JP2000064849A - Variable vane applied to variable vane type turbo- charger and manufacture thereof - Google Patents

Variable vane applied to variable vane type turbo- charger and manufacture thereof

Info

Publication number
JP2000064849A
JP2000064849A JP10236965A JP23696598A JP2000064849A JP 2000064849 A JP2000064849 A JP 2000064849A JP 10236965 A JP10236965 A JP 10236965A JP 23696598 A JP23696598 A JP 23696598A JP 2000064849 A JP2000064849 A JP 2000064849A
Authority
JP
Japan
Prior art keywords
vane
variable
variable vane
blade portion
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10236965A
Other languages
Japanese (ja)
Other versions
JP3997500B2 (en
Inventor
Toshio Akita
利雄 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKITA FINE BLANKING KK
Original Assignee
AKITA FINE BLANKING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKITA FINE BLANKING KK filed Critical AKITA FINE BLANKING KK
Priority to JP23696598A priority Critical patent/JP3997500B2/en
Publication of JP2000064849A publication Critical patent/JP2000064849A/en
Application granted granted Critical
Publication of JP3997500B2 publication Critical patent/JP3997500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a novel variable vane and a method of manufacture thereof eliminating all the cutting works and rapidly improving work efficiency, by basically reconsidering a technical common sense constituting the variable of a turbocharger having a single function by a single member, and constituting the variable vane by two kinds of members. SOLUTION: This variable vane 1 is formed out of a vane blade part 11 and a vane shaft part 12, and these vane blade part 11 and vane shaft part 12 are formed individually in a start condition. After the vane shaft part 12 pinches the vane blade part 11 in a hold slit 12a formed on its tip, it is fixed by welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はエンジンの過給機の
一つであるターボチャージャに関するものであって、特
にこれを構成する可変ベーンに係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbocharger, which is one of engine superchargers, and more particularly to a variable vane constituting the turbocharger.

【0002】[0002]

【発明の背景】ターボチャージャは、排気ガスのエネル
ギーで排気タービンを回し、これに直結されたコンプレ
ッサで空気をエンジンに押し込んでパワーアップを図る
装置である。ところでこのものは、エンジンの低速回転
時には、排気流量の低下により排気タービンがほとんど
働かず、従って高回転域まで回るエンジンにあってはタ
ービンが効率的に回るまでのもたつき感とその後の一挙
に吹き上がるまでの所要時間いわゆるターボラグ等が生
ずることを免れない。またもともとエンジン回転が低い
ディーゼルエンジンでは、ターボ効果を得にくいという
問題があった。このため低回転からでも効率的に作動す
るVGSタイプのターボチャージャが開発されてきてい
る。このものは、少ない排気流量を可変ベーン(羽)で
絞り込み排気の速度を増し、排気タービンの仕事量を大
きくすることで低速回転時でも高出力を発揮できるよう
にしたものである。このためVGSタイプでは別途可変
ベーンの可変機構を必要とし、周辺の構成部品も従来の
ものに比べて形状等をより複雑化させなければならなか
った。
BACKGROUND OF THE INVENTION A turbocharger is a device for rotating an exhaust turbine with energy of exhaust gas and pushing air into an engine by a compressor directly connected to the exhaust turbine for power up. By the way, when the engine rotates at a low speed, the exhaust turbine hardly works due to a decrease in the exhaust flow rate.Therefore, in the case of an engine that can rotate up to a high engine speed range, the turbine feels like it has a feeling of rattling and it blows all at once. The time required to go up is inevitable that so-called turbo lag will occur. In addition, originally, there was a problem that it was difficult to obtain a turbo effect in a diesel engine with a low engine speed. For this reason, VGS type turbochargers have been developed that operate efficiently even at low rotation speeds. This is a system in which a small exhaust flow rate is narrowed down by a variable vane (blade) to increase the speed of exhaust and the work of the exhaust turbine is increased so that high output can be exhibited even at low speed rotation. For this reason, the VGS type requires a variable mechanism of a variable vane separately, and the peripheral components have to be more complicated in shape and the like as compared with the conventional ones.

【0003】一方この種のターボ装置は、高温雰囲気下
で使用されるため、本発明の対象とした可変ベーンにつ
いても、強い耐熱性を有するSUS310S等の材質が
適用され、その加工においては上述したように形状が複
雑なことに加え、仕上げ寸法精度が厳しく要求されるこ
と等から切削加工が主流となっていた。しかしながらこ
のSUS310S等の材料は、強い耐熱性を有するとと
もに、難切削性の材質でもあるため現実には切削加工そ
のものに相当の時間を要することとなり、従ってコスト
ダウンにも一定の限界があった。
On the other hand, since this type of turbo equipment is used in a high temperature atmosphere, a material such as SUS310S having strong heat resistance is applied to the variable vane targeted by the present invention, and its processing is described above. In addition to the complicated shape, the cutting process has been the mainstream because the dimensional accuracy of finishing is strictly required. However, since materials such as SUS310S have strong heat resistance and are difficult to cut, in reality, the cutting process itself requires a considerable amount of time, and therefore there is a certain limit in cost reduction.

【0004】[0004]

【開発を試みた技術的課題】本発明はこのような背景を
認識してなされたものであって、単一機能を有する可変
ベーンを単一部材で構成するという技術常識を根本から
見直し、逆に可変ベーンを複数の部材に分断して構成す
ることにより、切削加工をすべて排除し、これによって
加工時間をトータルで短縮させ、大幅なコストダウンを
図った新規な可変ベーン並びにその製造方法の開発を試
みたものである。
The present invention has been made in view of such a background, and the technical common sense that a variable vane having a single function is constituted by a single member has been fundamentally reviewed. By dividing the variable vane into multiple parts and eliminating all cutting work, this shortens the processing time in total, and the development of a new variable vane and its manufacturing method that drastically reduced the cost. I tried.

【0005】[0005]

【課題を解決するための手段】すなわち請求項1記載の
可変ベーン型ターボチャージャに適用する可変ベーン
は、ベーン翼部と、ベーン軸部とが形成された部材にお
いて、前記ベーン翼部とベーン軸部とは、出発状態にお
いて別々に形成され、且つ前記ベーン軸部は、その先端
に形成された保持スリットにおいてベーン翼部を挟み込
んだ後、溶接によって固定されることを特徴として成る
ものである。この発明によれば、従来単一部材で構成す
ることが技術常識とされていた可変ベーンを、ベーン翼
部とベーン軸部との二種の異なる部材に分け、これを組
み合わせて形成するため、時間を要する切削加工をすべ
て排除でき、可変ベーンの加工効率を飛躍的に向上さ
せ、大幅なコストダウンが図れる。
That is, the variable vane applied to the variable vane type turbocharger according to claim 1 is a member having a vane blade portion and a vane shaft portion, wherein the vane blade portion and the vane shaft are formed. The parts are formed separately in the starting state, and the vane shaft part is fixed by welding after sandwiching the vane blade part in the holding slit formed at the tip thereof. According to the present invention, the variable vane, which was conventionally regarded as a common general knowledge to be composed of a single member, is divided into two different members of the vane blade portion and the vane shaft portion, and is formed by combining them. All time-consuming cutting operations can be eliminated, the processing efficiency of variable vanes is dramatically improved, and significant cost reductions can be achieved.

【0006】また請求項2記載の可変ベーン型ターボチ
ャージャに適用する可変ベーンの製造方法は、可変ベー
ンの翼部と同じ断面を有する長尺鍛造素材を、一定の幅
寸法毎に切断して、ベーン翼部の部材とし、一方ピン状
のベーン軸部の部材には、その先端に前記ベーン翼部を
挟み込む保持スリットを形成し、この保持スリットにベ
ーン翼部を挟み込んだ状態とした後、溶接によってベー
ン翼部とベーン軸部とを一体化することを特徴として成
るものである。この発明によれば、従来単一部材で構成
することが技術常識とされていた可変ベーンを、二種の
異なる部材を組み合わせて形成するため、相当な時間を
要する切削加工をすべて排除でき、可変ベーンを効率的
に加工できる。
A method for manufacturing a variable vane applied to a variable vane type turbocharger according to a second aspect is such that a long forging material having the same cross section as the blade portion of the variable vane is cut at a constant width dimension, As the vane blade member, the pin-shaped vane shaft member is formed with a holding slit at its tip for sandwiching the vane blade portion, and the vane blade portion is sandwiched between the holding slits and then welded. The vane blade portion and the vane shaft portion are integrated with each other. According to the present invention, the variable vane, which was conventionally regarded as a common general knowledge to be composed of a single member, is formed by combining two different members. Therefore, it is possible to eliminate all the cutting work that requires a considerable time, and to change the variable vane. Vane can be processed efficiently.

【0007】[0007]

【発明の実施の形態】以下本発明を図示の実施の形態に
基づいて説明する。説明にあたっては本発明の可変ベー
ン1を適用したターボチャージャの排気ガイドアッセン
ブリAについて説明しながら併せて可変ベーン1につい
て説明し、その後可変ベーン1の製造方法について説明
する。排気ガイドアッセンブリAは、エンジンの低速回
転時に排気ガスを絞り込んで排気流量を設定するための
ものであり、一例として図1に示すように排気タービン
Tの外周に設けられ実質的に排気流量を設定する可変ベ
ーン1と、可変ベーン1を回動自在に支持するタービン
フレーム2と、タービンフレーム2のボス部21側に設
けられ可変ベーン1を一定角度回動させる可変機構3
と、可変ベーン1をタービンフレーム2の反対側から挟
み込むように保持する保持板4とを具えて成るものであ
る。以下各構成部について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the illustrated embodiments. In the description, while explaining the exhaust guide assembly A of the turbocharger to which the variable vane 1 of the present invention is applied, the variable vane 1 will also be described, and then the manufacturing method of the variable vane 1 will be described. The exhaust guide assembly A is for narrowing the exhaust gas and setting the exhaust flow rate when the engine is rotating at a low speed. As an example, the exhaust guide assembly A is provided on the outer periphery of the exhaust turbine T to set the exhaust flow rate substantially. Variable vane 1, a turbine frame 2 that rotatably supports the variable vane 1, and a variable mechanism 3 that is provided on the boss portion 21 side of the turbine frame 2 and that rotates the variable vane 1 at a fixed angle.
And a holding plate 4 for holding the variable vane 1 so as to sandwich it from the opposite side of the turbine frame 2. Each component will be described below.

【0008】まず可変ベーン1について説明する。この
ものは一例として図1、2に示すように排気タービンT
の外周に沿って円弧状に複数設けられ、そのそれぞれが
回動自在に設定されて排気流量を調節するものであり、
ベーン翼部11と、ベーン軸部12とを具えて成るもの
である。ベーン翼部11は、排気タービンTの幅寸法に
応じて一定幅を有するものであり、その幅方向における
断面が概ね翼状に形成され、排気ガスが効果的に排気タ
ービンTに向かうように構成されている。ベーン軸部1
2は、ベーン翼部11に固定的に設けられるものであ
り、ベーン翼部11の回動軸に相当するものである。
First, the variable vane 1 will be described. This is an example of an exhaust turbine T as shown in FIGS.
A plurality of arcs are provided along the outer circumference of each of them, and each of them is rotatably set to adjust the exhaust flow rate,
The vane blade portion 11 and the vane shaft portion 12 are provided. The vane blade portion 11 has a constant width according to the width dimension of the exhaust turbine T, and the cross-section in the width direction thereof is formed into a substantially wing shape, and the exhaust gas is effectively directed to the exhaust turbine T. ing. Vane shaft 1
Reference numeral 2 is fixedly provided on the vane blade portion 11, and corresponds to a rotating shaft of the vane blade portion 11.

【0009】なおベーン翼部11とベーン軸部12と
は、初期段階で各々別々に形成された後、溶接によって
一体化されるためベーン軸部12の先端部分には、あら
かじめベーン翼部11を嵌め込む保持スリット12aが
形成されている。またこの保持スリット12aは、ベー
ン翼部11を嵌め込むと同時に、翼形断面の肉厚寸法が
部分毎に異なることからベーン翼部11を固定する際の
位置決め作用を担うものである。またベーン軸部12は
支持基端側に段差12bを有し、後述する可変機構3に
カシメ等によって固定され、回動自在に支持されるもの
である。
Since the vane blade portion 11 and the vane shaft portion 12 are separately formed in the initial stage and then integrated by welding, the vane blade portion 11 is previously formed at the tip portion of the vane shaft portion 12. A holding slit 12a for fitting is formed. Further, since the holding slits 12a are fitted with the vane blade portions 11 and at the same time, the thickness dimension of the airfoil cross-section differs from portion to portion, so that the holding slits 12a have a positioning action when fixing the vane blade portions 11. Further, the vane shaft portion 12 has a step 12b on the support base end side, is fixed to the variable mechanism 3 described later by caulking, and is rotatably supported.

【0010】次にタービンフレーム2について説明す
る。このものは、文字どおり排気タービンTのフレーム
部材として構成されるとともに複数の可変ベーン1をそ
れぞれ回動自在に支持するものであって、一例として図
1に示すようにボス部21と、ベーン取付フランジ部2
2とを具えて成るものである。そしてこのボス部21の
周面に沿って、後述する可変機構3が設けられる。一方
ベーン取付フランジ部22は、可変ベーン1のベーン軸
部12を回動自在に支持するものであり、このためフラ
ンジの周縁部分に可変ベーン1と同数の軸挿入孔23が
等間隔で形成されている。また軸挿入孔23の外周部分
には一例として四カ所、可変ベーン1の取り付け幅を保
持するピン24を固定するためのピン孔25が設けられ
る。
Next, the turbine frame 2 will be described. This is literally configured as a frame member of the exhaust turbine T and rotatably supports a plurality of variable vanes 1, and as an example, as shown in FIG. 1, a boss portion 21 and a vane mounting flange. Part 2
2 and. A variable mechanism 3 described later is provided along the peripheral surface of the boss portion 21. On the other hand, the vane mounting flange portion 22 rotatably supports the vane shaft portion 12 of the variable vane 1. Therefore, the same number of shaft insertion holes 23 as the variable vane 1 are formed in the peripheral portion of the flange at equal intervals. ing. Further, pin holes 25 for fixing the pins 24 holding the mounting width of the variable vane 1 are provided at four locations on the outer peripheral portion of the shaft insertion hole 23, for example.

【0011】そしてベーン取付フランジ部22は、直径
の異なる二種のフランジセグメントを具えて成るもので
あり、ボス部21と一体的に形成されるものを一体フラ
ンジセグメント26とし、これとは別に形成されるもの
を別体フランジセグメント27として区別している。そ
してこれら一体フランジセグメント26と、別体フラン
ジセグメント27とが、一例として絞り加工やファイン
ブランキング加工等によって別々に形成された後、圧入
ピンやカシメピン等によって一体的に組み合わされるも
のである。なお一体フランジセグメント26と、別体フ
ランジセグメント27との一体化は、圧入ピンやカシメ
ピン等のほかにも例えばネジ等の螺合による接合やブレ
ージングによる接合等種々の接合形態が採り得る。更に
圧入ピン等によって接合を行う場合、ピン部材は、ベー
ン取付フランジ22の部材よりも高い熱膨張率を有する
材質を適用すれば、排気ガイドアッセンブリAが高温と
なる作動時においてもベーン取付フランジ22の固定状
態がより確実に維持できるものである。
The vane mounting flange portion 22 comprises two types of flange segments having different diameters. The one integrally formed with the boss portion 21 is an integral flange segment 26, which is formed separately. What is done is distinguished as a separate flange segment 27. The integral flange segment 26 and the separate flange segment 27 are separately formed by, for example, drawing or fine blanking, and then integrally combined by a press-fit pin, a crimp pin, or the like. The integral flange segment 26 and the separate flange segment 27 can be integrated by various joining forms such as joining by screwing a screw or joining by brazing, in addition to the press-fitting pin and the crimping pin. Further, in the case of joining with a press-fitting pin or the like, if the pin member is made of a material having a higher coefficient of thermal expansion than the member of the vane mounting flange 22, the vane mounting flange 22 can be operated even when the exhaust guide assembly A has a high temperature. The fixed state of can be more reliably maintained.

【0012】また一体フランジセグメント26は、ボス
部21の端部にフランジ部26aを形成して成り、この
フランジ部26aに密着するように接合される別体フラ
ンジセグメント27は、軸挿入孔23が形成されたフラ
ンジ部27aと、これより大径に形成されたフランジ部
27bとを具えて成るものである。そしてこれらフラン
ジ部27a、27bとの段差部において後述する可変機
構3を回動させる際の逃げ部分を形成している。なおタ
ービンフレーム2についても可変ベーン1と同様に従来
は単一部材で形成されることが技術常識とされていた。
しかしながらベーン取付フランジ部22を、上述したよ
うに二種のフランジセグメントに分けて構成することに
よって、このタービンフレーム2の加工においても時間
のかかる切削加工をすべて排除し、大幅な効率化を図っ
ている。
The integral flange segment 26 is formed by forming a flange portion 26a at the end of the boss portion 21. The separate flange segment 27 joined so as to be in close contact with the flange portion 26a has the shaft insertion hole 23. It comprises a formed flange portion 27a and a flange portion 27b formed to have a larger diameter. A step portion between the flange portions 27a and 27b forms a relief portion when the variable mechanism 3 described later is rotated. Note that it has been conventionally common technical knowledge that the turbine frame 2 is also formed of a single member similarly to the variable vane 1.
However, by constructing the vane mounting flange portion 22 by dividing it into the two types of flange segments as described above, it is possible to eliminate all the time-consuming cutting processing even in the processing of the turbine frame 2 and to achieve a great efficiency improvement. There is.

【0013】次に可変機構3について説明する。このも
のはタービンフレーム2のボス部21側に取り付けら
れ、可変ベーン1を回動させることによって排気流量を
調節するものであり、設定板31と、リンク部33とを
具えて成るものである。設定板31は、一例として中央
部分を開口した円板状に形成され、その周縁部分に可変
ベーン1と同数の回動軸32が等間隔に設けられて成る
ものである。一方リンク部33は、設定板31の回動を
可変ベーン1に伝達するものであり、一例として回動軸
32及びベーン軸部12に各々接続される長円状の二つ
の連接部材34が、連結軸35によって回動自在に接続
されて成るものである。そしてエンジンの低速回転時等
には、可変機構3の設定板31を回動させ、リンク部3
3を介してベーン軸部12に伝達し、図3に示すように
可変ベーン1を回動させ、排気ガスを排気タービンTに
効率よく向かうように適宜設定するものである。そして
保持板4は、可変ベーン1をタービンフレーム2の反対
側から挟み込むように取り付けられ、ピン24とともに
可変ベーン1の取り付け幅を保持している。
Next, the variable mechanism 3 will be described. This is attached to the boss portion 21 side of the turbine frame 2, adjusts the exhaust flow rate by rotating the variable vane 1, and comprises a setting plate 31 and a link portion 33. The setting plate 31 is, for example, formed in a disk shape having an opening in the central portion, and the same number of rotating shafts 32 as the variable vanes 1 are provided at equal intervals on the peripheral portion thereof. On the other hand, the link portion 33 transmits the rotation of the setting plate 31 to the variable vane 1, and as an example, two oval connecting members 34 connected to the rotation shaft 32 and the vane shaft portion 12, respectively, It is rotatably connected by a connecting shaft 35. When the engine rotates at a low speed, the setting plate 31 of the variable mechanism 3 is rotated to move the link portion 3
3 is transmitted to the vane shaft portion 12 and the variable vane 1 is rotated as shown in FIG. 3, and the exhaust gas is appropriately set so as to be efficiently directed to the exhaust turbine T. The holding plate 4 is attached so as to sandwich the variable vane 1 from the opposite side of the turbine frame 2, and holds the attachment width of the variable vane 1 together with the pin 24.

【0014】次に可変ベーン1の製造方法について説明
する。可変ベーン1はベーン翼部11と、ベーン軸部1
2とに分断して製造されるものであり、まずベーン翼部
11は一例として30cmから50cm程度の長尺鍛造
素材を、適宜の形状を有するダイスから何回か引き抜
き、最終的に所定の翼形断面を有する長尺鍛造素材とし
た後、排気タービンの幅寸法に応じて一定の寸法毎にダ
イヤモンドカッタ等によって切断される。
Next, a method of manufacturing the variable vane 1 will be described. The variable vane 1 includes a vane blade portion 11 and a vane shaft portion 1.
The vane blade portion 11 is first manufactured by pulling a long forged material having a length of about 30 cm to 50 cm several times from a die having an appropriate shape, and finally producing a predetermined blade. After being made into a long forging material having a shaped cross section, it is cut by a diamond cutter or the like at regular intervals according to the width dimension of the exhaust turbine.

【0015】一方ベーン軸部12は、一例としていわゆ
るヘッダマシンによって棒状素材の頭部を適宜の長さ突
出させる状態に挟み込み、この頭部を適宜の型部材で叩
き、保持スリット12aを形成し、適宜の長さに切断す
るものである。またこれに伴い他の先端部分にはカシメ
等の固定を行うための段差12bが絞り加工等によって
形成される。
On the other hand, the vane shaft portion 12 is, as an example, sandwiched by a so-called header machine in a state in which the head portion of a rod-shaped material is projected by an appropriate length, and the head portion is hit with an appropriate die member to form a holding slit 12a, It is cut into an appropriate length. Along with this, a step 12b for fixing caulking or the like is formed on the other tip portion by drawing or the like.

【0016】その後この保持スリット12aにベーン翼
部11を挟み込み一例としてレーザ溶接によってこれら
を一体化するものである。なおこの保持スリット12a
は、ベーン翼部11を挟み込むと同時に、翼形断面の肉
厚寸法が部分毎に異なることからベーン翼部11を固定
する際の位置決め作用を担うものであって、固定位置の
設定がより正確に、且つより容易に行えるものである。
また可変ベーン1をベーン翼部11とベーン軸部12と
に分け、上述したように形成することによって、切削加
工を行わずに充分な寸法精度を出しきり、加工効率を飛
躍的に向上させるものである。
After that, the vane blade portion 11 is sandwiched between the holding slits 12a and integrated by laser welding as an example. The holding slit 12a
Since the vane blade portion 11 is sandwiched and the thickness dimension of the airfoil cross-section varies from part to part, it has a positioning action when fixing the vane blade part 11, and the setting of the fixing position is more accurate. In addition, it can be done more easily.
Further, by dividing the variable vane 1 into the vane blade portion 11 and the vane shaft portion 12 and forming them as described above, sufficient dimensional accuracy can be achieved without cutting and the machining efficiency is dramatically improved. Is.

【0017】[0017]

【発明の効果】請求項1または2記載の発明によれば、
従来単一部材で構成することが技術常識とされていた可
変ベーン1を、ベーン翼部11とベーン軸部12との二
種の異なる部材に分け、これを組み合わせて形成するた
め、多大な時間を費やしていた切削加工をすべて排除で
き、可変ベーン1の加工効率を飛躍的に向上させ、大幅
なコストダウンが図れる。
According to the invention of claim 1 or 2,
The variable vane 1 which has been conventionally regarded as a technical common sense to be composed of a single member is divided into two different members, that is, the vane blade portion 11 and the vane shaft portion 12, and is formed by combining them, so that it takes a lot of time. It is possible to eliminate all the cutting work that has been spent, dramatically improve the processing efficiency of the variable vane 1, and achieve a significant cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の可変ベーンを適用したターボチャージ
ャを示す斜視図(a)、並びに排気ガイドアッセンブリ
を示す分解斜視図(b)である。
FIG. 1 is a perspective view (a) showing a turbocharger to which a variable vane of the present invention is applied, and an exploded perspective view (b) showing an exhaust guide assembly.

【図2】ベーン翼部を示す説明図(a)、並びにベーン
軸部を示す説明図(b)、並びにこれらを一体化させた
可変ベーンを示す説明図(c)である。
FIG. 2 is an explanatory view (a) showing a vane blade portion, an explanatory view (b) showing a vane shaft portion, and an explanatory view (c) showing a variable vane in which these are integrated.

【図3】可変ベーンを回動させて排気流量を調節する状
態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which a variable vane is rotated to adjust an exhaust flow rate.

【符号の説明】[Explanation of symbols]

1 可変ベーン 2 タービンフレーム 3 可変機構 4 保持板 11 ベーン翼部 12 ベーン軸部 12a 保持スリット 12b 段差 21 ボス部 22 ベーン取付フランジ部 23 軸挿入孔 24 ピン 25 ピン孔 26 一体フランジセグメント 26a フランジ部 27 別体フランジセグメント 27a フランジ部 27b フランジ部 31 設定板 32 回動軸 33 リンク部 34 連接部材 35 連結軸 A 排気ガイドアッセンブリ T 排気タービン 1 variable vane 2 turbine frame 3 variable mechanism 4 holding plate 11 vane wings 12 Vane shaft 12a holding slit 12b step 21 Boss 22 Vane mounting flange 23 Shaft insertion hole 24 pin 25 pin hole 26 integrated flange segment 26a Flange part 27 Separate flange segment 27a Flange part 27b Flange part 31 Setting board 32 rotation axis 33 Link 34 Connecting member 35 connection shaft A Exhaust guide assembly T exhaust turbine

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ベーン翼部と、ベーン軸部とが形成され
た部材において、前記ベーン翼部とベーン軸部とは、出
発状態において別々に形成され、且つ前記ベーン軸部
は、その先端に形成された保持スリットにおいてベーン
翼部を挟み込んだ後、溶接によって固定されることを特
徴とする可変ベーン型ターボチャージャに適用する可変
ベーン。
1. A member in which a vane blade portion and a vane shaft portion are formed, the vane blade portion and the vane shaft portion are separately formed in a starting state, and the vane shaft portion is formed at a tip thereof. A variable vane applied to a variable vane turbocharger, characterized in that the vane blade is sandwiched between the formed holding slits and then fixed by welding.
【請求項2】 可変ベーンの翼部と同じ断面を有する長
尺鍛造素材を、一定の幅寸法毎に切断して、ベーン翼部
の部材とし、一方ピン状のベーン軸部の部材には、その
先端に前記ベーン翼部を挟み込む保持スリットを形成
し、この保持スリットにベーン翼部を挟み込んだ状態と
した後、溶接によってベーン翼部とベーン軸部とを一体
化することを特徴とする可変ベーン型ターボチャージャ
に適用する可変ベーンの製造方法。
2. A long forging material having the same cross section as the vane portion of the variable vane is cut into a vane vane member at a constant width dimension, while a pin-shaped vane shaft member is made of: A holding slit for sandwiching the vane blade portion is formed at its tip, and the vane blade portion is sandwiched in the holding slit, and then the vane blade portion and the vane shaft portion are integrated by welding. A variable vane manufacturing method applied to a vane turbocharger.
JP23696598A 1998-08-24 1998-08-24 Method for manufacturing variable vane applied to variable vane turbocharger Expired - Fee Related JP3997500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23696598A JP3997500B2 (en) 1998-08-24 1998-08-24 Method for manufacturing variable vane applied to variable vane turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23696598A JP3997500B2 (en) 1998-08-24 1998-08-24 Method for manufacturing variable vane applied to variable vane turbocharger

Publications (2)

Publication Number Publication Date
JP2000064849A true JP2000064849A (en) 2000-02-29
JP3997500B2 JP3997500B2 (en) 2007-10-24

Family

ID=17008399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23696598A Expired - Fee Related JP3997500B2 (en) 1998-08-24 1998-08-24 Method for manufacturing variable vane applied to variable vane turbocharger

Country Status (1)

Country Link
JP (1) JP3997500B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092979A1 (en) * 2001-05-10 2002-11-21 Soghi Kogyo Co., Ltd. Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
JP2002332854A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Surface modification method for constituent member of exhaust guide assembly in vgs turbocharger and exhaust guide assembly applied with surface modification method
JP2002332553A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly of vgs type turbocharger consisting of member with rare earth element or the like added and having improved high temperature durability
JP2002332857A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly for vgs turbocharger applied with surface modification
JP2002332851A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly for vgs turbocharger with improved durability composed of superalloy
JP2003049659A (en) * 2001-08-03 2003-02-21 Sogi Kogyo Kk Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
EP1422400A1 (en) * 2001-08-03 2004-05-26 Akita Fine Blanking Co., Ltd. Variable blade manufacturing method and variable blade in vgs type turbo charger
EP1422399A1 (en) * 2001-08-03 2004-05-26 Akita Fine Blanking Co., Ltd. Variable blade manufacturing method and variable blade in vgs type turbo charger
KR100946504B1 (en) 2007-12-14 2010-03-10 기아자동차주식회사 Assembly Structure of Variable Geometry Turbocharger
WO2013116136A1 (en) * 2012-02-02 2013-08-08 Borgwarner Inc. Mixed-flow turbocharger with variable turbine geometry

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092979A1 (en) * 2001-05-10 2002-11-21 Soghi Kogyo Co., Ltd. Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
JP2002332854A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Surface modification method for constituent member of exhaust guide assembly in vgs turbocharger and exhaust guide assembly applied with surface modification method
JP2002332553A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly of vgs type turbocharger consisting of member with rare earth element or the like added and having improved high temperature durability
JP2002332857A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly for vgs turbocharger applied with surface modification
JP2002332851A (en) * 2001-05-10 2002-11-22 Sogi Kogyo Kk Exhaust guide assembly for vgs turbocharger with improved durability composed of superalloy
JP4514985B2 (en) * 2001-05-10 2010-07-28 株式会社アキタファインブランキング Surface modification method for components of exhaust guide assembly in VGS type turbocharger and exhaust guide assembly subjected to this surface modification method
EP1396620A1 (en) * 2001-05-10 2004-03-10 Soghi Kogyo Co., Ltd. Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
EP1396620A4 (en) * 2001-05-10 2005-01-12 Soghi Kogyo Co Ltd Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
EP1422399A1 (en) * 2001-08-03 2004-05-26 Akita Fine Blanking Co., Ltd. Variable blade manufacturing method and variable blade in vgs type turbo charger
EP1422400A1 (en) * 2001-08-03 2004-05-26 Akita Fine Blanking Co., Ltd. Variable blade manufacturing method and variable blade in vgs type turbo charger
EP1422399A4 (en) * 2001-08-03 2009-03-04 Akita Fine Blanking Co Ltd Variable blade manufacturing method and variable blade in vgs type turbo charger
EP1422400A4 (en) * 2001-08-03 2009-03-04 Akita Fine Blanking Co Ltd Variable blade manufacturing method and variable blade in vgs type turbo charger
JP2003049659A (en) * 2001-08-03 2003-02-21 Sogi Kogyo Kk Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
KR100946504B1 (en) 2007-12-14 2010-03-10 기아자동차주식회사 Assembly Structure of Variable Geometry Turbocharger
WO2013116136A1 (en) * 2012-02-02 2013-08-08 Borgwarner Inc. Mixed-flow turbocharger with variable turbine geometry
CN104053882A (en) * 2012-02-02 2014-09-17 博格华纳公司 Mixed-flow turbocharger with variable turbine geometry
US10408228B2 (en) 2012-02-02 2019-09-10 Borgwarner Inc. Mixed-flow turbocharger with variable turbine geometry

Also Published As

Publication number Publication date
JP3997500B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US6454535B1 (en) Blisk
US6511294B1 (en) Reduced-stress compressor blisk flowpath
RU2220329C2 (en) Curved blade of compressor
JP2000064849A (en) Variable vane applied to variable vane type turbo- charger and manufacture thereof
JP5111975B2 (en) Nozzle singlets and gas turbine engines for making nozzle segments for use in turbine engines
JP5129882B1 (en) Variable displacement exhaust turbocharger with variable nozzle mechanism
US20080120842A1 (en) Rotary machine components and methods of fabricating such components
US4874289A (en) Variable stator vane assembly for a rotary turbine engine
KR940001324B1 (en) Method and apparatus for cooling air flow at gas turbine bucket trailing edge tip
JP4033978B2 (en) Turbine frame for variable vane turbocharger
US6174129B1 (en) Turbine vane clocking mechanism and method of assembling a turbine having such a mechanism
EP3409888A1 (en) Fan blade for a gas turbine engine and corresponding method of manufacturing a fan blade
US9498857B2 (en) Method of fabricating integrally bladed rotor using surface positioning in relation to surface priority
JP4098822B1 (en) Turbine frame in VGS type turbocharger and exhaust guide assembly incorporating this turbine frame
JPH10103003A (en) Turbine moving blade and its assembling method
JP2004197622A (en) Turbine compressor stationary blade
EP1200713B1 (en) Turbine guide vane for exhaust gas turbocharger
EP1700006B1 (en) Variable nozzle device made from sheet metal
JP2003049662A (en) Joining method for component of exhaust guide assembly in vgs type turbocharger
EP4345249A1 (en) Stator vane for a gas turbine engine
JP4624595B2 (en) VGS type turbocharger exhaust guide assembly with surface modification
CN116498396A (en) Cantilever airfoil and method of forming the same
JP2003049604A (en) Method of manufacturing turbine frame turnably holding variable blade in exhaust guide assembly of vgs- type turbo charger
JP2001141593A (en) Balance adjusting method of engine rotor
JP2015063930A (en) Process of manufacturing variable wing in vgs type turbocharger and variable wing manufactured by this process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees