JP2003045425A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003045425A
JP2003045425A JP2001228084A JP2001228084A JP2003045425A JP 2003045425 A JP2003045425 A JP 2003045425A JP 2001228084 A JP2001228084 A JP 2001228084A JP 2001228084 A JP2001228084 A JP 2001228084A JP 2003045425 A JP2003045425 A JP 2003045425A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
composite oxide
manganese
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001228084A
Other languages
Japanese (ja)
Other versions
JP2003045425A5 (en
JP3793054B2 (en
Inventor
Tokuji Ueda
上田  篤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001228084A priority Critical patent/JP3793054B2/en
Publication of JP2003045425A publication Critical patent/JP2003045425A/en
Publication of JP2003045425A5 publication Critical patent/JP2003045425A5/ja
Application granted granted Critical
Publication of JP3793054B2 publication Critical patent/JP3793054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion nonaqueous electrolyte secondary battery with high capacity, high charging/discharging characteristics at a low cost. SOLUTION: This nonaqueous electrolyte secondary battery has a positive electrode, a negative electrode, and a nonaqueous electrolyte, and an active material constituting the positive electrode contains at least a manganese containing lithium nickel composite oxide and a lithium cobalt composite oxide, and the manganese containing lithium nickel composite oxide is represented by general composition formula, Li1+x+α Ni(1-x-y+δ)/2 My Mn(1-x-y-δ)/2 O2 (Wherein M is at least one selected from a group comprising Cr, Fe, Co, and Al; 0<=x<=0.05, 0<=y<=0.33, -0.05<=α<=0.05, -0.1<=δ<=0.1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で、充放電
特性に優れ、且つ低コスト化された非水電解質二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having high capacity, excellent charge / discharge characteristics, and low cost.

【0002】[0002]

【従来の技術】4V級の電圧と高容量を特長とするリチ
ウムイオン二次電池の正極活物質には、Liイオンのイ
ンターカレーションに有効な化合物としてLiMn
24、LiMnO2、LiCoO2、LiCo1-xNix
2、LiNiO2等が一般に用いられている。これらの中
でも特に特開昭55−136131号公報で開示されて
いる岩塩構造型のLiCoO2はLiに対し3.5V以
上の高い放電電位を与え、且つ高容量を有する点で優れ
ている。しかし、LiCoO2は充放電の繰り返しによ
って結晶構造が劣化して放電特性が低下するというサイ
クル性能上の問題点と、コバルト原料の供給量が少ない
ことにより製造コストが高くなるというコスト上の問題
点を含んでいる。
2. Description of the Related Art LiMn is used as a compound effective for intercalating Li ions in a positive electrode active material of a lithium ion secondary battery which is characterized by a voltage of 4 V class and a high capacity.
2 O 4 , LiMnO 2 , LiCoO 2 , LiCo 1-x Ni x O
2 , LiNiO 2 and the like are generally used. Among them, rock salt structure type LiCoO 2 disclosed in JP-A-55-136131 is particularly excellent in that it gives a high discharge potential of 3.5 V or more to Li and has a high capacity. However, LiCoO 2 has a problem in cycle performance that the crystal structure deteriorates due to repeated charging and discharging and the discharge characteristics deteriorate, and a cost problem that the manufacturing cost increases due to a small supply amount of the cobalt raw material. Is included.

【0003】そこで、供給量が多く低コストであるマン
ガンを原料とするスピネル構造型のLixMn24を正
極活物質に用いた二次電池が、特開平3−147276
号、同4−123769号公報等に提案されている。ま
た、特開平5−13107号公報にはコバルト酸化物に
マンガン酸化物を混合して正極活物質に用いる方法が開
示されている。しかし、LiMn24はLiCoO2
比べ体積当りの容量が小さく、また放電が高電位部と低
電位部に2段階で起こるため、電圧変化が平坦でなく階
段状になるなどの問題点を有する。
Therefore, a secondary battery using a spinel structure type Li x Mn 2 O 4 made of manganese as a raw material, which is supplied in a large amount at a low cost, is disclosed in JP-A-3-147276.
And No. 4-123769. Further, JP-A-5-13107 discloses a method in which manganese oxide is mixed with cobalt oxide to be used as a positive electrode active material. However, LiMn 2 O 4 has a smaller capacity per volume than LiCoO 2 , and since discharge occurs in two stages in the high-potential portion and the low-potential portion, the voltage change is not flat but becomes stepwise. Have.

【0004】これらの問題を解決する手段の一つとし
て、特開平8−315860号公報には、高容量の負極
活物質、例えば錫を含む複合酸化物と組み合わせ、マン
ガン酸化物の高電位部のみを利用した電池が提案されて
いる。しかし、体積当りの容量が小さく、また放電が高
電位部と低電位部に分かれるようなスピネル構造型のL
iMn24を用いる限り、高容量化は困難である。
As one of means for solving these problems, Japanese Unexamined Patent Publication No. 8-315860 discloses that only a high potential portion of manganese oxide is prepared by combining with a high capacity negative electrode active material, for example, a composite oxide containing tin. Batteries using the are proposed. However, the capacity per volume is small, and the spinel structure type L that discharge is divided into a high potential part and a low potential part.
As long as iMn 2 O 4 is used, it is difficult to increase the capacity.

【0005】リチウムコバルト複合酸化物(LiCoO
2)は体積当りの容量は大きいが、一方で充電状態で4
価コバルトが存在するために熱的に不安定であり、発熱
とともに分解する。また、リチウムニッケル複合酸化物
(LiNiO2)はリチウムコバルト複合酸化物よりも
低い電圧で充電されるために、同一の終止電圧で比較し
た場合、リチウムコバルト複合酸化物よりも高容量を示
す。しかしながら、熱的に不安定なニッケルの4価が充
電状態で含まれるため、その熱的安定性はリチウムコバ
ルト複合酸化物よりも低下することが報告されている。
Lithium cobalt composite oxide (LiCoO
2 ) has a large capacity per volume, but it is 4
It is thermally unstable due to the presence of valent cobalt and decomposes with heat generation. Further, since the lithium nickel composite oxide (LiNiO 2 ) is charged at a lower voltage than the lithium cobalt composite oxide, it shows a higher capacity than the lithium cobalt composite oxide when compared at the same end voltage. However, it has been reported that thermal stability of nickel is lower than that of the lithium-cobalt composite oxide because it contains tetravalent nickel which is thermally unstable in a charged state.

【0006】そこで、リチウムニッケル複合酸化物の熱
的安定性を向上させるために、充電状態で熱的に安定な
4価のマンガンを含むスピネル構造型のLiMn24
混合させることがなされている。しかし、そのスピネル
構造型のLiMn24は体積当りの容量がリチウムコバ
ルト複合酸化物の60%程度であるために、LiMn 2
4を混合させた正極活物質の体積当りの容量は大幅に
低下する。これは、活物質中のリチウムの含有量が減る
ことからも説明できる。
Therefore, the heat of the lithium nickel composite oxide
Thermal stability in the charging state to improve the thermal stability.
Spinel structure type LiMn containing tetravalent manganese2OFourTo
It is made to mix. But that spinel
Structural type of LiMn2OFourThe capacity per volume is lithium
The content of LiMn is about 60% of that of the mixed oxide. 2
OFourThe capacity per volume of the positive electrode active material mixed with
descend. This reduces the content of lithium in the active material
It can be explained from this.

【0007】即ち、上記混合正極活物質の体積当りの容
量(mAh/cm3)は、(LiMn24の体積当りの
容量)×α/100+(LiNiO2の体積当りの容
量)×(100−α)/100で表される。従って、例
えばLiNiO2の体積当りの容量は、質量当りの容量
が180mAh/gであり、その真密度は4.9g/c
3であることから、約882mAh/cm3である。ま
た、LiMn24の体積当りの容量は、約490mAh
/cm3(=120mAh/g×4.08g/cm3)で
ある。正極活物質が70質量%のLiMn24と30質
量%のLiNiO2から構成されている時、その体積当
りの容量は約608mAh/cm3となる。この容量
は、現在広く正極活物質として用いられているLiCo
2の容量である787mAh/cm3と比べて極端に低
いものである。
That is, the volumetric capacity (mAh / cm 3 ) of the mixed positive electrode active material is (LiMn 2 O 4 volumetric capacity) × α / 100 + (LiNiO 2 volumetric capacity) × (100 -Α) / 100. Therefore, for example, the capacity per volume of LiNiO 2 is 180 mAh / g per mass, and its true density is 4.9 g / c.
Since it is m 3, it is about 882 mAh / cm 3 . The capacity per volume of LiMn 2 O 4 is about 490 mAh.
/ Cm 3 (= 120 mAh / g × 4.08 g / cm 3 ). When the positive electrode active material is composed of 70 mass% LiMn 2 O 4 and 30 mass% LiNiO 2 , the capacity per volume is about 608 mAh / cm 3 . This capacity is equal to that of LiCo, which is currently widely used as a positive electrode active material.
It is extremely low as compared with the capacity of O 2 which is 787 mAh / cm 3 .

【0008】一方、容量を上げるためにリチウムニッケ
ル複合酸化物の含有量を上げると熱的安定性が低下し、
所定量以上にリチウムニッケル複合酸化物の含有量を増
やすことはできない。
On the other hand, if the content of the lithium nickel composite oxide is increased in order to increase the capacity, the thermal stability will decrease,
It is not possible to increase the content of the lithium nickel composite oxide beyond the predetermined amount.

【0009】[0009]

【発明が解決しようとする課題】そこで近年では、リチ
ウムマンガン複合酸化物(LiMnO2)の熱的安定性
とリチウムニッケル複合酸化物の高容量を両立させるた
めに、リチウムニッケル複合酸化物の層状の結晶構造を
保持しつつ、熱的安定性の高いマンガンでニッケルを所
定量置換させた一般式Li1+x+αNi(1-x-y+δ)/2y
Mn(1-x-y-δ)/22(但し、MはCr、Fe、Co、
Alからなる群から選ばれる少なくとも一つであり、0
≦x≦0.05、0≦y≦0.33、−0.05≦α≦0.
05、−0.1≦δ≦0.1)で表されるマンガン含有リ
チウムニッケル複合酸化物を正極活物質とすることが検
討されている。その中でもニッケルとマンガンを等量含
むLiMn0.5Ni0.52が熱的に安定で、且つ高容量
を示すことがわかった。
Therefore, in recent years, in order to achieve both the thermal stability of the lithium manganese composite oxide (LiMnO 2 ) and the high capacity of the lithium nickel composite oxide, the layered structure of the lithium nickel composite oxide has been developed. A general formula Li 1 + x + αNi (1-x-y + δ ) / 2 M y in which a predetermined amount of nickel is replaced with manganese having high thermal stability while maintaining the crystal structure
Mn (1-xy- δ ) / 2 O 2 (where M is Cr, Fe, Co,
At least one selected from the group consisting of Al and 0
≤x≤0.05, 0≤y≤0.33, -0.05≤α≤0.
05, -0.1 ≤ δ ≤ 0.1) has been studied for use of the manganese-containing lithium nickel composite oxide as the positive electrode active material. Among them, it was found that LiMn 0.5 Ni 0.5 O 2 containing equal amounts of nickel and manganese is thermally stable and has a high capacity.

【0010】一方、層状型のリチウムニッケル複合酸化
物(LiNiO2)は、その組成比から判断するとニッ
ケルの平均価数が3価であるが、そのX線回折から欠損
型のLixNi1-xOが混在し、通常、2価のニッケルが
少なからず混在している。2価及び3価のニッケルとも
充放電に関与することができるが、その電子状態の安定
性の違いからその電極特性は異なる。2価のニッケルは
8個のd電子を持ち、7個のd電子を持つ3価のニッケ
ルよりも比較的安定な状態にあるため、電子を引き抜き
難い。即ち、その反応速度は遅く、電極としての負荷特
性は低いと考えられる。層状型のマンガン含有リチウム
ニッケル複合酸化物の場合、等量のマンガンとニッケル
が存在する時に単相として得られる。従って、負荷特性
を増加させるためには3価のニッケルを多く含有させれ
ばよいが、4価のMnを結晶内に含有させると、2価の
ニッケルの含有量が増えることになり、負荷特性は低下
することになる。また、この問題は特に充電初期又は放
電末期の状態、即ちニッケルの相対価数が低い時に顕著
に見られる。そのため、マンガン含有リチウムニッケル
複合酸化物の初期充放電効率は低いと推定できる。
On the other hand, in the layered type lithium nickel composite oxide (LiNiO 2 ), the average valence of nickel is trivalent judging from the composition ratio, but from the X-ray diffraction, the deficient type Li x Ni 1- xO is mixed, and usually divalent nickel is not a little mixed. Both divalent and trivalent nickel can participate in charge and discharge, but their electrode characteristics differ due to the difference in stability of their electronic states. Since divalent nickel has 8 d-electrons and is in a relatively stable state as compared with trivalent nickel having 7 d-electrons, it is difficult to extract electrons. That is, it is considered that the reaction speed is slow and the load characteristics as an electrode are low. In the case of a layered type manganese-containing lithium nickel composite oxide, it is obtained as a single phase when equal amounts of manganese and nickel are present. Therefore, in order to increase the load characteristics, it is sufficient to contain a large amount of trivalent nickel. However, when tetravalent Mn is contained in the crystal, the content of divalent nickel increases, and the load characteristics Will be reduced. Further, this problem is particularly noticeable in the state of the initial stage of charging or the final stage of discharging, that is, when the relative valence of nickel is low. Therefore, it can be estimated that the initial charge / discharge efficiency of the manganese-containing lithium nickel composite oxide is low.

【0011】そこで、このマンガン含有リチウムニッケ
ル複合酸化物について鋭意検討を続けた結果、放電容量
は約700mAh/cm3(=150mAh/g×4.
65g/cm3)と高容量であるが、初期充放電時の効
率が低いこと、また大電流を流した際に電位降下が大き
いこと、即ち負荷特性が悪いことが分かった。本材料を
実用電池に適用するためには上記の問題を解決する必要
がある。
Therefore, as a result of continued studies on this manganese-containing lithium nickel composite oxide, the discharge capacity was about 700 mAh / cm 3 (= 150 mAh / g × 4.
It was found to have a high capacity of 65 g / cm 3 ), but the efficiency at the time of initial charge / discharge was low, and the potential drop was large when a large current was passed, that is, the load characteristics were poor. In order to apply this material to a practical battery, it is necessary to solve the above problems.

【0012】また、ニッケルサイトをマンガンで規則正
しく置換した層状型のマンガン含有リチウムニッケル複
合酸化物は、初期充電時に金属リチウム電位基準で3.
7V以上の作動電位を示し、4.3V充電時には170
mAh/g以上の容量を示すが、放電容量はその85%
以下であるという問題がある。これは上記層状型マンガ
ン含有リチウムニッケル複合酸化物の結晶内での電荷の
バランスと結晶構造の安定性の欠如に起因するものと考
えられる。
Further, the layered type manganese-containing lithium nickel composite oxide in which the nickel sites are regularly replaced with manganese is 3.
It shows an operating potential of 7V or higher, and 170 when charging 4.3V.
It shows a capacity of mAh / g or more, but the discharge capacity is 85% of that.
There is a problem that It is considered that this is due to the lack of stability of charge balance and crystal structure in the crystal of the layered manganese-containing lithium nickel composite oxide.

【0013】そこで、本発明は前記従来の問題を解決す
るためになされたものであり、高容量で、充放電特性に
優れ、且つ低コスト化された非水電解質二次電池を提供
することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a non-aqueous electrolyte secondary battery having a high capacity, excellent charge / discharge characteristics, and low cost. To aim.

【0014】[0014]

【課題を解決するための手段】正極活物質について鋭意
検討を続けた結果、LiCoO2は電気抵抗の測定から
前記マンガン含有リチウムニッケル複合酸化物よりも電
子伝導性に優れていることがわかった。更に、リチウム
量が若干少ないLiCoO2は金属に近い電子伝導性を
持つことが知られており、マンガン含有リチウムニッケ
ル複合酸化物と組み合わせた場合、マンガン含有リチウ
ムニッケル複合酸化物の放電末期においてLiCoO2
はリチウム欠損状態であり、そのため金属に近い電子伝
導性を持つことがわかった。
As a result of continuing intensive studies on the positive electrode active material, it was found from the measurement of electric resistance that LiCoO 2 was superior in electron conductivity to the manganese-containing lithium nickel composite oxide. Further, it is known that LiCoO 2 having a slightly small amount of lithium has an electron conductivity close to that of a metal, and when combined with a manganese-containing lithium nickel composite oxide, LiCoO 2 is discharged at the end of discharge of the manganese-containing lithium nickel composite oxide.
Is a lithium-deficient state, which means that it has an electronic conductivity similar to that of a metal.

【0015】そこで、小粒子で高い比表面積のLiCo
2を、負荷特性の悪いマンガン含有リチウムニッケル
複合酸化物と混合させることによって、反応したLiC
oO 2自体が電子導電経路となり正極活物質内の電子伝
導性を向上させることができることを見出した。
Therefore, LiCo with small particles and high specific surface area is used.
O2The manganese-containing lithium nickel with poor load characteristics
Reacted LiC by mixing with complex oxide
oO 2The electron itself becomes an electron conduction path and the electron conduction in the positive electrode active material.
It has been found that the conductivity can be improved.

【0016】従って、前記目的を達成するため、本発明
の非水電解質二次電池は、正極、負極及び非水電解質を
備え、前記正極を構成する活物質が、一般組成式Li
1+x+αNi(1-x-y+δ)/2yMn(1-x-y-δ)/22(但
し、MはCr、Fe、Co、Alからなる群から選ばれ
る少なくとも一つであり、0≦x≦0.05、0≦y≦
0.33、−0.05≦α≦0.05、−0.1≦δ≦0.
1)で表されるマンガン含有リチウムニッケル複合酸化
物と、リチウムコバルト複合酸化物とを少なくとも含有
することを特徴とする。
Therefore, in order to achieve the above object, the non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, and the active material constituting the positive electrode has a general composition formula Li.
1 + x + αNi (1-x-y + δ ) / 2 M y Mn (1-xy- δ ) / 2 O 2 (where M is at least one selected from the group consisting of Cr, Fe, Co and Al) Yes, 0 ≦ x ≦ 0.05, 0 ≦ y ≦
0.33, -0.05≤α≤0.05, -0.1≤δ≤0.
It is characterized by containing at least a manganese-containing lithium nickel composite oxide represented by 1) and a lithium cobalt composite oxide.

【0017】これにより、LiCoO2と、熱的安定性
に優れ、高容量のマンガン含有リチウムニッケル複合酸
化物との混合正極活物質を用いることによって、LiC
oO 2とスピネル構造型のLiMn24との混合正極活
物質に比べて、高容量化することができる。また、金属
に近い電子伝導性を持つリチウム欠損のリチウムコバル
ト酸化物を混合させることによって、負荷特性を向上さ
せることができる。
By this, LiCoO2And thermal stability
Excellent and high capacity manganese-containing lithium nickel composite acid
LiC by using a mixed positive electrode active material
oO 2And spinel structure type LiMn2OFourMixed positive electrode activity with
It can have a higher capacity than a substance. Also metal
-Deficient lithium cobal with electronic conductivity close to
Improved loading characteristics by mixing oxides
Can be made.

【0018】また、本発明の非水電解質二次電池は、前
記マンガン含有リチウムニッケル複合酸化物と前記リチ
ウムコバルト複合酸化物とが同じ構造を持つものであ
る。これにより、含有するリチウムと遷移金属(マンガ
ン、ニッケル、コバルト)のモル比が等しくなり、高容
量化することができる。
In the non-aqueous electrolyte secondary battery of the present invention, the manganese-containing lithium nickel composite oxide and the lithium cobalt composite oxide have the same structure. As a result, the molar ratio of contained lithium and transition metal (manganese, nickel, cobalt) becomes equal, and the capacity can be increased.

【0019】また、本発明の非水電解質二次電池は、前
記正極を構成する活物質中の全遷移金属元素に対して、
前記活物質中の、ニッケルが25〜50mol%、マン
ガンが25〜50mol%、コバルトが50mol%以
下であり、且つ前記ニッケルの含有量は前記マンガンと
前記コバルトの含有量の和より小さいことが好ましい。
コバルトを全遷移金属元素に対して50mol%以下に
することによって、熱的安定性が低いコバルトの含有量
を低下させることができることから正極活物質の熱的安
定性を向上でき、且つ高価なコバルトの含有量を低下で
きることから低コスト化することができる。
Further, the non-aqueous electrolyte secondary battery of the present invention is characterized in that all transition metal elements in the active material constituting the positive electrode are
In the active material, it is preferable that nickel is 25 to 50 mol%, manganese is 25 to 50 mol%, and cobalt is 50 mol% or less, and the content of nickel is smaller than the sum of the content of manganese and the content of cobalt. .
By setting the content of cobalt to 50 mol% or less with respect to all transition metal elements, the content of cobalt having low thermal stability can be reduced, so that the thermal stability of the positive electrode active material can be improved and expensive cobalt Since the content of can be reduced, the cost can be reduced.

【0020】即ち、正極活物質の体積当りの容量(mA
h/cm3)は、〔マンガン含有リチウムニッケル複合
酸化物(LiMn0.5Ni0.52)の体積当りの容量〕
×α/100+(LiCoO2の体積当りの容量)×
(100−α)/100で表される。従って、例えば5
0質量%のLiCoO2と50質量%のマンガン含有リ
チウムニッケル複合酸化物(LiMn0.5Ni0.52
を混合させた場合、その体積当りの容量は約744mA
h/gである。同じコバルト含有量であれば、本発明の
正極活物質はLiCoO2とスピネル構造型のLiMn2
4を混合させた正極活物質より大幅に容量は向上す
る。
That is, the capacity per unit volume of the positive electrode active material (mA
h / cm 3 ) is [capacity per volume of manganese-containing lithium nickel composite oxide (LiMn 0.5 Ni 0.5 O 2 )]
× α / 100 + (LiCoO 2 capacity per volume) ×
It is represented by (100−α) / 100. Therefore, for example, 5
Li nickel nickel composite oxide containing 0 mass% LiCoO 2 and 50 mass% manganese (LiMn 0.5 Ni 0.5 O 2 ).
When mixed, the capacity per volume is about 744 mA.
h / g. If the cobalt content is the same, the positive electrode active material of the present invention is LiCoO 2 and spinel structure type LiMn 2
The capacity is significantly improved as compared with the positive electrode active material mixed with O 4 .

【0021】また、安全性を向上させるためにマンガン
の含有量を上げた場合でも、LiMn0.5Ni0.52
80質量%とLiCoO2を20質量%混合させた場
合、その体積当りの容量は約717mAh/gとなる。
スピネル構造型のLiMn24とLiCoO2との混合
正極活物質で同一の容量を出すためには、約76質量%
のLiCoO2と約24質量%のLiMn24の混合が
必要である。このことから、本発明によりマンガンの含
有量を大幅に増やすことができることから熱的安定性を
向上させることが可能となった。加えて、高価なコバル
トの含有量を減少させることができることから、正極活
物質を低コスト化することが可能である。
Further, even if raising the content of manganese in order to improve safety, when the LiMn 0.5 Ni 0.5 O 2 of 80% by weight and LiCoO 2 were mixed 20 mass%, the capacity per the volume It becomes about 717 mAh / g.
In order to obtain the same capacity with a mixed positive electrode active material of spinel structure type LiMn 2 O 4 and LiCoO 2 , about 76% by mass is required.
Of LiCoO 2 and about 24% by weight of LiMn 2 O 4 are required. From this, according to the present invention, the content of manganese can be significantly increased, so that the thermal stability can be improved. In addition, since the content of expensive cobalt can be reduced, the cost of the positive electrode active material can be reduced.

【0022】また、本発明の非水電解質二次電池は、前
記正極を構成する活物質中の全遷移金属元素に対して、
前記活物質中のリチウムが95〜105mol%である
ことが好ましい。これにより、体積当りの容量が大き
く、且つ熱的安定性の高い非水電解質二次電池を実現で
きる。
Further, the non-aqueous electrolyte secondary battery of the present invention is characterized in that all transition metal elements in the active material constituting the positive electrode are
Lithium in the active material is preferably 95 to 105 mol%. This makes it possible to realize a non-aqueous electrolyte secondary battery having a large capacity per volume and high thermal stability.

【0023】また、本発明の非水電解質二次電池は、前
記リチウムコバルト複合酸化物が、一般組成式Lix
oO2で表され、xが0.98〜1.02の範囲にある
ものである。
In the non-aqueous electrolyte secondary battery of the present invention, the lithium cobalt composite oxide has the general composition formula Li x C.
It is represented by oO 2 , and x is in the range of 0.98 to 1.02.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0025】本発明の非水電解質二次電池は、正極、負
極及び非水電解質を備え、前記正極を構成する活物質
が、一般組成式Li1+x+αNi(1-x-y+δ)/2yMn
(1-x-y-δ )/22(但し、MはCr、Fe、Co、Al
からなる群から選ばれる少なくとも一つであり、0≦x
≦0.05、0≦y≦0.33、−0.05≦α≦0.0
5、−0.1≦δ≦0.1)で表されるマンガン含有リチ
ウムニッケル複合酸化物と、リチウムコバルト複合酸化
物とを少なくとも含有するものである。
The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode and a negative electrode.
An active material comprising a positive electrode and a non-aqueous electrolyte and constituting the positive electrode
Is the general composition formula Li1 + x +αNi(1-x-y +δ) / 2MyMn
(1-xy-δ ) / 2O2(However, M is Cr, Fe, Co, Al
At least one selected from the group consisting of 0 ≦ x
≤0.05, 0≤y≤0.33, -0.05≤α≤0.0
5, manganese-containing lithium represented by -0.1≤δ≤0.1)
Um-nickel composite oxide and lithium-cobalt composite oxide
And at least one thing.

【0026】上記マンガン含有リチウムニッケル複合酸
化物は、リチウムマンガン複合酸化物(LiMnO2
の熱的安定性とリチウムニッケル複合酸化物(LiNi
2)の高容量を両立させるために、リチウムニッケル
複合酸化物の層状の結晶構造を保持しつつ、熱的安定性
の高いマンガンでニッケルを所定量置換させたものであ
る。また、上記リチウムコバルト複合酸化物は、一般組
成式LixCoO2で表され、xが0.98〜1.02の
範囲にあるものが一般に使用される。
The above manganese-containing lithium nickel composite oxide is a lithium manganese composite oxide (LiMnO 2 ).
Thermal stability of lithium nickel composite oxide (LiNi
In order to achieve both high capacity of O 2 ), a predetermined amount of nickel is replaced with manganese having high thermal stability while maintaining the layered crystal structure of the lithium nickel composite oxide. The lithium cobalt composite oxide is generally represented by the general formula Li x CoO 2 , and x is generally used in the range of 0.98 to 1.02.

【0027】上記マンガン含有リチウムニッケル複合酸
化物及びリチウムコバルト複合酸化物は、各元素を含む
化合物を所定量混合して焼成することにより得られる。
リチウム源としては、例えば、水酸化リチウム・一水和
物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化
リチウム、塩化リチウム、クエン酸リチウム、フッ化リ
チウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチ
ウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチ
ウム、酸化リチウム等が使用でき、それらの中でも炭酸
リチウムが特に好ましい。また、マンガン源及びニッケ
ル源としては、例えば、等量のマンガンとニッケルが均
一分布した化合物が挙げられ、それらの中でも共沈させ
たマンガンニッケルの水酸化物が特に好ましい。そし
て、コバルト源としては、例えば、炭酸コバルト、水酸
化コバルト、硝酸コバルト等が使用できる。
The manganese-containing lithium nickel composite oxide and the lithium cobalt composite oxide are obtained by mixing a predetermined amount of a compound containing each element and firing.
Examples of the lithium source include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate. , Lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like can be used, and among these, lithium carbonate is particularly preferable. Further, examples of the manganese source and the nickel source include compounds in which equal amounts of manganese and nickel are uniformly distributed. Among them, coprecipitated manganese-nickel hydroxide is particularly preferable. As the cobalt source, for example, cobalt carbonate, cobalt hydroxide, cobalt nitrate or the like can be used.

【0028】上記化合物の焼成条件は特に限定されるこ
とはないが、750〜850℃で5〜15時間焼成する
ことが好ましい。また、焼成時の雰囲気も特に限定され
ることはないが、空気中で行うことが好ましい。空気中
で行うことにより反応の進行が容易になって、層状型の
マンガン含有リチウムニッケル複合酸化物を不純物の含
有量が少ない状態で得ることができる。
The firing conditions of the above compound are not particularly limited, but it is preferable to fire at 750 to 850 ° C. for 5 to 15 hours. The atmosphere during firing is also not particularly limited, but it is preferably performed in air. When the reaction is carried out in air, the reaction progresses easily, and the layered type manganese-containing lithium nickel composite oxide can be obtained in a state where the content of impurities is small.

【0029】また、空気の流量としては、0.1cm3
/分以上にすることが好ましく、1cm3/分以下がよ
り好ましい。ガス流量が少ない場合、不純物が残存する
おそれがある。また、3価のMnの生成を抑制するため
にも、焼成は2回行うことが好ましく、特に500〜8
00℃で仮焼してから、再度焼成を行うのが好ましい。
そして、焼成を2回行う場合、2回目の焼成温度を1回
目の焼成温度よりも高くすることが好ましく、特に最初
の焼成温度を750〜800℃にし、2回目の焼成温度
を800〜850℃にするのが好ましい。
The flow rate of air is 0.1 cm 3
/ Min or more is preferable, and 1 cm 3 / min or less is more preferable. If the gas flow rate is low, impurities may remain. Further, in order to suppress the generation of trivalent Mn, the firing is preferably performed twice, and particularly 500 to 8
It is preferable to perform calcination at 00 ° C. and then firing again.
When firing is performed twice, the firing temperature for the second firing is preferably higher than the firing temperature for the first firing. In particular, the firing temperature for the first firing is set to 750 to 800 ° C and the firing temperature for the second firing is set to 800 to 850 ° C. Is preferred.

【0030】本発明で用いるマンガン含有リチウムニッ
ケル複合酸化物は、一般組成式Li 1+x+αNi(1-x-y+
δ)/2yMn(1-x-y-δ)/22で表される層状型の化合
物であるが、そのNiMnの部分はCr、Fe、Co又
はAl等の他の元素で置換することができる。そのよう
な置換部分を例示すると、NiCoMn、NiFeM
n、NiAlMn、NiFeCoMn、NiCoAlM
n、NiFeAlMn、NiFeCoAlMn等が挙げ
られる。上記置換元素の導入は、酸化物等の形態で焼成
時に添加すればよいが、上記元素を含む共沈化合物を原
料に使用するのが望ましい。なお、上記置換元素の置換
量は、前記一般組成式において0≦y≦0.33の範囲
内とすればよく、また、マンガンの価数変化を抑制する
ためにも3価の遷移金属元素を導入することが好まし
い。
The manganese-containing lithium nickel used in the present invention
The Kell complex oxide has the general composition formula Li 1 + x +αNi(1-x-y +
δ) / 2MyMn(1-xy-δ) / 2O2The compound of the layered type represented by
However, the NiMn part is Cr, Fe, Co or
Can be replaced by another element such as Al. Like that
Examples of such substituted parts are NiCoMn, NiFeM
n, NiAlMn, NiFeCoMn, NiCoAlM
n, NiFeAlMn, NiFeCoAlMn, etc.
To be The above-mentioned substitution element is introduced by firing in the form of an oxide or the like.
It may be added at any time, but a coprecipitated compound containing the above elements may be added.
It is desirable to use it for food. It should be noted that the substitution of the above substitution elements
The amount is in the range of 0 ≦ y ≦ 0.33 in the above general composition formula.
Within, and suppresses the change in valence of manganese
For this reason, it is preferable to introduce a trivalent transition metal element.
Yes.

【0031】本発明の非水電解質二次電池を構成するに
あたり、正極は以下のように作製することができる。先
ず、上記一般組成式Li1+x+αNi(1-x-y+δ)/2y
(1- x-y-δ)/22で表されるマンガン含有リチウムニ
ッケル複合酸化物とリチウムコバルト複合酸化物とから
なる正極活物質に、必要に応じて電子伝導助剤やバイン
ダー等を加える。次に、これらを混合して得られた正極
合剤を溶剤に分散させて、正極合剤含有ペーストを調製
する。この場合、バインダーはあらかじめ有機溶剤に溶
解させておいてから正極活物質等と混合してもよい。続
いて、得られた正極合剤含有ペーストをアルミニウム箔
等からなる導電性基体に塗布して乾燥し、導電性基体に
正極合剤層を形成する。その後、必要に応じて加圧成形
する工程を経ることによって正極が作製される。但し、
正極の作製方法は、上記例示の方法に限られることはな
く、他の方法によってもよい。
In constructing the non-aqueous electrolyte secondary battery of the present invention, the positive electrode can be manufactured as follows. First, the above general composition formula Li 1 + x + αNi (1-x-y + δ ) / 2 M y M
If necessary, an electron conduction aid and a binder are added to the positive electrode active material composed of the manganese-containing lithium nickel composite oxide represented by n (1 -xy- δ ) / 2 O 2 and the lithium cobalt composite oxide. . Next, the positive electrode mixture obtained by mixing these is dispersed in a solvent to prepare a positive electrode mixture-containing paste. In this case, the binder may be dissolved in an organic solvent in advance and then mixed with the positive electrode active material or the like. Then, the obtained positive electrode mixture-containing paste is applied to a conductive substrate made of aluminum foil or the like and dried to form a positive electrode mixture layer on the conductive substrate. After that, a positive electrode is produced by performing a step of pressure-molding if necessary. However,
The method for producing the positive electrode is not limited to the above-exemplified method, and another method may be used.

【0032】上記正極合剤層について更に詳しく説明す
ると、導電性基体に塗布した正極合剤含有ペースト中の
溶剤等の揮発性成分は乾燥工程で蒸発し、導電性基体に
形成された正極合剤層は、一般組成式Li1+x+αNi
(1-x-y+δ)/2yMn(1-x-y-δ )/22で表されるマンガ
ン含有リチウムニッケル複合酸化物とリチウムコバルト
複合酸化物からなる正極活物質と必要に応じて添加され
たバインダーや電子伝導助剤等との混合物からなる正極
合剤で構成される。なお、一般に入手できるリチウムコ
バルト複合酸化物の組成は、LixCoO2(0.98≦
x≦1.02)である。
The above positive electrode mixture layer will be described in more detail.
Then, in the paste containing the positive electrode mixture applied to the conductive substrate,
Volatile components such as solvent evaporate in the drying process and become a conductive substrate.
The formed positive electrode mixture layer has a general composition formula Li1 + x +αNi
(1-x-y +δ) / 2MyMn(1-xy-δ ) / 2O2Manga represented by
-Containing lithium nickel composite oxide and lithium cobalt
Positive electrode active material composed of complex oxides and added as needed
Positive electrode composed of a mixture of a binder and an electron conduction aid
Composed of a mixture. In addition, generally available lithium
The composition of the Baltic complex oxide is LixCoO2(0.98 ≦
x ≦ 1.02).

【0033】上記正極と対向させる負極の活物質として
は、リチウムイオンをドープ・脱ドープできるものであ
ればよく、そのような負極活物質としては、例えば、黒
鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機
高分子化合物の焼成体、メソカーボンマイクロビーズ、
炭素繊維、活性炭等の炭素系材料が使用できる。また、
リチウムやリチウム含有化合物も負極活物質として用い
ることができる。そのリチウム含有化合物としてはリチ
ウム合金とそれ以外のものとがある。リチウム合金とし
ては、例えば、リチウム−アルミニウム、リチウム−
鉛、リチウム−インジウム、リチウム−ガリウム、リチ
ウム−インジウム−ガリウム等の合金が挙げられる。リ
チウム合金以外のリチウム含有化合物としては、例え
ば、錫酸化物、珪素酸化物、ニッケル−珪素系合金、マ
グネシウム−珪素系合金、タングステン酸化物、リチウ
ム鉄複合酸化物等が挙げられる。これらの負極活物質の
うち、黒鉛が容量密度が大きい点で特に好ましい。な
お、上記負極活物質には、その製造直後にリチウムを含
んでいないものもあるが、活物質として作用する際には
リチウムを含んだ状態になる。
The negative electrode active material facing the positive electrode may be any one that can be doped or dedoped with lithium ions, and examples of such a negative electrode active material include graphite, pyrolytic carbons, cokes, and the like. Glassy carbons, organic polymer compound fired bodies, mesocarbon microbeads,
Carbon-based materials such as carbon fiber and activated carbon can be used. Also,
Lithium or a lithium-containing compound can also be used as the negative electrode active material. The lithium-containing compounds include lithium alloys and others. Examples of the lithium alloy include lithium-aluminum and lithium-
Examples include alloys of lead, lithium-indium, lithium-gallium, lithium-indium-gallium, and the like. Examples of lithium-containing compounds other than lithium alloys include tin oxides, silicon oxides, nickel-silicon alloys, magnesium-silicon alloys, tungsten oxides, lithium iron composite oxides, and the like. Among these negative electrode active materials, graphite is particularly preferable because it has a large capacity density. Some of the negative electrode active materials do not contain lithium immediately after their production, but when they act as active materials, they are in a state of containing lithium.

【0034】負極は、以下のように作製することができ
る。先ず、上記負極活物質に必要に応じて正極の場合と
同様にバインダー等を加え、混合して負極合剤を調製
し、それを溶剤に分散させて負極合剤含有ペーストとす
る。なお、バインダーはあらかじめ溶剤に溶解させてお
いてから負極活物質等と混合してもよい。次に、得られ
た負極合剤含有ペーストを銅箔等からなる導電性基体に
塗布して乾燥し、導電性基体に負極合剤層を形成する。
その後、必要に応じて加圧成形する工程を経ることによ
って負極が作製される。但し、負極の作製方法は、上記
例示の方法に限られることはなく、他の方法によっても
よい。
The negative electrode can be manufactured as follows. First, if necessary, a binder and the like are added to the negative electrode active material in the same manner as in the case of the positive electrode and mixed to prepare a negative electrode mixture, which is dispersed in a solvent to prepare a negative electrode mixture-containing paste. The binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material and the like. Next, the obtained negative electrode mixture-containing paste is applied to a conductive substrate made of copper foil or the like and dried to form a negative electrode mixture layer on the conductive substrate.
After that, a negative electrode is manufactured through a step of pressure-molding if necessary. However, the method for producing the negative electrode is not limited to the above-exemplified method, and other methods may be used.

【0035】上記負極合剤層についても更に詳しく説明
すると、導電性基体に塗布した負極合剤含有ペースト中
の溶剤等の揮発性成分は乾燥工程で蒸発し、導電性基体
に形成された負極合剤層は、負極活物質と必要に応じて
添加されたバインダー等との混合物からなる負極合剤で
構成される。
The above-mentioned negative electrode mixture layer will also be described in more detail. Volatile components such as a solvent in the negative electrode mixture-containing paste applied to the conductive substrate are evaporated in the drying step to form a negative electrode mixture formed on the conductive substrate. The agent layer is composed of a negative electrode mixture made of a mixture of a negative electrode active material and a binder or the like added as necessary.

【0036】本発明において正極や負極の作製にあたっ
て使用するバインダーとしては、例えば、ポリフッ化ビ
ニリデン、ポリテトラフルオロエチレン、ポリアクリル
酸、スチレンブタジエンゴム等が挙げられる。また、正
極の作製にあたって使用する電子伝導助剤としては、例
えば、黒鉛、グラファイト、アセチレンブラック、カー
ボンブラック、ケッチェンブラック、炭素繊維の他、金
属粉末、金属繊維等が挙げられる。
Examples of the binder used in the production of the positive electrode and the negative electrode in the present invention include polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, and styrene-butadiene rubber. Examples of the electron conduction aid used for producing the positive electrode include graphite, graphite, acetylene black, carbon black, Ketjen black, carbon fiber, and metal powder and metal fiber.

【0037】また、正極や負極の作製にあたって使用す
る導電性基体としては、例えば、アルミニウム、銅、ス
テンレス鋼、ニッケル、チタン又はそれらの合金等から
なる箔、パンチドメタル、エキスパンドメタル、網等が
使用できるが、正極の導電性基体としては特にアルミニ
ウム箔が好ましく、負極の導電性基体としては特に銅箔
が好ましい。
As the conductive substrate used for producing the positive electrode and the negative electrode, for example, foil made of aluminum, copper, stainless steel, nickel, titanium or alloys thereof, punched metal, expanded metal, net, etc. Although it can be used, an aluminum foil is particularly preferable as the positive electrode conductive substrate, and a copper foil is particularly preferable as the negative electrode conductive substrate.

【0038】本発明の非水電解質二次電池において、非
水電解質としては、通常、非水系の液状電解質(以下、
これを「電解液」という)が用いられる。そして、その
電解液としては有機溶媒等の非水溶媒にリチウム塩等の
電解質塩を溶解させた非水溶媒系の電解液が用いられ
る。
In the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte is usually a non-aqueous liquid electrolyte (hereinafter,
This is called "electrolyte". Then, as the electrolytic solution, a non-aqueous solvent type electrolytic solution in which an electrolyte salt such as a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent is used.

【0039】上記電解液の調製にあたって用いる非水溶
媒としては、特に限定されるものではないが、鎖状エス
テルを主溶媒として用いることが適している。そのよう
な鎖状エステルとしては、例えば、ジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネー
ト、酢酸エチル、プロピオン酸メチル等の鎖状のCOO
−結合を有する有機溶媒が挙げられる。この鎖状エステ
ルが電解液の主溶媒であるということは、これらの鎖状
エステルが全電解液溶媒中の50体積%より多い体積を
占めることを意味しており、特に鎖状エステルが全電解
液溶媒中の65体積%以上を占めることが好ましい。電
解液の溶媒として、この鎖状エステルを主溶媒にするこ
とが好ましいのは、鎖状エステルが全電解液溶媒中の5
0体積%を超えることによって、電池特性、特に低温特
性が改善されるからである。
The non-aqueous solvent used for preparing the above-mentioned electrolytic solution is not particularly limited, but it is suitable to use a chain ester as the main solvent. Examples of such chain ester include chain COO such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethyl acetate, and methyl propionate.
An organic solvent having a bond. The fact that the chain ester is the main solvent of the electrolytic solution means that the chain ester occupies a volume of more than 50% by volume in the total electrolytic solution solvent, and in particular, the chain ester is the entire electrolytic solution. It is preferable to occupy 65% by volume or more of the liquid solvent. As a solvent for the electrolytic solution, it is preferable to use this chain ester as the main solvent because the chain ester is 5% of the total electrolytic solution solvent.
This is because when it exceeds 0% by volume, battery characteristics, especially low temperature characteristics are improved.

【0040】但し、電池容量の向上を図るためには、電
解液溶媒を上記鎖状エステルのみで構成するよりも、上
記鎖状エステルに誘電率の高いエステル(誘電率30以
上のエステル)を混合して用いることが好ましい。その
ような誘電率の高いエステルが全電解液溶媒中で10体
積%以上になると容量の向上が明確に発現するようにな
り、誘電率の高いエステルが全電解液溶媒中で20体積
%以上になると容量の向上がより一層明確に発現するよ
うになる。但し、誘電率の高いエステルの全電解液溶媒
中で占める体積が大きくなりすぎると、電池の放電特性
が低下する傾向があるので、誘電率の高いエステルの全
電解液溶媒中で占める量としては、上記のように好まし
くは10体積%以上、より好ましくは20体積%以上の
範囲内で、40体積%以下が好ましい。
However, in order to improve the battery capacity, an ester having a high dielectric constant (an ester having a dielectric constant of 30 or more) is mixed with the chain ester as compared with the case where the electrolytic solution solvent is composed of only the chain ester. It is preferable to use. When such an ester having a high dielectric constant is 10% by volume or more in the entire electrolytic solution solvent, the capacity is clearly improved, and the ester having a high dielectric constant is 20% by volume or more in the entire electrolytic solution solvent. In this case, the capacity can be more clearly improved. However, when the volume occupied by the ester having a high dielectric constant in the entire electrolyte solution solvent is too large, the discharge characteristics of the battery tend to be deteriorated. As described above, it is preferably 10% by volume or more, more preferably 20% by volume or more, and 40% by volume or less.

【0041】上記誘電率の高いエステルとしては、例え
ば、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、γ−ブチロラクトン、エチレン
グリコールサルファイト等が挙げられ、特にエチレンカ
ーボネート、プロピレンカーボネート等の環状構造のも
のが好ましく、とりわけ環状のカーボネートが好まし
く、具体的にはエチレンカーボネートが最も好ましい。
Examples of the ester having a high dielectric constant include ethylene carbonate, propylene carbonate,
Examples thereof include butylene carbonate, γ-butyrolactone, and ethylene glycol sulfite, and those having a cyclic structure such as ethylene carbonate and propylene carbonate are particularly preferable, and cyclic carbonate is particularly preferable, and ethylene carbonate is most preferable.

【0042】また、上記誘電率の高いエステル以外に併
用可能な溶媒としては、例えば、1,2−ジメトキシエ
タン、1,3−ジオキソラン、テトラヒドロフラン、2
−メチル−テトラヒドロフラン、ジエチルエーテル等が
挙げられる。その他、アミン系又はイミド系有機溶媒
や、含イオウ系又は含フッ素系有機溶媒等も用いること
ができる。
Examples of the solvent that can be used in combination with the ester having a high dielectric constant include 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, and 2
-Methyl-tetrahydrofuran, diethyl ether and the like. In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used.

【0043】上記電解液の調製にあたって非水溶媒に溶
解させるリチウム塩等の電解質塩としては、例えば、L
iPF6、LiCF3SO3、LiC49SO3、LiCF
3CO2、Li224(SO32、LiN(CF3
22、LiC(CF3SO23、LiC42n+1SO3
(n≧2)等が単独で又は2種以上混合して用いられ
る。特にLiPF6やLiC49SO3等は電気伝導度が
高く、充放電特性が良好なことから好ましい。このリチ
ウム塩等の電解質塩の電解液中の濃度は、特に限定され
るものではないが、0.3〜1.7mol/dm3、特
に0.4〜1.5mol/dm3程度が好ましい。
As an electrolyte salt such as a lithium salt to be dissolved in a non-aqueous solvent for preparing the above-mentioned electrolytic solution, for example, L
iPF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF
3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 4 F 2n + 1 SO 3
(N ≧ 2) and the like may be used alone or in combination of two or more. LiPF 6 , LiC 4 F 9 SO 3, and the like are particularly preferable because they have high electric conductivity and good charge and discharge characteristics. The concentration of the electrolyte salt such as the lithium salt in the electrolytic solution is not particularly limited, but is preferably 0.3 to 1.7 mol / dm 3 , particularly 0.4 to 1.5 mol / dm 3 .

【0044】また、本発明においては、上記電解液以外
にゲル状ポリマー電解質や固体電解質等も用いることが
できる。上記ゲル状ポリマー電解質は、前記電解液をゲ
ル化剤によってゲル化したものに相当する。そのゲル化
にあたっては、例えば、ポリフッ化ビニリデン、ポリエ
チレンオキサイド、ポリアクリロニトリル等の直鎖状ポ
リマー又はそれらのコポリマー、紫外線や電子線等の活
性光線の照射によりポリマー化する多官能モノマー、例
えば、ペンタエリスリトールテトラアクリレート、ジト
リメチロールプロパンテトラアクリレート、エトキシ化
ペンタエリスリトールテトラアクリレート、ジペンタエ
リスリトールヒドロキシペンタアクリレート、ジペンタ
エリスリトールヘキサアクリレート等の四官能以上のア
クリレート及び上記アクリレートと同様の四官能以上の
メタクリレート等が用いられる。但し、モノマーの場
合、モノマーそのものが電解液をゲル化するのではな
く、上記モノマーをポリマー化したポリマーがゲル化剤
として作用する。
Further, in the present invention, a gel polymer electrolyte, a solid electrolyte or the like may be used in addition to the above-mentioned electrolytic solution. The gel polymer electrolyte corresponds to a gel of the electrolytic solution with a gelling agent. In the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or a copolymer thereof, a polyfunctional monomer which is polymerized by irradiation with an actinic ray such as an ultraviolet ray or an electron beam, for example, pentaerythritol. Tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate and other tetrafunctional or higher acrylates and the same tetrafunctional or higher functional methacrylates are used. . However, in the case of a monomer, the monomer itself does not gelate the electrolytic solution, but a polymer obtained by polymerizing the above monomer acts as a gelling agent.

【0045】上記のように多官能モノマーを用いて電解
液をゲル化させる場合、必要であれば重合開始剤とし
て、例えば、ベンゾイル類、ベンゾインアルキルエーテ
ル類、ベンゾフェノン類、ベンゾイルフェニルフォスフ
ィンオキサイド類、アセトフェノン類、チオキサントン
類、アントラキノン類等を使用することができ、更に重
合開始剤の増感剤としてアルキルアミン類、アミノエス
テル等も用いることができる。
When the electrolytic solution is gelled using the polyfunctional monomer as described above, if necessary, for example, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, Acetophenones, thioxanthones, anthraquinones and the like can be used, and further alkylamines, aminoesters and the like can be used as a sensitizer for the polymerization initiator.

【0046】一方、固体電解質としては、無機系固体電
解質、有機系固体電解質のいずれも用いることができ
る。
On the other hand, as the solid electrolyte, either an inorganic solid electrolyte or an organic solid electrolyte can be used.

【0047】本発明において、セパレータとしては、例
えば、微孔性樹脂フィルム、不織布等が好適に用いられ
る。上記微孔性樹脂フィルムとしては、例えば、微孔性
ポリエチレンフィルム、微孔性ポリプロピレンフィル
ム、微孔性エチレン−プロピレンコポリマーフィルム等
が挙げられる。また、上記不織布としては、例えば、ポ
リプロピレン不織布、ポリエチレン不織布、ポリエチレ
ンテレフタレート不織布、ポリブチレンテレフタレート
不織布等が挙げられる。
In the present invention, as the separator, for example, a microporous resin film, a non-woven fabric or the like is preferably used. Examples of the microporous resin film include microporous polyethylene film, microporous polypropylene film, microporous ethylene-propylene copolymer film and the like. Examples of the non-woven fabric include polypropylene non-woven fabric, polyethylene non-woven fabric, polyethylene terephthalate non-woven fabric, polybutylene terephthalate non-woven fabric and the like.

【0048】本発明の非水電解質二次電池において、電
解質として電解液を用いる場合は、セパレータとしては
上記例示の微孔性樹脂フィルムや不織布等を通常の状態
で用いるが、ゲル状ポリマー電解質を用いる場合、その
ゲル状ポリマー電解質の支持体として用いている不織布
等にセパレータとしての役割を兼ねさせてもよい。更
に、電解質として固体電解質を用いる場合には、その固
体電解質にセパレータの役割を兼ねさせてもよい。
In the non-aqueous electrolyte secondary battery of the present invention, when an electrolytic solution is used as the electrolyte, the microporous resin film or nonwoven fabric exemplified above is used as a separator in a normal state, but a gel polymer electrolyte is used. When used, the non-woven fabric or the like used as a support for the gel polymer electrolyte may also serve as a separator. Further, when a solid electrolyte is used as the electrolyte, the solid electrolyte may also serve as a separator.

【0049】また、電解質として電解液を用いる場合、
電池組立にあたって電解液は電池ケース内に電極群を挿
入した後に前記電池ケース内に注入されるが、ゲル状ポ
リマー電解質を用いる場合は、あらかじめ電極や支持体
にゲル状ポリマー電解質を保持させておいてもよい。
When an electrolytic solution is used as the electrolyte,
When a battery is assembled, the electrolytic solution is injected into the battery case after inserting the electrode group into the battery case.When using a gel polymer electrolyte, the gel polymer electrolyte is held in advance on the electrode or the support. You may stay.

【0050】[0050]

【実施例】以下、本発明を実施例に基づき説明する。但
し、本発明はそれらの実施例のみに限定されるものでは
ない。
EXAMPLES The present invention will be described below based on examples. However, the present invention is not limited to only those examples.

【0051】(実施例1)マンガン含有リチウムニッケ
ル複合酸化物(LiMn0.5Ni0.52)を下記の手法
で合成した。マンガン源及びニッケル源としては、等量
のマンガンとニッケルが均一分布した化合物が使用でき
るが、それらの中でもマンガンとニッケルを共沈させた
マンガンニッケルの水酸化物を用いた。先ず、マンガン
ニッケル水酸化物と炭酸リチウムを2:1の割合で乳鉢
中で混合し、空気中で900℃で12時間焼成を行い、
再び乳鉢中で粉砕してLiMn0.5Ni0.52の粉末を
得た。次に、水酸化コバルトと炭酸リチウムを2:1の
割合で混合し、空気中で900℃で12時間焼成してリ
チウムコバルト複合酸化物(LiCoO2)を得た。
Example 1 A manganese-containing lithium nickel composite oxide (LiMn 0.5 Ni 0.5 O 2 ) was synthesized by the following method. As the manganese source and the nickel source, compounds in which equal amounts of manganese and nickel are evenly distributed can be used. Among them, manganese-nickel hydroxide co-precipitated with manganese and nickel was used. First, manganese nickel hydroxide and lithium carbonate were mixed at a ratio of 2: 1 in a mortar and baked in air at 900 ° C. for 12 hours,
The powder was pulverized again in a mortar to obtain a powder of LiMn 0.5 Ni 0.5 O 2 . Next, cobalt hydroxide and lithium carbonate were mixed at a ratio of 2: 1 and baked in air at 900 ° C. for 12 hours to obtain a lithium cobalt composite oxide (LiCoO 2 ).

【0052】正極活物質は、90質量%のLiMn0.5
Ni0.52と10質量%のLiCoO2を混合させたも
のを用いた。この正極活物質を90質量%、電子伝導助
剤としてカーボンブラックを5質量%、バンインダーと
してポリフッ化ビニリデンを5質量%を混合し、n−メ
チルピロリドンで分散したものを塗膜化し、所定の大き
さに切り抜いたものを正極とした。電池としての評価に
は、対極にリチウム金属を用いてコイン型モデルセルを
作製して行った。なお、セパレータには多孔質ポリエチ
レンシートを用い、電解液はエチレンカーボネートとエ
チルメチルカーボネートを体積比で1:3の割合で混合
したものに、1.2mol/dm3のLiPF6を溶解さ
せた溶液を用いた。
The positive electrode active material is 90% by mass of LiMn 0.5.
A mixture of Ni 0.5 O 2 and 10 mass% LiCoO 2 was used. 90% by mass of this positive electrode active material, 5% by mass of carbon black as an electron conduction aid, and 5% by mass of polyvinylidene fluoride as a van inder were mixed and dispersed with n-methylpyrrolidone to form a coating film, and a predetermined size was obtained. What was cut out was used as the positive electrode. For evaluation as a battery, a coin-shaped model cell was prepared using lithium metal as a counter electrode. A porous polyethylene sheet was used as the separator, and the electrolytic solution was a mixture of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 3 and 1.2 mol / dm 3 of LiPF 6 dissolved therein. Was used.

【0053】(実施例2)正極活物質として、80質量
%のLiMn0.5Ni0.52と20質量%のLiCoO2
を混合させたものを用いたこと以外は、実施例1と同様
にして正極を作製し、実施例1と同様にして電池評価を
行った。
Example 2 As the positive electrode active material, 80% by mass of LiMn 0.5 Ni 0.5 O 2 and 20% by mass of LiCoO 2 were used.
A positive electrode was produced in the same manner as in Example 1 except that a mixture of was used, and battery evaluation was performed in the same manner as in Example 1.

【0054】(実施例3)正極活物質として、70質量
%のLiMn0.5Ni0.52と30質量%のLiCoO2
を混合させたものを用いたこと以外は、実施例1と同様
にして正極を作製し、実施例1と同様にして電池評価を
行った。
Example 3 As the positive electrode active material, 70% by mass of LiMn 0.5 Ni 0.5 O 2 and 30% by mass of LiCoO 2 were used.
A positive electrode was produced in the same manner as in Example 1 except that a mixture of was used, and battery evaluation was performed in the same manner as in Example 1.

【0055】(実施例4)正極活物質として、60質量
%のLiMn0.5Ni0.52と40質量%のLiCoO2
を混合させたものを用いたこと以外は、実施例1と同様
にして正極を作製し、実施例1と同様にして電池評価を
行った。
Example 4 As a positive electrode active material, 60% by mass of LiMn 0.5 Ni 0.5 O 2 and 40% by mass of LiCoO 2 were used.
A positive electrode was produced in the same manner as in Example 1 except that a mixture of was used, and battery evaluation was performed in the same manner as in Example 1.

【0056】(実施例5)正極活物質として、50質量
%のLiMn0.5Ni0.52と50質量%のLiCoO2
を混合させたものを用いたこと以外は、実施例1と同様
にして正極を作製し、実施例1と同様にして電池評価を
行った。
Example 5 As a positive electrode active material, 50% by mass of LiMn 0.5 Ni 0.5 O 2 and 50% by mass of LiCoO 2 were used.
A positive electrode was produced in the same manner as in Example 1 except that a mixture of was used, and battery evaluation was performed in the same manner as in Example 1.

【0057】(比較例1)正極活物質として、LiMn
0.5Ni0.52のみを用いたこと以外は、実施例1と同
様にして正極を作製し、実施例1と同様にして電池評価
を行った。
Comparative Example 1 LiMn was used as the positive electrode active material.
A positive electrode was produced in the same manner as in Example 1 except that only 0.5 Ni 0.5 O 2 was used, and battery evaluation was performed in the same manner as in Example 1.

【0058】(比較例2)電解二酸化マンガンと炭酸リ
チウムを4:1の割合で混合し、空気中で900℃で1
2時間焼成し、LiMn24で表されるスピネル構造型
のリチウムマンガン複合酸化物を合成した。そして、そ
のリチウムマンガン複合酸化物を50質量%と実施例1
で合成したリチウムコバルト複合酸化物LiCoO2
50質量%混合させたものを正極活物質として用いたこ
と以外は、実施例1と同様にして正極を作製し、実施例
1と同様にして電池評価を行った。
(Comparative Example 2) Electrolytic manganese dioxide and lithium carbonate were mixed at a ratio of 4: 1 and the mixture was mixed with air at 900 ° C for 1 hour.
After firing for 2 hours, a spinel structure type lithium manganese composite oxide represented by LiMn 2 O 4 was synthesized. Then, the lithium manganese composite oxide was added in an amount of 50% by mass in Example 1.
A battery was evaluated in the same manner as in Example 1 except that a mixture of the lithium cobalt composite oxide LiCoO 2 synthesized in 50% by mass was used as the positive electrode active material, and a positive electrode was prepared in the same manner as in Example 1. I went.

【0059】(比較例3)正極活物質として、70質量
%のLiMn0.5Ni0.52と30質量%のLiCo0.2
Ni0.82を混合させたものを用いたこと以外は、実施
例1と同様にして正極を作製し、実施例1と同様にして
電池評価を行った。
Comparative Example 3 As the positive electrode active material, 70% by mass of LiMn 0.5 Ni 0.5 O 2 and 30% by mass of LiCo 0.2 were used.
A positive electrode was produced in the same manner as in Example 1 except that a mixture of Ni 0.8 O 2 was used, and battery evaluation was performed in the same manner as in Example 1.

【0060】表1に実施例1〜5、比較例1〜3の正極
活物質中におけるLi、Mn、Ni及びCoの含有量
(モル比)を示した。
Table 1 shows the contents (molar ratio) of Li, Mn, Ni and Co in the positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 to 3.

【0061】[0061]

【表1】 [Table 1]

【0062】また、表2に実施例1〜5、比較例1〜3
の電池における初期充放電効率、初期放電容量、電流密
度0.5mA/cm2で放電容量の50%放電時の平均電
位、及び負荷特性を示した。
Table 2 also shows Examples 1-5 and Comparative Examples 1-3.
The initial charging / discharging efficiency, the initial discharging capacity, the average potential at the time of discharging 50% of the discharging capacity at a current density of 0.5 mA / cm 2 , and the load characteristics were shown.

【0063】[0063]

【表2】 [Table 2]

【0064】表2から明らかなように、本発明の実施例
1〜5は比較例1に比べて、初期充放電効率、初期放電
容量、平均電位及び負荷特性の全てにおいて優れている
ことがわかる。
As is clear from Table 2, Examples 1 to 5 of the present invention are superior to Comparative Example 1 in all of the initial charge / discharge efficiency, initial discharge capacity, average potential and load characteristics. .

【0065】図1は、実施例1と実施例3及び比較例1
の電池の電流密度0.5mA/cm2での放電曲線を示
す。放電容量の50%放電時の平均電位を表2で比較す
ると、LiCoO2の含有量が増加するにつれてその平
均電位は上昇し、LiCoO2の電位に近づくことがわ
かる。実施例3と比較例1を比較すると、約80mVの
電位上昇が観測できた。本発明により、本来構成される
材料で一義的に決まる作動電位を、異なる作動電位を持
つ正極活物質を混合させることによって意図的に放電電
位形状、及びその電位を制御できることがわかる。
FIG. 1 shows Example 1 and Example 3 and Comparative Example 1
2 shows a discharge curve at a current density of 0.5 mA / cm 2 of the battery. Comparing the average potentials at 50% discharge of the discharge capacity in Table 2, it can be seen that the average potential increases as the content of LiCoO 2 increases, and approaches the potential of LiCoO 2 . Comparing Example 3 with Comparative Example 1, a potential increase of about 80 mV could be observed. According to the present invention, it is found that the discharge potential shape and the potential thereof can be intentionally controlled by mixing the positive electrode active materials having different working potentials with the working potential that is uniquely determined by the material originally constituted.

【0066】また、表2から明らかなように、LiCo
2の含有量が増えるにしたがって、初期放電容量と初
期充放電効率は徐々に向上した。LiCoO2を含まな
い比較例1の初期充放電効率は84%であったが、実施
例3では87%、実施例5では89%と向上し、その結
果、初期放電容量を向上させることができた。これは、
LiCoO2の初期充放電効率が96%という高効率で
あることによるものである。
Further, as is clear from Table 2, LiCo
The initial discharge capacity and the initial charge / discharge efficiency gradually improved as the O 2 content increased. The initial charge / discharge efficiency of Comparative Example 1 containing no LiCoO 2 was 84%, but improved to 87% in Example 3 and 89% in Example 5, and as a result, the initial discharge capacity could be improved. It was this is,
This is because the initial charge / discharge efficiency of LiCoO 2 is as high as 96%.

【0067】また、表2の負荷特性は、電流密度0.5
mA/cm2時の放電容量を基準に、電流密度4mA/c
2時の放電容量の比率で表した。比較例1の負荷特性
は84.8%である。これに比べて、LiCoO2を含
有させた実施例1〜5において負荷特性の向上が認めら
れた。また、それはLiCoO2の含有量に依存してい
ることから、期待した通り電子伝導性の高いLiCoO
2粉体が電極中に存在することにより、電子伝導経路を
形成しているものと考えられる。
The load characteristics shown in Table 2 are the current density of 0.5.
Current density 4mA / c based on the discharge capacity at mA / cm 2
It was expressed by the ratio of the discharge capacity at m 2 . The load characteristic of Comparative Example 1 is 84.8%. In comparison with this, in Examples 1 to 5 containing LiCoO 2 , improvement in load characteristics was observed. Moreover, since it depends on the content of LiCoO 2 , LiCoO having high electron conductivity as expected.
It is considered that the presence of the two powders in the electrode forms an electron conduction path.

【0068】放電容量を増やすには比較例3に示すよう
に180mAh/g以上の放電容量を示すLiCo0.2
0.82を混合すれば良く、例えば、比較例3の正極活
物質は159mAh/gの放電容量を示す。但し、その
負荷特性は向上することはない。また、比較例3では熱
的に不安定なNiの含有量が全遷移金属元素の約60%
になり、熱的安定性の低下が懸念される。
To increase the discharge capacity, as shown in Comparative Example 3, LiCo 0.2 N showing a discharge capacity of 180 mAh / g or more.
i 0.8 O 2 may be mixed, and for example, the positive electrode active material of Comparative Example 3 exhibits a discharge capacity of 159 mAh / g. However, the load characteristics do not improve. Further, in Comparative Example 3, the content of thermally unstable Ni is about 60% of all transition metal elements.
Therefore, there is concern that the thermal stability may decrease.

【0069】また、比較例2のようにスピネル構造型の
リチウムマンガン複合酸化物を用いた場合、負荷特性、
熱的安定性、及び低コスト化は実現できるが、初期放電
容量は大幅に低下する。高容量化、高負荷特性、熱的安
定性、及び低コスト化を実現させるためには、本発明で
用いたマンガン含有リチウムニッケル複合酸化物とリチ
ウムコバルト複合酸化物とを組み合わせた正極活物質の
使用が必要不可欠である。
When a spinel structure type lithium manganese composite oxide is used as in Comparative Example 2, the load characteristics are
Although thermal stability and cost reduction can be realized, the initial discharge capacity is significantly reduced. In order to realize high capacity, high load characteristics, thermal stability, and low cost, a positive electrode active material obtained by combining the manganese-containing lithium nickel composite oxide and the lithium cobalt composite oxide used in the present invention is used. Use is essential.

【0070】このように、本発明では、高価なLiCo
2に近い電極特性を持たせつつ、正極活物質中のコバ
ルト量を低減することによって低コストな材料を提案す
ることができる。
As described above, in the present invention, expensive LiCo
It is possible to propose a low-cost material by reducing the amount of cobalt in the positive electrode active material while having an electrode characteristic close to that of O 2 .

【0071】[0071]

【発明の効果】以上のように本発明は、高容量で、充放
電特性に優れ、且つ低コスト化された非水電解質二次電
池を提供することができる。
INDUSTRIAL APPLICABILITY As described above, the present invention can provide a non-aqueous electrolyte secondary battery having high capacity, excellent charge / discharge characteristics, and low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例と比較例の放電容量と正極の電
位との関係図である。
FIG. 1 is a diagram showing the relationship between the discharge capacity and the positive electrode potential of an example of the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AE05 5H029 AJ01 AJ02 AJ14 AK03 AL06 AL07 AL11 AL12 AM02 AM05 AM07 AM11 AM15 EJ04 EJ12 HJ01 HJ02 5H050 AA01 AA02 AA19 BA15 CA07 CB03 CB07 CB08 CB11 EA10 EA23 EA24 HA01 HA02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G048 AA04 AB01 AB05 AC06 AE05                 5H029 AJ01 AJ02 AJ14 AK03 AL06                       AL07 AL11 AL12 AM02 AM05                       AM07 AM11 AM15 EJ04 EJ12                       HJ01 HJ02                 5H050 AA01 AA02 AA19 BA15 CA07                       CB03 CB07 CB08 CB11 EA10                       EA23 EA24 HA01 HA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及び非水電解質を備えた非水
電解質二次電池であって、前記正極を構成する活物質
が、一般組成式Li1+x+αNi(1-x-y+δ)/2yMn
(1-x-y-δ)/22(但し、MはCr、Fe、Co、Al
からなる群から選ばれる少なくとも一つであり、0≦x
≦0.05、0≦y≦0.33、−0.05≦α≦0.0
5、−0.1≦δ≦0.1)で表されるマンガン含有リチ
ウムニッケル複合酸化物と、リチウムコバルト複合酸化
物とを少なくとも含有することを特徴とする非水電解質
二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the active material constituting the positive electrode has a general composition formula Li 1 + x + αNi (1-x-y + δ ). / 2 M y Mn
(1-xy- δ ) / 2 O 2 (where M is Cr, Fe, Co, Al
At least one selected from the group consisting of 0 ≦ x
≤0.05, 0≤y≤0.33, -0.05≤α≤0.0
5, a non-aqueous electrolyte secondary battery containing at least a manganese-containing lithium nickel composite oxide represented by −0.1 ≦ δ ≦ 0.1) and a lithium cobalt composite oxide.
【請求項2】 前記マンガン含有リチウムニッケル複合
酸化物と前記リチウムコバルト複合酸化物とが同じ構造
を持つ請求項1に記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the manganese-containing lithium nickel composite oxide and the lithium cobalt composite oxide have the same structure.
【請求項3】 前記正極を構成する活物質中の全遷移金
属元素に対して、前記活物質中の、ニッケルが25〜5
0mol%、マンガンが25〜50mol%、コバルト
が50mol%以下であり、且つ前記ニッケルの含有量
は前記マンガンと前記コバルトの含有量の和より小さい
請求項1に記載の非水電解質二次電池。
3. Nickel in the active material is 25 to 5 relative to all transition metal elements in the active material constituting the positive electrode.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of nickel is 0 mol%, the content of manganese is 25 to 50 mol%, the content of cobalt is 50 mol% or less, and the content of the nickel is smaller than the sum of the content of the manganese and the content of the cobalt.
【請求項4】 前記正極を構成する活物質中の全遷移金
属元素に対して、前記活物質中のリチウムが95〜10
5mol%である請求項1に記載の非水電解質二次電
池。
4. Lithium in the active material is 95 to 10 with respect to all transition metal elements in the active material forming the positive electrode.
It is 5 mol%, The non-aqueous electrolyte secondary battery according to claim 1.
【請求項5】 前記リチウムコバルト複合酸化物が、一
般組成式LixCoO2で表され、xが0.98〜1.0
2の範囲にある請求項1〜4のいずれかに記載の非水電
解質二次電池。
5. The lithium cobalt composite oxide is represented by a general composition formula Li x CoO 2 , and x is 0.98 to 1.0.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, which is in the range of 2.
JP2001228084A 2001-07-27 2001-07-27 Nonaqueous electrolyte secondary battery Expired - Lifetime JP3793054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228084A JP3793054B2 (en) 2001-07-27 2001-07-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228084A JP3793054B2 (en) 2001-07-27 2001-07-27 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2003045425A true JP2003045425A (en) 2003-02-14
JP2003045425A5 JP2003045425A5 (en) 2005-10-06
JP3793054B2 JP3793054B2 (en) 2006-07-05

Family

ID=19060642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228084A Expired - Lifetime JP3793054B2 (en) 2001-07-27 2001-07-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3793054B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073487A (en) * 2005-08-11 2007-03-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007128906A (en) * 2007-01-12 2007-05-24 Hitachi Maxell Ltd Positive electrode for lithium secondary battery and lithium secondary battery
WO2013145913A1 (en) * 2012-03-26 2013-10-03 ソニー株式会社 Positive electrode active substance, positive electrode, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic equipment
CN111226330A (en) * 2017-11-21 2020-06-02 株式会社Lg化学 Positive electrode material for secondary battery and lithium secondary battery comprising same
CN112125340A (en) * 2020-09-18 2020-12-25 厦门厦钨新能源材料股份有限公司 Lithium manganate and preparation method and application thereof
CN113764633A (en) * 2021-07-21 2021-12-07 广西师范大学 Surface modified lithium ion battery positive electrode material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073487A (en) * 2005-08-11 2007-03-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007128906A (en) * 2007-01-12 2007-05-24 Hitachi Maxell Ltd Positive electrode for lithium secondary battery and lithium secondary battery
WO2013145913A1 (en) * 2012-03-26 2013-10-03 ソニー株式会社 Positive electrode active substance, positive electrode, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic equipment
CN111226330A (en) * 2017-11-21 2020-06-02 株式会社Lg化学 Positive electrode material for secondary battery and lithium secondary battery comprising same
US11699788B2 (en) 2017-11-21 2023-07-11 Lg Energy Solution, Ltd. Positive electrode material for secondary battery and lithium secondary battery including the same
CN112125340A (en) * 2020-09-18 2020-12-25 厦门厦钨新能源材料股份有限公司 Lithium manganate and preparation method and application thereof
CN112125340B (en) * 2020-09-18 2022-05-17 厦门厦钨新能源材料股份有限公司 Lithium manganate and preparation method and application thereof
CN113764633A (en) * 2021-07-21 2021-12-07 广西师范大学 Surface modified lithium ion battery positive electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP3793054B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP5137414B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
US8585935B2 (en) Composite for Li-ion cells and the preparation process thereof
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
KR20030083476A (en) Lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4656349B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3301931B2 (en) Lithium secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP2011086464A (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the negative electrode active material for lithium secondary battery
JP2003017055A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2002042814A (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2002042893A (en) Nonaqueous electrolyte lithium ion secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP7310872B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2003238162A (en) Lithium manganese composite oxide powder and its manufacturing method
JP2003123750A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050523

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Ref document number: 3793054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term