JP2003049659A - Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method - Google Patents

Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method

Info

Publication number
JP2003049659A
JP2003049659A JP2001235695A JP2001235695A JP2003049659A JP 2003049659 A JP2003049659 A JP 2003049659A JP 2001235695 A JP2001235695 A JP 2001235695A JP 2001235695 A JP2001235695 A JP 2001235695A JP 2003049659 A JP2003049659 A JP 2003049659A
Authority
JP
Japan
Prior art keywords
rolling
variable
blade
shaft
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001235695A
Other languages
Japanese (ja)
Other versions
JP4779159B2 (en
Inventor
Shinjiro Oishi
新二朗 大石
Yukio Takahashi
幸雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Sogi Kogyo KK
Original Assignee
IHI Corp
Sogi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Sogi Kogyo KK filed Critical IHI Corp
Priority to JP2001235695A priority Critical patent/JP4779159B2/en
Publication of JP2003049659A publication Critical patent/JP2003049659A/en
Application granted granted Critical
Publication of JP4779159B2 publication Critical patent/JP4779159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a new manufacturing method greatly suppressing shaft extension caused by a rolling while supposing that the shaft part of a preform to be an original form of a variable vane is formed by the rolling. SOLUTION: The metal preform to be the original form of the variable vane 1 is used as a starting material and the shaft part formed part of the preform is rolled and formed into the shaft part 12. The shaft part 12 is provided with a fitting part 16 to be turnably fitted into a receiving hole 25 in a turbine frame positioned in the outer circumference of an exhaust turbine T. The variable vane is characterized in that the fitting part 16 is provided with a rolling required part 17 and non-rolling part 18 having a slightly narrower diameter than that of the rolling required part 17 and that the rolling of the shaft part 12 is performed in the rolling required part 17 alone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自動車用エンジン等
に用いられるターボチャージャに関するものであって、
特にこのものに組み込まれる可変翼を製造するにあた
り、可変翼の原形となる素形材を切削することなく製造
し得る、新規な製造手法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbocharger used in an automobile engine or the like,
In particular, the present invention relates to a novel manufacturing method capable of manufacturing a variable blade to be incorporated in this one without cutting a raw material which is a prototype of the variable blade.

【0002】[0002]

【発明の背景】自動車用エンジンの高出力化、高性能化
の一手段として用いられる過給機としてターボチャージ
ャが知られており、このものはエンジンの排気エネルギ
によってタービンを駆動し、このタービンの出力によっ
てコンプレッサを回転させ、エンジンに自然吸気以上の
過給状態をもたらす装置である。ところでこのターボチ
ャージャは、エンジンが低速回転しているときには、排
気流量の低下により排気タービンがほとんど働かず、従
って高回転域まで回るエンジンにあってはタービンが効
率的に回るまでのもたつき感と、その後の一挙に吹き上
がるまでの所要時間いわゆるターボラグ等が生ずること
を免れないものであった。またもともとエンジン回転が
低いディーゼルエンジンでは、ターボ効果を得にくいと
いう欠点があった。
BACKGROUND OF THE INVENTION A turbocharger is known as a supercharger used as a means for increasing the output and improving the performance of an automobile engine. This turbocharger drives a turbine by the exhaust energy of the engine, It is a device that rotates the compressor by the output and brings the engine into a supercharged state that is higher than natural intake. By the way, in this turbocharger, when the engine is rotating at a low speed, the exhaust turbine hardly works due to a decrease in the exhaust flow rate, and therefore, in the case of an engine that can rotate up to a high rotation range, the turbine has a feeling of rattling until it rotates efficiently, It was inevitable that the so-called turbo lag, etc., required for the subsequent blowing up of the air all at once. Also, the diesel engine, which has a low engine speed, has a drawback that it is difficult to obtain a turbo effect.

【0003】このため低回転域からでも効率的に作動す
るVGSタイプのターボチャージャが開発されてきてい
る。このものは、少ない排気流量を可変翼(羽)で絞り
込み、排気の速度を増し、排気タービンの仕事量を大き
くすることで、低速回転時でも高出力を発揮できるよう
にしたものである。このためVGSタイプのターボチャ
ージャにあっては、別途可変翼の可変機構等を必要と
し、周辺の構成部品も従来のものに比べて形状等をより
複雑化させなければならなかった。
For this reason, a VGS type turbocharger has been developed which operates efficiently even in a low rotation range. This is a device in which a small exhaust flow rate is narrowed down by variable blades (blades), the speed of exhaust is increased, and the work of the exhaust turbine is increased, so that high output can be exhibited even at low speed rotation. Therefore, the VGS type turbocharger requires a variable blade variable mechanism and the like, and the peripheral components also have to be more complicated in shape and the like than the conventional ones.

【0004】そしてこのようなVGSタイプのターボチ
ャージャにおける可変翼を製造するにあたっては、例え
ばロストワックス鋳造に代表される精密鋳造法や、金属
射出成形法等によって、翼部と軸部とを一体に形成した
金属素材(可変翼の原形となる素形材)を形成し、その
後、素形材の軸部に転造等の後加工を施し、所望の径太
さに加工する手法がある。因みに素形材を適宜切削加工
して行き、最終的に翼部や軸部を所望の形状や寸法に仕
上げる手法もあり、製造数が極めて少ない試作段階等で
は充分採用に値するものであった。
When manufacturing a variable blade for such a VGS type turbocharger, the blade portion and the shaft portion are integrally formed by a precision casting method typified by lost wax casting or a metal injection molding method. There is a method of forming the formed metal material (form material that is the original shape of the variable blade), and then performing post-processing such as rolling on the shaft portion of the shape material to form a desired diameter. By the way, there is also a method of cutting the shaped material appropriately and finally finishing the wing and the shaft into desired shapes and dimensions, and it was worthy enough to be adopted in the trial production stage where the number of manufactured products is extremely small.

【0005】しかしながら、高い耐熱性や耐酸化性等が
要求される可変翼は、素材そのものが難切削性の素材で
あり、切削加工に多大な時間を要するため、切削加工は
必ずしも効率的な手法ではなかった。加えて可変翼は一
基のターボチャージャについて10〜15個程度必要と
なるため、実際に自動車が月産3万台程度、量産される
場合、可変翼は月に30万〜45万個製造する必要があ
り、切削加工では到底対応し切れるものではなかった
(切削加工では、一日に500個程度が限度であっ
た)。このようなことから可変翼を量産するにあたって
は、加工工程から切削加工を可能な限り削除する必要が
あり、軸部の加工にあたっては、専ら転造が主流となっ
ていた。
However, the variable blade, which is required to have high heat resistance, oxidation resistance, etc., is a material that is difficult to cut itself and requires a great amount of time for cutting. Therefore, cutting is not always an efficient method. Was not. In addition, about 10 to 15 variable blades are required for one turbocharger, so if the actual monthly production of about 30,000 vehicles is to be mass-produced, 300,000 to 450,000 variable blades will be manufactured per month. It was necessary, and the cutting process was not enough to deal with it (the cutting process was limited to about 500 pieces per day). For this reason, when mass-producing variable blades, it is necessary to eliminate cutting work from the working process as much as possible, and when processing the shaft portion, rolling has been the mainstream.

【0006】ところで可変翼は、排気タービンの外周に
設けられたフレーム部材に嵌め込まれて回動自在に保持
されるものであって、可変翼の軸部は、ほぼ全長にわた
って転造されることが多かった。すなわち可変翼の軸部
は、フレーム部材の受入孔に挿入される嵌合部分も含め
て、全体的に転造加工が施されることが一般的であっ
た。しかしながらこのように軸部全体を転造する手法に
あっては、転造に伴って生じる軸伸びが、大きくなる傾
向にあり、場合によっては長手方向に延びた軸長を修正
すべく、転造後、軸部に切削加工を施さなければならな
かった。もちろんこのような修正のための切削加工で
も、上述したように時間のかかる作業であり、可変翼の
量産性を損なう一因となるため、転造に伴う軸伸びを極
力抑える製造手法が求められていた。
By the way, the variable blade is fitted in a frame member provided on the outer periphery of the exhaust turbine and is rotatably held, and the shaft portion of the variable blade can be rolled over substantially the entire length. There were many. That is, the shaft portion of the variable blade is generally entirely rolled, including the fitting portion that is inserted into the receiving hole of the frame member. However, in the method of rolling the entire shaft in this way, the axial elongation that accompanies the rolling tends to increase. In some cases, the rolling may be performed to correct the axial length extending in the longitudinal direction. After that, the shaft had to be cut. Of course, even the cutting work for such correction is a time-consuming work as described above, which is a cause of impairing the mass productivity of the variable blades, and therefore a manufacturing method for suppressing the axial elongation due to rolling is required. Was there.

【0007】また近年、特にディーゼル車においては、
環境保護等の観点から大気中に放出される排気ガスが強
く規制される現状にあり、元来エンジン回転が低いディ
ーゼルエンジンにおいては、NOX や粒子状物質(P
M)等を低減するためにも低回転域からエンジンの効率
化が図れるVGSタイプのターボチャージャの量産化
が、切望されるものであった。
In recent years, especially in diesel vehicles,
Exhaust gas emitted into the atmosphere is currently strongly regulated from the viewpoint of environmental protection, and NO x and particulate matter (P
In order to reduce M) and the like, mass production of a VGS type turbocharger that can improve the efficiency of the engine from a low rotation range has been earnestly desired.

【0008】[0008]

【開発を試みた技術的課題】本発明はこのような背景を
認識してなされたものであって、素形材の軸部を転造に
よって加工することを前提としながら、転造に伴う軸伸
びを格段に抑制する新規な可変翼の製造手法を技術課題
としたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a background, and it is premised that the shaft portion of the raw material is processed by rolling, and This is a technical subject for the production method of a new variable blade that significantly suppresses the elongation.

【0009】[0009]

【課題を解決するための手段】すなわち請求項1記載の
VGSタイプターボチャージャにおける可変翼の製造方
法は、回動中心となる軸部と、実質的に排気ガスの流量
を調節する翼部とを具え、エンジンから排出された比較
的少ない排気ガスを適宜絞り込み、排気ガスの速度を増
幅させ、排気ガスのエネルギで排気タービンを回し、こ
の排気タービンに直結されたコンプレッサで自然吸気以
上の空気をエンジンに送り込み、低速回転時であっても
エンジンが高出力を発揮できるようにしたVGSタイプ
のターボチャージャに組み込まれる可変翼を製造するに
あたり、前記可変翼は、翼部と軸部とを一体に具え、可
変翼の原形と成る金属の素形材を出発素材とし、前記軸
部は、この素形材の軸部形成部が転造加工されて形成さ
れるものであり、また軸部は、排気タービンの外周に位
置するフレーム部材の受入孔に回動自在に嵌め込まれる
嵌合部分を有するとともに、この嵌合部分は、要転造部
と、要転造部より幾分細径の非転造部とを具え、軸部へ
の転造は、この要転造部のみに施されることを特徴とし
て成るものである。この発明によれば、可変翼は、フレ
ーム部材に挿入される嵌合部分の要転造部のみに転造が
施されるため、嵌合部分を含む軸部全体を転造する場合
に比べ、転造に伴う軸伸びが格段に抑えられる。このた
め転造後、軸伸びを修正するために行われることがあっ
た切削加工を解消でき、可変翼を効率的に量産できる。
That is, a method for manufacturing a variable vane in a VGS type turbocharger according to a first aspect of the present invention comprises a shaft portion which is a center of rotation and a vane portion which substantially regulates a flow rate of exhaust gas. The relatively small amount of exhaust gas emitted from the engine is appropriately narrowed down, the speed of the exhaust gas is amplified, the exhaust turbine is rotated by the energy of the exhaust gas, and the compressor directly connected to this exhaust turbine produces more than natural intake air. In order to manufacture a variable blade to be incorporated into a VGS type turbocharger that enables the engine to exhibit a high output even at low speed rotation, the variable blade integrally includes a blade portion and a shaft portion. The starting material is a metal material to be the original shape of the variable blade, and the shaft portion is formed by rolling the shaft forming portion of the material. The shaft portion has a fitting portion that is rotatably fitted into the receiving hole of the frame member located on the outer periphery of the exhaust turbine, and the fitting portion includes the rolling required portion and the rolling required portion rather than the rolling required portion. With a non-rolled portion having a small diameter, rolling on the shaft portion is characterized in that it is applied only to this rolling required portion. According to this invention, since the variable blade is rolled only on the rolling-required portion of the fitting portion to be inserted into the frame member, compared with the case where the entire shaft portion including the fitting portion is rolled. Axial elongation due to rolling is significantly suppressed. For this reason, after the rolling, the cutting work that is sometimes performed to correct the axial elongation can be eliminated, and the variable blades can be efficiently mass-produced.

【0010】また請求項2記載のVGSタイプターボチ
ャージャにおける可変翼の製造方法は、前記請求項1記
載の要件に加え、前記可変翼における嵌合部分は、非転
造部を挟んで、その両端部分に要転造部を具えることを
特徴として成るものである。この発明によれば、要転造
部が非転造部を挟むように嵌合部分の両端部に構成され
るため、転造後、この要転造部が、受入孔のすぐ内側に
おいて、円滑な摺動状態を維持する作用を担う。このた
め可変翼の回動がより安定化し、ターボチャージャの性
能、すなわち排気ガスの確実な流量制御に寄与する。
According to the method for manufacturing a variable blade in a VGS type turbocharger of claim 2, in addition to the requirements of claim 1, the fitting portion of the variable blade sandwiches a non-rolled portion and both ends thereof. It is characterized in that it has a rolling required part. According to the present invention, since the rolling required portion is formed at both ends of the fitting portion so as to sandwich the non-rolling portion, after the rolling, the rolling required portion is smooth just inside the receiving hole. Has the function of maintaining a smooth sliding state. Therefore, the rotation of the variable vanes is further stabilized, which contributes to the performance of the turbocharger, that is, the reliable control of the exhaust gas flow rate.

【0011】更にまた請求項3記載のVGSタイプター
ボチャージャにおける可変翼の製造方法は、前記請求項
1または2記載の要件に加え、前記素形材に形成される
嵌合部分の要転造部と非転造部との段差寸法は、要転造
部の転造代寸法より大きく設定され、転造の際、転造代
部位の金属素材を一部、要転造部から小径側の非転造部
に流動させるようにしたことを特徴として成るものであ
る。この発明によれば、要転造部の金属素材の一部は、
転造の際、段差にガイドされるように非転造部側に流動
するため、転造に伴う軸伸びが、より一層、抑制され
る。
According to a third aspect of the present invention, in addition to the requirements of the first or second aspect, the method for manufacturing a variable vane in a VGS type turbocharger is the rolling-required portion of a fitting portion formed in the base material. The step size between the rolling part and the non-rolling part is set larger than the rolling allowance of the rolling requiring part, and when rolling, part of the metal material of the rolling allowance part is It is characterized by being made to flow to the rolling part. According to this invention, a part of the metal material of the rolling required part is
During rolling, the fluid flows to the non-rolled portion side so as to be guided by the step, so that axial elongation associated with rolling is further suppressed.

【0012】また請求項4記載のVGSタイプターボチ
ャージャにおける可変翼の製造方法は、前記請求項1、
2または3記載の要件に加え、前記素形材において形成
される要転造部と非転造部との段差寸法は、約0.1m
m程度に設定されるとともに、要転造部の転造代寸法
は、約0.05mm以下に設定されることを特徴として
成るものである。この発明によれば、転造の際、軸伸び
を極めて小さな範囲に抑える具体的設定を可能とする。
因みに軸部全体を転造した際、例えば約0.1〜0.3
mm程度の軸伸びであったものが、上記寸法設定の転造
によって、実質的な軸伸びが、ほぼ0で安定することが
本出願人によって確認されている。
A method of manufacturing a variable blade in a VGS type turbocharger according to a fourth aspect of the present invention is the method according to the first aspect of the present invention.
In addition to the requirements described in 2 or 3, the step size between the rolling required portion and the non-rolling portion formed in the base material is about 0.1 m.
In addition to being set to about m, the rolling allowance of the rolling required portion is set to about 0.05 mm or less. According to the present invention, it is possible to make a specific setting that suppresses the axial elongation to an extremely small range during rolling.
By the way, when the whole shaft is rolled, for example, about 0.1-0.3
It has been confirmed by the applicant of the present invention that the axial elongation of about mm is stabilized by the rolling with the above dimension setting, and the substantial axial elongation is stabilized at almost zero.

【0013】また請求項5記載のVGSタイプのターボ
チャージャにおける可変翼は、排気タービンの外周位置
においてフレーム部材に回動自在に保持される軸部と、
実質的に排気ガスの流量を調節する翼部とを具え、エン
ジンから排出された比較的少ない排気ガスを適宜絞り込
み、排気ガスの速度を増幅させ、排気ガスのエネルギで
排気タービンを回し、この排気タービンに直結されたコ
ンプレッサで自然吸気以上の空気をエンジンに送り込
み、低速回転時であってもエンジンが高出力を発揮でき
るようにしたVGSタイプのターボチャージャに組み込
まれる可変翼において、前記可変翼の軸部は、フレーム
部材に嵌め込まれる嵌合部分が、要転造部と、この要転
造部より幾分小径の非転造部とを具えて成り、軸部が前
記請求項1、2、3または4記載の製造方法によって転
造されて製造されることを特徴として成るものである。
この発明によれば、転造に伴って不可避的に生じる軸伸
びを可及的に抑えた、高い品質レベルの可変翼を市場に
供給できる。また軸伸びを格段に抑え得ることに因み、
軸伸びを修正するために行うことがあった切削加工を削
除できる。このため可変翼の加工工程から時間のかかる
切削加工を全て解消することができ、可変翼の量産化を
より現実なものとする。
The variable blades in the VGS type turbocharger according to claim 5 include a shaft portion rotatably held by a frame member at an outer peripheral position of the exhaust turbine,
It has a blade portion that substantially regulates the flow rate of exhaust gas, appropriately narrows the relatively small amount of exhaust gas discharged from the engine, amplifies the speed of exhaust gas, and rotates the exhaust turbine with the energy of exhaust gas. A variable blade installed in a VGS type turbocharger, which allows a compressor directly connected to a turbine to send air more than naturally aspirated to the engine so that the engine can exhibit high output even at low speed rotation. The shaft portion is such that the fitting portion to be fitted into the frame member comprises a rolling required portion and a non-rolling portion having a diameter slightly smaller than the rolling required portion, and the shaft portion has the above-mentioned claim 1, 2, It is characterized by being rolled and manufactured by the manufacturing method described in 3 or 4.
According to the present invention, it is possible to supply to the market variable blades having a high quality level in which the axial elongation that is inevitably caused by rolling is suppressed as much as possible. Also, due to the fact that axial elongation can be significantly suppressed,
You can eliminate the cutting work that you might have done to correct axial elongation. Therefore, it is possible to eliminate all the time-consuming cutting processes from the variable blade machining process, which makes the mass production of variable blades more realistic.

【0014】[0014]

【発明の実施の形態】以下本発明を図示の実施の形態に
基づいて説明する。説明にあたっては本発明に係る可変
翼1を適用したVGSタイプのターボチャージャにおけ
る排気ガイドアッセンブリAについて説明しながら併せ
て可変翼1について説明し、その後、本発明の可変翼1
の製造方法について説明する。排気ガイドアッセンブリ
Aは、特にエンジンの低速回転時において排気ガスGを
適宜絞り込んで排気流量を調節するものであり、一例と
して図1に示すように、排気タービンTの外周に設けら
れ実質的に排気流量を設定する複数の可変翼1と、可変
翼1を回動自在に保持するタービンフレーム2と、排気
ガスGの流量を適宜設定すべく可変翼1を一定角度回動
させる可変機構3とを具えて成るものである。以下各構
成部について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the illustrated embodiments. In the description, the variable vane 1 will be described together with the exhaust guide assembly A in the VGS type turbocharger to which the variable vane 1 according to the present invention is applied, and then the variable vane 1 according to the present invention.
The manufacturing method of will be described. The exhaust guide assembly A adjusts the exhaust gas flow rate by appropriately narrowing the exhaust gas G when the engine is rotating at a low speed, and is provided on the outer periphery of the exhaust turbine T as shown in FIG. A plurality of variable blades 1 for setting the flow rate, a turbine frame 2 for rotatably holding the variable blade 1, and a variable mechanism 3 for rotating the variable blade 1 by a certain angle to appropriately set the flow rate of the exhaust gas G are provided. It consists of. Each component will be described below.

【0015】まず可変翼1について説明する。このもの
は一例として図1に示すように排気タービンTの外周に
沿って円弧状に複数(一基の排気ガイドアッセンブリA
に対して概ね10個から15個程度)配設され、そのそ
れぞれが、ほぼ同程度ずつ回動して排気流量を適宜調節
するものである。そして各可変翼1は、翼部11と、軸
部12とを具えて成る。翼部11は、主に排気タービン
Tの幅寸法に応じて一定幅を有するように形成されるも
のであり、その幅方向における断面が概ね翼状に形成さ
れ、排気ガスGが効果的に排気タービンTに向かうよう
に構成されている。なおここで翼部11の幅寸法を便宜
上、羽根高さhとする。また軸部12は、翼部11と一
体で連続するように形成されるものであり、翼部11を
動かす際の回動軸に相当する部位となる。
First, the variable blade 1 will be described. As an example, as shown in FIG. 1, a plurality of these are arranged in an arc shape along the outer periphery of the exhaust turbine T (one exhaust guide assembly A
Approximately ten to fifteen of them are provided, and each of them is rotated by approximately the same degree to appropriately adjust the exhaust gas flow rate. Each variable blade 1 comprises a blade portion 11 and a shaft portion 12. The blade portion 11 is formed so as to have a constant width mainly according to the width dimension of the exhaust turbine T, the cross-section in the width direction thereof is formed into a substantially blade shape, and the exhaust gas G is effectively exhaust turbine. It is configured to go to T. Here, the width dimension of the blade portion 11 is referred to as a blade height h for convenience. In addition, the shaft portion 12 is formed so as to be continuous with the wing portion 11 integrally, and is a portion corresponding to a rotating shaft when the wing portion 11 is moved.

【0016】そして翼部11と軸部12との接続部位に
は、軸部12から翼部11に向かって窄まるようなテー
パ部13と、軸部12より幾分大径の鍔部14とが連な
るように形成されている。なお鍔部14の底面は、翼部
11における軸部12側の端面と、ほぼ同一平面上に形
成され、この平面が、可変翼1をタービンフレーム2に
取り付けた状態における摺動面となり、可変翼1の円滑
な回動状態が確保される。更に軸部12の先端部には、
可変翼1の取付状態の基準となる基準面15が形成され
る。この基準面15は、後述する可変機構3に対しカシ
メ等によって固定される部位であり、一例として図1、
2に示すように、軸部12を対向的に切り欠いた平面
が、翼部11に対してほぼ一定の傾斜状態に形成されて
成るものである。
At the connecting portion between the blade portion 11 and the shaft portion 12, there is provided a taper portion 13 that narrows from the shaft portion 12 toward the blade portion 11, and a flange portion 14 having a diameter slightly larger than that of the shaft portion 12. Are formed to be continuous. The bottom surface of the collar portion 14 is formed substantially on the same plane as the end surface of the blade portion 11 on the shaft portion 12 side, and this plane serves as a sliding surface when the variable blade 1 is attached to the turbine frame 2, The smooth rotating state of the blade 1 is ensured. Furthermore, at the tip of the shaft 12,
A reference surface 15 is formed which serves as a reference for the mounting state of the variable blade 1. The reference surface 15 is a portion fixed to the variable mechanism 3 described later by crimping or the like, and as an example, FIG.
As shown in FIG. 2, the plane in which the shaft portion 12 is cut out in a facing manner is formed with a substantially constant inclination with respect to the blade portion 11.

【0017】なお本発明に係る可変翼1は、完成状態以
前の翼部11と軸部12とを一体で具えた金属素材(以
下素形材Wとする)をまず形成し、この素形材Wに対
し、適宜の加工を施して目的の形状や寸法精度を実現さ
せ、完成品としての可変翼1を得るものである。ここで
最終的に翼部11や軸部12が形成される素形材Wの各
部分を、それぞれ翼部形成部11a、軸部形成部12a
と定義する。そして本発明では可変翼1のうち特に軸部
12は、転造によって所望の径太さに加工するものであ
り、その際、軸部12全体を転造するのではなく、一例
として図2に示すように、タービンフレーム2(排気タ
ービンTのフレーム部材)に嵌め込まれる嵌合部分16
を、部分的に転造する。このような手法によって、転造
に伴って不可避的に生じる可変翼1の軸伸びを極力抑え
るものである。
The variable vane 1 according to the present invention is formed by first forming a metal material (hereinafter referred to as a blank W) that integrally includes the blade 11 and the shaft 12 before the completion. Appropriate processing is performed on W to realize the desired shape and dimensional accuracy, and the variable blade 1 as a finished product is obtained. Here, each part of the blank W in which the wing part 11 and the shaft part 12 are finally formed is respectively referred to as a wing part forming part 11a and a shaft part forming part 12a.
It is defined as In the present invention, especially the shaft portion 12 of the variable vane 1 is machined to have a desired diameter by rolling. At that time, the entire shaft portion 12 is not rolled, but as an example, FIG. As shown, the fitting portion 16 fitted into the turbine frame 2 (frame member of the exhaust turbine T)
Partially rolled. By such a method, the axial elongation of the variable blade 1 which is inevitably caused by rolling is suppressed.

【0018】軸部12における嵌合部分16は、一例と
して図2に併せて示すように、その両端付近に、転造が
施される要転造部17を構成するとともに、この要転造
部17の間に転造加工が施されない非転造部18を挟む
ように構成する。また本発明においては、要転造部17
のみに転造を施すことに因み、特に素形材Wのときの要
転造部17は、非転造部18よりも幾分太径に形成され
るものであり、一例としてこの要転造部17と非転造部
18との段差は、0.1mm程度に設定される。なお要
転造部17を嵌合部分16の両端付近に位置させたこと
によって、可変翼1の回動が嵌合部分16の両端付近で
保持されることになり、可変翼1の回動をより安定的な
ものとする。
As shown in FIG. 2 as an example, the fitting portion 16 of the shaft portion 12 constitutes a rolling required portion 17 to be rolled near both ends thereof, and the rolling required portion is provided. The non-rolled portion 18 that is not rolled is sandwiched between the members 17. Further, in the present invention, the rolling required portion 17
Due to the fact that only the rolled material is rolled, the rolling-required portion 17 is formed to have a diameter slightly larger than that of the non-rolled portion 18, especially in the case of the blank W. The step difference between the forged portion 17 and the non-rolled portion 18 is set to about 0.1 mm. Since the rolling-required portion 17 is located near both ends of the fitting portion 16, the rotation of the variable blade 1 is retained near both ends of the fitting portion 16, so that the rotation of the variable blade 1 is prevented. Make it more stable.

【0019】次にタービンフレーム2について説明す
る。このものは、複数の可変翼1を回動自在に保持する
フレーム部材として構成されるものであって、一例とし
て図1に示すように、フレームセグメント21と保持部
材22とによって可変翼1を挟み込むように構成され
る。そしてフレームセグメント21は、可変翼1の軸部
12を受け入れるフランジ部23と、後述する可変機構
3を外周に嵌めるボス部24とを具えて成る。なおこの
ような構造からフランジ部23には、周縁部分に可変翼
1と同数の受入孔25が等間隔で形成されるものであ
る。また保持部材22は、図1に示すように中央部分が
開口された円板状に形成されている。そしてこれらフレ
ームセグメント21と保持部材22とによって挟み込ま
れた可変翼1の翼部11を、常に円滑に回動させ得るよ
うに、両部材間の寸法は、ほぼ一定(概ね可変翼1の翼
幅寸法程度)に維持されるものであり、一例として受入
孔25の外周部分に、四カ所設けられたカシメピン26
によって両部材間の寸法が維持されている。ここでこの
カシメピン26を受け入れるためにフレームセグメント
21及び保持部材22に開口される孔をピン孔27とす
る。
Next, the turbine frame 2 will be described. This is configured as a frame member that rotatably holds a plurality of variable blades 1. As an example, as shown in FIG. 1, the variable blade 1 is sandwiched by a frame segment 21 and a holding member 22. Is configured as follows. The frame segment 21 is provided with a flange portion 23 that receives the shaft portion 12 of the variable blade 1 and a boss portion 24 that fits the variable mechanism 3 described later on the outer circumference. Due to such a structure, the flange portion 23 is formed with the same number of receiving holes 25 as the variable blades 1 at the peripheral portion at equal intervals. Further, the holding member 22 is formed in a disk shape having an opening in the central portion as shown in FIG. The dimension of the variable blade 1 sandwiched between the frame segment 21 and the holding member 22 is substantially constant (generally, the blade width of the variable blade 1 is approximately constant so that the blade portion 11 of the variable blade 1 can always be smoothly rotated. The caulking pins 26 are provided at four places on the outer peripheral portion of the receiving hole 25 as an example.
The dimension between both members is maintained by. Here, the holes formed in the frame segment 21 and the holding member 22 to receive the crimping pins 26 are referred to as pin holes 27.

【0020】なおこの実施の形態では、フレームセグメ
ント21のフランジ部23は、保持部材22とほぼ同径
のフランジ部23Aと、保持部材22より幾分大きい径
のフランジ部23Bとの二つのフランジ部分から成るも
のであり、これらを同一部材で形成するものであるが、
同一部材での加工が複雑になる場合等にあっては、径の
異なる二つのフランジ部を分割して形成し、後にカシメ
加工やブレージング加工等によって接合することも可能
である。
In this embodiment, the flange portion 23 of the frame segment 21 has two flange portions, that is, a flange portion 23A having substantially the same diameter as the holding member 22 and a flange portion 23B having a diameter slightly larger than the holding member 22. , Which are made of the same material,
In the case where processing with the same member becomes complicated, it is also possible to form two flange portions having different diameters by dividing them and then to join them by caulking or brazing.

【0021】次に可変機構3について説明する。このも
のはタービンフレーム2のボス部24の外周側に設けら
れ、排気流量を調節するために可変翼1を回動させるも
のであり、一例として図1に示すように、アッセンブリ
内において実質的に可変翼1の回動を生起する回動部材
31と、この回動を可変翼1に伝える伝達部材32とを
具えて成るものである。回動部材31は、図示するよう
に中央部分が開口された略円板状に形成され、その周縁
部分に可変翼1と同数の伝達部材32を等間隔で設ける
ものである。なおこの伝達部材32は、回動部材31に
回転自在に取り付けられる駆動要素32Aと、可変翼1
の基準面15に固定状態に取り付けられる受動要素32
Bとを具えて成るものであり、これら駆動要素32Aと
受動要素32Bとが接続された状態で、回動が伝達され
る。具体的には四角片状の駆動要素32Aを、回動部材
31に対して回転自在にピン止めするとともに、この駆
動要素32Aを受け入れ得るように略U字状に形成した
受動要素32Bを、可変翼1の先端の基準面15に固定
し、四角片状の駆動要素32AをU字状の受動要素32
Bに嵌め込み、双方を係合させるように、回動部材31
をボス部24に取り付けるものである。
Next, the variable mechanism 3 will be described. This is provided on the outer peripheral side of the boss portion 24 of the turbine frame 2 and rotates the variable blade 1 in order to adjust the exhaust flow rate. As an example, as shown in FIG. The variable blade 1 includes a rotating member 31 that causes the variable blade 1 to rotate, and a transmission member 32 that transmits the rotation to the variable blade 1. The rotating member 31 is formed in a substantially disc shape with an opening in the central portion as shown in the figure, and the same number of transmitting members 32 as the variable blades 1 are provided at equal intervals on the peripheral portion thereof. The transmission member 32 includes a drive element 32A rotatably attached to the rotating member 31 and the variable blade 1.
Element 32 fixedly mounted on the reference plane 15 of the
B is included, and the rotation is transmitted in a state where the drive element 32A and the passive element 32B are connected. Specifically, a rectangular piece-shaped drive element 32A is rotatably pinned to the rotating member 31, and a passive element 32B formed in a substantially U shape so as to receive the drive element 32A is variable. Fixed to the reference surface 15 at the tip of the wing 1, and the square-piece-shaped drive element 32A is replaced by the U-shaped passive element 32.
The rotation member 31 is fitted in the B and is engaged with both.
Is attached to the boss portion 24.

【0022】なお複数の可変翼1を取り付けた初期状態
において、これらを周状に整列させるにあたっては、各
可変翼1と受動要素32Bとが、ほぼ一定の角度で取り
付けられる必要があり、本実施の形態においては、主に
可変翼1の基準面15がこの作用を担っている。また回
動部材31を単にボス部24に嵌め込んだままでは、回
動部材31がタービンフレーム2と僅かに離反した際、
伝達部材32の係合が解除されてしまうことが懸念され
るため、これを防止すべく、タービンフレーム2の対向
側から回動部材31を挟むようにリング33等を設け、
回動部材31に対してタービンフレーム2側への押圧傾
向を賦与するものである。このような構成によって、エ
ンジンが低速回転を行った際には、可変機構3の回動部
材31を適宜回動させ、伝達部材32を介して軸部12
に伝達し、図1に示すように可変翼1を回動させ、排気
ガスGを適宜絞り込んで、排気流量を調節するものであ
る。
In the initial state in which a plurality of variable vanes 1 are attached, in order to align them in a circumferential shape, each variable vane 1 and the passive element 32B need to be attached at a substantially constant angle. In the above embodiment, the reference surface 15 of the variable vane 1 mainly plays this role. Further, when the rotating member 31 is simply fitted in the boss portion 24, when the rotating member 31 is slightly separated from the turbine frame 2,
Since there is concern that the engagement of the transmission member 32 may be released, in order to prevent this, a ring 33 or the like is provided so as to sandwich the rotating member 31 from the opposite side of the turbine frame 2,
The rotation member 31 is given a tendency to be pressed toward the turbine frame 2 side. With such a configuration, when the engine rotates at a low speed, the rotating member 31 of the variable mechanism 3 is appropriately rotated, and the shaft portion 12 is moved through the transmission member 32.
And the variable blade 1 is rotated as shown in FIG. 1, the exhaust gas G is appropriately narrowed, and the exhaust flow rate is adjusted.

【0023】本発明に係る可変翼1を適用した排気ガイ
ドアッセンブリAの一例は、以上のように構成されて成
り、以下、可変翼1の製造方法について説明する。 (1)素形材の準備工程 この工程は、翼部形成部11aと軸部形成部12aとを
一体に具え、可変翼1の原形となる金属の素形材Wを準
備する工程である。なお本発明では、可変翼1に転造を
施す部位は、軸部12全体ではなく、タービンフレーム
2に受け入れられる嵌合部分16の要転造部17のみで
あるため、この準備工程によって形成される素形材Wに
は、要転造部17と非転造部18との間に、要転造部1
7を凸状態とするような段差(一例として0.1mm程
度)が形成される。そしてこのような素形材Wを形成す
るにあたっては、精密鋳造、金属射出成形、ブランク材
の打ち抜き等、適宜の手法が適用可能であり、以下これ
らの手法について概略的に説明する。
An example of the exhaust guide assembly A to which the variable vane 1 according to the present invention is applied is configured as described above, and a method for manufacturing the variable vane 1 will be described below. (1) Step of Preparing Forming Material This step is a step of preparing a metal forming material W which is a prototype of the variable blade 1 by integrally including the blade forming portion 11a and the shaft forming portion 12a. According to the present invention, the variable blade 1 is not rolled as a whole but only the rolling-required portion 17 of the fitting portion 16 that is received by the turbine frame 2. The material W to be rolled is formed between the rolling-required portion 17 and the non-rolled portion 18, and the rolling-required portion 1
A step (for example, about 0.1 mm) is formed to make 7 convex. In forming such a blank W, an appropriate method such as precision casting, metal injection molding, blank material punching, or the like can be applied, and these methods will be briefly described below.

【0024】(a)精密鋳造 例えば精密鋳造法を代表するロストワックス鋳造は、目
的の製品(ここでは可変翼1)を形状、大きさ共に、ほ
ぼ忠実にろう模型で再現し、このろう模型のまわりを耐
火物で被覆した後、中のろう部分を溶かし出して、耐火
物(被覆物)のみを得、これを鋳型として鋳造を行う手
法である。このように精密鋳造では、鋳型を目的の製品
通りに、ほぼ忠実に形成することによって、鋳造品(素
形材W)を高精度に再現し得るものである。しかしなが
ら本実施の形態では、鋳造にあたって、耐熱鋼(合金)
を主要母材とした処女材を適用するとともに、含有され
るC(炭素)、Si(ケイ素)、O(酸素)量を適正
化、例えばC、Si、Oの各々の重量%を0.05〜
0.5%、0.5〜1.5%、0.01〜0.1%とす
ることで、溶融金属の湯流れ性を向上させて、鋳造品の
寸法精度を、より一層向上させることが可能である。ま
た例えば、注湯後、鋳型とともに鋳込んだ金属素材を急
冷することによって、型破砕までの時間を短縮し、素形
材Wの凝固粒の微細化を図り、その後の転造加工におい
て、シャープエッジ(軸部12の転造によって、軸部1
2表面の金属素材が塑性流動を起こし、軸部12の先端
部から突出状態に形成される鋭角部位)を発生させ難く
する技術的工夫も適宜採り得るものである。
(A) Precision casting For example, lost wax casting, which represents a precision casting method, reproduces a target product (variable blade 1 in this case) in a wax model almost faithfully in shape and size. After coating the surrounding area with a refractory material, the brazing part inside is melted out to obtain only the refractory material (coating material), and casting is performed using this as a mold. As described above, in the precision casting, the casting product (form material W) can be reproduced with high accuracy by forming the mold almost exactly as intended. However, in the present embodiment, heat resistant steel (alloy) is used for casting.
A virgin material containing as a main material is applied, and the amount of C (carbon), Si (silicon), and O (oxygen) contained is optimized, for example, the weight% of each of C, Si, and O is 0.05. ~
By setting the content to 0.5%, 0.5 to 1.5%, or 0.01 to 0.1%, it is possible to improve the molten metal flowability and further improve the dimensional accuracy of the cast product. Is possible. Further, for example, after pouring, by quenching the metal material cast together with the mold, the time until the mold is crushed is shortened, the solidified grains of the raw material W are miniaturized, and in the subsequent rolling process, it is sharpened. Edge (Shaft part 1 is formed by rolling the shaft part 12
(2) It is also possible to appropriately take technical measures to make it difficult for the metal material on the surface 2 to cause plastic flow and to generate an acute angle portion formed in a protruding state from the tip end portion of the shaft portion 12.

【0025】(b)金属射出成形 この手法は、材料となる金属粉にバインダ(主に金属粉
どうしを結合させる添加剤であり、一例としてポリエチ
レン樹脂、ワックス、フタル酸エステルの混合物)を混
練し、可塑性を賦与した後、金型内に射出して所望の形
状に形成して、バインダを除去した後、焼結する手法で
あり、精密鋳造とほぼ同様に、高精度に金属製の成形品
(素形材W)が得られるものである。この際、独立泡
(金属粒子間の球状間隙)を小さく且つ均一に生じさせ
るべく、30分から2時間程度の時間をかけた焼結を行
ったり、成形品にHIP(Hot Isostatic
Pressingの略;熱間静水圧プレス)処理を施
し、成形品の嵩密度を向上させることが可能である。ま
た金属粉の形状を空気アトマイズや水アトマイズ等によ
って極力、球状且つ微細化し、素形材Wの高温回転曲げ
疲労性を向上させる技術的工夫も適宜採り得るものであ
る。
(B) Metal injection molding In this method, a binder (mainly an additive for binding metal powders to each other, which is a mixture of polyethylene resin, wax and phthalate ester) is kneaded with a metal powder as a material. It is a method in which, after imparting plasticity, it is injected into a mold to form a desired shape, the binder is removed, and then the metal is sintered. The (form material W) is obtained. At this time, in order to generate small and uniform independent bubbles (spherical gaps between metal particles), sintering is performed for about 30 minutes to 2 hours, or the molded product is subjected to HIP (Hot Isostatic).
Abbreviation of Pressing; hot isostatic pressing) can be performed to improve the bulk density of the molded product. Further, it is also possible to appropriately take technical measures to make the shape of the metal powder spherical and fine by air atomization, water atomization, or the like as much as possible to improve the high temperature rotary bending fatigue property of the raw material W.

【0026】(c)ブランク材の打ち抜き この手法は、ほぼ一定の厚さ(一例として約4mm程
度)を有した帯鋼等から、目的の可変翼1を実現し得る
ボリューム(金属素材の体積)を有するように打ち抜い
たブランク材を素形材Wとする手法である。もちろん打
ち抜き加工は、通常、打ち抜き方向がストレートである
ため、打ち抜き工程のみで、例えば軸部12の断面を、
ほぼ円状に形成することは不可能であり、打ち抜かれた
ブランク材の軸部形成部12aは、ほぼ四角状断面を呈
するのが一般的である。このため打ち抜き工程の後、転
造工程に移行するまでの間に、例えばほぼ四角形状断面
を呈した軸部形成部12aに、鍛造加工や圧印加工等を
施してほぼ円形状断面に造形するものである。すなわち
実質的には、打ち抜き工程と造形工程とによって、精密
鋳造や金属射出成形等と同程度の素形材Wを得るもので
ある。なお、造形工程で断面形状を変化させるような場
合には、打ち抜かれたブランク材(素形材W)の軸部形
成部12a等の隅角部にコーナR(フィレット加工)や
面取り加工を施し、円形状等の完成形状に近づけておく
技術的工夫が適宜採り得る。これによって金属素材のデ
ッドメタルフロウ状態が防止され、実質的な造形工程に
おいて金属素材の円滑な塑性流動が促進されるものであ
る。因みに造形工程では、翼部11も同時に所望の形状
に形成することが可能である。
(C) Punching of blank material This method is a volume (volume of metal material) that can realize the target variable blade 1 from a strip steel or the like having a substantially constant thickness (about 4 mm as an example). In this method, a blank material punched so as to have the Of course, in the punching process, since the punching direction is usually straight, the cross section of the shaft portion 12, for example, can be formed only by the punching process.
It is impossible to form a substantially circular shape, and the shaft portion forming portion 12a of the blanked blank material generally has a substantially square cross section. For this reason, after the punching step and before shifting to the rolling step, for example, the shaft portion forming portion 12a having a substantially rectangular cross section is subjected to forging or coining to form a substantially circular cross section. Is. That is, substantially, the stamping step and the shaping step can obtain the raw material W having the same degree as that of precision casting or metal injection molding. When changing the cross-sectional shape in the molding process, corner R (fillet processing) or chamfering processing is applied to the corners of the stamped blank material (form material W) such as the shaft forming portion 12a. A technical device for making the shape closer to a completed shape such as a circular shape can be appropriately adopted. This prevents a dead metal flow state of the metal material and promotes smooth plastic flow of the metal material in the substantial modeling process. Incidentally, in the modeling step, the wing portion 11 can be simultaneously formed into a desired shape.

【0027】(2)軸部の転造工程 このように適宜の手法によって可変翼1の原形となる素
形材Wを形成した後、この素形材Wの軸部形成部12a
が転造によって所望の径太さに加工される。この際、非
転造部18に対して突出状態に形成された要転造部17
が、一例として図3に示すように、一対のダイス(転造
ローラ)Dで押さえ付けられて、素形材WとダイスDと
が相対的に回転しながら実質的な転造が行われる。なお
図3に併せて示すように、要転造部17と非転造部18
との段差が約0.1mm程度である場合、本工程におけ
る要転造部17の転造代は、一例として0.05mm以
下に設定される。このため転造後においても要転造部1
7と非転造部18との間には、段差寸法から転造代を差
し引いた分の段差(約0.05mm)が依然として形成
されるものであり、この段差によって要転造部17の表
面に位置していた金属素材が、非転造部18へとガイド
されるように流動し、転造に伴う軸伸びを、より一層抑
制するものである。
(2) Shaft Rolling Step After the raw material W, which is the original shape of the variable blade 1, is formed by an appropriate method in this manner, the shaft forming portion 12a of the raw material W is formed.
Is processed into a desired diameter by rolling. At this time, the rolling-required portion 17 formed in a protruding state with respect to the non-rolled portion 18
However, as shown in FIG. 3 as an example, a pair of dies (rolling rollers) D presses the material W and the dies D relatively to each other while substantially rolling the dies. As shown in FIG. 3 as well, the rolling required portion 17 and the non-rolling portion 18
When the step difference between and is about 0.1 mm, the rolling allowance of the rolling required portion 17 in this step is set to 0.05 mm or less as an example. Therefore, even after the rolling, the rolling required portion 1
7 and the non-rolled portion 18 still have a step difference (about 0.05 mm) obtained by subtracting the rolling allowance from the step size. The metal material positioned at the position flows so as to be guided to the non-rolled portion 18, and further suppresses the axial elongation due to the rolling.

【0028】ここで要転造部17の転造代と、軸伸びと
の関係を、一例として図4に示すものであり、この図か
ら転造代が概ね0.065mm以下であれば、実質的な
軸伸びが0で安定し、ほとんど生じないことが分かる。
このため本実施の形態では、幾らかの余裕を考慮して、
転造代を0.05mm以下に設定するようにしている。
なお本図では、転造代が0.1mmのとき軸伸びが約
0.015mmとなるポイントを通る直線が、ほぼ双方
の関係の基準となり、その上下のハッチング部位におい
てバラツキの範囲が示されている。なお本図中に示す転
造代と軸伸びとの関係(基準)は、原点を通らないもの
であり、これは上述したように要転造部17の金属素材
が、転造によって専ら非転造部18へと押し退けられる
ように流動することに起因し、ある一定の転造代(グラ
フ上では、概ね0.065mm)までは実質的な軸伸び
が0に抑えられるためである。
Here, the relationship between the rolling allowance of the rolling-required portion 17 and the axial elongation is shown in FIG. 4 as an example. From this figure, if the rolling allowance is approximately 0.065 mm or less, it is substantially It can be seen that the specific axial elongation is stable at 0 and hardly occurs.
Therefore, in the present embodiment, considering some margin,
The rolling allowance is set to 0.05 mm or less.
In this figure, the straight line that passes through the point where the axial elongation is about 0.015 mm when the rolling allowance is 0.1 mm is the reference for almost both relationships, and the range of variations in the upper and lower hatched parts is shown. There is. Note that the relationship (reference) between the rolling allowance and the axial elongation shown in this figure does not pass through the origin, which means that the metal material of the rolling-required portion 17 is exclusively non-rolled by rolling as described above. This is because the substantial axial elongation is suppressed to 0 up to a certain rolling allowance (approximately 0.065 mm on the graph) due to the fluid flowing so as to be pushed away to the forming portion 18.

【0029】このように要転造部17のみの転造によっ
て、軸伸びを格段に減少させ、ほぼ0に安定させ得るこ
とに因み、従来、軸伸びを修正するために、転造後、行
われることがあった切削加工を排除できるものである。
従って可変翼1の加工工程から、多大な時間を要する切
削加工を完全に解消することができ、可変翼1の高品質
レベルでの量産化を、より現実的なものとしている。
As described above, by rolling only the rolling-required portion 17, the axial elongation can be remarkably reduced and stabilized at almost 0. Therefore, conventionally, in order to correct the axial elongation, after rolling, It is possible to eliminate the cutting process that was sometimes performed.
Therefore, it is possible to completely eliminate the cutting process that requires a great deal of time from the processing step of the variable blade 1, which makes the mass production of the variable blade 1 at a high quality level more realistic.

【0030】また要転造部17から非転造部18側に流
動した金属素材は、微視的に見れば、一例として図3に
示すように、あたかも要転造部17と非転造部18とに
重なったようなテーパ状態に形成されるものであり、こ
の部分の金属素材を特に余肉部eと符号を付すものであ
る。そして要転造部17から非転造部18に流動し、両
転造部に重合するように形成された余肉部eは、その形
成過程から要転造部17よりも太径となることはなく、
従って可変翼1が回動する際、余肉部eが、この回動の
妨げになることは全くない。更にこの実施の形態では、
非転造部18を間に挟んで、嵌合部分16の両端付近に
要転造部17を構成しており、この要転造部17がフレ
ームセグメント21に形成された受入孔25の直ぐ内側
で、実質的に可変翼1の円滑な回動状態を維持するた
め、可変翼1の回動をより確実、且つ安定的なものとし
ている。
The metal material that has flowed from the rolling required portion 17 to the non-rolling portion 18 side is microscopically viewed as if the rolling required portion 17 and the non-rolling portion are as shown in FIG. 3 as an example. It is formed in a tapered state so as to overlap with 18, and the metal material of this portion is particularly denoted by a surplus portion e. The excess thickness portion e formed so as to flow from the rolling required portion 17 to the non-rolled portion 18 and overlap with both rolling portions has a larger diameter than the rolling required portion 17 due to the formation process. Not,
Therefore, when the variable blade 1 rotates, the excess thickness portion e does not hinder this rotation at all. Furthermore, in this embodiment,
Roll-requiring portions 17 are formed near both ends of the fitting portion 16 with a non-rolling portion 18 interposed therebetween, and the roll-requiring portions 17 are located just inside the receiving hole 25 formed in the frame segment 21. Therefore, in order to substantially maintain the smooth rotating state of the variable blade 1, the variable blade 1 can be rotated more reliably and stably.

【0031】(3)翼部や可変翼全体の加工 軸部12の転造を終了したのち、素形材W(この状態で
素形材Wは、ほぼ可変翼1の完成状態を呈している)
は、適宜、翼部高さhが研磨されたり、全体的なバレル
研磨等が施され、所望の形状及び寸法精度を実現した可
変翼1が形成される。
(3) After the rolling of the working shaft portion 12 of the blade portion and the variable blade as a whole is completed, the raw material W (in this state, the raw material W substantially shows the completed state of the variable blade 1). )
The blade height h is appropriately polished, or overall barrel polishing or the like is performed to form the variable blade 1 having a desired shape and dimensional accuracy.

【0032】[0032]

【発明の効果】まず請求項1記載の発明によれば、可変
翼1の軸部12(軸部形成部12a)の転造は、要転造
部17のみに施されるため、実質的な軸伸びを、ほぼ0
に安定させ得る。このため可変翼1の製造工程から、切
削加工を一切解消することができ、可変翼1の量産を現
実のものとする。
According to the first aspect of the present invention, the shaft portion 12 (shaft portion forming portion 12a) of the variable vane 1 is substantially rolled because only the rolling required portion 17 is rolled. Axial elongation is almost 0
Can be stabilized. For this reason, the cutting process can be completely eliminated from the manufacturing process of the variable vane 1, and the mass production of the variable vane 1 becomes a reality.

【0033】また請求項2記載の発明によれば、要転造
部17は、非転造部18の両端に形成されるため、この
非転造部18によって可変翼1の円滑な摺動状態が維持
され得る。このため排気ガスGの流動制御が正確且つ確
実に行え、可変翼1の性能向上に寄与する。
According to the second aspect of the invention, since the rolling required portions 17 are formed at both ends of the non-rolling portion 18, the non-rolling portions 18 allow the variable blade 1 to smoothly slide. Can be maintained. Therefore, the flow control of the exhaust gas G can be performed accurately and surely, which contributes to the performance improvement of the variable vane 1.

【0034】更にまた請求項3記載の発明によれば、転
造によって流動される金属素材は、要転造部17と非転
造部18との間に滞留し、余肉部eを形成するため、余
肉部eが軸長方向に成長することが抑えられ、軸伸びが
効果的に抑制される。
Further, according to the third aspect of the invention, the metal material that is fluidized by rolling is retained between the rolling required portion 17 and the non-rolled portion 18 to form the extra thickness portion e. Therefore, the excess thickness portion e is suppressed from growing in the axial length direction, and the axial extension is effectively suppressed.

【0035】また請求項4記載の発明によれば、実質的
な軸伸びをほぼ0に安定させる、具体的な設定を実現し
得る。
According to the invention described in claim 4, it is possible to realize a specific setting that stabilizes the substantial axial elongation to almost zero.

【0036】また請求項5記載の発明によれば、従来、
転造に伴う軸伸びを、ほぼ0にした、高い品質レベルの
可変翼1を市場に安定して供給できる。
Further, according to the invention of claim 5, the prior art
It is possible to stably supply the variable blade 1 having a high quality level in which the axial elongation due to rolling is almost zero to the market.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る可変翼を組み込んだVGSタイプ
のターボチャージャを示す斜視図(a)、並びに排気ガ
イドアッセンブリを示す分解斜視図(b)である。
FIG. 1 is a perspective view (a) showing a VGS type turbocharger incorporating a variable vane according to the present invention, and an exploded perspective view (b) showing an exhaust guide assembly.

【図2】本発明に係る可変翼を示す正面図並びに左側面
図である。
FIG. 2 is a front view and a left side view showing a variable vane according to the present invention.

【図3】転造前と転造後における軸部の様子を示す説明
図である。
FIG. 3 is an explanatory diagram showing a state of a shaft portion before and after rolling.

【図4】要転造部の転造代と軸伸びとの関係を示すグラ
フである。
FIG. 4 is a graph showing a relationship between a rolling allowance of a rolling required portion and axial elongation.

【符号の説明】[Explanation of symbols]

1 可変翼 2 タービンフレーム 3 可変機構 11 翼部 11a 翼部形成部 12 軸部 12a 軸部形成部 13 テーパ部 14 鍔部 15 基準面 16 嵌合部分 17 要転造部 18 非転造部 21 フレームセグメント 22 保持部材 23 フランジ部 23A フランジ部(小) 23B フランジ部(大) 24 ボス部 25 受入孔 26 カシメピン 27 ピン孔 31 回動部材 32 伝達部材 32A 駆動要素 32B 受動要素 33 リング A 排気ガイドアッセンブリ D ダイス e 余肉部 G 排気ガス h 羽根高さ T 排気タービン W 素形材 1 variable wings 2 turbine frame 3 variable mechanism 11 wings 11a Wing forming section 12 Shaft 12a Shaft part forming part 13 Tapered part 14 Tsubabe 15 Reference plane 16 Fitting part 17 Rollable parts 18 Non-rolled section 21 frame segments 22 Holding member 23 Flange 23A Flange (small) 23B Flange (large) 24 Boss 25 receiving hole 26 Caulking pins 27 pin hole 31 Rotating member 32 transmission member 32A drive element 32B passive element 33 ring A Exhaust guide assembly D dice e Extra thickness area G exhaust gas h blade height T exhaust turbine W material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 幸雄 千葉県袖ヶ浦市福王台4−38−2 コスモ 袖ヶ浦106号 Fターム(参考) 3G005 EA15 FA43 GB25 KA03 KA07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yukio Takahashi             4-38-2 Fukuodai, Sodegaura-shi, Chiba Cosmo             Sodegaura No. 106 F-term (reference) 3G005 EA15 FA43 GB25 KA03 KA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 回動中心となる軸部と、実質的に排気ガ
スの流量を調節する翼部とを具え、 エンジンから排出された比較的少ない排気ガスを適宜絞
り込み、排気ガスの速度を増幅させ、排気ガスのエネル
ギで排気タービンを回し、この排気タービンに直結され
たコンプレッサで自然吸気以上の空気をエンジンに送り
込み、低速回転時であってもエンジンが高出力を発揮で
きるようにしたVGSタイプのターボチャージャに組み
込まれる可変翼を製造するにあたり、 前記可変翼は、翼部と軸部とを一体に具え、可変翼の原
形と成る金属の素形材を出発素材とし、前記軸部は、こ
の素形材の軸部形成部が転造加工されて形成されるもの
であり、 また軸部は、排気タービンの外周に位置するフレーム部
材の受入孔に回動自在に嵌め込まれる嵌合部分を有する
とともに、 この嵌合部分は、要転造部と、要転造部より幾分細径の
非転造部とを具え、軸部への転造は、この要転造部のみ
に施されることを特徴とするVGSタイプターボチャー
ジャにおける可変翼の製造方法。
1. A shaft having a center of rotation and a wing that substantially adjusts a flow rate of exhaust gas, and appropriately narrows a relatively small amount of exhaust gas discharged from an engine to amplify the speed of the exhaust gas. VGS type that rotates the exhaust turbine with the energy of the exhaust gas, and sends the air more than naturally aspirated to the engine by the compressor directly connected to this exhaust turbine, so that the engine can exhibit high output even at low speed rotation. In manufacturing a variable blade to be incorporated into a turbocharger of, the variable blade is integrally provided with a blade portion and a shaft portion, starting from a metal raw material which is a prototype of the variable blade, the shaft portion, The shaft portion forming portion of this raw material is formed by rolling, and the shaft portion is a fitting portion that is rotatably fitted into a receiving hole of a frame member located on the outer periphery of the exhaust turbine. In addition, the fitting portion has a rolling required portion and a non-rolling portion having a diameter slightly smaller than that of the rolling required portion, and the rolling on the shaft portion is performed only at this rolling required portion. A method for manufacturing a variable vane in a VGS type turbocharger, comprising:
【請求項2】 前記可変翼における嵌合部分は、非転造
部を挟んで、その両端部分に要転造部を具えて成ること
を特徴とする請求項1記載のVGSタイプターボチャー
ジャにおける可変翼の製造方法。
2. The variable VGS turbocharger according to claim 1, wherein the fitting portion of the variable vane comprises a non-rolled portion and rolling portions at both ends thereof. Wing manufacturing method.
【請求項3】 前記素形材に形成される嵌合部分の要転
造部と非転造部との段差寸法は、要転造部の転造代寸法
より大きく設定され、転造の際、転造代部位の金属素材
を一部、要転造部から小径側の非転造部に流動させるよ
うにしたことを特徴とする請求項1または2記載のVG
Sタイプターボチャージャにおける可変翼の製造方法。
3. A step size between a rolling required portion and a non-rolling portion of a fitting portion formed on the base material is set to be larger than a rolling allowance of the rolling required portion, and The VG according to claim 1 or 2, wherein a part of the metal material of the rolling allowance portion is made to flow from the rolling required portion to the non-rolled portion on the small diameter side.
A method for manufacturing a variable blade in an S type turbocharger.
【請求項4】 前記素形材において形成される要転造部
と非転造部との段差寸法は、約0.1mm程度に設定さ
れるとともに、要転造部の転造代寸法は、約0.05m
m以下に設定されることを特徴とする請求項1、2また
は3記載のVGSタイプターボチャージャにおける可変
翼の製造方法。
4. The step size between the rolling required portion and the non-rolling portion formed in the base material is set to about 0.1 mm, and the rolling allowance of the rolling required portion is About 0.05m
The method for manufacturing a variable blade in a VGS type turbocharger according to claim 1, 2 or 3, wherein the value is set to m or less.
【請求項5】 排気タービンの外周位置においてフレー
ム部材に回動自在に保持される軸部と、実質的に排気ガ
スの流量を調節する翼部とを具え、 エンジンから排出された比較的少ない排気ガスを適宜絞
り込み、排気ガスの速度を増幅させ、排気ガスのエネル
ギで排気タービンを回し、この排気タービンに直結され
たコンプレッサで自然吸気以上の空気をエンジンに送り
込み、低速回転時であってもエンジンが高出力を発揮で
きるようにしたVGSタイプのターボチャージャに組み
込まれる可変翼において、 前記可変翼の軸部は、フレーム部材に嵌め込まれる嵌合
部分が、要転造部と、この要転造部より幾分小径の非転
造部とを具えて成り、軸部が前記請求項1、2、3また
は4記載の製造方法によって転造されて製造されること
を特徴とする可変翼。
5. A relatively small amount of exhaust gas discharged from an engine, comprising a shaft portion rotatably held by a frame member at an outer peripheral position of an exhaust turbine, and a blade portion for substantially adjusting a flow rate of exhaust gas. The gas is appropriately narrowed down, the speed of the exhaust gas is amplified, the exhaust turbine energy is used to turn the exhaust turbine, and the compressor directly connected to the exhaust turbine sends air above the naturally aspirated air to the engine. In a variable blade incorporated in a VGS type turbocharger capable of exhibiting a high output, the shaft portion of the variable blade has a fitting portion to be fitted into a frame member, and a rolling required portion and this rolling required portion. A non-rolled portion having a somewhat smaller diameter, wherein the shaft portion is rolled and manufactured by the manufacturing method according to claim 1, 2, 3 or 4. Variable wing.
JP2001235695A 2001-08-03 2001-08-03 Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method Expired - Fee Related JP4779159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235695A JP4779159B2 (en) 2001-08-03 2001-08-03 Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235695A JP4779159B2 (en) 2001-08-03 2001-08-03 Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method

Publications (2)

Publication Number Publication Date
JP2003049659A true JP2003049659A (en) 2003-02-21
JP4779159B2 JP4779159B2 (en) 2011-09-28

Family

ID=19067097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235695A Expired - Fee Related JP4779159B2 (en) 2001-08-03 2001-08-03 Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method

Country Status (1)

Country Link
JP (1) JP4779159B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149938A1 (en) 2007-06-07 2008-12-11 Akita Fine Blanking Co., Ltd. Variable mechanism for turbo charger of vgs type and exhaust guide assembly having the same therein
JP2009293418A (en) * 2008-06-03 2009-12-17 Seiko Epson Corp Nozzle vane manufacturing method, nozzle vane, variable nozzle mechanism, and turbocharger
WO2010103867A1 (en) 2009-03-13 2010-09-16 株式会社アキタファインブランキング Lever plate in vgs-type turbo charger and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152034U (en) * 1986-03-20 1987-09-26
JPS63105487U (en) * 1986-12-26 1988-07-08
JPH0469407A (en) * 1990-07-06 1992-03-04 Seiko Epson Corp Power driving gear
JPH09193192A (en) * 1996-01-12 1997-07-29 Nok Corp Insert metal fitting
JP2000064849A (en) * 1998-08-24 2000-02-29 Akita Fine Blanking:Kk Variable vane applied to variable vane type turbo- charger and manufacture thereof
JP2000301283A (en) * 1999-04-14 2000-10-31 Hmy Ltd Production method of discharge vane blade for super- charger of automobile amd vane blade

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152034U (en) * 1986-03-20 1987-09-26
JPS63105487U (en) * 1986-12-26 1988-07-08
JPH0469407A (en) * 1990-07-06 1992-03-04 Seiko Epson Corp Power driving gear
JPH09193192A (en) * 1996-01-12 1997-07-29 Nok Corp Insert metal fitting
JP2000064849A (en) * 1998-08-24 2000-02-29 Akita Fine Blanking:Kk Variable vane applied to variable vane type turbo- charger and manufacture thereof
JP2000301283A (en) * 1999-04-14 2000-10-31 Hmy Ltd Production method of discharge vane blade for super- charger of automobile amd vane blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149938A1 (en) 2007-06-07 2008-12-11 Akita Fine Blanking Co., Ltd. Variable mechanism for turbo charger of vgs type and exhaust guide assembly having the same therein
JP2009293418A (en) * 2008-06-03 2009-12-17 Seiko Epson Corp Nozzle vane manufacturing method, nozzle vane, variable nozzle mechanism, and turbocharger
WO2010103867A1 (en) 2009-03-13 2010-09-16 株式会社アキタファインブランキング Lever plate in vgs-type turbo charger and method for producing the same
US8104280B2 (en) 2009-03-13 2012-01-31 Akita Fine Blanking Co., Ltd. Lever plate in VGS type turbocharger and method of manufacturing the same
US8286458B2 (en) 2009-03-13 2012-10-16 Akita Fine Blanking Co., Ltd. Lever plate in VGS type turbocharger and method of manufacturing the same

Also Published As

Publication number Publication date
JP4779159B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
EP1422400B1 (en) Variable blade manufacturing method for a vgs type turbo charger
EP1422399B1 (en) Variable blade manufacturing method in vgs type turbo charger
JP3944819B2 (en) Method of manufacturing variable wing blade portion applied to exhaust guide assembly in VGS type turbocharger
KR101197064B1 (en) Method of manufacturing component member in vgs type turbo charger, component member manufactured by the method, exhaust guide assembly of vgs type turbo charger using the component member, and vgs type turbo charger incorporating the exhaust guide assembly
JP2003049659A (en) Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
JP2009293418A (en) Nozzle vane manufacturing method, nozzle vane, variable nozzle mechanism, and turbocharger
JP3833002B2 (en) Manufacturing method of exhaust vane blade for supercharger for automobile and vane blade
EP1197277B1 (en) Producing method of exhaust gas vane blade for superchargers of motor vehicles and vane blade
JP2007023840A (en) Method of manufacturing variable blade in vgs type turbocharger and variable blade manufactured by this method
JP4065114B2 (en) Rolling method of shaft part of variable blade applied to exhaust guide assembly in VGS type turbocharger
JP3944818B2 (en) Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method
JP2003049663A (en) Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
JP2003049655A (en) Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
JP2003049656A (en) Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
KR100976744B1 (en) Variable blade manufacturing method and variable blade in vgs type turbo charger
JP2002332862A (en) Exhaust emission guide assembly of vgs turbocharger constituted of high chromium and high nickel material, and having improved durability
JP2003049661A (en) Formation method for receiver hole rotatably retaining variable vane in exhaust guide assembly of vgs type turbocharger
CN104081061B (en) Axial flow compressor blade and its manufacture method
JP4763843B1 (en) Manufacturing method of press product comprising flat portion and rod portion integrally, and manufacturing method of variable blade in VGS type turbocharger to which this method is applied
JP2003049658A (en) Manufacturing method for preform of variable vane in vgs(variable geometry system) type turbocharger
JP2003049603A (en) Method of forming receiving hole for rotatably holding variable blade in exhaust guide assembly of vgs type turbo charger
CN204267124U (en) For the cam lobe of camshaft
JPH0584538A (en) Manufacture of synchronizer ring
EP3321390A1 (en) Heat-resistant casting
JP2003049606A (en) Method of manufacturing component of exhaust guide assembly in vgs-type turbo charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees