JP4032679B2 - Steel material with good toughness and method for producing the same - Google Patents

Steel material with good toughness and method for producing the same Download PDF

Info

Publication number
JP4032679B2
JP4032679B2 JP2001247022A JP2001247022A JP4032679B2 JP 4032679 B2 JP4032679 B2 JP 4032679B2 JP 2001247022 A JP2001247022 A JP 2001247022A JP 2001247022 A JP2001247022 A JP 2001247022A JP 4032679 B2 JP4032679 B2 JP 4032679B2
Authority
JP
Japan
Prior art keywords
less
steel
steel material
molten steel
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001247022A
Other languages
Japanese (ja)
Other versions
JP2003055733A (en
Inventor
友弥 川畑
貴司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001247022A priority Critical patent/JP4032679B2/en
Publication of JP2003055733A publication Critical patent/JP2003055733A/en
Application granted granted Critical
Publication of JP4032679B2 publication Critical patent/JP4032679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、厚鋼板等の鋼材およびその製造方法に係り、特に、靱性に優れた鋼材およびその鋼材を安定的に得ることができる製造方法に関する。
【0002】
【従来の技術】
従来、鋼構造物の構造部材として使用される厚鋼板等の鋼材の破壊に対する抵抗性を向上させる方法が種々議論されてきた。その方法は、大別すると下記(A)〜(C)の3つである。
【0003】
(A)鋼材の清浄度の向上
この方法は、鋼材中に含まれるPやS等の不純物元素の含有量を極力低減して、鋼材の純度を向上させることにより、格子欠陥を低減させて脆性破壊、延性き裂の発生や伝播に対する抵抗性を高めることを目的とするものである。例えば、「鉄と鋼(第64年)」の740〜748頁には、P含有量を低減させることによって衝撃特性が向上することが記載されている。また、「鉄と鋼(第63年)」のS713頁には、MnSの低減によって衝撃特性、伸び特性および絞り特性を向上させることが記載されている。近年、精錬技術の進歩に伴い、これらの不純物が極めて少ない鋼材を得ることができるようになった。
【0004】
しかし、現状でも特別な清浄化を実施するためには、例えば、炉外精錬を実施する等、製錬工程を複雑にする必要があり、処理時間の増加に伴うコストの高騰を引き起こす。例えば、「鉄と鋼(第69年)」のA-41頁に記載されるように、P、Sを低減するためには新たなプロセスを追加する必要があり、コストの高騰を招く。特に、量産製品は、経済性を重視する必要があるため、このような生産効率が悪く、また、新たなプロセスを要する方法を採用することは実状に沿わない。
【0005】
(B)合金元素の添加
鋼材の強度を向上させる一般的な方法として、Cを含有させることが知られているが、Cを過度に含有させると鋼材の靱性や溶接性を著しく低下させるため、NiやMo等の鋼材の焼入れ性を高める合金元素を含有させることが広く行われている。しかし、量産製品では、経済性の観点から高価な合金元素の添加は極力避けるべきである。
【0006】
(C)組織の制御
鋼材製品は、その最終組織が凝固ままの組織ではない場合が多く、再加熱処理が施され、その結晶組織は、α→γ→αの変態過程を経るのが一般的である。鋼材の靱性を向上させるのに鋼材組織の微細化が有効であることが知られているが、具体的には、スラブ加熱温度の調整、TMCP(Thermo-mechanical Control Process:加工熱処理)の採用、熱処理時の温度コントロールの実施等によって、鋼材組織の微細化が図られてきた。しかし、TMCPまたは熱処理を実施することは工程を複雑化し生産性を阻害する要因となるため、これらの工程を量産製品の製造工程に取り入れるのは好ましくない。
【0007】
最近では、上記のような靱性向上対策の他に、鋼中に存在する介在物の組成を制御したり微細化することにより、靱性を高める方法が検討されている。例えば、「鉄と鋼(第62年)」の866頁には、MnSとAlOの面積率と衝撃特性の関係が示されており、これらの介在物の量の増加が吸収エネルギーの低下を招くことが指摘されている。この介在物は、光学顕微鏡で観察ができる長さが2μm以上のものであり、そのほとんどは、溶鋼中で生成し浮上せずに凝固シェルにトラップされたものである。
【0008】
【発明が解決しようとする課題】
上記のような長さが2μm以上という比較的大きな介在物については、最近の精錬技術の進歩により、相当低いレベルにまで低減することができるようになった。しかし、凝固過程において長さが2μm未満の比較的小さい介在物が析出することがあり、このような微小な介在物であっても、その析出状況によっては破壊の起点として作用し、鋼材の靱性を低下させる場合がある。
【0009】
上述したように、比較的大きな介在物に着目して、その析出量を低減させることによって鋼材の靱性を向上させることは広く行われてきたが、このように微小サイズで析出した介在物を起因とする靱性の低下を防止する方法は検討されていない。また、このような介在物の析出量を簡易かつ安価な手段によって制限することができれば、上記の(A)〜(C)に示したような、新たな設備投資や合金元素の添加をする必要がないので、量産製品のように経済性を重視する必要がある鋼材の製造に有用である。
【0010】
本発明は、上記の問題を解決すべくなされたものであって、長さが2μm以上という比較的大きな介在物について更に厳密な量的制限をすることに加え、長さが2μm未満という比較的小さな介在物の条件を定めることによって、靱性の良好な鋼材を提供することを目的とする。また、本発明は、簡易かつ安価に、介在物の析出量を鋼材の靱性に悪影響を及ぼさない範囲に制限して、靱性の良好な鋼材を得るための製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、下記の a に示す鋼材ならびに下記の b および c に示す鋼材の製造方法を要旨とする。
【0012】
a質量%で、C: 0.02 0.20 %、 Si 0.60 %以下、 Mn 0.20 2.00 %、P: 0.030 %以下、S: 0.010 %以下および Al 0.06 %以下を含み、長さが2μm以上の非金属介在物についてのJIS G 0555に規定される方法によって測定した清浄度が0.050%以下であり、かつ長さが2μm未満の非金属介在物についての下記の(1)式で表される介在物指数Aの平均値が5000nm以下であることを特徴とする靱性の良好な鋼材。

Figure 0004032679
【0013】
ただし、mは、鋼材の任意の位置を10μm角の視野で観察したときに当該視野中に存在する2μm未満の非金属介在物の個数(個)、Lは、鋼材の任意の位置を10μm角の視野で観察したときにX番目に観察された2μm未満の非金属介在物の長さ(nm)、nは、L≦20nmのときには0、20nm<L≦250nmのときには1、250nm<L≦500nmのときには3、500nm<L<2μmのときには4となる係数を示す。
【0015】
b 溶鋼に、大気圧下で下記の(2)式で表される条件を満足する不活性ガス吹き込み処理を実施した後に、連続鋳造することを特徴とする上記の a に記載の靱性の良好な鋼材を製造する方法。
Figure 0004032679
ただし、上記(2)式中の記号の定義は、下記のとおりである。
1:溶鋼内に吹き込まれる不活性ガス流量(NL/min)
1:不活性ガス吹き込みノズルの先端から溶鋼湯面までの距離(m)
1:取鍋溶鋼量(ton)
1:取鍋内径(m)
【0016】
c 溶鋼に、不活性ガス流量が1500〜1950NL/minであって、かつ下記の(3)式で表される条件を満足する真空精錬処理を実施した後に、連続鋳造することを特徴とする上記の a に記載の靱性の良好な鋼材を製造する方法。
Figure 0004032679
ただし、上記 (3)式中の記号の定義は、下記のとおりである。
2:溶鋼環流に使用される不活性ガス流量(NL/min)
2:取鍋溶鋼量(ton)
2:浸漬管内径(m)
2:真空処理時間(min)
【0017】
【発明の実施の形態】
本発明の鋼材では、まず、長さが2μm以上の非金属介在物についてのJIS G 0555に規定される方法によって測定した清浄度(以下、単に「清浄度」という)を0.050%以下に制限する必要がある。
【0018】
このような比較的大きな介在物の析出量を低減することによって鋼材の靱性および延性を向上させることができる。後述するように、本発明は、2μm未満という比較的小さな介在物の条件を定めることによって、従来の鋼材に比べて、優れた靱性を有する鋼を得ることを目的とするものである。しかし、清浄度が0.050%を超える場合には、比較的小さな介在物の析出量の制限を行っても、靱性の改善効果を十分に得ることができない。従って、清浄度は、0.050%以下に制限する必要がある。
【0019】
なお、本明細書における「介在物」は、JIS G 0555に規定される介在物に加え、一般に析出物と称される炭化物や窒化物を含むものと定義する。例えば、Mn炭化物、析出Cu、Cr炭窒化物、Mo炭窒化物、V炭窒化物、B炭窒化物などを含む。
【0020】
また、「介在物の長さ」は、介在物の最も長い方向についての長さをいうものとする。ここで、長さが2μm以上という比較的大きな介在物については、光学顕微鏡を用いた観察により測定することができ、後述する長さが2μm未満という比較的小さな介在物については、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)を用いた観察により測定することができる。
【0021】
本発明の鋼材は、更に、長さが2μm未満の非金属介在物についての下記の(1)式で表される介在物指数Aの平均値を5000nm以下に制限する必要がある。ただし、下記(1)式中のmは、鋼材の任意の位置を10μm角の視野で観察したときに当該視野中に存在する2μm未満の非金属介在物の個数(個)、Lは、鋼材の任意の位置を10μm角の視野で観察したときにX番目に観察された2μm未満の非金属介在物の長さ(nm)、nは、L≦20nmのときには0、20nm<L≦250nmのときには1、250nm<L≦500nmのときには3、500nm<L<2μmのときには4となる係数を示す。
【数8】
Figure 0004032679
【0022】
長さが2μm未満という比較的小さな介在物の条件を設定するに際し、その析出量にのみ着目しても靱性の挙動を的確に把握することができない。即ち、介在物は、そのサイズが大きい(長い)ほど、外力が負荷された場合の応力集中や塑性歪集中が多く発生するため、鋼材の靱性に悪影響を及ぼす。従って、その介在物のサイズによって重みをつけて、靱性の挙動を評価する必要がある。
【0023】
本発明者らは、この知見に基づいて、鋼材に析出した微小介在物のサイズと鋼材の靱性との関係を厳密に調査した結果、上記の(1)式で表される介在物指数Aの平均値を5000nm以下に制限することによって、鋼材の靱性を安定的に高いレベルに保つことができる本発明を完成した。
【0024】
なお、「介在物指数Aの平均値」とは、鋼材中でランダムに選んだ100視野以上について、SEMまたはTEMを用いて、それぞれの視野中に存在する2μm未満の介在物の長さを測定し、上記の(1)式から介在物指数Aを算出、即ち、それぞれの介在物の長さとこれに対応した係数(n)との積を求め、この積の総和を求めることによって介在物指数Aを算出し、測定した全ての視野における介在物指数Aの平均値を示す。
【0025】
本発明の鋼材は、質量%で、C:0.02〜0.20%、Si:0.60%以下、Mn:0.20〜2.00%、P:0.030%以下、S:0.010%以下およびAl:0.06%以下を含むのが望ましい。以下、それぞれの元素の限定理由を述べる。
【0026】
C:0.02〜0.20%
Cは、鋼材の強度を高めるのに最も有効であるとともに、安価な元素である。Cの含有量が0.02%未満の場合、他の元素を含有させて強度を保証する必要が生じ、コストの上昇を招く。一方、その含有量が0.20%を超える場合には、鋼材の溶接性および靱性が著しく低下する。従って、Cの含有量は、0.02〜0.20%であるのが望ましい。
【0027】
Si:0.60%以下
Siは、鋼材の強度を向上させるのに有効な元素であり、鋼中に微量でも含まれておれば、この効果を得ることができるので、不純物レベルであっても良い。より大きな効果を得るためには、0.05%以上含有するのが望ましい。しかし、その含有量が0.60%を超えると、鋼材の靱性を著しく損なうこととなる。従って、Si含有量は、0.60%以下であるのが望ましい。
【0028】
Mn:0.20〜2.00%
Mnは、鋼材の強度を確保するのに有効な元素である。この効果を得るためには、0.20%以上含有するのが望ましい。しかし、その含有量が2.00%を超えると、溶接性および靱性が著しく低下する。従って、Mn含有量は、0.20〜2.00%であるのが望ましい。
【0029】
P:0.030%以下
Pは、不純物元素であり、鋼材の靱性を低下させるため、その含有量はできるだけ少ない方が良い。従って、P含有量が0.030%以下に制限するのが望ましい。
【0030】
S:0.010%以下
Sは、不純物元素であり、鋼材の靱性を低下させるため、その含有量はできるだけ少ない方が良い。従って、S含有量が0.010%以下に制限するのが望ましい。
【0031】
Al:0.06%以下
Alは、脱酸に有効な元素であり、鋼中の介在物を低減する。鋼中に微量でも含まれておれば、この効果を得ることができるので、その含有量は、不純物レベルであっても良い。しかし、より大きな効果を得るためには、0.005%以上含有するのが望ましい。一方、その含有量が0.06%を超えると、AlNの析出過多や粗大化を招き、鋼材の靱性を著しく損なうこととなる。従って、Al含有量は、0.06%以下であるのが望ましい。
【0032】
なお、本発明の鋼材は、上記の成分を含有しておれば、その残部については特に限定しない。従って、残部がFeおよび不純物であっても良いし、Nb:0.005〜0.050%、V:0.005〜0.100%、Cu:0.05〜1.00%、Ni:0.05〜3.00%等の元素を一種以上含むものであっても良い。
【0033】
本発明の製造方法は、溶鋼に下記の(2)式で表される条件を満足する不活性ガス吹き込み処理を実施した後、または、下記の(3)式で表される条件を満足する真空精錬処理を実施した後に連続鋳造する必要がある。ただし、上記(2)式中のGは、溶鋼内に吹き込まれる不活性ガス流量(NL/min、ノルマルリットル/分)、Hは、不活性ガス吹き込みノズルの先端から溶鋼湯面までの距離(m)、Sは、取鍋溶鋼量(ton)、Dは、取鍋内径(m)、tは、不活性ガス吹き込み時間(min)を示し、上記(3)式中のGは、溶鋼環流に使用される不活性ガス流量(NL/min、ノルマルリットル/分)、Sは、取鍋溶鋼量(ton)、Dは、浸漬管内径(m)、tは、真空処理時間(min)を示す。
【数9】
Figure 0004032679
【数10】
Figure 0004032679
【0034】
ここで、「不活性ガス吹き込み処理」とは、溶鋼を取鍋に入れた後、溶鋼にAr等の不活性ガスを吹き込むことによって、溶鋼およびスラグを撹拌する処理をいう。これによって、溶鋼中の介在物は、凝集肥大化して浮上するか、または、溶鋼内に巻き込まれたスラグと直接反応してスラグ内に吸収されて、溶鋼から分離される。
【0035】
「真空脱ガス処理」とは、RH処理やDH処理等のように、真空槽を用いて脱ガスする処理をいう。これによって、溶鋼中の介在物は、凝集肥大化して浮上するので、スラグ内に吸収されて、溶鋼から分離される。
【0036】
以下、上記の精錬処理条件を規定した理由を図を使って説明する。下記の表1に示す製造条件で不活性ガス吹き込み処理または真空脱ガス処理を施した後に連続鋳造した鋳片について、介在物の析出状況を調査した。ここで、便宜上、(2)式左辺値を精錬処理指数B、(3)式左辺値を精錬処理指数Cと呼ぶこととする。
【0037】
【表1】
Figure 0004032679
【0038】
なお、上記の調査には、化学組成がC:0.02〜0.18%、Si:0.04〜0.52%、Mn:0.42〜1.65%、P:0.001〜0.028%、S:0.0003〜0.0086%、Cu:0〜1.00%、Ni:0〜2.98%、Cr:0〜0.86%、Mo:0〜0.65%、V:0〜0.086%、Nb:0〜0.049%、Al:0〜0.059%、Ti:0〜0.034%、B:0〜0.0021%およびN:0〜0.0085%の範囲内にある鋼材を使用した。
【0039】
図1は、表1に示す製造条件で不活性ガス吹き込み処理を施した場合の精錬処理指数Bと清浄度または介在物指数Aとの関係を示す図である。同図(a)は、精錬処理指数Bと清浄度との関係を示し、(b)は、精錬処理指数Bと介在物指数Aとの関係を示す。
【0040】
図2は、表1に示す製造条件で真空脱ガス処理を施した場合の精錬処理指数Cと清浄度または介在物指数Aとの関係を示す図である。同図(a)は、精錬処理指数Cと清浄度との関係を示し、(b)は、精錬処理指数Cと介在物指数Aとの関係を示す。
【0041】
図1および図2に示すとおり、鋼材の清浄度を0.050%以下とするためには、精錬処理指数Bを0.75以上または精錬処理指数Cを3.0以上とする必要がある。一方、介在物指数Aを5000nm以下とするためには、精錬処理指数Bを1.0以上または精錬処理指数Cを4.0以上とする必要がある。従って、本発明で規定する介在物条件を満たすためには、精錬処理指数Bは、1.0以上でなければならず、精錬処理指数Cは、4.0以上でなければならない。即ち、取鍋内溶鋼への不活性ガス吹き込み処理を施す際には、上記の(2)式を満たす必要があり、また、真空脱ガス処理を施す際には、(3)式を満たす必要がある。
【0042】
取鍋内溶鋼への不活性ガス吹き込み処理では、その初期段階においても介在物の低減効果が高いが、処理時間tが1分未満の場合には、精錬条件が上記の(2)式を満たしていても、本発明で規定する介在物条件を満たす鋼材を得ることができない。従って、処理時間tは、1分以上必要である。一方、真空脱ガス処理では、その初期段階における介在物低減効果が低く、処理時間tが2分未満の場合には、精錬条件が上記の(3)式を満たしていても、本発明で規定する介在物条件を満たす鋼材を得ることができない。これは、処理の初期段階において真空槽内に吸い上げられた取鍋溶鋼表面のスラグが巻き込まれるからであり、2分以上処理しないとこのスラグ真空槽外へと排出できない。従って、処理時間tは、2分以上必要である。
【0043】
真空脱ガス処理においては、その真空度が150torrを超えると、本発明で規定する介在物条件を満たす鋼材を得ることができない場合があるため、真空脱ガス処理における真空度は、150torr以下で行う必要がある。
【0044】
ここで、本発明の鋼材を得るためには、上記の(2)式を満たす不活性ガス吹き込み処理または上記の(3)式を満たす真空脱ガス処理を連続鋳造直前の精錬処理として行えば良い。例えば、連続鋳造前に、2回の真空脱ガス処理を行う場合には、1回目の真空脱ガス処理において上記の(3)式で表される条件を満たしていなくても、2回目の真空脱ガス処理において上記の(3)式で表される条件を満たしておれば、本発明の鋼材を得ることができる。また、同様に、連続鋳造前に、不活性ガス吹き込み処理を行った後に真空脱ガス処理を行う場合、または、真空脱ガス処理を行った後に不活性ガス吹き込み処理を行う場合には、いずれも連続鋳造直前の精錬処理が本発明の精錬条件を満たしておれば良く、前者の場合、真空脱ガス処理が上記の(3)式を満たしておれば良く、後者の場合、不活性ガス吹き込み処理が上記の(2)式を満たしておれば良い。
【0045】
本発明の鋼材の製造方法において、連続鋳造方法については特に限定しないが、鋳込み速度は0.4〜2.0m/minの範囲内であれば、本発明の鋼材を得ることができる。タンディッシュ内溶鋼過熱度(溶鋼温度−液相温度)は、15℃未満の場合に、本発明の介在物条件を満たさないものが発生した。これは、溶鋼温度が低いため溶鋼の粘度が上昇し、溶鋼中の介在物がタンディッシュ内で上昇できなかったことによるものと考えられる。従って、15℃以上に制限するのが望ましい。一方、鋳込み温度が高すぎると、耐火物の溶損、操業安定性の低下、溶鋼昇温コストの上昇等の問題が発生する恐れがあるため、タンディッシュ内溶鋼過熱度は、50℃以下に制限するのが望ましい。また、比水量は0.2〜2.0L/(溶鋼・kg)の範囲内であれば、本発明の鋼材を得ることができる。
【0046】
【実施例】
溶鋼に、表2に示す条件で不活性ガス吹き込み処理または真空脱ガス処理を施した後、表3に示す条件で連続鋳造した鋳片を圧延して試験用鋼板を得た。なお、表4は、連続鋳造前の溶鋼の化学組成をレードル化学成分値で表したものである。また、厚板圧延は、表3に示す条件以外は同じ条件で行った。
【0047】
【表2】
Figure 0004032679
【0048】
【表3】
Figure 0004032679
【0049】
【表4】
Figure 0004032679
【0050】
得られた試験用鋼板を用いて、長さが2μm以上の介在物について、JIS G 0555に規定される方法によって測定した清浄度、長さが2μm未満の介在物について10μm角(100視野)中に存在する介在物の平均個数およびその長さ、ならびに、介在物指数Aの平均値を表5に示す。
【0051】
なお、清浄度は、上記の試験用鋼板を圧延方向と平行に切断した断面を被検面として、肉厚の1/4の部分について、ダイヤモンドペーストを用いて鏡面研磨を実施した後、JIS G 0555に規定される方法によって測定した。また、介在物指数Aの平均値は、上記の試験用鋼板から圧延方向に平行に切断した断面を被検面として、肉厚の1/4の部分について、カーボンレプリカを用いて透過型電子顕微鏡にて任意の10μm角中に存在する介在物の長さを測定し、測定結果から介在物の個数および長さを各長さ群(20nm未満の群、20nm以上250nm未満の群、250nm以上500nm未満の群および500nm以上2μm未満の群)毎に分類し、上記の(1)式に代入して介在物指数Aを求め、同じ作業を繰り返し、介在物指数Aの100視野についての平均値を計算した。
【0052】
但し、下記の表5では、測定した全ての介在物の長さを記載することができないため、各長さ群毎の平均個数(100視野についての個数の総数がY個の場合、Y/100個)および各長さ群における100視野についての平均長さを記載した。
【0053】
【表5】
Figure 0004032679
【0054】
上記の試験用鋼板のC方向からノッチシャルピー衝撃試験片(JIS Z 2202に規定される2mmVノッチ試験片)を切り出し、肉厚の1/4の部分について、シャルピー衝撃試験を温度を変えて実施することにより、上部棚エネルギーおよび破面遷移温度を測定した結果を表6に示す。
【0055】
【表6】
Figure 0004032679
【0056】
上記の表4に示したとおり、実施例で使用した鋼はいずれも、構造用40〜50キロ鋼として溶製したものであり、ほぼ同一の化学組成を有する鋼のグループとして、鋼No.1〜7のグループと鋼No.8〜14のグループを用意した。
【0057】
上記の表2および表3に示したとおり、鋼No.1〜5はいずれも、本発明の(3)式で表される条件を満足する真空脱ガス処理を行った後、連続鋳造、厚板圧延を行った鋼材であり、鋼No.6および7は、本発明の(3)式で表される条件を外れる条件で真空脱ガス処理を行った後、連続鋳造、厚板圧延を行った鋼材である。また、上記の表5に示したとおり、鋼No.1〜5は、その清浄度が0.050%以下であるとともに、本発明の(1)式で表される介在物指数Aの平均値が5000nm以下であった。一方、鋼No.6および7は、その清浄度は0.050%以下であるものの、本発明の(1)式で表される介在物指数Aの平均値が5000nmを超えており、本発明で規定される条件を満足しなかった。ここで、上記の表6に示したように、本発明の条件を満足する鋼No.1〜5は、本発明の条件を満足しない鋼No.6および7と比べて、上部棚エネルギー、破面遷移温度ともに優れていた。
【0058】
上記の表2および表3に示したとおり、鋼No.8〜12はいずれも、本発明の(2)式で表される条件を満足する不活性ガス吹き込み処理を行った後、連続鋳造、厚板圧延を行った鋼材であり、鋼No.13および14は、本発明の(2)式で表される条件を外れる条件で不活性ガス吹き込み処理を行った後、連続鋳造、厚板圧延を行った鋼材である。また、上記の表5に示したとおり、鋼No.8〜12は、その清浄度が0.050%以下であるとともに、本発明の(1)式で表される介在物指数Aの平均値が5000nm以下であった。一方、鋼No.13および14は、その清浄度は0.050%以下であるものの、本発明の(1)式で表される介在物指数Aの平均値が5000nmを超えており、本発明で規定される条件を満足しなかった。ここで、上記の表6に示したように、本発明の条件を満足する鋼No.8〜12は、本発明の条件を満足しない鋼No.13および14と比べて、上部棚エネルギー、破面遷移温度ともに優れていた。
【0059】
【発明の効果】
本発明の鋼材は、長さが2μm以上という比較的大きな介在物について従来以上に厳密な量的制限がなされ、また、長さが2μm未満という比較的小さな介在物の条件が定められたものであり、靱性の良好な鋼材である。また、本発明方法によれば、新たな設備投資を行わず、高価な合金元素を添加することなく、簡易かつ安価に、介在物の析出量を鋼材の靱性に悪影響を及ぼさない範囲に制限して、靱性の良好な鋼材を得ることができる。
【図面の簡単な説明】
【図1】表1に示す製造条件で不活性ガス吹き込み処理を施した場合の精錬処理指数Bと清浄度または介在物指数Aとの関係を示す図であり、(a)は精錬処理指数Bと清浄度との関係を示し、(b)は精錬処理指数Bと介在物指数Aとの関係を示す。
【図2】表1に示す製造条件で真空脱ガス処理を施した場合の精錬処理指数Cと清浄度または介在物指数Aとの関係を示す図であり、(a)は精錬処理指数Cと清浄度との関係を示し、(b)は精錬処理指数Cと介在物指数Aとの関係を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material such as a thick steel plate and a manufacturing method thereof, and more particularly to a steel material excellent in toughness and a manufacturing method capable of stably obtaining the steel material.
[0002]
[Prior art]
Conventionally, various methods for improving resistance to destruction of steel materials such as thick steel plates used as structural members of steel structures have been discussed. The method is roughly divided into the following three (A) to (C).
[0003]
(A) Improvement of cleanliness of steel material This method reduces lattice defects by reducing the content of impurity elements such as P and S contained in the steel material as much as possible, thereby improving the purity of the steel material. The purpose is to increase resistance to fracture, ductile crack initiation and propagation. For example, pages 740 to 748 of “Iron and Steel (64th Year)” describe that impact characteristics are improved by reducing the P content. Further, page S713 of “Iron and Steel (63rd Year)” describes that impact characteristics, elongation characteristics and drawing characteristics are improved by reducing MnS. In recent years, with the advancement of refining technology, it has become possible to obtain a steel material with very few impurities.
[0004]
However, even in the present situation, in order to carry out special cleaning, it is necessary to complicate the smelting process, for example, to carry out out-of-core smelting, which causes an increase in cost accompanying an increase in processing time. For example, as described on page A-41 of “Iron and Steel (69th Year)”, it is necessary to add a new process in order to reduce P and S, resulting in an increase in cost. In particular, since mass-produced products need to place importance on economic efficiency, such production efficiency is poor and it is not practical to adopt a method that requires a new process.
[0005]
(B) It is known that C is added as a general method for improving the strength of steel materials added with alloying elements. However, if C is excessively contained, the toughness and weldability of the steel materials are significantly reduced. Inclusion of alloying elements that enhance the hardenability of steel such as Ni and Mo is widely performed. However, in mass-produced products, addition of expensive alloy elements should be avoided as much as possible from the viewpoint of economy.
[0006]
(C) Structure-controlled steel products often have a final structure that is not a solid structure, and are reheated. The crystal structure generally undergoes a transformation process of α → γ → α. It is. It is known that refinement of the steel structure is effective in improving the toughness of steel materials. Specifically, adjustment of slab heating temperature, adoption of TMCP (Thermo-mechanical Control Process), The refinement of steel structure has been attempted by implementing temperature control during heat treatment. However, since TMCP or heat treatment is a factor that complicates the process and impedes productivity, it is not preferable to incorporate these processes into the production process of mass-produced products.
[0007]
Recently, in addition to measures for improving toughness as described above, methods for increasing toughness by controlling or miniaturizing the composition of inclusions present in steel have been studied. For example, page 866 of “Iron and Steel (62nd year)” shows the relationship between the area ratio of MnS and Al 2 O 3 and the impact properties, and the increase in the amount of these inclusions indicates the amount of absorbed energy. It has been pointed out that it causes a decline. These inclusions have a length of 2 μm or more that can be observed with an optical microscope, and most of them are generated in molten steel and trapped in a solidified shell without floating.
[0008]
[Problems to be solved by the invention]
The relatively large inclusions having a length of 2 μm or more as described above can be reduced to a considerably low level due to recent advances in refining technology. However, relatively small inclusions with a length of less than 2 μm may precipitate during the solidification process, and even such fine inclusions may act as a starting point for fracture depending on the precipitation situation, and the toughness of the steel material May be reduced.
[0009]
As mentioned above, focusing on relatively large inclusions, it has been widely practiced to improve the toughness of steel by reducing the amount of precipitation. A method for preventing the deterioration of toughness is not studied. Moreover, if the amount of such inclusions can be limited by simple and inexpensive means, it is necessary to make a new capital investment or addition of an alloy element as shown in the above (A) to (C). Therefore, it is useful for the production of steel materials that need to be economically important, such as mass-produced products.
[0010]
The present invention has been made to solve the above-described problem, and in addition to further strict quantitative limitation on relatively large inclusions having a length of 2 μm or more, the length is less than 2 μm. An object of the present invention is to provide a steel material having good toughness by determining the conditions of small inclusions. Another object of the present invention is to provide a production method for obtaining a steel material with good toughness by limiting the amount of inclusions to a range that does not adversely affect the toughness of the steel material, simply and inexpensively. .
[0011]
[Means for Solving the Problems]
The present invention is summarized as a manufacturing method of the steel shown in the steel and below shown in the following (a) (b) and (c).
[0012]
(A) by mass%, C: 0.02 ~ 0.20% , Si: 0.60% or less, Mn: 0.20 ~ 2.00%, P: 0.030% or less, S: 0.010% or less and Al: includes 0.06% or less, a length The following formula (1) is used for non-metallic inclusions having a cleanness of 0.050% or less and a length of less than 2 μm measured by the method specified in JIS G 0555 for non-metallic inclusions of 2 μm or more. A steel material with good toughness, characterized in that an average value of inclusion index A is 5000 nm or less.
Figure 0004032679
[0013]
However, m is the number of non-metallic inclusions less than 2 μm existing in the visual field when an arbitrary position of the steel material is observed in a 10 μm square visual field, and L X is an arbitrary position of the steel material of 10 μm. The length (nm) of the non-metallic inclusions less than 2 μm observed in the Xth field when observed in an angular field of view, n is 0 when L X ≦ 20 nm, 1, 250 nm when 20 nm <L X ≦ 250 nm The coefficient is 3 when <L X ≦ 500 nm and 4 when 500 nm <L X <2 μm.
[0015]
( B ) The molten steel is subjected to an inert gas blowing treatment that satisfies the conditions expressed by the following formula (2) under atmospheric pressure, and then continuously cast, and then the continuous steel is cast as described in ( a ) above A method for producing a steel material with good toughness.
Figure 0004032679
However, the definitions of the symbols in the above formula (2) are as follows.
G 1 : Flow rate of inert gas blown into molten steel (NL / min)
H 1 : Distance from the tip of the inert gas blowing nozzle to the molten steel surface (m)
S 1 : Ladle molten steel amount (ton)
D 1 : Ladle inner diameter (m)
[0016]
( C ) The molten steel has a flow rate of inert gas of 1500 to 1950 NL / min and is subjected to a vacuum refining process that satisfies the condition expressed by the following formula (3), and then continuously cast. A method for producing a steel material having good toughness as described in ( a ) above.
Figure 0004032679
However, the definitions of the symbols in the above formula (3) are as follows.
G 2 : Inert gas flow rate used for molten steel recirculation (NL / min)
S 2 : Ladle molten steel amount (ton)
D 2 : Immersion tube inner diameter (m)
t 2 : Vacuum processing time (min)
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the steel material of the present invention, first, the cleanliness (hereinafter simply referred to as “cleanliness”) measured by a method defined in JIS G 0555 for non-metallic inclusions having a length of 2 μm or more is limited to 0.050% or less. There is a need.
[0018]
By reducing the amount of such relatively large inclusions deposited, the toughness and ductility of the steel material can be improved. As will be described later, an object of the present invention is to obtain a steel having superior toughness as compared with a conventional steel material by defining a relatively small inclusion condition of less than 2 μm. However, when the degree of cleanliness exceeds 0.050%, the effect of improving toughness cannot be sufficiently obtained even if the precipitation amount of relatively small inclusions is limited. Therefore, the cleanliness needs to be limited to 0.050% or less.
[0019]
The “inclusions” in this specification are defined to include carbides and nitrides generally called precipitates in addition to the inclusions defined in JIS G 0555. For example, Mn carbide, precipitated Cu, Cr carbonitride, Mo carbonitride, V carbonitride, B carbonitride, etc. are included.
[0020]
The “inclusion length” refers to the length of the inclusion in the longest direction. Here, a relatively large inclusion having a length of 2 μm or more can be measured by observation using an optical microscope, and a relatively small inclusion having a length of less than 2 μm, which will be described later, is SEM (scanning type). It can be measured by observation using an electron microscope) or TEM (transmission electron microscope).
[0021]
In the steel material of the present invention, it is necessary to further limit the average value of inclusion index A expressed by the following formula (1) for non-metallic inclusions having a length of less than 2 μm to 5000 nm or less. However, m in the following formula (1) is the number (number) of non-metallic inclusions less than 2 μm existing in the visual field when an arbitrary position of the steel material is observed with a visual field of 10 μm square, and L X is The length (nm) of non-metallic inclusions less than 2 μm observed at the Xth position when an arbitrary position of the steel material is observed with a 10 μm square field of view, n is 0 when L X ≦ 20 nm, and 20 nm <L X The coefficient is 1 when 250 nm, 3 when 250 nm <L X ≦ 500 nm, and 4 when 500 nm <L X <2 μm.
[Equation 8]
Figure 0004032679
[0022]
When setting the condition of relatively small inclusions with a length of less than 2 μm, it is impossible to accurately grasp the behavior of toughness even when focusing only on the amount of precipitation. That is, as the size of the inclusion increases (longer), stress concentration and plastic strain concentration are increased when an external force is applied, which adversely affects the toughness of the steel material. Therefore, it is necessary to evaluate the behavior of toughness by weighting according to the size of the inclusion.
[0023]
Based on this knowledge, the present inventors conducted a rigorous investigation on the relationship between the size of the fine inclusions deposited on the steel material and the toughness of the steel material. As a result, the inclusion index A represented by the above equation (1) By limiting the average value to 5000 nm or less, the present invention has been completed which can stably maintain the toughness of the steel material at a high level.
[0024]
The “average value of inclusion index A” is the length of inclusions less than 2 μm present in each field of view using SEM or TEM for 100 fields or more randomly selected in steel. Then, the inclusion index A is calculated from the above equation (1), that is, the product of the length of each inclusion and the coefficient (n) corresponding thereto is obtained, and the inclusion index is obtained by calculating the sum of the products. A is calculated, and the average value of inclusion index A in all fields of view measured is shown.
[0025]
The steel material of the present invention includes, in mass%, C: 0.02 to 0.20%, Si: 0.60% or less, Mn: 0.20 to 2.00%, P: 0.030% or less, S: 0.010% or less, and Al: 0.06% or less. Is desirable. The reasons for limiting each element will be described below.
[0026]
C: 0.02 to 0.20%
C is the most effective and inexpensive element for increasing the strength of steel. When the C content is less than 0.02%, it is necessary to include other elements to guarantee the strength, resulting in an increase in cost. On the other hand, when the content exceeds 0.20%, the weldability and toughness of the steel material are significantly lowered. Therefore, the C content is preferably 0.02 to 0.20%.
[0027]
Si: 0.60% or less
Si is an element effective for improving the strength of a steel material, and if it is contained even in a trace amount in steel, this effect can be obtained, so it may be at an impurity level. In order to obtain a greater effect, it is desirable to contain 0.05% or more. However, if its content exceeds 0.60%, the toughness of the steel material is significantly impaired. Therefore, the Si content is desirably 0.60% or less.
[0028]
Mn: 0.20 to 2.00%
Mn is an element effective for securing the strength of the steel material. In order to acquire this effect, it is desirable to contain 0.20% or more. However, if its content exceeds 2.00%, the weldability and toughness are significantly reduced. Therefore, the Mn content is desirably 0.20 to 2.00%.
[0029]
P: 0.030% or less P is an impurity element and decreases the toughness of the steel material. Therefore, the content is preferably as small as possible. Therefore, it is desirable to limit the P content to 0.030% or less.
[0030]
S: 0.010% or less S is an impurity element and decreases the toughness of the steel material. Therefore, the content is preferably as small as possible. Therefore, it is desirable to limit the S content to 0.010% or less.
[0031]
Al: 0.06% or less
Al is an element effective for deoxidation and reduces inclusions in the steel. This effect can be obtained if the steel is contained even in a trace amount, and the content thereof may be an impurity level. However, in order to obtain a greater effect, it is desirable to contain 0.005% or more. On the other hand, when the content exceeds 0.06%, excessive precipitation and coarsening of AlN are caused, and the toughness of the steel material is significantly impaired. Therefore, the Al content is desirably 0.06% or less.
[0032]
In addition, if the steel material of this invention contains said component, it will not specifically limit about the remainder. Therefore, the balance may be Fe and impurities, and it contains one or more elements such as Nb: 0.005 to 0.050%, V: 0.005 to 0.100%, Cu: 0.05 to 1.00%, Ni: 0.05 to 3.00%, etc. There may be.
[0033]
The production method of the present invention is a vacuum after satisfying the condition represented by the following formula (3) after performing an inert gas blowing treatment satisfying the condition represented by the following formula (2) on the molten steel. It is necessary to continuously cast after performing the refining treatment. However, G 1 in formula (2), the inert gas flow rate blown into the molten steel (NL / min, normal liters / minute), H 1 is from the tip of the inert gas blowing nozzle to the molten steel surface The distance (m), S 1 is the ladle molten steel amount (ton), D 1 is the ladle inner diameter (m), t 1 is the inert gas blowing time (min), G 2 is an inert gas flow rate (NL / min, normal liter / min) used for the molten steel reflux, S 2 is a ladle molten steel amount (ton), D 2 is a dip tube inner diameter (m), t 2 Indicates vacuum processing time (min).
[Equation 9]
Figure 0004032679
[Expression 10]
Figure 0004032679
[0034]
Here, the “inert gas blowing process” refers to a process in which molten steel and slag are agitated by blowing molten steel into a ladle and then blowing an inert gas such as Ar into the molten steel. As a result, inclusions in the molten steel float up due to agglomeration, or directly react with the slag entrained in the molten steel and are absorbed into the slag and separated from the molten steel.
[0035]
“Vacuum degassing process” refers to a process of degassing using a vacuum chamber, such as RH process or DH process. As a result, the inclusions in the molten steel are agglomerated and floated, so that they are absorbed in the slag and separated from the molten steel.
[0036]
The reason why the above refining process conditions are specified will be described below with reference to the drawings. The state of precipitation of the inclusions was investigated on the slab continuously cast after the inert gas blowing process or the vacuum degassing process under the manufacturing conditions shown in Table 1 below. Here, for convenience, the value on the left side of equation (2) is referred to as a refining process index B, and the value on the left side of equation (3) is referred to as a refining process index C.
[0037]
[Table 1]
Figure 0004032679
[0038]
In the above investigation, the chemical composition was C: 0.02 to 0.18%, Si: 0.04 to 0.52%, Mn: 0.42 to 1.65%, P: 0.001 to 0.028%, S: 0.0003 to 0.0086%, Cu: 0 to 1.00%, Ni: 0 to 2.98%, Cr: 0 to 0.86%, Mo: 0 to 0.65%, V: 0 to 0.086%, Nb: 0 to 0.049%, Al: 0 to 0.059%, Ti: 0 to 0.034 %, B: 0 to 0.0021% and N: 0 to 0.0085%.
[0039]
FIG. 1 is a diagram showing the relationship between the refining treatment index B and the cleanliness or inclusion index A when an inert gas blowing process is performed under the manufacturing conditions shown in Table 1. FIG. 4A shows the relationship between the refining treatment index B and the cleanliness, and FIG. 5B shows the relationship between the refining treatment index B and the inclusion index A.
[0040]
FIG. 2 is a diagram showing the relationship between the refining treatment index C and the cleanliness or inclusion index A when vacuum degassing is performed under the manufacturing conditions shown in Table 1. FIG. 4A shows the relationship between the refining treatment index C and the cleanliness, and FIG. 5B shows the relationship between the refining treatment index C and the inclusion index A.
[0041]
As shown in FIG. 1 and FIG. 2, in order to set the cleanliness of the steel material to 0.050% or less, it is necessary that the refining treatment index B is 0.75 or more or the refining treatment index C is 3.0 or more. On the other hand, in order to set the inclusion index A to 5000 nm or less, it is necessary to set the refining treatment index B to 1.0 or more or the refining treatment index C to 4.0 or more. Therefore, in order to satisfy the inclusion conditions defined in the present invention, the refining treatment index B must be 1.0 or more, and the refining treatment index C must be 4.0 or more. That is, when performing an inert gas blowing process on the molten steel in the ladle, it is necessary to satisfy the above formula (2), and when performing a vacuum degassing process, it is necessary to satisfy the formula (3). There is.
[0042]
An inert gas injection process to the ladle of molten steel is higher effect of reducing the inclusions also in its early stages, when treatment time t 1 is less than 1 minute, refining conditions of the expression (2) Even if it satisfies, a steel material that satisfies the inclusions defined in the present invention cannot be obtained. Therefore, the processing time t 1 is required for more than one minute. Meanwhile, in the vacuum degassing treatment, low inclusions reduction in its early stages, when treatment time t 2 is less than 2 minutes, even refining conditions are not meet the above equation (3), in the present invention A steel material that satisfies the specified inclusions cannot be obtained. This is because the slag on the surface of the ladle molten steel sucked up in the vacuum chamber in the initial stage of the treatment is caught, and it cannot be discharged out of this slag vacuum chamber unless it is treated for 2 minutes or more. Therefore, the processing time t 2 is required more than two minutes.
[0043]
In the vacuum degassing process, if the degree of vacuum exceeds 150 torr, a steel material that satisfies the inclusions specified in the present invention may not be obtained. Therefore, the degree of vacuum in the vacuum degassing process is 150 torr or less. There is a need.
[0044]
Here, in order to obtain the steel material of the present invention, an inert gas blowing process that satisfies the above formula (2) or a vacuum degassing process that satisfies the above formula (3) may be performed as a refining process immediately before continuous casting. . For example, when the vacuum degassing process is performed twice before continuous casting, the second vacuum degassing process does not satisfy the condition expressed by the above formula (3) in the second vacuum degassing process. The steel material of the present invention can be obtained if the conditions expressed by the above formula (3) are satisfied in the degassing treatment. Similarly, when performing a vacuum degassing process after performing an inert gas blowing process before continuous casting, or when performing an inert gas blowing process after performing a vacuum degassing process, The refining process immediately before the continuous casting only needs to satisfy the refining conditions of the present invention.In the former case, the vacuum degassing process only needs to satisfy the above formula (3), and in the latter case, the inert gas blowing process. Should satisfy the above formula (2).
[0045]
In the steel material production method of the present invention, the continuous casting method is not particularly limited, but the steel material of the present invention can be obtained if the casting speed is in the range of 0.4 to 2.0 m / min. When the degree of superheat of molten steel in the tundish (molten steel temperature−liquidus temperature) was less than 15 ° C., a material that did not satisfy the inclusion condition of the present invention was generated. This is considered to be due to the fact that since the molten steel temperature was low, the viscosity of the molten steel increased, and the inclusions in the molten steel could not rise in the tundish. Therefore, it is desirable to limit the temperature to 15 ° C or higher. On the other hand, if the casting temperature is too high, problems such as refractory erosion, reduced operational stability, and an increase in molten steel heating costs may occur. It is desirable to limit. Moreover, if the specific water amount is in the range of 0.2 to 2.0 L / (molten steel · kg), the steel material of the present invention can be obtained.
[0046]
【Example】
The molten steel was subjected to an inert gas blowing process or a vacuum degassing process under the conditions shown in Table 2, and then a slab continuously cast under the conditions shown in Table 3 was rolled to obtain a test steel plate. Table 4 shows the chemical composition of the molten steel before continuous casting in terms of ladle chemical component values. Thick plate rolling was performed under the same conditions except for the conditions shown in Table 3.
[0047]
[Table 2]
Figure 0004032679
[0048]
[Table 3]
Figure 0004032679
[0049]
[Table 4]
Figure 0004032679
[0050]
Cleanliness measured by the method stipulated in JIS G 0555 for inclusions with a length of 2 μm or more, and inclusions with a length of less than 2 μm in the 10 μm square (100 fields of view) Table 5 shows the average number of inclusions and their lengths, and the average value of inclusion index A.
[0051]
In addition, the cleanliness is determined by performing mirror polishing with a diamond paste on a ¼ portion of the wall thickness using a cross section obtained by cutting the test steel plate parallel to the rolling direction as a test surface, and then using JIS G It was measured by the method defined in 0555. In addition, the average value of inclusion index A is a transmission electron microscope using a carbon replica for a quarter of the thickness with a cross section cut in parallel to the rolling direction from the test steel plate as a test surface. Measure the length of inclusions present in any 10 μm square at, and determine the number and length of inclusions from the measurement results for each length group (groups of less than 20 nm, groups of 20 to 250 nm, 250 to 500 nm Sub-group and sub-group of 500 nm or more and less than 2 μm), substituting it into the above equation (1) to determine the inclusion index A, repeating the same work, and calculating the average value for 100 fields of inclusion index A Calculated.
[0052]
However, in Table 5 below, since the lengths of all the inclusions measured cannot be described, the average number for each length group (Y / 100 when the total number of the numbers for 100 fields of view is Y) And the average length for 100 fields in each length group.
[0053]
[Table 5]
Figure 0004032679
[0054]
Cut out a notch Charpy impact test piece (2 mm V notch test piece specified in JIS Z 2202) from the C direction of the above test steel sheet, and perform a Charpy impact test on the 1/4 thickness part at different temperatures. Table 6 shows the results of measuring the upper shelf energy and the fracture surface transition temperature.
[0055]
[Table 6]
Figure 0004032679
[0056]
As shown in Table 4 above, all the steels used in the examples were melted as structural 40-50 kg steel, and steel No. 1 as a group of steels having almost the same chemical composition. A group of ~ 7 and a group of steel No.8 ~ 14 were prepared.
[0057]
As shown in Tables 2 and 3 above, steel Nos. 1 to 5 were all subjected to continuous casting, thickness after vacuum degassing treatment satisfying the conditions expressed by the formula (3) of the present invention. Steel Nos. 6 and 7 were subjected to vacuum degassing under conditions that deviated from the conditions expressed by the formula (3) of the present invention, and then subjected to continuous casting and thick plate rolling. Steel. In addition, as shown in Table 5 above, Steel Nos. 1 to 5 have a cleanness of 0.050% or less and an average value of inclusion index A represented by the formula (1) of the present invention is 5000 nm. It was the following. On the other hand, steel Nos. 6 and 7 have a cleanliness of 0.050% or less, but the average value of inclusion index A represented by the formula (1) of the present invention exceeds 5000 nm, and is defined by the present invention. Did not satisfy the conditions. Here, as shown in Table 6 above, the steel Nos. 1 to 5 satisfying the conditions of the present invention are higher in the upper shelf energy and the fracture than the steel Nos. 6 and 7 not satisfying the conditions of the present invention. The surface transition temperature was excellent.
[0058]
As shown in Table 2 and Table 3 above, Steel Nos. 8 to 12 were all subjected to continuous casting after performing an inert gas blowing treatment satisfying the conditions represented by the formula (2) of the present invention. It is a steel material that has been subjected to thick plate rolling, and steel Nos. 13 and 14 are subjected to an inert gas blowing treatment under conditions that deviate from the conditions represented by the formula (2) of the present invention, then continuous casting, thick plate rolling It is the steel material which performed. Further, as shown in Table 5 above, Steel Nos. 8 to 12 have a cleanliness of 0.050% or less and an average value of inclusion index A represented by the formula (1) of the present invention is 5000 nm. It was the following. On the other hand, steel Nos. 13 and 14 have a cleanliness of 0.050% or less, but the average value of inclusion index A represented by the formula (1) of the present invention exceeds 5000 nm, and is defined by the present invention. Did not satisfy the conditions. Here, as shown in Table 6 above, the steel Nos. 8 to 12 satisfying the conditions of the present invention are higher in the upper shelf energy and the fracture than the steel Nos. 13 and 14 not satisfying the conditions of the present invention. The surface transition temperature was excellent.
[0059]
【The invention's effect】
In the steel material of the present invention, a strict quantitative restriction is made more than before for relatively large inclusions having a length of 2 μm or more, and conditions for relatively small inclusions having a length of less than 2 μm are defined. It is a steel material with good toughness. Further, according to the method of the present invention, the amount of inclusions is limited to a range that does not adversely affect the toughness of the steel material, simply and inexpensively, without making new capital investment and without adding an expensive alloy element. Thus, a steel material with good toughness can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a refining treatment index B and a cleanliness or inclusion index A when an inert gas blowing process is performed under the production conditions shown in Table 1, and (a) shows a refining treatment index B. (B) shows the relationship between the refining treatment index B and the inclusion index A.
FIG. 2 is a diagram showing the relationship between the refining treatment index C and the cleanliness or inclusion index A when vacuum degassing is performed under the production conditions shown in Table 1, and (a) shows the refining treatment index C and The relationship with cleanliness is shown, and (b) shows the relationship between the refining treatment index C and the inclusion index A.

Claims (3)

質量%で、C:0.02〜0.20%、Si:0.60%以下、Mn:0.20〜2.00%、P:0.030%以下、S:0.010%以下およびAl:0.06%以下を含み、長さが2μm以上の非金属介在物についてのJIS G 0555に規定される方法によって測定した清浄度が0.050%以下であり、かつ長さが2μm未満の非金属介在物についての下記の(1)式で表される介在物指数Aの平均値が5000nm以下であることを特徴とする靱性の良好な鋼材。
Figure 0004032679
ただし、上記(1)式中の記号の定義は、下記のとおりである。
m:鋼材の任意の位置を10μm角の視野で観察したときに当該視野中に存在する2μm未満の非金属介在物の個数(個)
X:鋼材の任意の位置を10μm角の視野で観察したときにX番目に観察された2μm未満の非金属介在物の長さ(nm)
n:LX≦20nmのときは0、20nm<LX≦250nmのときは1、250nm<LX≦500nmのときは3、および500nm<LX<2μmのときは4。
In mass%, C: 0.02 to 0.20%, Si: 0.60% or less, Mn: 0.20 to 2.00%, P: 0.030% or less, S: 0.010% or less, and Al: 0.06% or less, and the length is 2 μm or more For non-metallic inclusions, the degree of cleanliness measured by the method specified in JIS G 0555 is 0.050% or less and the length is less than 2 μm, and the inclusion represented by the following formula (1) A steel material with good toughness, characterized in that the average value of the material index A is 5000 nm or less.
Figure 0004032679
However, the definitions of the symbols in the above formula (1) are as follows.
m: Number of non-metallic inclusions less than 2 μm existing in the visual field when an arbitrary position of the steel material is observed with a visual field of 10 μm square
L X : length of non-metallic inclusions less than 2 μm observed in Xth when an arbitrary position of the steel material is observed with a 10 μm square field of view (nm)
n: 0 when L X ≦ 20 nm, 1 when 20 nm <L X ≦ 250 nm, 3 when 250 nm <L X ≦ 500 nm, and 4 when 500 nm <L X <2 μm.
溶鋼に、大気圧下で下記の(2)式で表される条件を満足する不活性ガス吹き込み処理を実施した後に、連続鋳造することを特徴とする請求項1に記載の靱性の良好な鋼材を製造する方法。
Figure 0004032679
ただし、上記(2)式中の記号の定義は、下記のとおりである。
1:溶鋼内に吹き込まれる不活性ガス流量(NL/min)
1:不活性ガス吹き込みノズルの先端から溶鋼湯面までの距離(m)
1:取鍋溶鋼量(ton)
1:取鍋内径(m)
The steel material with good toughness according to claim 1, wherein the molten steel is continuously cast after being subjected to an inert gas blowing treatment satisfying the condition represented by the following formula (2) under atmospheric pressure: How to manufacture.
Figure 0004032679
However, the definitions of the symbols in the above formula (2) are as follows.
G 1 : Flow rate of inert gas blown into molten steel (NL / min)
H 1 : Distance from the tip of the inert gas blowing nozzle to the molten steel surface (m)
S 1 : Ladle molten steel amount (ton)
D 1 : Ladle inner diameter (m)
溶鋼に、不活性ガス流量が1500〜1950NL/minであって、かつ下記の(3)式で表される条件を満足する真空精錬処理を実施した後に、連続鋳造することを特徴とする請求項1に記載の靱性の良好な鋼材を製造する方法。
Figure 0004032679
ただし、上記 (3)式中の記号の定義は、下記のとおりである。
2:溶鋼環流に使用される不活性ガス流量(NL/min)
2:取鍋溶鋼量(ton)
2:浸漬管内径(m)
2:真空処理時間(min)
The molten steel has an inert gas flow rate of 1500 to 1950 NL / min and is continuously cast after being subjected to a vacuum refining process that satisfies the condition represented by the following formula (3) : A method for producing a steel material having good toughness according to 1 .
Figure 0004032679
However, the definitions of the symbols in the above formula (3) are as follows.
G 2 : Inert gas flow rate used for molten steel recirculation (NL / min)
S 2 : Ladle molten steel amount (ton)
D 2 : Immersion tube inner diameter (m)
t 2 : Vacuum processing time (min)
JP2001247022A 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same Expired - Fee Related JP4032679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247022A JP4032679B2 (en) 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247022A JP4032679B2 (en) 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003055733A JP2003055733A (en) 2003-02-26
JP4032679B2 true JP4032679B2 (en) 2008-01-16

Family

ID=19076446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247022A Expired - Fee Related JP4032679B2 (en) 2001-08-16 2001-08-16 Steel material with good toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4032679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213316A (en) * 2005-08-15 2008-07-02 株式会社神户制钢所 Thick steel plate excelling in toughness of large heat input welded joint
JP5126790B2 (en) * 2008-08-25 2013-01-23 新日鐵住金株式会社 Steel material excellent in fatigue crack growth resistance and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192214A (en) * 1981-05-18 1982-11-26 Sumitomo Electric Ind Ltd Molten steel-refining method and apparatus therefor
JP4582826B2 (en) * 1997-09-12 2010-11-17 Jfeスチール株式会社 Manufacturing method of clean steel with RH degassing equipment

Also Published As

Publication number Publication date
JP2003055733A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
CN100577844C (en) Austenitic stainless steel
JP3895687B2 (en) Steel plate for depositing TiN + ZrN for welded structure, method for producing the same, and welded structure using the same
KR20080038217A (en) Two-phase stainless steel
WO2003042420A1 (en) Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR20130036778A (en) Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
WO2006129827A1 (en) High tensile steel product excellent in delayed fracture resistance and method for production thereof
JP6954475B2 (en) High Mn steel and its manufacturing method
WO2006011257A1 (en) High tensile steel sheet of low acoustical anisotropy excelling in weldability, and process for producing the same
JP2004514060A (en) Steel plate having deposited TiN + CuS for welded structure, method for producing the same, and welded structure using the same
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
EP1337678A1 (en) Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP3624804B2 (en) Method for producing ridging resistant ferritic stainless steel
CN112779456B (en) Method for manufacturing steel plate SM490B for welded structure
WO2019180957A1 (en) Rolled h-shaped steel and method for manufacturing same
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP4032679B2 (en) Steel material with good toughness and method for producing the same
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
KR100205536B1 (en) Method of line-pipe type steel with tensile strength 65kg
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP2007277622A (en) Method for manufacturing thick steel plate having high tensile strength of 780 mpa grade and superior weldability
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4032679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees