JP2003055733A - Steel having satisfactory toughness and production method therefor - Google Patents

Steel having satisfactory toughness and production method therefor

Info

Publication number
JP2003055733A
JP2003055733A JP2001247022A JP2001247022A JP2003055733A JP 2003055733 A JP2003055733 A JP 2003055733A JP 2001247022 A JP2001247022 A JP 2001247022A JP 2001247022 A JP2001247022 A JP 2001247022A JP 2003055733 A JP2003055733 A JP 2003055733A
Authority
JP
Japan
Prior art keywords
less
steel
length
molten steel
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001247022A
Other languages
Japanese (ja)
Other versions
JP4032679B2 (en
Inventor
Tomoya Kawabata
友弥 川畑
Takashi Kimura
貴司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001247022A priority Critical patent/JP4032679B2/en
Publication of JP2003055733A publication Critical patent/JP2003055733A/en
Application granted granted Critical
Publication of JP4032679B2 publication Critical patent/JP4032679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel which has satisfactory toughness, and to provide a production method therefor. SOLUTION: In the steel, the cleanliness of nonmetallic inclusions with a length of >=2 μm is <=0.050%, and the average value of inclusion indexes A expressed by formula (1) as for nonmetallic inclusions with a length of <2 μm is 5,000 nm; wherein, (m) in formula (1) is the number (pieces) of nonmetallic inclusions of <2 μm present in the field at an angle of 10 μm when an optional position of the steel is observed in the above field; LX is the length (nm) of nonmetallic inclusions of <2 μm observed on the Xth when the optional position of the steel is observed in the field at an angle of 10 μm; and (n) is a coefficient satisfying 0 in the case of LX<=20 nm, 1 in the case of 0.20 nm<LX<=250 nm, 3 in the case of 250 nm<LX<=500 nm, and 4 in the case of 500 nm<LX<2 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、厚鋼板等の鋼材お
よびその製造方法に係り、特に、靱性に優れた鋼材およ
びその鋼材を安定的に得ることができる製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material such as a thick steel plate and a manufacturing method thereof, and more particularly to a steel material having excellent toughness and a manufacturing method capable of stably obtaining the steel material.

【0002】[0002]

【従来の技術】従来、鋼構造物の構造部材として使用さ
れる厚鋼板等の鋼材の破壊に対する抵抗性を向上させる
方法が種々議論されてきた。その方法は、大別すると下
記(A)〜(C)の3つである。
2. Description of the Related Art Heretofore, various methods have been discussed for improving the resistance to breakage of steel materials such as thick steel plates used as structural members of steel structures. The methods are roughly classified into the following three (A) to (C).

【0003】(A)鋼材の清浄度の向上 この方法は、鋼材中に含まれるPやS等の不純物元素の
含有量を極力低減して、鋼材の純度を向上させることに
より、格子欠陥を低減させて脆性破壊、延性き裂の発生
や伝播に対する抵抗性を高めることを目的とするもので
ある。例えば、「鉄と鋼(第64年)」の740〜748頁に
は、P含有量を低減させることによって衝撃特性が向上
することが記載されている。また、「鉄と鋼(第63
年)」のS713頁には、MnSの低減によって衝撃特性、伸
び特性および絞り特性を向上させることが記載されてい
る。近年、精錬技術の進歩に伴い、これらの不純物が極
めて少ない鋼材を得ることができるようになった。
(A) Improvement of cleanliness of steel material This method reduces lattice defects by reducing the content of impurity elements such as P and S contained in the steel material as much as possible to improve the purity of the steel material. The purpose is to increase the resistance to brittle fracture, the initiation and propagation of ductile cracks. For example, "Iron and Steel (64th year)", pages 740 to 748, describe that impact properties are improved by reducing the P content. Also, "Iron and Steel (No. 63
S. pp. 713), it is described that impact properties, elongation properties and drawing properties are improved by reducing MnS. In recent years, with the progress of refining technology, it has become possible to obtain steel products containing extremely few of these impurities.

【0004】しかし、現状でも特別な清浄化を実施する
ためには、例えば、炉外精錬を実施する等、製錬工程を
複雑にする必要があり、処理時間の増加に伴うコストの
高騰を引き起こす。例えば、「鉄と鋼(第69年)」のA-
41頁に記載されるように、P、Sを低減するためには新
たなプロセスを追加する必要があり、コストの高騰を招
く。特に、量産製品は、経済性を重視する必要があるた
め、このような生産効率が悪く、また、新たなプロセス
を要する方法を採用することは実状に沿わない。
However, even in the present situation, in order to carry out special cleaning, it is necessary to complicate the smelting process, for example, to carry out smelting outside the furnace, which causes a rise in cost due to increase in processing time. . For example, A- in “Iron and Steel (69th year)”
As described on page 41, in order to reduce P and S, it is necessary to add a new process, which causes a cost increase. In particular, since mass-produced products need to place importance on economic efficiency, it is not practical to adopt a method requiring such a new production process and a new process.

【0005】(B)合金元素の添加 鋼材の強度を向上させる一般的な方法として、Cを含有
させることが知られているが、Cを過度に含有させると
鋼材の靱性や溶接性を著しく低下させるため、NiやMo等
の鋼材の焼入れ性を高める合金元素を含有させることが
広く行われている。しかし、量産製品では、経済性の観
点から高価な合金元素の添加は極力避けるべきである。
(B) Addition of alloying elements As a general method for improving the strength of steel materials, it is known to contain C. However, if C is contained excessively, the toughness and weldability of the steel material are significantly deteriorated. For this reason, it is widely practiced to include alloy elements such as Ni and Mo that enhance the hardenability of steel materials. However, in mass-produced products, the addition of expensive alloying elements should be avoided as much as possible from the economical viewpoint.

【0006】(C)組織の制御 鋼材製品は、その最終組織が凝固ままの組織ではない場
合が多く、再加熱処理が施され、その結晶組織は、α→
γ→αの変態過程を経るのが一般的である。鋼材の靱性
を向上させるのに鋼材組織の微細化が有効であることが
知られているが、具体的には、スラブ加熱温度の調整、
TMCP(Thermo-mechanical Control Process:加工熱処
理)の採用、熱処理時の温度コントロールの実施等によ
って、鋼材組織の微細化が図られてきた。しかし、TMCP
または熱処理を実施することは工程を複雑化し生産性を
阻害する要因となるため、これらの工程を量産製品の製
造工程に取り入れるのは好ましくない。
(C) Structure-controlled steel products often have a final structure that is not as-solidified, and are reheated, and their crystal structure is α →
It is common to go through a γ → α transformation process. It is known that refinement of the steel structure is effective for improving the toughness of the steel, but specifically, the adjustment of the slab heating temperature,
The refinement of the steel structure has been achieved by adopting TMCP (Thermo-mechanical Control Process) and by controlling the temperature during heat treatment. But TMCP
Alternatively, performing heat treatment is a factor that complicates the process and hinders productivity, and therefore it is not preferable to incorporate these processes into the manufacturing process of mass-produced products.

【0007】最近では、上記のような靱性向上対策の他
に、鋼中に存在する介在物の組成を制御したり微細化す
ることにより、靱性を高める方法が検討されている。例
えば、「鉄と鋼(第62年)」の866頁には、MnSとAlO
の面積率と衝撃特性の関係が示されており、これらの
介在物の量の増加が吸収エネルギーの低下を招くことが
指摘されている。この介在物は、光学顕微鏡で観察がで
きる長さが2μm以上のものであり、そのほとんどは、
溶鋼中で生成し浮上せずに凝固シェルにトラップされた
ものである。
Recently, in addition to the above-mentioned measures for improving toughness, a method of increasing the toughness by controlling the composition of inclusions existing in the steel or refining it has been studied. For example, on page 866 of “Iron and Steel (62nd year)”, MnS and Al 2 O
The relationship between the area ratio of No. 3 and impact characteristics is shown, and it is pointed out that an increase in the amount of these inclusions causes a decrease in absorbed energy. The inclusions have a length of 2 μm or more that can be observed with an optical microscope, and most of them are
It is generated in molten steel and trapped in the solidified shell without floating.

【0008】[0008]

【発明が解決しようとする課題】上記のような長さが2
μm以上という比較的大きな介在物については、最近の
精錬技術の進歩により、相当低いレベルにまで低減する
ことができるようになった。しかし、凝固過程において
長さが2μm未満の比較的小さい介在物が析出すること
があり、このような微小な介在物であっても、その析出
状況によっては破壊の起点として作用し、鋼材の靱性を
低下させる場合がある。
[Problems to be Solved by the Invention] The length as described above is 2
With respect to relatively large inclusions of μm or more, it has become possible to reduce the inclusions to a considerably low level due to recent advances in refining technology. However, relatively small inclusions with a length of less than 2 μm may precipitate during the solidification process, and even such minute inclusions may act as a starting point of fracture depending on the precipitation condition, and the toughness of the steel material May decrease.

【0009】上述したように、比較的大きな介在物に着
目して、その析出量を低減させることによって鋼材の靱
性を向上させることは広く行われてきたが、このように
微小サイズで析出した介在物を起因とする靱性の低下を
防止する方法は検討されていない。また、このような介
在物の析出量を簡易かつ安価な手段によって制限するこ
とができれば、上記の(A)〜(C)に示したような、
新たな設備投資や合金元素の添加をする必要がないの
で、量産製品のように経済性を重視する必要がある鋼材
の製造に有用である。
As described above, it has been widely practiced to pay attention to relatively large inclusions and improve the toughness of the steel material by reducing the amount of precipitation. A method for preventing the deterioration of toughness due to a material has not been studied. Further, if the amount of such inclusions deposited can be limited by a simple and inexpensive means, as shown in the above (A) to (C),
Since there is no need to make new capital investment or addition of alloying elements, it is useful for manufacturing steel products, such as mass-produced products, where importance is attached to economic efficiency.

【0010】本発明は、上記の問題を解決すべくなされ
たものであって、長さが2μm以上という比較的大きな
介在物について更に厳密な量的制限をすることに加え、
長さが2μm未満という比較的小さな介在物の条件を定
めることによって、靱性の良好な鋼材を提供することを
目的とする。また、本発明は、簡易かつ安価に、介在物
の析出量を鋼材の靱性に悪影響を及ぼさない範囲に制限
して、靱性の良好な鋼材を得るための製造方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and in addition to stricter quantitative restrictions on relatively large inclusions having a length of 2 μm or more,
The purpose of the present invention is to provide a steel material having good toughness by determining the condition of relatively small inclusions having a length of less than 2 μm. Another object of the present invention is to provide a manufacturing method for obtaining a steel material having good toughness by simply and inexpensively limiting the precipitation amount of inclusions to a range that does not adversely affect the toughness of the steel material. .

【0011】[0011]

【課題を解決するための手段】本発明は、下記のおよ
びに示す鋼材ならびに下記のに示す鋼材の製造方法
を要旨とする。
DISCLOSURE OF THE INVENTION The gist of the present invention is a steel material shown in the following and and a manufacturing method of the steel material shown in the following.

【0012】長さが2μm以上の非金属介在物につい
てのJIS G 0555に規定される方法によって測定した清浄
度が0.050%以下であり、かつ長さが2μm未満の非金属
介在物についての下記の(1)式で表される介在物指数A
の平均値が5000nm以下であることを特徴とする靱性の
良好な鋼材。
For non-metallic inclusions having a length of 2 μm or more, the cleanliness measured by the method specified in JIS G 0555 is 0.050% or less, and for non-metallic inclusions having a length of less than 2 μm, Inclusion index A expressed by equation (1)
A steel material having good toughness, characterized in that the average value of is less than 5000 nm.

【数5】 [Equation 5]

【0013】ただし、mは、鋼材の任意の位置を10μm
角の視野で観察したときに当該視野中に存在する2μm
未満の非金属介在物の個数(個)、Lは、鋼材の任意
の位置を10μm角の視野で観察したときにX番目に観察
された2μm未満の非金属介在物の長さ(nm)、n
は、L≦20nmのときには0、20nm<L≦250n
mのときには1、250nm<L≦500nmのときには
3、500nm<L<2μmのときには4となる係数を示
す。
However, m is 10 μm at an arbitrary position of the steel material.
2 μm present in the visual field when observed in the angular visual field
Is the number of non-metallic inclusions (number), L X is the length (nm) of the non-metallic inclusions less than 2 μm observed at the Xth position when observing an arbitrary position of the steel material in a visual field of 10 μm square. , N
Is 0 when L X ≦ 20 nm, 20 nm <L X ≦ 250 n
The coefficient is 1 when m, 3 when 250 nm <L X ≦ 500 nm, and 4 when 500 nm <L X <2 μm.

【0014】質量%で、C:0.02〜0.20%、Si:0.60
%以下、Mn:0.20〜2.00%、P:0.030%以下、S:0.0
10%以下およびAl:0.06%以下を含むことを特徴とする
上記のに記載の靱性の良好な鋼材。
% By mass, C: 0.02 to 0.20%, Si: 0.60
% Or less, Mn: 0.20 to 2.00%, P: 0.030% or less, S: 0.0
A steel material having good toughness as described above, which contains 10% or less and Al: 0.06% or less.

【0015】溶鋼に、下記の(2)式で表される条件を
満足する不活性ガス吹き込み処理を実施した後、また
は、下記の(3)式で表される条件を満足する真空精錬処
理を実施した後に連続鋳造することを特徴とする上記の
またはに記載の靱性の良好な鋼材を製造する方法。
The molten steel is subjected to an inert gas blowing treatment which satisfies the condition represented by the following formula (2), or a vacuum refining treatment which satisfies the condition represented by the following formula (3). A method for producing a steel material having good toughness as described in the above item 1 or 2, which is characterized by performing continuous casting after the execution.

【数6】 [Equation 6]

【数7】 [Equation 7]

【0016】ただし、上記(2)式中のGは、溶鋼内に
吹き込まれる不活性ガス流量(NL/min)、Hは、不活
性ガス吹き込みノズルの先端から溶鋼湯面までの距離
(m)、Sは、取鍋溶鋼量(ton)、Dは、取鍋内径
(m)、tは、不活性ガス吹き込み時間(min)を示
し、上記(3)式中のGは、溶鋼環流に使用される不活
性ガス流量(NL/min)、Sは、取鍋溶鋼量(ton)、
は、浸漬管内径(m)、t は、真空処理時間(mi
n)を示す。
However, G in the above equation (2)1In molten steel
Inert gas flow rate (NL / min), H1Is inactive
Distance from the tip of the noble gas blowing nozzle to the molten steel surface
(M), S1Is the ladle molten steel amount (ton), D1Is the inner diameter of the ladle
(M), t1Indicates the inert gas blowing time (min)
And G in the formula (3) aboveTwoIs an inert material used for molten steel reflux
Gas flow rate (NL / min), STwoIs the ladle molten steel amount (ton),
DTwoIs the inner diameter of the immersion pipe (m), t TwoIs the vacuum processing time (mi
n) is shown.

【0017】[0017]

【発明の実施の形態】本発明の鋼材では、まず、長さが
2μm以上の非金属介在物についてのJIS G 0555に規定
される方法によって測定した清浄度(以下、単に「清浄
度」という)を0.050%以下に制限する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION In the steel material of the present invention, first, the length is
It is necessary to limit the cleanliness (hereinafter simply referred to as “cleanliness”) measured by the method specified in JIS G 0555 for non-metallic inclusions of 2 μm or more to 0.050% or less.

【0018】このような比較的大きな介在物の析出量を
低減することによって鋼材の靱性および延性を向上させ
ることができる。後述するように、本発明は、2μm未
満という比較的小さな介在物の条件を定めることによっ
て、従来の鋼材に比べて、優れた靱性を有する鋼を得る
ことを目的とするものである。しかし、清浄度が0.050
%を超える場合には、比較的小さな介在物の析出量の制
限を行っても、靱性の改善効果を十分に得ることができ
ない。従って、清浄度は、0.050%以下に制限する必要
がある。
By reducing the precipitation amount of such a relatively large inclusion, the toughness and ductility of the steel material can be improved. As will be described later, the present invention aims to obtain a steel having excellent toughness as compared with a conventional steel material by defining conditions for relatively small inclusions of less than 2 μm. However, the cleanliness is 0.050
If it exceeds%, the effect of improving toughness cannot be sufficiently obtained even if the precipitation amount of relatively small inclusions is limited. Therefore, the cleanliness should be limited to 0.050% or less.

【0019】なお、本明細書における「介在物」は、JI
S G 0555に規定される介在物に加え、一般に析出物と称
される炭化物や窒化物を含むものと定義する。例えば、
Mn炭化物、析出Cu、Cr炭窒化物、Mo炭窒化物、V炭窒化
物、B炭窒化物などを含む。
In the present specification, "inclusion" means JI.
In addition to the inclusions specified in SG 0555, it is defined to include carbides and nitrides generally called precipitates. For example,
Includes Mn carbide, precipitated Cu, Cr carbonitride, Mo carbonitride, V carbonitride, B carbonitride, and the like.

【0020】また、「介在物の長さ」は、介在物の最も
長い方向についての長さをいうものとする。ここで、長
さが2μm以上という比較的大きな介在物については、
光学顕微鏡を用いた観察により測定することができ、後
述する長さが2μm未満という比較的小さな介在物につ
いては、SEM(走査型電子顕微鏡)またはTEM(透
過型電子顕微鏡)を用いた観察により測定することがで
きる。
The term "length of inclusion" means the length of the inclusion in the longest direction. Here, for relatively large inclusions with a length of 2 μm or more,
It can be measured by observation with an optical microscope, and for relatively small inclusions with a length of less than 2 μm, which will be described later, by observation with an SEM (scanning electron microscope) or TEM (transmission electron microscope). can do.

【0021】本発明の鋼材は、更に、長さが2μm未満
の非金属介在物についての下記の(1)式で表される介在
物指数Aの平均値を5000nm以下に制限する必要があ
る。ただし、下記(1)式中のmは、鋼材の任意の位置を1
0μm角の視野で観察したときに当該視野中に存在する
2μm未満の非金属介在物の個数(個)、Lは、鋼材
の任意の位置を10μm角の視野で観察したときにX番目
に観察された2μm未満の非金属介在物の長さ(n
m)、nは、L≦20nmのときには0、20nm<L
≦250nmのときには1、250nm<L≦500nmのと
きには3、500nm<L<2μmのときには4となる係
数を示す。
In the steel material of the present invention, it is further necessary to limit the average value of the inclusion index A represented by the following formula (1) for non-metallic inclusions having a length of less than 2 μm to 5000 nm or less. However, m in the following formula (1) is 1 at any position of the steel material.
The number of non-metallic inclusions (pieces) less than 2 μm existing in the 0 μm square visual field, L X, is the Xth position when observing an arbitrary position of the steel material in the 10 μm square visual field. Observed length of non-metallic inclusions less than 2 μm (n
m) and n are 0 when L X ≦ 20 nm, 20 nm <L X
A coefficient is 1 when ≦ 250 nm, 3 when 250 nm <L X ≦ 500 nm, and 4 when 500 nm <L X <2 μm.

【数8】 [Equation 8]

【0022】長さが2μm未満という比較的小さな介在
物の条件を設定するに際し、その析出量にのみ着目して
も靱性の挙動を的確に把握することができない。即ち、
介在物は、そのサイズが大きい(長い)ほど、外力が負
荷された場合の応力集中や塑性歪集中が多く発生するた
め、鋼材の靱性に悪影響を及ぼす。従って、その介在物
のサイズによって重みをつけて、靱性の挙動を評価する
必要がある。
When setting the condition of a relatively small inclusion having a length of less than 2 μm, the behavior of toughness cannot be accurately grasped only by focusing on the amount of precipitation. That is,
Increasing the size (longer) of the inclusions causes more stress concentration and plastic strain concentration when an external force is applied, which adversely affects the toughness of the steel material. Therefore, it is necessary to evaluate the toughness behavior by weighting according to the size of the inclusions.

【0023】本発明者らは、この知見に基づいて、鋼材
に析出した微小介在物のサイズと鋼材の靱性との関係を
厳密に調査した結果、上記の(1)式で表される介在物指
数Aの平均値を5000nm以下に制限することによって、
鋼材の靱性を安定的に高いレベルに保つことができる本
発明を完成した。
Based on this finding, the present inventors have rigorously investigated the relationship between the size of the small inclusions precipitated in the steel material and the toughness of the steel material, and as a result, the inclusions represented by the above formula (1) By limiting the average value of the index A to 5000 nm or less,
The present invention has been completed in which the toughness of steel materials can be stably maintained at a high level.

【0024】なお、「介在物指数Aの平均値」とは、鋼
材中でランダムに選んだ100視野以上について、SEM
またはTEMを用いて、それぞれの視野中に存在する2
μm未満の介在物の長さを測定し、上記の(1)式から介
在物指数Aを算出、即ち、それぞれの介在物の長さとこ
れに対応した係数(n)との積を求め、この積の総和を
求めることによって介在物指数Aを算出し、測定した全
ての視野における介在物指数Aの平均値を示す。
The "average value of inclusion index A" means SEM for 100 or more fields randomly selected in the steel material.
Or using TEM, present in each field of view 2
The length of the inclusions less than μm is measured, the inclusion index A is calculated from the above formula (1), that is, the product of the length of each inclusion and the corresponding coefficient (n) is obtained, The inclusion index A was calculated by calculating the sum of the products, and the average value of the inclusion index A in all measured visual fields is shown.

【0025】本発明の鋼材は、質量%で、C:0.02〜0.
20%、Si:0.60%以下、Mn:0.20〜2.00%、P:0.030
%以下、S:0.010%以下およびAl:0.06%以下を含む
のが望ましい。以下、それぞれの元素の限定理由を述べ
る。
The steel material of the present invention has a mass% of C: 0.02 to 0.
20%, Si: 0.60% or less, Mn: 0.20 to 2.00%, P: 0.030
% Or less, S: 0.010% or less and Al: 0.06% or less are desirable. The reasons for limiting each element will be described below.

【0026】C:0.02〜0.20% Cは、鋼材の強度を高めるのに最も有効であるととも
に、安価な元素である。Cの含有量が0.02%未満の場
合、他の元素を含有させて強度を保証する必要が生じ、
コストの上昇を招く。一方、その含有量が0.20%を超え
る場合には、鋼材の溶接性および靱性が著しく低下す
る。従って、Cの含有量は、0.02〜0.20%であるのが望
ましい。
C: 0.02 to 0.20% C is the most effective element for increasing the strength of steel and is an inexpensive element. If the C content is less than 0.02%, it becomes necessary to incorporate other elements to ensure the strength,
Increases costs. On the other hand, if the content exceeds 0.20%, the weldability and toughness of the steel material are significantly reduced. Therefore, the C content is preferably 0.02 to 0.20%.

【0027】Si:0.60%以下 Siは、鋼材の強度を向上させるのに有効な元素であり、
鋼中に微量でも含まれておれば、この効果を得ることが
できるので、不純物レベルであっても良い。より大きな
効果を得るためには、0.05%以上含有するのが望まし
い。しかし、その含有量が0.60%を超えると、鋼材の靱
性を著しく損なうこととなる。従って、Si含有量は、0.
60%以下であるのが望ましい。
Si: 0.60% or less Si is an element effective for improving the strength of steel,
This effect can be obtained if the steel contains a very small amount, so that it may be at the impurity level. In order to obtain a greater effect, it is desirable to contain 0.05% or more. However, if the content exceeds 0.60%, the toughness of the steel material is significantly impaired. Therefore, the Si content is 0.
It is preferably 60% or less.

【0028】Mn:0.20〜2.00% Mnは、鋼材の強度を確保するのに有効な元素である。こ
の効果を得るためには、0.20%以上含有するのが望まし
い。しかし、その含有量が2.00%を超えると、溶接性お
よび靱性が著しく低下する。従って、Mn含有量は、0.20
〜2.00%であるのが望ましい。
Mn: 0.20 to 2.00% Mn is an element effective for ensuring the strength of the steel material. In order to obtain this effect, it is desirable to contain 0.20% or more. However, if the content exceeds 2.00%, the weldability and toughness are significantly reduced. Therefore, the Mn content is 0.20
It is desirable to be ~ 2.00%.

【0029】P:0.030%以下 Pは、不純物元素であり、鋼材の靱性を低下させるた
め、その含有量はできるだけ少ない方が良い。従って、
P含有量が0.030%以下に制限するのが望ましい。
P: 0.030% or less P is an impurity element and lowers the toughness of the steel material. Therefore, the P content should be as small as possible. Therefore,
It is desirable to limit the P content to 0.030% or less.

【0030】S:0.010%以下 Sは、不純物元素であり、鋼材の靱性を低下させるた
め、その含有量はできるだけ少ない方が良い。従って、
S含有量が0.010%以下に制限するのが望ましい。
S: 0.010% or less S is an impurity element and deteriorates the toughness of the steel material. Therefore, its content should be as small as possible. Therefore,
It is desirable to limit the S content to 0.010% or less.

【0031】Al:0.06%以下 Alは、脱酸に有効な元素であり、鋼中の介在物を低減す
る。鋼中に微量でも含まれておれば、この効果を得るこ
とができるので、その含有量は、不純物レベルであって
も良い。しかし、より大きな効果を得るためには、0.00
5%以上含有するのが望ましい。一方、その含有量が0.0
6%を超えると、AlNの析出過多や粗大化を招き、鋼材の
靱性を著しく損なうこととなる。従って、Al含有量は、
0.06%以下であるのが望ましい。
Al: 0.06% or less Al is an element effective for deoxidation and reduces inclusions in steel. This effect can be obtained if the steel contains a very small amount, so the content may be at the impurity level. But to get a bigger effect, 0.00
It is desirable to contain 5% or more. On the other hand, its content is 0.0
If it exceeds 6%, excessive precipitation of AlN and coarsening are caused, and the toughness of the steel material is significantly impaired. Therefore, the Al content is
It is preferably 0.06% or less.

【0032】なお、本発明の鋼材は、上記の成分を含有
しておれば、その残部については特に限定しない。従っ
て、残部がFeおよび不純物であっても良いし、Nb:0.00
5〜0.050%、V:0.005〜0.100%、Cu:0.05〜1.00%、
Ni:0.05〜3.00%等の元素を一種以上含むものであって
も良い。
The steel material of the present invention is not particularly limited with respect to the rest as long as it contains the above components. Therefore, the balance may be Fe and impurities, and Nb: 0.00
5 to 0.050%, V: 0.005 to 0.100%, Cu: 0.05 to 1.00%,
Ni: It may contain one or more elements such as 0.05 to 3.00%.

【0033】本発明の製造方法は、溶鋼に下記の(2)式
で表される条件を満足する不活性ガス吹き込み処理を実
施した後、または、下記の(3)式で表される条件を満足
する真空精錬処理を実施した後に連続鋳造する必要があ
る。ただし、上記(2)式中のGは、溶鋼内に吹き込ま
れる不活性ガス流量(NL/min、ノルマルリットル/
分)、Hは、不活性ガス吹き込みノズルの先端から溶
鋼湯面までの距離(m)、Sは、取鍋溶鋼量(ton)、
は、取鍋内径(m)、tは、不活性ガス吹き込み
時間(min)を示し、上記(3)式中のGは、溶鋼環流に
使用される不活性ガス流量(NL/min、ノルマルリットル
/分)、Sは、取鍋溶鋼量(ton)、Dは、浸漬管
内径(m)、tは、真空処理時間(min)を示す。
In the production method of the present invention, molten steel is subjected to an inert gas blowing treatment satisfying the condition represented by the following formula (2), or the condition represented by the following formula (3) is applied. Continuous casting is required after a satisfactory vacuum refining process is performed. However, G 1 in the equation (2) is the flow rate of the inert gas blown into the molten steel (NL / min, normal liter /
Min), H 1 is the distance from the tip of the inert gas blowing nozzle to the molten steel surface (m), S 1 is the ladle molten steel amount (ton),
D 1 is the ladle inner diameter (m), t 1 is the inert gas blowing time (min), G 2 in the above formula (3) is the inert gas flow rate (NL / min, normal liter / min), S 2 is ladle molten steel amount (ton), D 2 is immersion pipe inner diameter (m), and t 2 is vacuum processing time (min).

【数9】 [Equation 9]

【数10】 [Equation 10]

【0034】ここで、「不活性ガス吹き込み処理」と
は、溶鋼を取鍋に入れた後、溶鋼にAr等の不活性ガスを
吹き込むことによって、溶鋼およびスラグを撹拌する処
理をいう。これによって、溶鋼中の介在物は、凝集肥大
化して浮上するか、または、溶鋼内に巻き込まれたスラ
グと直接反応してスラグ内に吸収されて、溶鋼から分離
される。
The term "inert gas blowing treatment" used herein means a treatment of stirring molten steel and slag by introducing molten steel into a ladle and then blowing an inert gas such as Ar into the molten steel. As a result, the inclusions in the molten steel float up due to cohesive enlargement, or directly react with the slag caught in the molten steel and are absorbed in the slag and separated from the molten steel.

【0035】「真空脱ガス処理」とは、RH処理やDH
処理等のように、真空槽を用いて脱ガスする処理をい
う。これによって、溶鋼中の介在物は、凝集肥大化して
浮上するので、スラグ内に吸収されて、溶鋼から分離さ
れる。
"Vacuum degassing treatment" means RH treatment or DH treatment.
It means a process of degassing using a vacuum chamber, such as a process. As a result, the inclusions in the molten steel are coagulated and enlarged and float up, so that they are absorbed in the slag and separated from the molten steel.

【0036】以下、上記の精錬処理条件を規定した理由
を図を使って説明する。下記の表1に示す製造条件で不
活性ガス吹き込み処理または真空脱ガス処理を施した後
に連続鋳造した鋳片について、介在物の析出状況を調査
した。ここで、便宜上、(2)式左辺値を精錬処理指数
B、(3)式左辺値を精錬処理指数Cと呼ぶこととする。
The reason for defining the above refining processing conditions will be described below with reference to the drawings. The deposition state of inclusions was investigated for the cast pieces continuously cast after the inert gas blowing treatment or the vacuum degassing treatment under the manufacturing conditions shown in Table 1 below. Here, for convenience, the value on the left side of expression (2) will be called the refining processing index B, and the value on the left side of expression (3) will be called the refining processing index C.

【0037】[0037]

【表1】 [Table 1]

【0038】なお、上記の調査には、化学組成がC:0.
02〜0.18%、Si:0.04〜0.52%、Mn:0.42〜1.65%、
P:0.001〜0.028%、S:0.0003〜0.0086%、Cu:0〜
1.00%、Ni:0〜2.98%、Cr:0〜0.86%、Mo:0〜0.
65%、V:0〜0.086%、Nb:0〜0.049%、Al:0〜0.
059%、Ti:0〜0.034%、B:0〜0.0021%およびN:
0〜0.0085%の範囲内にある鋼材を使用した。
In the above investigation, the chemical composition was C: 0.
02 to 0.18%, Si: 0.04 to 0.52%, Mn: 0.42 to 1.65%,
P: 0.001-0.028%, S: 0.0003-0.0086%, Cu: 0-
1.00%, Ni: 0 to 2.98%, Cr: 0 to 0.86%, Mo: 0 to 0.
65%, V: 0 to 0.086%, Nb: 0 to 0.049%, Al: 0 to 0.
059%, Ti: 0 to 0.034%, B: 0 to 0.0021% and N:
Steel materials within the range of 0 to 0.0085% were used.

【0039】図1は、表1に示す製造条件で不活性ガス
吹き込み処理を施した場合の精錬処理指数Bと清浄度ま
たは介在物指数Aとの関係を示す図である。同図(a)
は、精錬処理指数Bと清浄度との関係を示し、(b)は、
精錬処理指数Bと介在物指数Aとの関係を示す。
FIG. 1 is a diagram showing the relationship between the refining treatment index B and the cleanliness index or inclusion index A when the inert gas blowing process is performed under the manufacturing conditions shown in Table 1. Figure (a)
Indicates the relationship between the refining treatment index B and cleanliness, and (b) is
The relationship between the refining treatment index B and the inclusion index A is shown.

【0040】図2は、表1に示す製造条件で真空脱ガス
処理を施した場合の精錬処理指数Cと清浄度または介在
物指数Aとの関係を示す図である。同図(a)は、精錬処
理指数Cと清浄度との関係を示し、(b)は、精錬処理指
数Cと介在物指数Aとの関係を示す。
FIG. 2 is a diagram showing the relationship between the refining treatment index C and the cleanliness index or inclusion index A when the vacuum degassing treatment is performed under the manufacturing conditions shown in Table 1. The figure (a) shows the relationship between the refining processing index C and the cleanliness, and the (b) shows the relationship between the refining processing index C and the inclusion index A.

【0041】図1および図2に示すとおり、鋼材の清浄
度を0.050%以下とするためには、精錬処理指数Bを0.7
5以上または精錬処理指数Cを3.0以上とする必要があ
る。一方、介在物指数Aを5000nm以下とするために
は、精錬処理指数Bを1.0以上または精錬処理指数Cを
4.0以上とする必要がある。従って、本発明で規定する
介在物条件を満たすためには、精錬処理指数Bは、1.0
以上でなければならず、精錬処理指数Cは、4.0以上で
なければならない。即ち、取鍋内溶鋼への不活性ガス吹
き込み処理を施す際には、上記の(2)式を満たす必要が
あり、また、真空脱ガス処理を施す際には、(3)式を満
たす必要がある。
As shown in FIGS. 1 and 2, in order to keep the cleanliness of the steel material at 0.050% or less, the refining treatment index B is 0.7.
It is necessary to set the refining treatment index C to 5 or more or 3.0 or more. On the other hand, in order to make the inclusion index A 5000 nm or less, the refining treatment index B is 1.0 or more or the refining treatment index C is
Must be 4.0 or higher. Therefore, in order to satisfy the inclusion condition defined in the present invention, the refining treatment index B is 1.0
The refining treatment index C must be 4.0 or more. That is, the above formula (2) needs to be satisfied when the inert gas is blown into the molten steel in the ladle, and the formula (3) must be satisfied when the vacuum degassing process is performed. There is.

【0042】取鍋内溶鋼への不活性ガス吹き込み処理で
は、その初期段階においても介在物の低減効果が高い
が、処理時間tが1分未満の場合には、精錬条件が上
記の(2)式を満たしていても、本発明で規定する介在物
条件を満たす鋼材を得ることができない。従って、処理
時間tは、1分以上必要である。一方、真空脱ガス処
理では、その初期段階における介在物低減効果が低く、
処理時間tが2分未満の場合には、精錬条件が上記の
(3)式を満たしていても、本発明で規定する介在物条件
を満たす鋼材を得ることができない。これは、処理の初
期段階において真空槽内に吸い上げられた取鍋溶鋼表面
のスラグが巻き込まれるからであり、2分以上処理しな
いとこのスラグ真空槽外へと排出できない。従って、処
理時間tは、2分以上必要である。
In the process of injecting the inert gas into the molten steel in the ladle, the effect of reducing inclusions is high even in the initial stage, but when the processing time t 1 is less than 1 minute, the refining conditions are the above (2). Even if the formula) is satisfied, it is not possible to obtain a steel material that satisfies the inclusions defined in the present invention. Therefore, the processing time t 1 needs to be 1 minute or more. On the other hand, in the vacuum degassing process, the effect of reducing inclusions in the initial stage is low,
When the processing time t 2 is less than 2 minutes, the refining conditions are as described above.
Even if the formula (3) is satisfied, it is impossible to obtain a steel material that satisfies the inclusions defined in the present invention. This is because the slag on the molten steel surface of the ladle that has been sucked up into the vacuum tank is caught in the initial stage of the treatment, and it cannot be discharged to the outside of the slag vacuum tank unless the treatment is performed for 2 minutes or more. Therefore, the processing time t 2 needs to be 2 minutes or more.

【0043】真空脱ガス処理においては、その真空度が
150torrを超えると、本発明で規定する介在物条件を満
たす鋼材を得ることができない場合があるため、真空脱
ガス処理における真空度は、150torr以下で行う必要が
ある。
In the vacuum degassing process, the degree of vacuum is
If it exceeds 150 torr, it may not be possible to obtain a steel material that satisfies the inclusions defined in the present invention. Therefore, the vacuum degree in vacuum degassing must be 150 torr or less.

【0044】ここで、本発明の鋼材を得るためには、上
記の(2)式を満たす不活性ガス吹き込み処理または上記
の(3)式を満たす真空脱ガス処理を連続鋳造直前の精錬
処理として行えば良い。例えば、連続鋳造前に、2回の
真空脱ガス処理を行う場合には、1回目の真空脱ガス処
理において上記の(3)式で表される条件を満たしていな
くても、2回目の真空脱ガス処理において上記の(3)式
で表される条件を満たしておれば、本発明の鋼材を得る
ことができる。また、同様に、連続鋳造前に、不活性ガ
ス吹き込み処理を行った後に真空脱ガス処理を行う場
合、または、真空脱ガス処理を行った後に不活性ガス吹
き込み処理を行う場合には、いずれも連続鋳造直前の精
錬処理が本発明の精錬条件を満たしておれば良く、前者
の場合、真空脱ガス処理が上記の(3)式を満たしておれ
ば良く、後者の場合、不活性ガス吹き込み処理が上記の
(2)式を満たしておれば良い。
Here, in order to obtain the steel material of the present invention, an inert gas blowing treatment satisfying the above formula (2) or a vacuum degassing treatment satisfying the above formula (3) is performed as a refining treatment immediately before continuous casting. Just go. For example, when performing vacuum degassing treatment twice before continuous casting, even if the condition expressed by the above formula (3) is not satisfied in the first vacuum degassing treatment, the second vacuum degassing treatment is performed. The steel material of the present invention can be obtained if the condition represented by the above formula (3) is satisfied in the degassing treatment. Similarly, before continuous casting, when performing a vacuum degassing treatment after performing an inert gas blowing treatment, or when performing an inert gas blowing treatment after performing a vacuum degassing treatment, both It suffices that the refining treatment immediately before continuous casting satisfies the refining conditions of the present invention, in the former case, the vacuum degassing treatment should satisfy the above formula (3), and in the latter case, an inert gas blowing treatment. Is above
It suffices if expression (2) is satisfied.

【0045】本発明の鋼材の製造方法において、連続鋳
造方法については特に限定しないが、鋳込み速度は0.4
〜2.0m/minの範囲内であれば、本発明の鋼材を得ること
ができる。タンディッシュ内溶鋼過熱度(溶鋼温度−液
相温度)は、15℃未満の場合に、本発明の介在物条件を
満たさないものが発生した。これは、溶鋼温度が低いた
め溶鋼の粘度が上昇し、溶鋼中の介在物がタンディッシ
ュ内で上昇できなかったことによるものと考えられる。
従って、15℃以上に制限するのが望ましい。一方、鋳込
み温度が高すぎると、耐火物の溶損、操業安定性の低
下、溶鋼昇温コストの上昇等の問題が発生する恐れがあ
るため、タンディッシュ内溶鋼過熱度は、50℃以下に制
限するのが望ましい。また、比水量は0.2〜2.0L/(溶鋼
・kg)の範囲内であれば、本発明の鋼材を得ることがで
きる。
In the steel material manufacturing method of the present invention, the continuous casting method is not particularly limited, but the casting speed is 0.4
Within the range of up to 2.0 m / min, the steel material of the present invention can be obtained. When the degree of superheating of molten steel in the tundish (molten steel temperature-liquid phase temperature) was less than 15 ° C, some of the materials did not satisfy the inclusion condition of the present invention. It is considered that this is because the viscosity of the molten steel increased because the molten steel temperature was low, and the inclusions in the molten steel could not rise in the tundish.
Therefore, it is desirable to limit the temperature to 15 ° C or higher. On the other hand, if the casting temperature is too high, problems such as melting loss of refractory, deterioration of operational stability, and rising cost of molten steel temperature rise may occur.Therefore, the degree of superheating of molten steel in the tundish should be 50 ° C or less. It is desirable to limit it. Further, if the specific water content is within the range of 0.2 to 2.0 L / (molten steel · kg), the steel material of the present invention can be obtained.

【0046】[0046]

【実施例】溶鋼に、表2に示す条件で不活性ガス吹き込
み処理または真空脱ガス処理を施した後、表3に示す条
件で連続鋳造した鋳片を圧延して試験用鋼板を得た。な
お、表4は、連続鋳造前の溶鋼の化学組成をレードル化
学成分値で表したものである。また、厚板圧延は、表3
に示す条件以外は同じ条件で行った。
Example A molten steel was subjected to an inert gas blowing treatment or a vacuum degassing treatment under the conditions shown in Table 2, and then continuously cast slabs were rolled under the conditions shown in Table 3 to obtain test steel sheets. In addition, Table 4 shows the chemical composition of the molten steel before continuous casting in terms of ladle chemical composition values. For plate rolling, see Table 3
The conditions were the same except the conditions shown in.

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】得られた試験用鋼板を用いて、長さが2μ
m以上の介在物について、JIS G 0555に規定される方法
によって測定した清浄度、長さが2μm未満の介在物に
ついて10μm角(100視野)中に存在する介在物の平均
個数およびその長さ、ならびに、介在物指数Aの平均値
を表5に示す。
Using the test steel sheet thus obtained, the length was 2 μm.
For inclusions of m or more, the cleanliness measured by the method specified in JIS G 0555, the average number of inclusions present in a 10 μm square (100 fields of view) and the length of inclusions having a length of less than 2 μm, The average value of the inclusion index A is shown in Table 5.

【0051】なお、清浄度は、上記の試験用鋼板を圧延
方向と平行に切断した断面を被検面として、肉厚の1/
4の部分について、ダイヤモンドペーストを用いて鏡面
研磨を実施した後、JIS G 0555に規定される方法によっ
て測定した。また、介在物指数Aの平均値は、上記の試
験用鋼板から圧延方向に平行に切断した断面を被検面と
して、肉厚の1/4の部分について、カーボンレプリカ
を用いて透過型電子顕微鏡にて任意の10μm角中に存在
する介在物の長さを測定し、測定結果から介在物の個数
および長さを各長さ群(20nm未満の群、20nm以上25
0nm未満の群、250nm以上500nm未満の群および500
nm以上2μm未満の群)毎に分類し、上記の(1)式に代
入して介在物指数Aを求め、同じ作業を繰り返し、介在
物指数Aの100視野についての平均値を計算した。
The cleanliness factor is 1 / thickness of the wall thickness of the test steel plate, which is cut in parallel with the rolling direction.
Specimen 4 was mirror-polished with a diamond paste and then measured by the method specified in JIS G 0555. Further, the average value of the inclusion index A is a transmission electron microscope using a carbon replica for a 1/4 part of the wall thickness, with a cross section cut in parallel with the rolling direction from the above test steel plate as a test surface. Measure the length of inclusions present in any 10 μm square with and measure the number and length of inclusions in each length group (group less than 20 nm, 20 nm or more 25
Group of less than 0 nm, group of 250 nm or more and less than 500 nm and 500
Each group was classified into each group (nm or more and less than 2 μm), the inclusion index A was obtained by substituting it in the above formula (1), and the same operation was repeated to calculate the average value of the inclusion index A for 100 visual fields.

【0052】但し、下記の表5では、測定した全ての介
在物の長さを記載することができないため、各長さ群毎
の平均個数(100視野についての個数の総数がY個の場
合、Y/100個)および各長さ群における100視野につい
ての平均長さを記載した。
However, in Table 5 below, since it is not possible to describe the lengths of all the inclusions measured, the average number for each length group (when the total number of the number per 100 visual fields is Y, (Y / 100) and the average length for 100 fields in each length group are described.

【0053】[0053]

【表5】 [Table 5]

【0054】上記の試験用鋼板のC方向からノッチシャ
ルピー衝撃試験片(JIS Z 2202に規定される2mmVノッ
チ試験片)を切り出し、肉厚の1/4の部分について、
シャルピー衝撃試験を温度を変えて実施することによ
り、上部棚エネルギーおよび破面遷移温度を測定した結
果を表6に示す。
Notch Charpy impact test pieces (2 mm V notch test pieces specified in JIS Z 2202) were cut out from the C direction of the above-mentioned test steel plate, and about 1/4 of the wall thickness,
Table 6 shows the results of measuring the upper shelf energy and the fracture surface transition temperature by performing the Charpy impact test at different temperatures.

【0055】[0055]

【表6】 [Table 6]

【0056】上記の表4に示したとおり、実施例で使用
した鋼はいずれも、構造用40〜50キロ鋼として溶製した
ものであり、ほぼ同一の化学組成を有する鋼のグループ
として、鋼No.1〜7のグループと鋼No.8〜14のグループ
を用意した。
As shown in Table 4 above, all of the steels used in the examples were melted as structural 40-50kg steels, and as a group of steels having almost the same chemical composition, No. 1 to 7 groups and steel No. 8 to 14 groups were prepared.

【0057】上記の表2および表3に示したとおり、鋼
No.1〜5はいずれも、本発明の(3)式で表される条件を満
足する真空脱ガス処理を行った後、連続鋳造、厚板圧延
を行った鋼材であり、鋼No.6および7は、本発明の(3)式
で表される条件を外れる条件で真空脱ガス処理を行った
後、連続鋳造、厚板圧延を行った鋼材である。また、上
記の表5に示したとおり、鋼No.1〜5は、その清浄度が
0.050%以下であるとともに、本発明の(1)式で表される
介在物指数Aの平均値が5000nm以下であった。一方、
鋼No.6および7は、その清浄度は0.050%以下であるもの
の、本発明の(1)式で表される介在物指数Aの平均値が5
000nmを超えており、本発明で規定される条件を満足
しなかった。ここで、上記の表6に示したように、本発
明の条件を満足する鋼No.1〜5は、本発明の条件を満足
しない鋼No.6および7と比べて、上部棚エネルギー、破
面遷移温度ともに優れていた。
As shown in Tables 2 and 3 above, steel
No. 1 to 5 are all steel materials subjected to vacuum degassing treatment satisfying the condition represented by the formula (3) of the present invention, continuous casting, and plate rolling, and steel No. 6 And 7 are steel materials that have been vacuum-degassed under conditions that deviate from the conditions represented by the formula (3) of the present invention, and then subjected to continuous casting and plate rolling. In addition, as shown in Table 5 above, the steel Nos. 1 to 5 have cleanliness
In addition to being 0.050% or less, the average value of the inclusion index A represented by the formula (1) of the present invention was 5000 nm or less. on the other hand,
Although the cleanliness of steel Nos. 6 and 7 is 0.050% or less, the average value of the inclusion index A represented by the formula (1) of the present invention is 5
It exceeds 000 nm and does not satisfy the conditions specified in the present invention. Here, as shown in Table 6 above, Steel Nos. 1 to 5 satisfying the conditions of the present invention were compared with Steel Nos. 6 and 7 not satisfying the conditions of the present invention. Both the surface transition temperatures were excellent.

【0058】上記の表2および表3に示したとおり、鋼
No.8〜12はいずれも、本発明の(2)式で表される条件を
満足する不活性ガス吹き込み処理を行った後、連続鋳
造、厚板圧延を行った鋼材であり、鋼No.13および14
は、本発明の(2)式で表される条件を外れる条件で不活
性ガス吹き込み処理を行った後、連続鋳造、厚板圧延を
行った鋼材である。また、上記の表5に示したとおり、
鋼No.8〜12は、その清浄度が0.050%以下であるととも
に、本発明の(1)式で表される介在物指数Aの平均値が5
000nm以下であった。一方、鋼No.13および14は、その
清浄度は0.050%以下であるものの、本発明の(1)式で表
される介在物指数Aの平均値が5000nmを超えており、
本発明で規定される条件を満足しなかった。ここで、上
記の表6に示したように、本発明の条件を満足する鋼N
o.8〜12は、本発明の条件を満足しない鋼No.13および14
と比べて、上部棚エネルギー、破面遷移温度ともに優れ
ていた。
As shown in Tables 2 and 3 above, steel
No. 8 to 12 are all steel materials which were subjected to an inert gas blowing treatment satisfying the condition represented by the formula (2) of the present invention, followed by continuous casting and plate rolling, and steel No. 13 and 14
Is a steel material which has been subjected to an inert gas blowing treatment under conditions deviating from the conditions represented by the formula (2) of the present invention, and then subjected to continuous casting and plate rolling. Also, as shown in Table 5 above,
Steel Nos. 8 to 12 have a cleanliness of 0.050% or less and an average value of the inclusion index A represented by the formula (1) of the present invention is 5
It was 000 nm or less. On the other hand, Steel Nos. 13 and 14 have the cleanliness of 0.050% or less, but the average value of the inclusion index A represented by the formula (1) of the present invention exceeds 5000 nm,
The conditions specified in the present invention were not satisfied. Here, as shown in Table 6 above, steel N satisfying the conditions of the present invention
o.8 to 12 are steel Nos. 13 and 14 which do not satisfy the conditions of the present invention.
Compared with, the upper shelf energy and the fracture surface transition temperature were both excellent.

【0059】[0059]

【発明の効果】本発明の鋼材は、長さが2μm以上とい
う比較的大きな介在物について従来以上に厳密な量的制
限がなされ、また、長さが2μm未満という比較的小さ
な介在物の条件が定められたものであり、靱性の良好な
鋼材である。また、本発明方法によれば、新たな設備投
資を行わず、高価な合金元素を添加することなく、簡易
かつ安価に、介在物の析出量を鋼材の靱性に悪影響を及
ぼさない範囲に制限して、靱性の良好な鋼材を得ること
ができる。
EFFECTS OF THE INVENTION The steel material of the present invention is subject to stricter quantitative restrictions than before with respect to relatively large inclusions having a length of 2 μm or more, and the conditions for relatively small inclusions having a length of less than 2 μm. It is a fixed steel material with good toughness. Further, according to the method of the present invention, without making new capital investment, without adding an expensive alloy element, simply and inexpensively, the precipitation amount of inclusions is limited to a range that does not adversely affect the toughness of the steel material. Thus, a steel material having good toughness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】表1に示す製造条件で不活性ガス吹き込み処理
を施した場合の精錬処理指数Bと清浄度または介在物指
数Aとの関係を示す図であり、(a)は精錬処理指数Bと
清浄度との関係を示し、(b)は精錬処理指数Bと介在物
指数Aとの関係を示す。
FIG. 1 is a diagram showing a relationship between a refining treatment index B and a cleanliness index or an inclusion index A when an inert gas blowing treatment is performed under the manufacturing conditions shown in Table 1, where (a) is a refining treatment index B. And (b) show the relationship between the refining treatment index B and the inclusion index A.

【図2】表1に示す製造条件で真空脱ガス処理を施した
場合の精錬処理指数Cと清浄度または介在物指数Aとの
関係を示す図であり、(a)は精錬処理指数Cと清浄度と
の関係を示し、(b)は精錬処理指数Cと介在物指数Aと
の関係を示す。
FIG. 2 is a diagram showing a relationship between a refining treatment index C and a cleanliness index or an inclusion index A when vacuum degassing treatment is performed under the manufacturing conditions shown in Table 1, and (a) is a refining treatment index C and The relationship with cleanliness is shown, and (b) shows the relationship between refining treatment index C and inclusion index A.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 Fターム(参考) 4K013 AA07 AA09 BA14 CA01 CA02 CC01 CE01 CE02 CF13 DA03 DA05 DA12 DA13 FA02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/58 C22C 38/58 F term (reference) 4K013 AA07 AA09 BA14 CA01 CA02 CC01 CE01 CE02 CF13 DA03 DA05 DA12 DA13 FA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】長さが2μm以上の非金属介在物について
のJIS G 0555に規定される方法によって測定した清浄度
が0.050%以下であり、かつ長さが2μm未満の非金属介
在物についての下記の(1)式で表される介在物指数Aの
平均値が5000nm以下であることを特徴とする靱性の良
好な鋼材。 【数1】 ただし、上記(1)式中の記号の定義は、下記のとおりで
ある。 m:鋼材の任意の位置を10μm角の視野で観察したとき
に当該視野中に存在する2μm未満の非金属介在物の個
数(個) L:鋼材の任意の位置を10μm角の視野で観察したと
きにX番目に観察された2μm未満の非金属介在物の長
さ(nm) n:L≦20nmのときは0、20nm<L≦250nm
のときは1、250nm<L ≦500nmのときは3、500
nm<L<2μmのときは4。
1. A non-metallic inclusion having a length of 2 μm or more
Cleanliness measured by the method specified in JIS G 0555
Is less than 0.050% and the length is less than 2 μm
Of the inclusion index A represented by the following equation (1)
Good toughness characterized by an average value of 5000 nm or less
Good steel material. [Equation 1] However, the definition of the symbol in the above formula (1) is as follows.
is there. m: When observing an arbitrary position of steel with a 10 μm square field of view
The number of non-metallic inclusions less than 2 μm present in the field of view
several) LX: When observing an arbitrary position of steel with a 10 μm square field of view
X-th observed length of non-metallic inclusions less than 2 μm
(Nm) n: LX0 ≦ 20 nm, 20 nm <LX≤250 nm
When, 1,250nm <L X3,500 when ≦ 500 nm
nm <LX4 when <2 μm.
【請求項2】質量%で、C:0.02〜0.20%、Si:0.60%
以下、Mn:0.20〜2.00%、P:0.030%以下、S:0.010
%以下およびAl:0.06%以下を含み、長さが2μm以上
の非金属介在物についてのJIS G 0555に規定される方法
によって測定した清浄度が0.050%以下であり、かつ長
さが2μm未満の非金属介在物についての下記の(1)式で
表される介在物指数Aの平均値が5000nm以下であるこ
とを特徴とする靱性の良好な鋼材。 【数2】 ただし、上記(1)式中の記号の定義は、下記のとおりで
ある。 m:鋼材の任意の位置を10μm角の視野で観察したとき
に当該視野中に存在する2μm未満の非金属介在物の個
数(個) L:鋼材の任意の位置を10μm角の視野で観察したと
きにX番目に観察された2μm未満の非金属介在物の長
さ(nm) n:L≦20nmのときは0、20nm<L≦250nm
のときは1、250nm<L ≦500nmのときは3、500
nm<L<2μmのときは4。
2. In mass%, C: 0.02 to 0.20%, Si: 0.60%
Below, Mn: 0.20 to 2.00%, P: 0.030% or less, S: 0.010
% Or less and Al: 0.06% or less, with a length of 2 μm or more
Method specified in JIS G 0555 for non-metallic inclusions
Cleanliness measured by 0.050% or less and long
In the following formula (1) for non-metallic inclusions with a dimension of less than 2 μm
The average value of the inclusion index A represented is 5000 nm or less.
Steel material with good toughness characterized by [Equation 2] However, the definition of the symbol in the above formula (1) is as follows.
is there. m: When observing an arbitrary position of steel with a 10 μm square field of view
The number of non-metallic inclusions less than 2 μm present in the field of view
several) LX: When observing an arbitrary position of steel with a 10 μm square field of view
X-th observed length of non-metallic inclusions less than 2 μm
(Nm) n: LX0 ≦ 20 nm, 20 nm <LX≤250 nm
When, 1,250nm <L X3,500 when ≦ 500 nm
nm <LX4 when <2 μm.
【請求項3】溶鋼に、下記の(2)式で表される条件を満
足する不活性ガス吹き込み処理を実施した後、または、
下記の(3)式で表される条件を満足する真空精錬処理を
実施した後に、連続鋳造することを特徴とする請求項1
または2に記載の靱性の良好な鋼材を製造する方法。 【数3】 【数4】 ただし、上記(2)または(3)式中の記号の定義は、下記の
とおりである。 G:溶鋼内に吹き込まれる不活性ガス流量(NL/min) H:不活性ガス吹き込みノズルの先端から溶鋼湯面ま
での距離(m) S:取鍋溶鋼量(ton) D:取鍋内径(m) t:不活性ガス吹き込み時間(min) G:溶鋼環流に使用される不活性ガス流量(NL/min) S:取鍋溶鋼量(ton) D:浸漬管内径(m) t:真空処理時間(min)
3. A molten steel after being subjected to an inert gas blowing treatment satisfying the condition represented by the following formula (2), or
The continuous casting is performed after performing a vacuum refining process that satisfies the condition represented by the following formula (3).
Alternatively, the method for producing a steel material having good toughness according to 2 above. [Equation 3] [Equation 4] However, the definitions of the symbols in the above formula (2) or (3) are as follows. G 1 : Flow rate of inert gas blown into molten steel (NL / min) H 1 : Distance from tip of inert gas blow nozzle to molten steel surface (m) S 1 : Ladle molten steel amount (ton) D 1 : Ladle inner diameter (m) t 1 : Inert gas blowing time (min) G 2 : Inert gas flow rate (NL / min) used for molten steel circulation S 2 : Ladle molten steel amount (ton) D 2 : Dipping pipe Inner diameter (m) t 2 : Vacuum processing time (min)
JP2001247022A 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same Expired - Fee Related JP4032679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247022A JP4032679B2 (en) 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247022A JP4032679B2 (en) 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003055733A true JP2003055733A (en) 2003-02-26
JP4032679B2 JP4032679B2 (en) 2008-01-16

Family

ID=19076446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247022A Expired - Fee Related JP4032679B2 (en) 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4032679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020683A1 (en) * 2005-08-15 2007-02-22 Kabushiki Kaisha Kobe Seiko Sho Thick steel plate excelling in toughness of large heat input welded joint
JP2010047826A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Steel material superior in fatigue-crack propagation resistance and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192214A (en) * 1981-05-18 1982-11-26 Sumitomo Electric Ind Ltd Molten steel-refining method and apparatus therefor
JPH1192821A (en) * 1997-09-12 1999-04-06 Nkk Corp Production of clean steel in rh degassing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192214A (en) * 1981-05-18 1982-11-26 Sumitomo Electric Ind Ltd Molten steel-refining method and apparatus therefor
JPH1192821A (en) * 1997-09-12 1999-04-06 Nkk Corp Production of clean steel in rh degassing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020683A1 (en) * 2005-08-15 2007-02-22 Kabushiki Kaisha Kobe Seiko Sho Thick steel plate excelling in toughness of large heat input welded joint
JP2010047826A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Steel material superior in fatigue-crack propagation resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JP4032679B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
CN100577844C (en) Austenitic stainless steel
CN100587083C (en) Method for producing seamless steel pipe
EP2050832B1 (en) Two-phase stainless steel
CA2601052C (en) High-tensile steel plate, welded steel pipe or tube, and methods of manufacturing thereof
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
RU2694393C2 (en) High-strength steel material for oil well and pipes used in oil industry
WO2010032428A1 (en) High-strength steel plate and process for producing same
KR20130036778A (en) Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
CN101263239A (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP2010095753A (en) Hot-rolled steel plate and method for manufacturing the same
MX2007000628A (en) Steel for steel pipe.
JPWO2018105510A1 (en) High Mn steel sheet and method for producing the same
WO2006011257A1 (en) High tensile steel sheet of low acoustical anisotropy excelling in weldability, and process for producing the same
EP1254275A1 (en) STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
JP5974623B2 (en) Age-hardening bainite non-tempered steel
JP6954475B2 (en) High Mn steel and its manufacturing method
JP2001020046A (en) Ferritic stainless steel excellent in workability and toughness, ferritic stainless steel ingot and production thereof
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP2021036077A (en) HIGH-Mn STEEL
JP2002535489A (en) Manufacturing method of rolled multipurpose weather-resistant steel sheet and its product
CN104342601A (en) Ti-containing low-manganese and low-silicon hot-rolled steel with Rel being greater than or equal to 400MPa and production method adopting CSP (cast steel plate)
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP4123722B2 (en) High strength steel material for oil wells excellent in sulfide cracking resistance and method for producing the same
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP2003055733A (en) Steel having satisfactory toughness and production method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4032679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees