr含有率を変化させた試料に
つき、実験2と同様の試験を行った。Al-Zr複合酸化物
は共沈法により得た。試験の結果を(表8)に示す。
Next, as in Embodiment 2, the correlation between the Zr content in the Zr-based composite oxide and the durability of the catalyst was examined.
The same test as in Experiment 2 was performed on a sample in which the Zr content was changed using an Al-Zr composite oxide. Al-Zr composite oxide was obtained by coprecipitation method. The test results are shown in (Table 8).

【0031】[0031]

【表8】 [Table 8]

【0032】さらに、同試料を用いて、共沈法によるも
のと熱分解法によるものとで実験2を行い、触媒の耐久
性の比較を行った。LPG改質においても共沈法は熱分解
法に比べ耐久性が高いことがわかった。
Further, using the same sample, Experiment 2 was carried out for the co-precipitation method and the pyrolysis method, and the durability of the catalyst was compared. It was also found that the coprecipitation method had higher durability than the pyrolysis method in LPG reforming.

【0033】[0033]

【発明の効果】本発明により、La、Ce,Al、G
a,Ti、Mg、Ca、Sr、Baからなる群より選択
される少なくとも1種の元素とZrとの複合酸化物であ
る担体に、少なくとも白金を担持した改質触媒を、都市
ガス、LPGのオートサーマル改質に用いることによ
り、硫黄被毒に対し耐久性を有した触媒組成を提供で
き、かつ上記の改質触媒の下流側に脱硫部を位置させる
ことができた。
According to the present invention, La, Ce, Al, G
a, a support which is a composite oxide of at least one element selected from the group consisting of Ti, Mg, Ca, Sr, and Ba and Zr, and at least a platinum-supported reforming catalyst, and city gas, LPG By using it for autothermal reforming, it was possible to provide a catalyst composition having durability against sulfur poisoning, and to locate a desulfurization section downstream of the above-mentioned reforming catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 32/00 B01J 23/82 M (72)発明者 富澤 猛 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鵜飼 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田口 清 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G040 EA03 EA06 EA07 EC03 EC05 4G069 AA03 AA08 AA09 BA01B BA02B BA04B BA05A BA05B BA06B BB06B BC31B BC67B BC68B BC70B BC71B BC72B BC74B BC75A BC75B BC75C CC01 CC17 DA06 EA02Y FA02 FB14 FB34 4G140 EA03 EA06 EA07 EC03 EC05──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 32/00 B01J 23/82 M (72) Inventor Takeshi Tomizawa 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Inside (72) Inventor Kunihiro Ukai 1006 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kiyoshi Taguchi 1006, Kadoma, Kazuma, Kadoma, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 4G040 EA03 EA06 EA07 EC03 EC05 4G069 AA03 AA08 AA09 BA01B BA02B BA04B BA05A BA05B BA06B BB06B BC31B BC67B BC68B BC70B BC71B BC72B BC74B BC75A BC75B BC75C CC01 CC17 DA06 EA02 4FA03 EA03 EC03 EC03 4

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 La、Ce,Al、Ga,Ti、Mg、
Ca、Sr、Baからなる群より選択される少なくとも
1種の元素およびZrの複合酸化物を含有する担体に、
少なくとも白金を担持させたことを特徴とする改質触
媒。
1. La, Ce, Al, Ga, Ti, Mg,
Ca, Sr, a carrier containing at least one element selected from the group consisting of Ba and a composite oxide of Zr,
A reforming catalyst comprising at least platinum.
【請求項2】 前記担体のZr含有率が60モル%以上
99モル%以下であることを特徴とする請求項1記載の
改質触媒。
2. The reforming catalyst according to claim 1, wherein the Zr content of the carrier is 60 mol% or more and 99 mol% or less.
【請求項3】 原料となる炭化水素成分を供給する原料
供給手段、水を供給する水供給手段、空気を供給する空
気供給手段、および請求項1または2に記載の改質触媒
を備え、前記混合ガスを前記改質触媒に接触させ改質す
ることにより水素を生成する水素発生装置。
3. A raw material supply means for supplying a hydrocarbon component as a raw material, a water supply means for supplying water, an air supply means for supplying air, and the reforming catalyst according to claim 1 or 2, A hydrogen generator that generates hydrogen by bringing the mixed gas into contact with the reforming catalyst and reforming the mixed gas.
JP2000311575A 2000-10-12 2000-10-12 Reforming catalyst and hydrogen generating device Pending JP2002121006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311575A JP2002121006A (en) 2000-10-12 2000-10-12 Reforming catalyst and hydrogen generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311575A JP2002121006A (en) 2000-10-12 2000-10-12 Reforming catalyst and hydrogen generating device

Publications (1)

Publication Number Publication Date
JP2002121006A true JP2002121006A (en) 2002-04-23

Family

ID=18791310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311575A Pending JP2002121006A (en) 2000-10-12 2000-10-12 Reforming catalyst and hydrogen generating device

Country Status (1)

Country Link
JP (1) JP2002121006A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146615A (en) * 2001-11-16 2003-05-21 Mitsubishi Heavy Ind Ltd Method for manufacturing hydrogen
JP2005152890A (en) * 2003-10-29 2005-06-16 Nippon Shokubai Co Ltd Reforming catalyst for partial oxidation and reforming method
JP2007098250A (en) * 2005-10-03 2007-04-19 Petroleum Energy Center Partial oxidation-reforming catalyst and partial oxidation-reforming method
WO2007046462A1 (en) * 2005-10-19 2007-04-26 Kyocera Corporation Catalyst for hydrogen production, process for producing the same, fuel reformer, and fuel cell
US7316806B2 (en) 2003-10-29 2008-01-08 Nippon Shokubai Co., Ltd. Modifying catalyst for partial oxidation and method for modification
KR100858924B1 (en) * 2006-11-13 2008-09-17 고려대학교 산학협력단 Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
JP2008246416A (en) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc Catalyst carrier for modification and its preparing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146615A (en) * 2001-11-16 2003-05-21 Mitsubishi Heavy Ind Ltd Method for manufacturing hydrogen
JP2005152890A (en) * 2003-10-29 2005-06-16 Nippon Shokubai Co Ltd Reforming catalyst for partial oxidation and reforming method
US7316806B2 (en) 2003-10-29 2008-01-08 Nippon Shokubai Co., Ltd. Modifying catalyst for partial oxidation and method for modification
JP2007098250A (en) * 2005-10-03 2007-04-19 Petroleum Energy Center Partial oxidation-reforming catalyst and partial oxidation-reforming method
WO2007046462A1 (en) * 2005-10-19 2007-04-26 Kyocera Corporation Catalyst for hydrogen production, process for producing the same, fuel reformer, and fuel cell
JP2007136445A (en) * 2005-10-19 2007-06-07 Oita Univ Hydrogen production catalyst and production method thereof
KR100858924B1 (en) * 2006-11-13 2008-09-17 고려대학교 산학협력단 Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
JP2008246416A (en) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc Catalyst carrier for modification and its preparing method

Similar Documents

Publication Publication Date Title
Liu et al. Progresses in the preparation of coke resistant Ni‐based catalyst for steam and CO2 reforming of methane
JP2001270704A (en) Hydrogen generator
US20070167323A1 (en) Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
US7067453B1 (en) Hydrocarbon fuel reforming catalyst and use thereof
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
WO2006068135A1 (en) Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
WO2004050549A1 (en) Method of desulfurizing a hydrocarbon by partial oxidation
JPH10237473A (en) Process for desulfurizing hydrocarbon gas
Do et al. Effective hydrogen productions from propane steam reforming over spinel‐structured metal‐manganese oxide redox couple catalysts
JP2004168648A (en) Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
Khajonvittayakul et al. Thermodynamic and mechanism study of syngas production via integration of nitrous oxide decomposition and methane partial oxidation in the presence of 10% NiO–La 0.3 Sr 0.7 Co 0.7 Fe 0.3 O 3− δ
JP2002121006A (en) Reforming catalyst and hydrogen generating device
Hu et al. Crystalline phase-modulated PtOx nanoparticles exhibit superior methane combustion performance and sulfur poisoning resistance: Multi-interaction regulation
CA2593413C (en) Hydrocarbon fuel reforming catalyst and use thereof
JP4745557B2 (en) Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP2005007383A (en) Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell
Mandilas et al. Zinc-copper oxide coated monolithic reactors for high capacity hydrogen sulphide removal from gaseous streams
JP2005034682A (en) Co modification catalyst and its production method
Movick et al. Low-Temperature Ammonia Synthesis with an In Situ Adsorber under Regenerative Reaction Cycles Surpassing Thermodynamic Equilibrium
JP2006167501A (en) Reforming catalyst, hydrogen generation apparatus, and fuel cell system
JP5782400B2 (en) Desulfurization system, hydrogen production system, fuel cell system, fuel desulfurization method, and hydrogen production method
Gaioto et al. Effects of Metal Promoters (M= Fe, Co, and Cu) in Pt/M x Zr y O z Catalysts and Influence of CO2 and H2O on the CO Oxidation Activity (PROX): Analysis of Surface Properties After Reaction
Li et al. Promotion of Rh-based La2Zr2O7 type catalysts with the transition metals to improve sulfur-tolerance in diesel reforming
JP4822692B2 (en) Desulfurization method, and operation method of fuel cell system and hydrogen production system