JP2003048105A - Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance - Google Patents

Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance

Info

Publication number
JP2003048105A
JP2003048105A JP2001237401A JP2001237401A JP2003048105A JP 2003048105 A JP2003048105 A JP 2003048105A JP 2001237401 A JP2001237401 A JP 2001237401A JP 2001237401 A JP2001237401 A JP 2001237401A JP 2003048105 A JP2003048105 A JP 2003048105A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
average
coating layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001237401A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001237401A priority Critical patent/JP2003048105A/en
Publication of JP2003048105A publication Critical patent/JP2003048105A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool whose coating layer exhibits superior chipping resistance. SOLUTION: The coating layer is constituted by (a) a lower tough layer having an average layer thickness of 3 to 20 μm, which is formed by one or two layers of Ti compound layers composed of a carbide layer, a nitride layer, a carbnitride layer, a carboxide layer, a nitroxide layer and a carbonitroxide layer of Ti, (b) an upper hard layer having an average layer thickness of 0.5 to 15 μm, which is formed by a porous aluminum oxide evaporation layer having prosity of 5 to 30% in measurement based on the longitudinal section texture observed by a scan type electron microscope, and (c) a surface reinforcement layer having an average layer thickness of 0.5 to 5 μm, which is formed by titanium nitride. The thus formed coating layer is chemically and/or physically evaporated on the surface of a tool base formed by a tungsten carbide base cemented carbide or carbonitride titanium base thermet in this surface coated cemented carbide cutting tool.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、特に各種の鋼や
鋳鉄などの断続切削を、高い機械的および熱的衝撃の加
わる高切込みや高送りなどの重切削条件で行なった場合
にも、被覆層がすぐれた耐チッピング性を発揮する表面
被覆超硬合金製切削工具(以下、被覆超硬工具という)
に関するものである。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、従来、切削工具として、炭化タング
ステン基超硬合金または炭窒化チタン基サーメットで構
成された工具基体(以下、単に工具基体という)の表面
に、(a)Tiの炭化物(以下、TiCで示す)層、窒
化物(以下、同じくTiNで示す)層、炭窒化物(以
下、TiCNで示す)層、炭酸化物(以下、TiCOで
示す)層、窒酸化物(以下、TiNOで示す)層、およ
び炭窒酸化物(以下、TiCNOで示す)層からなるT
i化合物層のうちの1層または2層以上からなり、かつ
3〜20μmの平均層厚を有する下部強靭層、(b)酸
化アルミニウム(以下、Al23で示す)層からなり、
かつ0.5〜15μmの平均層厚を有する上部硬質層、
以上(a)および(b)で構成された被覆層を化学蒸着
および/または物理蒸着してなる被覆超硬工具が知られ
ている。 【0004】 【発明が解決しようとする課題】近年の切削加工装置の
高性能化はめざましく、一方で切削加工に対する省力化
および省エネ化、さらに低コスト化の要求は強く、これ
に伴い、切削工具には切削条件にできるだけ影響を受け
ない汎用性が要求される傾向にあるが、上記の従来被覆
超硬工具においては、これを鋼や鋳鉄などの通常の条件
での連続切削や断続切削に用いた場合には問題はない
が、これを断続切削を高切込みおよび高送りなどの重切
削条件で行なう切削加工に用いた場合には、切削時に発
生する高い機械的および熱的衝撃によって、前記被覆層
の切刃部にチッピング(微小欠け)が発生し易く、この
結果比較的短時間で使用寿命に至るのが現状である。 【0005】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具に着目
し、特に鋼や鋳鉄などの断続切削を重切削条件で行なっ
ても、被覆層がすぐれた耐チッピング性を発揮する被覆
超硬工具を開発すべく研究を行った結果、(a)通常の
化学蒸着装置を用い、上記工具基体表面に、反応ガス組
成を、容量%で、AlCl3:0.01〜0.2%、H
Cl:0.01〜0.2%、CO2:0.01〜0.5
%、SiCl4:10×10-4〜2×10-3%、H2:
残り、とし、かつ、反応雰囲気温度:900〜1200
℃、反応雰囲気圧力:4〜27KPa、とした条件でA
23層を形成すると、この結果多数の空孔が存在する
多孔質組織をもったAl23層が形成されるようにな
り、この多孔質Al23蒸着層の空孔率は主に反応ガス
成分であるSiCl4の含有割合を調整することにより
調整でき、その含有割合が多くなるほど空孔率の高いも
のとなること。 【0006】(b)上記の従来被覆超硬工具において
は、これの被覆層を構成するAl23層が高い高温硬さ
とすぐれた耐熱性を有するが、十分な耐衝撃性を具備す
るものでないために、特に高い機械的および熱的衝撃の
加わる重切削条件での断続切削では、被覆層にチッピン
グが発生し易いのに対して、前記従来被覆超硬工具の被
覆層のうちの前記Al23層に代って、上記(a)で得
られた多孔質Al23蒸着層を、その空孔率を走査型電
子顕微鏡により観察された縦断面組織にもとづく測定
で、5〜30%の範囲内の所定の空孔率に調整した上で
形成し、さらに前記多孔質Al23蒸着層は、空孔が存
在するだけ強度の劣るものとなるため、これの上に表面
層として強度と靭性を有するTiCN層を形成すると、
この結果の被覆超硬工具においては、前記TiCN層に
よって表面補強された多孔質Al23蒸着層が切削時に
発生する機械的および熱的衝撃を十分に吸収緩和し、か
つ前記多孔質Al23蒸着層をTiCN層が十分に補強
することから、被覆層がすぐれた耐チッピング性を具備
するようになり、長期に亘ってすぐれた切削性能を発揮
すること。以上(a)および(b)に示される研究結果
を得たのである。 【0007】この発明は、上記の研究結果に基づいてな
されたものであって、工具基体の表面に、(a)TiC
層、TiN層、TiCN層、TiCO層、TiNO層、
およびTiCNO層からなるTi化合物層のうちの1層
または2層以上からなり、かつ3〜20μmの平均層厚
を有する下部強靭層、(b)走査型電子顕微鏡により観
察された縦断面組織にもとづく測定で、5〜30%の空
孔率を有する多孔質Al23蒸着層からなり、かつ0.
5〜15μmの平均層厚を有する上部硬質層、(c)T
iCN層からなり、かつ0.5〜5μmの平均層厚を有
する表面補強層、以上(a)〜(c)で構成された被覆
層を化学蒸着および/または物理蒸着してなる、被覆層
がすぐれた耐チッピング性を発揮する被覆超硬工具に特
徴を有するものである。 【0008】つぎに、この発明の被覆超硬工具におい
て、これを構成する被覆層について説明する。 (a)下部強靭層 下部強靭層のTi化合物層には、被覆層の強度および靭
性を向上させ、かつ層間相互の密着性を向上させる作用
があるが、その平均層厚が3μm未満では前記作用に所
望の向上効果が得られず、一方その層厚が20μmを越
えると、被覆層が熱塑性変形し易くなり、この結果切刃
部に使用寿命短命化の原因となる偏摩耗が発生するよう
になることから、その平均層厚を3〜20μmと定め
た。 【0009】(b)上部硬質層 上部硬質層の多孔質Al23蒸着層には、これの主体を
なすAl23相が上記の通り高い高温硬さとすぐれた耐
熱性を具備することから、被覆層がすぐれた耐摩耗性を
発揮するようになると共に、前記Al23相中に分散分
布する多数の空孔が熱的および機械的衝撃を吸収緩和し
て、被覆層がすぐれた耐チッピング性を発揮するように
なる作用がある。したがってその空孔率が5%未満では
十分な衝撃吸収緩和作用が得られず、一方そのその空孔
率が30%を超えると、強度が急激に低下し、チッピン
グ発生の原因となることから、その空孔率を5〜30%
と定めた。また、その平均層厚が0.5μm未満では上
記の多孔質Al23蒸着層による作用効果を満足に確保
することができず、一方その層厚が15μmを越える
と、被覆層自体の強度および靭性が急激に低下するよう
になり、この結果被覆層にチッピングが発生し易くなる
ことから、その平均層厚を0.5〜15μmと定めた。 【0010】(c)表面補強層 表面補強層のTiCN層は、TiNのもつ高靭性とTi
Cのもつ高硬度を兼ね備えていることから、上記多孔質
Al23蒸着層の空孔形成による強度低下を十分に補強
する作用を発揮するが、その平均層厚が0.5μm未満
では、前記目的のためには不十分であり、一方前記目的
のためには5μmの平均層厚で十分であることから、そ
の平均層厚を0.5〜5μmと定めた。 【0011】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、い
ずれも1〜3μmの平均粒径を有するWC粉末、TiC
粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉
末、Cr3 2 粉末、TiN粉末、TaN粉末、および
Co粉末を用意し、これら原料粉末を、表1に示される
配合組成に配合し、ボールミルで72時間湿式混合し、
乾燥した後、1.5×108Paの圧力で圧粉体にプレ
ス成形し、この圧粉体を真空中、温度:1400℃に1
時間保持の条件で焼結し、焼結後、切刃部分にR:0.
05のホーニング加工を施してISO規格・CNMG1
20412のチップ形状をもったWC基超硬合金製の工
具基体A1〜A8を形成した。 【0012】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(質量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、9.8×107Paの圧力で圧粉体に
プレス成形し、この圧粉体を1.3×103Paの窒素
雰囲気中、温度:1540℃に1時間保持の条件で焼結
し、焼結後、切刃部分にR:0.03のホーニング加工
を施してISO規格・CNMG120412のチップ形
状をもったTiCN基サーメット製の工具基体B1〜B
6を形成した。 【0013】ついで、これら工具基体A1〜A8および
B1〜B6の表面に、アセトン中で超音波洗浄し、乾燥
した状態で、通常の化学蒸着装置を用い、表3,4(表
3中のl−TiCNは例えば特開平6−8010号公報
に記載される縦長成長結晶組織をもつTiCN層の形成
条件を示すものであり、これ以外は通常の粒状結晶組織
を有する被覆層の形成条件を示すものである。また表4
の「多孔Al23」は多孔質Al23蒸着層を略記した
ものである)に示される条件で、表5,6に示される組
み合わせにて被覆層を形成することにより本発明被覆超
硬工具1〜14および従来被覆超硬工具1〜14をそれ
ぞれ製造した。 【0014】なお、上記の本発明被覆超硬工具1〜14
のそれぞれの被覆層の縦断面を走査型電子顕微鏡を用い
て組織観察し、この観察結果に基づいて上記多孔質Al
23蒸着層の空孔率を測定したところ、表4に示される
目標空孔率と実質的に同じ値を示し、またこれら本発明
被覆超硬工具1〜14および従来被覆超硬工具1〜14
の被覆層の層厚を測定したところ、表5,6の目標層厚
と実質的に同じ平均層厚を示した。 【0015】つぎに、上記本発明被覆超硬工具1〜14
および従来被覆超硬工具1〜14について、 被削材:JIS・SCM440の長さ方向等間隔4本縦
溝入り丸棒、 切削速度:120m/min.、 切り込み:3.0mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高切り込み断続切削試験、 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:100m/min.、 切り込み:1.5mm、 送り:1.0mm/rev.、 切削時間:5分、 の条件での炭素鋼の乾式高送り断続切削試験、並びに、 被削材:FC300の長さ方向等間隔4本縦溝入り丸
棒、 切削速度:150m/min.、 切り込み:3.0mm、 送り:0.25mm/rev.、 切削時間:10分、 の条件での鋳鉄の乾式高切り込み断続切削試験を行い、
いずれの切削試験でも切刃の最大逃げ面摩耗幅を測定し
た。この測定結果を表7に示した。 【0016】 【表1】 【0017】 【表2】 【0018】 【表3】【0019】 【表4】 【0020】 【表5】【0021】 【表6】 【0022】 【表7】【0023】 【発明の効果】表7に示される結果から、本発明被覆超
硬工具1〜14は、いずれもきわめて高い熱的および機
械的衝撃を伴なう鋼および鋳鉄の重切削条件での断続切
削加工でも、被覆層を構成する多孔質Al23蒸着層に
よって前記被覆層がすぐれた耐機械的熱的衝撃性を具備
するようになることから、チッピングの発生はなくな
り、すぐれた耐摩耗性を発揮するのに対して、被覆層が
Ti化合物層の下部強靭層とAl23層の上部硬質層か
らなる従来被覆超硬工具1〜14においては、前記重切
削条件での断続切削では被覆層にチッピングが発生し、
比較的短時間で使用寿命に至ることが明らかである。上
述のように、この発明の被覆超硬工具は、各種の鋼や鋳
鉄などの通常の条件での連続切削や断続切削加工は勿論
のこと、特に高い機械的および熱的衝撃を伴なう、重切
削条件での断続切削加工に用いた場合にも、長期に亘っ
てすぐれた切削性能を発揮するものであるから、切削加
工の汎用性に十分満足に対応でき、切削加工のさらに一
段の省力化および省エネ化、さらに低コスト化を可能と
するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intermittent cutting of various steels and cast irons, in particular, for heavy cutting such as high cutting and high feed to which high mechanical and thermal shocks are applied. Surface-coated cemented carbide cutting tool that provides excellent chipping resistance even when performed under cutting conditions (hereinafter referred to as coated cemented carbide tool)
It is about. 2. Description of the Related Art Generally, a cutting tool includes a throw-away tip which is removably attached to a tip of a cutting tool for turning or planing of a work material such as steel or cast iron. There are drills and miniature drills used for drilling and cutting work materials, and solid-type end mills used for face milling, grooving, shoulder processing, etc. of the work material. A throw-away end mill tool or the like which is freely mounted and performs cutting in the same manner as the solid type end mill is known. Conventionally, as a cutting tool, (a) Ti carbide (hereinafter, referred to as “tool base”) is formed on the surface of a tool base (hereinafter simply referred to as “tool base”) composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. TiC) layer, nitride (hereinafter also shown as TiN) layer, carbonitride (hereinafter shown as TiCN) layer, carbon oxide (hereinafter shown as TiCO) layer, nitride oxide (hereinafter shown as TiNO) ) Layer and a carbonitride (hereinafter referred to as TiCNO) layer
a lower tough layer composed of one or more layers of the i-compound layer and having an average layer thickness of 3 to 20 μm, (b) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer,
And an upper hard layer having an average layer thickness of 0.5 to 15 μm,
There is known a coated cemented carbide tool obtained by subjecting the coating layer composed of (a) and (b) to chemical vapor deposition and / or physical vapor deposition. [0004] In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction in the cutting work. Tends to require versatility that is not affected by cutting conditions as much as possible.However, in the above-mentioned conventional coated carbide tools, this is used for continuous or interrupted cutting under ordinary conditions such as steel and cast iron. If there is no problem, but if this is used for cutting that performs intermittent cutting under heavy cutting conditions such as high depth of cut and high feed, due to high mechanical and thermal shock generated during cutting, the coating At present, chipping (small chipping) easily occurs at the cutting edge portion of the layer, and as a result, the service life is reached in a relatively short time. [0005] Accordingly, the present inventors have proposed:
From the above-mentioned point of view, paying attention to the conventional coated carbide tools described above, the coated carbide tools exhibit excellent chipping resistance even when intermittent cutting such as steel or cast iron is performed under heavy cutting conditions. As a result of conducting research to develop (a), using a normal chemical vapor deposition apparatus, the above-mentioned tool substrate surface was coated with a reaction gas composition of AlCl 3 : 0.01 to 0.2% by volume, H
Cl: 0.01~0.2%, CO 2: 0.01~0.5
%, SiCl 4 : 10 × 10 −4 to 2 × 10 −3 %, H2:
Remaining, and reaction atmosphere temperature: 900 to 1200
° C, reaction atmosphere pressure: 4 to 27 KPa, and A
When the l 2 O 3 layer is formed, as a result, an Al 2 O 3 layer having a porous structure in which a large number of vacancies are present is formed, and the porosity of the porous Al 2 O 3 deposited layer is increased. Can be adjusted mainly by adjusting the content ratio of SiCl 4 , which is a reactive gas component, and the higher the content ratio, the higher the porosity. (B) In the above-mentioned conventional coated cemented carbide tool, the Al 2 O 3 layer forming the coating layer has high high-temperature hardness and excellent heat resistance, but has sufficient impact resistance. Therefore, chipping is likely to occur in the coating layer, especially in intermittent cutting under high cutting conditions in which high mechanical and thermal shocks are applied, whereas the Al in the coating layer of the conventional coated carbide tool is used. Instead of the 2 O 3 layer, the porous Al 2 O 3 vapor-deposited layer obtained in the above (a) was measured for its porosity based on a vertical cross-sectional structure observed by a scanning electron microscope, and the porosity was 5 to 5. The porous Al 2 O 3 vapor-deposited layer is formed after adjusting the porosity within a range of 30% to a predetermined porosity. When a TiCN layer having strength and toughness is formed as a layer,
In this result the coating cemented carbide, porous Al 2 O 3 deposition layer whose surface is reinforced by the TiCN layer is sufficiently absorb relieve mechanical and thermal shock generated at the time of cutting, and the porous Al 2 Because the TiCN layer sufficiently reinforces the O 3 vapor deposition layer, the coating layer has excellent chipping resistance and exhibits excellent cutting performance over a long period of time. The research results shown in (a) and (b) above were obtained. The present invention has been made based on the results of the above-described research, and (a) TiC
Layer, TiN layer, TiCN layer, TiCO layer, TiNO layer,
And a lower tough layer composed of one or more layers of a Ti compound layer composed of a TiCNO layer and having an average layer thickness of 3 to 20 μm. (B) Based on a longitudinal sectional structure observed by a scanning electron microscope. It consists of a porous Al 2 O 3 deposited layer with a porosity of 5 to 30% as determined by measurement.
An upper hard layer having an average layer thickness of 5 to 15 μm, (c) T
a surface reinforcing layer composed of an iCN layer and having an average layer thickness of 0.5 to 5 μm, and a coating layer formed by chemical vapor deposition and / or physical vapor deposition of the coating layer composed of the above (a) to (c). This is a feature of coated carbide tools that exhibit excellent chipping resistance. Next, the coating layer constituting the coated carbide tool of the present invention will be described. (A) Lower toughness layer The Ti compound layer of the lower toughness layer has the effect of improving the strength and toughness of the coating layer and improving the adhesion between the layers. When the average layer thickness is less than 3 μm, the above effect is obtained. If the desired improvement effect cannot be obtained, on the other hand, if the layer thickness exceeds 20 μm, the coating layer is liable to be thermoplastically deformed, and as a result, uneven wear, which causes shortening of the service life of the cutting edge, occurs. Therefore, the average layer thickness was determined to be 3 to 20 μm. (B) Upper Hard Layer The porous Al 2 O 3 vapor-deposited layer of the upper hard layer is such that the Al 2 O 3 phase which is the main component thereof has a high high-temperature hardness and excellent heat resistance as described above. As a result, the coating layer exhibits excellent wear resistance, and a large number of pores dispersed and distributed in the Al 2 O 3 phase absorb and relax thermal and mechanical shocks, so that the coating layer is excellent. It has the effect of exhibiting chipping resistance. Therefore, if the porosity is less than 5%, a sufficient effect of absorbing and absorbing shock cannot be obtained. On the other hand, if the porosity exceeds 30%, the strength is sharply reduced, causing chipping. The porosity is 5-30%
It was decided. If the average layer thickness is less than 0.5 μm, the effect of the porous Al 2 O 3 vapor-deposited layer cannot be satisfactorily ensured. On the other hand, if the average layer thickness exceeds 15 μm, the strength of the coating layer itself will increase. Further, since the toughness rapidly decreases and chipping easily occurs in the coating layer, the average layer thickness is set to 0.5 to 15 μm. (C) Surface Reinforcement Layer The TiCN layer of the surface reinforcement layer has the high toughness of TiN and
Since it has the high hardness of C, it exerts the effect of sufficiently reinforcing the strength reduction due to the formation of pores in the porous Al 2 O 3 deposited layer, but if the average layer thickness is less than 0.5 μm, Since the average layer thickness of 5 μm is sufficient for the above purpose, while the average layer thickness of 5 μm is sufficient for the above purpose, the average layer thickness is set to 0.5 to 5 μm. Next, the coated carbide tool of the present invention will be specifically described with reference to examples. WC powder, TiC, each having an average particle size of 1 to 3 μm, as raw material powders
Powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder were prepared, and these raw material powders were blended into the composition shown in Table 1 to form a ball mill. For 72 hours,
After drying, it is pressed into a green compact at a pressure of 1.5 × 10 8 Pa, and this green compact is heated to 1400 ° C. in vacuum at a temperature of 1400 ° C.
After sintering under the condition of holding time, and after sintering, R: 0.
Honing process of 05, ISO standard, CNMG1
Tool bases A1 to A8 made of a WC-based cemented carbide having a chip shape of 20412 were formed. In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by mass ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 9.8 × 10 7 Pa, and the green compact is heated in a nitrogen atmosphere of 1.3 × 10 3 Pa at a temperature of: Sintering was carried out at 1540 ° C. for 1 hour, and after sintering, the cutting edge was subjected to a honing process of R: 0.03, and a tool base B1 made of a TiCN-based cermet having a tip shape of ISO standard CNMG120412. ~ B
6 was formed. Next, the surfaces of the tool bases A1 to A8 and B1 to B6 were ultrasonically cleaned in acetone, dried, and then dried using an ordinary chemical vapor deposition apparatus. -TiCN indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in, for example, JP-A-6-8010, and indicates the conditions for forming a coating layer having a normal granular crystal structure. Table 4
The “porous Al 2 O 3 ” is an abbreviation of a porous Al 2 O 3 vapor-deposited layer). Carbide tools 1 to 14 and conventional coated carbide tools 1 to 14 were produced, respectively. The coated carbide tools 1 to 14 according to the present invention described above.
The longitudinal section of each coating layer was observed using a scanning electron microscope for microstructure. Based on the observation results, the porous Al
When the porosity of the 2 O 3 vapor-deposited layer was measured, it showed substantially the same value as the target porosity shown in Table 4, and these coated carbide tools 1 to 14 according to the present invention and conventional coated carbide tools 1 ~ 14
When the layer thickness of the coating layer was measured, the average layer thickness was substantially the same as the target layer thickness in Tables 5 and 6. Next, the coated carbide tools 1 to 14 according to the present invention will be described.
And conventional coated carbide tools 1 to 14; Work material: JIS SCM440, lengthwise equally spaced round bar with four longitudinal grooves; Cutting speed: 120 m / min. Notch: 3.0 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-cut intermittent cutting test of alloy steel under the following conditions: Work material: JIS S45C lengthwise round bar with four longitudinal grooves, Cutting speed: 100 m / min. Infeed: 1.5 mm Feed: 1.0 mm / rev. , Cutting time: 5 minutes, Dry high-feed intermittent cutting test of carbon steel under the following conditions: Work material: Round bar with four longitudinal grooves at equal intervals in the longitudinal direction of FC300, Cutting speed: 150 m / min. Infeed: 3.0 mm Feed: 0.25 mm / rev. , Cutting time: 10 minutes, Dry high-cut intermittent cutting test of cast iron under the following conditions:
In each cutting test, the maximum flank wear width of the cutting edge was measured. Table 7 shows the measurement results. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] According to the results shown in Table 7, the coated carbide tools 1 to 14 of the present invention can be used under heavy cutting conditions of steel and cast iron with extremely high thermal and mechanical shocks. Even in intermittent cutting, the coating layer has excellent mechanical and thermal shock resistance due to the porous Al 2 O 3 vapor deposition layer constituting the coating layer. On the other hand, in conventional coated carbide tools 1 to 14 in which the coating layer comprises a lower tough layer of a Ti compound layer and an upper hard layer of an Al 2 O 3 layer, the coating layer exhibits intermittent cutting under the heavy cutting conditions. In cutting, chipping occurs in the coating layer,
It is clear that the service life is reached in a relatively short time. As described above, the coated cemented carbide tool of the present invention involves not only continuous cutting and interrupted cutting under ordinary conditions such as various types of steel and cast iron, but also involves particularly high mechanical and thermal shocks. Even when used in intermittent cutting under heavy cutting conditions, it exhibits excellent cutting performance over a long period of time, so it can respond satisfactorily to the versatility of cutting and further saves on cutting. It is possible to achieve energy saving, energy saving, and further cost reduction.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF17 FF19 FF25 4K029 AA04 BA41 BA43 BA44 BA54 BA55 BA60 BB02 BC00 BD05 EA01 4K030 BA18 BA35 BA36 BA38 BA41 BA43 BB12 JA01 LA01 LA22   ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 3C037 CC02 CC04 CC09 CC11                 3C046 FF03 FF05 FF10 FF17 FF19                       FF25                 4K029 AA04 BA41 BA43 BA44 BA54                       BA55 BA60 BB02 BC00 BD05                       EA01                 4K030 BA18 BA35 BA36 BA38 BA41                       BA43 BB12 JA01 LA01 LA22

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金または炭窒
化チタン基サーメットで構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化
物層、窒酸化物層、および炭窒酸化物層からなるTi化
合物層のうちの1層または2層以上からなり、かつ3〜
20μmの平均層厚を有する下部強靭層、(b)走査型
電子顕微鏡により観察された縦断面組織にもとづく測定
で、5〜30%の空孔率を有する多孔質酸化アルミニウ
ム蒸着層からなり、かつ0.5〜15μmの平均層厚を
有する上部硬質層、(c)炭窒化チタン層からなり、か
つ0.5〜5μmの平均層厚を有する表面補強層、以上
(a)〜(c)で構成された被覆層を化学蒸着および/
または物理蒸着してなることを特徴とする被覆層がすぐ
れた耐チッピング性を発揮する表面被覆超硬合金製切削
工具。
Claims 1. A tool base made of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) one or more layers of a Ti compound layer consisting of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, a nitrogen oxide layer, and a carbonitride layer; and 3 ~
A lower tough layer having an average layer thickness of 20 μm, (b) a porous aluminum oxide vapor-deposited layer having a porosity of 5 to 30% as measured based on a longitudinal sectional structure observed by a scanning electron microscope, and An upper hard layer having an average layer thickness of 0.5 to 15 μm, (c) a surface reinforcing layer comprising a titanium carbonitride layer and having an average layer thickness of 0.5 to 5 μm; Chemical vapor deposition and / or
Alternatively, a cutting tool made of a surface-coated cemented carbide in which a coating layer characterized by physical vapor deposition exhibits excellent chipping resistance.
JP2001237401A 2001-08-06 2001-08-06 Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance Withdrawn JP2003048105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237401A JP2003048105A (en) 2001-08-06 2001-08-06 Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237401A JP2003048105A (en) 2001-08-06 2001-08-06 Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance

Publications (1)

Publication Number Publication Date
JP2003048105A true JP2003048105A (en) 2003-02-18

Family

ID=19068489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237401A Withdrawn JP2003048105A (en) 2001-08-06 2001-08-06 Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance

Country Status (1)

Country Link
JP (1) JP2003048105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143827A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer with excellent chipping resistance and defect resistance
JP2012179706A (en) * 2011-02-09 2012-09-20 Mitsubishi Materials Corp Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143827A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer with excellent chipping resistance and defect resistance
JP2012179706A (en) * 2011-02-09 2012-09-20 Mitsubishi Materials Corp Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance

Similar Documents

Publication Publication Date Title
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP2001310203A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2002144109A (en) Surface coat cemented carbide cutting tool having excellent chipping resistance
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP3931325B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4330100B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3433686B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003048105A (en) Surface coated cemented carbide cutting tool having coating layer exhibiting superior chipping resistance
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP2003145317A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance
JP2003019603A (en) Surface covered cemented carbide cutting tool having hard coating layer with excellent chipping resistance
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JP2002239807A (en) Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance
JP2002263910A (en) Surface-coated cemented carbide cutter having hard cover layer exhibiting excellent wear resistance in high- speed cutting operation
JP2001322003A (en) Surface coated tungsten carbide group cemented carbide cutting tool having physically depositing hard coating layer with excellent chipping resistance
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP4332771B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP3855260B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007