JP2003037300A - Liquid-metal jointed thermoelectric conversion module - Google Patents

Liquid-metal jointed thermoelectric conversion module

Info

Publication number
JP2003037300A
JP2003037300A JP2001225105A JP2001225105A JP2003037300A JP 2003037300 A JP2003037300 A JP 2003037300A JP 2001225105 A JP2001225105 A JP 2001225105A JP 2001225105 A JP2001225105 A JP 2001225105A JP 2003037300 A JP2003037300 A JP 2003037300A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
liquid metal
electrodes
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001225105A
Other languages
Japanese (ja)
Other versions
JP3629533B2 (en
Inventor
Hiroyuki Takazawa
弘幸 高澤
Atsushi Yamamoto
淳 山本
Tetsuko Ri
哲虎 李
Toshitaka Ota
敏隆 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001225105A priority Critical patent/JP3629533B2/en
Publication of JP2003037300A publication Critical patent/JP2003037300A/en
Application granted granted Critical
Publication of JP3629533B2 publication Critical patent/JP3629533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To further improve the power generating efficiency and service life of a thermoelectric conversion module. SOLUTION: In order to eliminate factors hindering the improvement of the power generating efficiency of the thermoelectric conversion module, the electrodes of the module are formed to have gentle projecting curved surfaces. Consequently, the projecting sections of the electrodes improve the thermal resistances and electrical resistances of the electrodes, while producing very thin liquid-metal surfaces, by pushing the liquid metal taking charge of bond to the side sections of the electrodes. In addition, it has been confirmed that when the thickness of the liquid metal applied to the electrodes is adjusted to <=20 μm, the service life of the module is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電変換素子を用
いた熱電変換モジュールに関するものである。これらの
熱電変換モジュールは、工場の廃熱回収あるいは自動車
の廃熱回収にも利用される物である。
TECHNICAL FIELD The present invention relates to a thermoelectric conversion module using a thermoelectric conversion element. These thermoelectric conversion modules are also used for factory waste heat recovery or automobile waste heat recovery.

【0002】[0002]

【従来の技術】熱電変換モジュールは、p型とn型の2
種類の半導体熱電変換素子を電気的には直列、熱的には
並列に接続し、各接合部間に温度差を与えた場合、起電
力が発生し、外部に負荷を接続すると電流が流れて電気
的出力を得ることができるものである。このように熱電
変換素子を用いて熱エネルギーから電気エネルギーに変
換する原理はよく知られている。
2. Description of the Related Art Thermoelectric conversion modules are of two types, p-type and n-type.
When two types of semiconductor thermoelectric conversion elements are electrically connected in series and thermally connected in parallel and a temperature difference is applied between the joints, electromotive force is generated, and when a load is connected to the outside, a current flows. The electric output can be obtained. In this way, the principle of converting thermal energy into electrical energy using a thermoelectric conversion element is well known.

【0003】従来の熱電変換モジュール(以下、単に
「モジュール」という。)は、熱電変換素子を2次元的
に配置し、各熱電変換素子を電気的絶縁性の平板にハン
ダ付け等の方法で固定したモジュール構成をとってい
た。
In a conventional thermoelectric conversion module (hereinafter simply referred to as "module"), thermoelectric conversion elements are two-dimensionally arranged and each thermoelectric conversion element is fixed to an electrically insulating flat plate by a method such as soldering. It had a modular structure.

【0004】モジュールの性能は、熱電素子の材料、素
子の大きさや形状、発電モジュールを構成する素子対の
数に依存し、さらには、電極の大きさや形状、素子と電
極の接合方法に依存する。
The performance of the module depends on the material of the thermoelectric element, the size and shape of the element, the number of element pairs forming the power generation module, and further on the size and shape of the electrodes and the method of joining the elements to the electrodes. .

【0005】たとえば、熱電材料は、ビスマステルル系
熱電半導体素子を用い、素子の大きさは、3.2×3.2×1.
72mmで、電極は、10.8×3.8×0.5mmの銅片。素子対の数
は、18対で構成され、モジュールの大きさが50×50mmの
場合、発電変換効率は、ハンダ付けの場合、3%程度で
ある。
For example, as the thermoelectric material, a bismuth tellurium type thermoelectric semiconductor element is used, and the size of the element is 3.2 × 3.2 × 1.
72mm in size, the electrode is a copper piece of 10.8 x 3.8 x 0.5mm. The number of element pairs is 18, and when the module size is 50 x 50 mm, the power generation conversion efficiency is about 3% when soldered.

【0006】[0006]

【発明が解決しようとする課題】発電効率の向上を妨げ
ている一つの要因は、ハンダ付けであり、ハンダの厚み
が熱抵抗となり熱伝達および熱伝導を困難にし、電気抵
抗も大きくなり効率を低下させている。
One of the factors that hinder the improvement of power generation efficiency is soldering, and the thickness of the solder causes heat resistance, which makes heat transfer and heat conduction difficult, and increases electrical resistance, resulting in high efficiency. Is decreasing.

【0007】また、ハンダ付けにおける「濡れ性」の良
し悪しが接合評価の一つの基準となっているが、最良な
方法が現在も追求されている。さらに、接続部のハンダ
中にボイド(空孔)が発生した場合、発電効率の向上を
妨げる熱抵抗や電気抵抗の増加を生む。しかし、現在の
ところ、これらの発生を防止する方法は、見出されてい
ない。
[0007] The goodness and badness of the "wettability" in soldering are one of the criteria for joining evaluation, but the best method is still being pursued. Further, when voids (holes) are generated in the solder of the connecting portion, the thermal resistance and the electric resistance that hinder the improvement of the power generation efficiency are increased. However, at present, no method has been found to prevent these occurrences.

【0008】他方、ハンダに変わり、液体金属を使用す
ることも考えられるが、液体金属は、ハンダ等の個体接
合に比べ常温において液体であるために、化学的活性が
大きく、熱電素子中に拡散し合金を形成し、熱抵抗や電
気抵抗の増加を生む可能性がある。
On the other hand, it is possible to use liquid metal instead of solder, but since liquid metal is a liquid at room temperature as compared with solid bonding such as solder, it has a large chemical activity and diffuses into the thermoelectric element. It may form an alloy and cause an increase in heat resistance and electric resistance.

【0009】このための対策として、熱電素子にニッケ
ル等の金属メッキによる保護膜が施されている。しか
し、このメッキ工程は、ウエハー状の素子に対して行わ
れるため、メッキ後に、素子を切り出すと、そのため切
り出し面である素子の側面にはメッキ加工が施されない
状態となる。
As a countermeasure against this, the thermoelectric element is provided with a protective film formed by plating metal such as nickel. However, since this plating step is performed on the wafer-shaped element, if the element is cut out after plating, the side surface of the element, which is the cut-out surface, is not plated.

【0010】そうすると、液体金属がメッキ加工のない
側面から熱電素子中へ拡散し合金を形成する。このた
め、発電効率は、数十から百数十時間後に減少し始め、
長い寿命を維持できないという問題があった。
Then, the liquid metal diffuses into the thermoelectric element from the non-plated side surface to form an alloy. Therefore, power generation efficiency begins to decrease after several tens to one hundred and several tens of hours,
There was a problem that a long life could not be maintained.

【0011】[0011]

【課題を解決するための手段】本願発明は、発電効率の
向上を妨げている要因を排除するため、電極を緩やかな
凸状の曲面とした。これにより、接合を受け持つ液体金
属を凸部の電極が側部に押しやり、極めて薄い液体金属
面を作りだし、熱抵抗や電気抵抗を改善している。
According to the present invention, in order to eliminate the factor that hinders the improvement of power generation efficiency, the electrode has a gentle convex curved surface. As a result, the liquid metal that is responsible for bonding is pushed to the side by the electrode of the convex portion, and an extremely thin liquid metal surface is created, improving thermal resistance and electric resistance.

【0012】同時に、液体金属が押し出される際に、気
泡を側面に逃がす作用が働き、ボイドの発生を抑え、熱
抵抗や電気抵抗を改善している。
At the same time, when the liquid metal is extruded, the action of letting bubbles escape to the side surface is suppressed, the generation of voids is suppressed, and the thermal resistance and electric resistance are improved.

【0013】緩やかな凸状の曲面を持つ銅電極の作り方
は、銅板を所定の大きさに加工する際に、プレス打ち抜
き加工を採用しているが、製作時に生じる湾曲面を利用
すればよい。
As a method of forming a copper electrode having a gently convex curved surface, press punching is adopted when processing a copper plate into a predetermined size, but a curved surface generated at the time of manufacture may be used.

【0014】プレス打ち抜き加工で生ずる緩やかな凸状
の曲面の一例を図4、5に示す。
An example of a gently convex curved surface generated by press punching is shown in FIGS.

【0015】寿命を長くするためには、液体金属が熱電
素子の保護膜の無い部分に直接接触することを防ぐこと
である。過剰に塗布された液体金属は、熱電素子の保護
膜の施工ができない側面へはみ出すことになる。
In order to prolong the life, it is necessary to prevent the liquid metal from coming into direct contact with the portion without the protective film of the thermoelectric element. The excessively applied liquid metal will squeeze out to the side surface where the protective film of the thermoelectric element cannot be applied.

【0016】塗布量を必要最小限とどめれば、液体金属
の役割である熱電素子と電極の接合のみを果たし、寿命
を短縮させる余剰液体金属は生じない。
If the coating amount is kept to a necessary minimum, only the function of the liquid metal, that is, the bonding between the thermoelectric element and the electrode, is performed, and excess liquid metal that shortens the life is not generated.

【0017】その液体金属の厚みは、20μm以下であ
ればよく、17μm以下が好ましい。
The thickness of the liquid metal may be 20 μm or less, preferably 17 μm or less.

【0018】[0018]

【発明の実施の形態】図1は、本発明の実施形態を示す
もので熱電変換モジュールの組立前の分解斜視図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention and is an exploded perspective view of a thermoelectric conversion module before assembly.

【0019】図1は、平板型のモジュール全体を示し、
22は、平板状の電気的絶縁性高熱伝導基板(以下「基
板」という。)、23は、熱電変換素子、24,25、
は電極、26,27は、格子状電極ホルダで、それぞれ
透孔が格子状に形成されており、これらの透孔に電極2
4,25が遊嵌されて定位置に微小の範囲内で移動可能
に保持されている。30は、格子状素子ホルダで、透孔
が格子状に形成されており、これらの透孔に熱電変換素
子23が遊嵌されて定位置に微小の範囲内で移動可能に
保持されている。
FIG. 1 shows the entire flat plate type module,
Reference numeral 22 is a plate-like electrically insulating high thermal conductive substrate (hereinafter referred to as “substrate”), 23 is a thermoelectric conversion element, 24, 25,
Is an electrode, and 26 and 27 are grid-shaped electrode holders, through holes of which are formed in a grid, respectively.
4, 25 are loosely fitted and held at fixed positions so as to be movable within a minute range. Reference numeral 30 denotes a lattice-shaped element holder, in which through holes are formed in a lattice shape, and the thermoelectric conversion elements 23 are loosely fitted in these through holes and are held at fixed positions movably within a minute range.

【0020】組立に際しては、あらかじめ電極24,2
5の熱電変換素子23に対向する面上に常温において液
体の液体金属(図示せず)を綿棒等を用いて塗布してお
く。熱電変換素子23の両面にも同様にして液体金属を
塗布しておく。基板22上に格子状電極ホルダ27を載
置し、その透孔内に電極25を遊嵌する。
Before assembly, the electrodes 24, 2
A liquid metal (not shown) that is liquid at room temperature is applied to the surface of No. 5 facing the thermoelectric conversion element 23 using a cotton swab or the like. Liquid metal is similarly applied to both surfaces of the thermoelectric conversion element 23. The grid-shaped electrode holder 27 is placed on the substrate 22, and the electrodes 25 are loosely fitted in the through holes.

【0021】次いで、その上に格子状素子ホルダ30を
載置し、その透孔内にそれぞれ熱電変換素子23を遊嵌
し、その上に格子状電極ホルダ26を重ねる。その透孔
のそれぞれに電極24を遊嵌させ、更に基板を重ねる。
なお、基板の内面側には、必要に応じて熱伝導グリース
を塗布しておく。
Next, the grid-like element holder 30 is placed thereon, the thermoelectric conversion elements 23 are loosely fitted in the through holes, and the grid-like electrode holder 26 is placed thereon. The electrodes 24 are loosely fitted in the respective through holes, and the substrates are further stacked.
Thermal conductive grease is applied to the inner surface of the substrate as needed.

【0022】最後にボルトを基板,各ホルダ26,3
0,27の4隅の透孔に挿通して、ナット(図示せず)
等を用いたり、基板22の4隅の孔にタップねじを形成
しておき、これに螺合したりすることで全体を固定す
る。この際スペーサを高温側となる格子状電極ホルダ2
6と格子状素子ホルダ30の間に介在させる。なお、ス
ぺーサは低温側となる格子状電極ホルダ27と格子状素
子ホルダ30の間でも、また両方に介在させてもよい。
Finally, the bolt is used as a substrate and each holder 26, 3 is
Insert the nuts (not shown) through the through holes at the four corners of 0 and 27.
Etc., or tap screws are formed in the holes at the four corners of the substrate 22 and screwed into the tap screws to fix the whole. At this time, the spacer is placed on the high temperature side of the grid electrode holder 2
6 and the lattice-shaped element holder 30. The spacer may be interposed between the grid electrode holder 27 and the grid element holder 30 on the low temperature side, or both.

【0023】スペーサを高温側に入れれば、高温側の格
子状電極ホルダ26が落下するのが防がれる。また低温
側に入れれば、格子状素子ホルダ30の落下が防止され
る。
If the spacer is placed on the high temperature side, the grid electrode holder 26 on the high temperature side can be prevented from falling. Further, if it is placed on the low temperature side, the lattice element holder 30 is prevented from falling.

【0024】ここで、本発明に使用する常温において液
体の液体金属について説明する。使用する液体金属とし
ては、例えば水銀、ガリウム(30℃で液体)にインジ
ウム(常温固体)を溶かしたもの等が挙げられる。後述
する図2,3に示す特性が得られた実験では、ガリウ
ム:インジウムは重量比で3:1の割合で混合したもの
を使用した。この混合比では室温で液体である。上記に
よりさらにガリウムが多い場合は液体であるが、逆にイ
ンジウムの量が増えると固体が析出するが、温度を上げ
れば溶ける。
Here, the liquid metal used in the present invention which is liquid at room temperature will be described. Examples of the liquid metal used include mercury and gallium (liquid at 30 ° C.) in which indium (solid at room temperature) is dissolved. In the experiment in which the characteristics shown in FIGS. 2 and 3 described later were obtained, gallium: indium mixed at a weight ratio of 3: 1 was used. It is liquid at room temperature at this mixing ratio. As described above, when the amount of gallium is further large, it is a liquid, but conversely, when the amount of indium is increased, a solid is deposited, but it is melted when the temperature is raised.

【0025】なお、電極24,25と熱電変換素子23
の直接接触もあるが、実験の結果によれば液体金属を用
いない場合には接触不良のため、発電動作が起きなかっ
た。
The electrodes 24 and 25 and the thermoelectric conversion element 23
However, according to the result of the experiment, the power generation operation did not occur because of poor contact when the liquid metal was not used.

【0026】基板には陽極酸化と封孔処理により絶縁被
覆加工を施したアルミニウム等の高熱伝導率材料を使用
しても良い。熱電変換素子23は、250℃までの間で
熱電変換効率が優れているビスマステルル系熱電半導体
素子が好適であり、p型素子とn型素子を交互に配置し
電気的に直列接続する。電極24,25(材料:銅及び
銅合金など)は、液体金属(材料:インジウム:ガリウ
ムが重量比で3:1)によりこれらの熱電変換素子23
を電気的に直列接続し、最終的な電気出力を電気出力端
子から得る。格子状電極ホルダ26,27および格子状
素子ホルダ30(材料:ベークライトなど)は、電極2
4,25および熱電変換素子23を定位置に収める役割
をする。
The substrate may be made of a material having a high thermal conductivity, such as aluminum, which has been subjected to an insulating coating process by anodic oxidation and sealing treatment. The thermoelectric conversion element 23 is preferably a bismuth tellurium-based thermoelectric semiconductor element having excellent thermoelectric conversion efficiency up to 250 ° C., and p-type elements and n-type elements are alternately arranged and electrically connected in series. The electrodes 24 and 25 (materials: copper and copper alloys, etc.) are made of liquid metal (material: indium: gallium in a weight ratio of 3: 1).
Are electrically connected in series and the final electrical output is obtained from the electrical output terminal. The grid electrode holders 26 and 27 and the grid element holder 30 (material: Bakelite etc.)
4, 25 and the thermoelectric conversion element 23 are put in place.

【0027】次に、電極24,25と熱電素子23との
接触について述べる。第4図に、長方形電極の短辺の断
面を示し、第5図に、二つの電極に挟まれた熱電素子を
示す。このように、高温側の電極の熱電素子に接する面
を凸状に形成すると、接触面の余剰な液体金属は辺の方
に押し出され、接触部においては、きわめて薄い膜状の
液体金属のみとなり、電気抵抗及び熱抵抗が減少する。
Next, the contact between the electrodes 24 and 25 and the thermoelectric element 23 will be described. FIG. 4 shows a cross section of a short side of a rectangular electrode, and FIG. 5 shows a thermoelectric element sandwiched between two electrodes. In this way, when the surface of the electrode on the high temperature side that contacts the thermoelectric element is formed in a convex shape, the excess liquid metal on the contact surface is extruded toward the side, and at the contact portion, only a very thin film-shaped liquid metal is formed. , Electrical resistance and thermal resistance are reduced.

【0028】具体的な電極の作り方は、オス・メスの金
型を作り、プレス機で打ち抜くことで作成する。したが
って、形状は、ほぼ平面であるが、プレス機により打ち
抜かれる際に生ずる曲面が、矩形のコーナー全体の端断
面に形成される。電極材料が銅であるため、”粘っこ
い”ので、切断の断面がシャープではない。実験に用い
た電極は、10.8×3.8mmである。
A specific method of forming the electrode is to prepare a male / female mold and punch it with a press machine. Therefore, although the shape is almost flat, a curved surface formed when punching by a press machine is formed in the end cross section of the entire rectangular corner. Since the electrode material is copper, it is "sticky", so the cross section of the cut is not sharp. The electrodes used in the experiment are 10.8 × 3.8 mm.

【0029】図2に、ハンダ付けによる熱電変換モジュ
ール、インジウム・ガリウム(重量比3:1)の液体金
属を用いた熱電変換モジュール20の2個の出力特性及
び凸状電極を用いた場合の変換効率を示す。液体金属1
及び2は、サイズおよび材質ならびに液体金属の組成は
同一であり、データのばらつきを示す。熱電変換素子2
3としてビスマス・テルルが用いられた。図中に示され
た「変換効率」とは、熱電モジュールに与えた熱エネル
ギーに対して、熱電変換モジュールから得られた電気出
力の割合である。また、「高温側温度」とは、モジュー
ルに温度差を与えた際の高温側の温度を表しており、冷
却側は、10℃の冷水で冷やして実験を行った。図によ
れば、凸状の電極を用いると、変換効率が、従来の半田
付けによるもの、液体金属であっても凹状の電極による
ものに比べて約0.5%向上することが判明した。
FIG. 2 shows two output characteristics of a thermoelectric conversion module 20 by soldering, a thermoelectric conversion module 20 using a liquid metal of indium gallium (weight ratio 3: 1), and conversion using a convex electrode. Show efficiency. Liquid metal 1
2 and 2 have the same size and material, and the composition of the liquid metal, and show data variations. Thermoelectric conversion element 2
Bismuth tellurium was used as 3. The “conversion efficiency” shown in the figure is the ratio of the electric output obtained from the thermoelectric conversion module to the thermal energy given to the thermoelectric module. The "high temperature side temperature" represents the temperature on the high temperature side when a temperature difference is applied to the modules, and the cooling side was cooled with cold water at 10 ° C to perform the experiment. According to the figure, it has been found that the use of the convex electrode improves the conversion efficiency by about 0.5% as compared with the conventional soldering and the liquid metal with the concave electrode.

【0030】次に、液体金属塗布量の違いによる変換効
率の経過時間にともなう減少傾向を第3図に示す。この
図から明らかなように、電極に塗布した液体金属の厚み
が20μm以下であればかなりの長時間変換効率は、低
下しないことが判明した。
Next, FIG. 3 shows the decreasing tendency of the conversion efficiency with the passage of time due to the difference in the coating amount of the liquid metal. As is clear from this figure, it was found that if the thickness of the liquid metal applied to the electrode is 20 μm or less, the long-term conversion efficiency does not significantly decrease.

【0031】[0031]

【発明の効果】熱電変換モジュールにおいて、熱電変換
素子と接触する電極片の形状を熱電変換素子に面する方
を凸に形成することにより、接触面の液体金属がきわめ
て薄くなり、電気抵抗及び熱抵抗が減少した。また、電
極に塗布した液体金属の厚みを薄くすると、寿命が従来
のものに比べてかなり向上した。
EFFECTS OF THE INVENTION In the thermoelectric conversion module, the shape of the electrode piece that contacts the thermoelectric conversion element is formed to be convex on the side facing the thermoelectric conversion element, so that the liquid metal on the contact surface becomes extremely thin and the electrical resistance and heat The resistance has decreased. In addition, when the thickness of the liquid metal applied to the electrodes was reduced, the life was significantly improved compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明に係る液体金属接合熱電モジュールの
分解斜視図
FIG. 1 is an exploded perspective view of a liquid metal junction thermoelectric module according to the present invention.

【図2】変換効率の比較図FIG. 2 Comparison diagram of conversion efficiency

【図3】寿命の比較図[Figure 3] Life comparison chart

【図4】本願発明に係る電極の拡大図FIG. 4 is an enlarged view of an electrode according to the present invention.

【図5】本願発明に係る電極及び熱電変換素子の接触状
況の模式図
FIG. 5 is a schematic diagram of a contact state of an electrode and a thermoelectric conversion element according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 敏隆 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshitaka Ota             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の熱電変換素子と、該熱電変換素子
を相互に接続するための電極とを備えており、前記熱電
変換素子と前記電極とは相対的に可動に配設され、かつ
電気的接続が常温において液体の液体金属により行われ
る熱電変換モジュールにおいて、高温側の前記電極は、
前記熱電変換素子に対して凸となる形状に形成されてい
ることを特徴とする熱電変換モジュール。
1. A thermoelectric conversion element, comprising: a plurality of thermoelectric conversion elements; and an electrode for connecting the thermoelectric conversion elements to each other, wherein the thermoelectric conversion element and the electrode are arranged so as to be movable relative to each other. In the thermoelectric conversion module in which the electrical connection is performed by a liquid metal that is liquid at room temperature, the electrode on the high temperature side is
A thermoelectric conversion module, which is formed in a shape that is convex with respect to the thermoelectric conversion element.
【請求項2】 上記電極は、銅及び銅を主成分とする合
金から成ることを特徴とする請求項1記載の熱電変換モ
ジュール。
2. The thermoelectric conversion module according to claim 1, wherein the electrode is made of copper and an alloy containing copper as a main component.
【請求項3】 上記電極の凸型の形状は、打ち抜き加工
により作成されることを特徴とする請求項1記載の熱電
変換モジュール。
3. The thermoelectric conversion module according to claim 1, wherein the convex shape of the electrode is formed by punching.
【請求項4】 複数の熱電変換素子と、該熱電変換素子
を相互に接続するための電極とを備えており、前記熱電
変換素子と前記電極とは相対的に可動に配設され、かつ
電気的接続が常温において液体の液体金属により行われ
る熱電変換モジュールにおいて、高温側前記電極の前記
熱電変換素子に接する面に塗布された液体金属の厚みは
20μm以下であることを特徴とする熱電変換モジュー
ル。
4. A thermoelectric conversion element, comprising: a plurality of thermoelectric conversion elements; and an electrode for connecting the thermoelectric conversion elements to each other, wherein the thermoelectric conversion element and the electrode are arranged so as to be relatively movable, and electrically. In the thermoelectric conversion module in which the physical connection is made by a liquid metal that is liquid at room temperature, the thickness of the liquid metal applied to the surface of the high temperature side electrode that contacts the thermoelectric conversion element is 20 μm or less. .
JP2001225105A 2001-07-25 2001-07-25 Liquid metal bonded thermoelectric conversion module Expired - Lifetime JP3629533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225105A JP3629533B2 (en) 2001-07-25 2001-07-25 Liquid metal bonded thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225105A JP3629533B2 (en) 2001-07-25 2001-07-25 Liquid metal bonded thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2003037300A true JP2003037300A (en) 2003-02-07
JP3629533B2 JP3629533B2 (en) 2005-03-16

Family

ID=19058151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225105A Expired - Lifetime JP3629533B2 (en) 2001-07-25 2001-07-25 Liquid metal bonded thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP3629533B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073633A (en) * 2004-08-31 2006-03-16 Toshiba Corp Thermoelectric conversion device and its manufacturing method
JP2007266138A (en) * 2006-03-27 2007-10-11 Yamaha Corp Thermoelectric module
WO2008150004A1 (en) * 2007-06-07 2008-12-11 Sumitomo Chemical Company, Limited Thermoelectric conversion module
DE102011007395A1 (en) * 2011-04-14 2012-10-18 Behr Gmbh & Co. Kg Thermoelectric module for use in thermoelectric generator, for producing electrical energy, has device for generating electrical energy from heat, where contact surface of device is in thermal or electrical contact with connector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073633A (en) * 2004-08-31 2006-03-16 Toshiba Corp Thermoelectric conversion device and its manufacturing method
JP4521236B2 (en) * 2004-08-31 2010-08-11 株式会社東芝 Thermoelectric conversion device and method of manufacturing thermoelectric conversion device
JP2007266138A (en) * 2006-03-27 2007-10-11 Yamaha Corp Thermoelectric module
WO2008150004A1 (en) * 2007-06-07 2008-12-11 Sumitomo Chemical Company, Limited Thermoelectric conversion module
EP2159854A1 (en) * 2007-06-07 2010-03-03 Sumitomo Chemical Company, Limited Thermoelectric conversion module
EP2159854A4 (en) * 2007-06-07 2011-12-07 Sumitomo Chemical Co Thermoelectric conversion module
DE102011007395A1 (en) * 2011-04-14 2012-10-18 Behr Gmbh & Co. Kg Thermoelectric module for use in thermoelectric generator, for producing electrical energy, has device for generating electrical energy from heat, where contact surface of device is in thermal or electrical contact with connector

Also Published As

Publication number Publication date
JP3629533B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP4949832B2 (en) Thermoelectric conversion module
US6563039B2 (en) Thermoelectric unicouple used for power generation
JP2006156993A (en) Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
KR102070390B1 (en) Thermoelectric moudule and device using the same
JP2003309294A (en) Thermoelectric module
KR102022429B1 (en) Cooling thermoelectric moudule and method of manufacturing method of the same
KR20160117944A (en) Thermoelectric device moudule and device using the same
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
WO2006043402A1 (en) Thermoelectric conversion module
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
KR20150021366A (en) Thermoelectric element thermoelectric moudule using the same, and cooling device using thermoelectric moudule
JP3629533B2 (en) Liquid metal bonded thermoelectric conversion module
KR101508793B1 (en) Manufacturing method of heat exchanger using thermoelectric module
CN107534077B (en) Thermoelectric element, thermoelectric module, and heat conversion device including thermoelectric module
CN1167141C (en) Micro temperature difference battery made of one-dimensional nanometer linear array structure thermo-electric material
KR20180029409A (en) Thermoelectric element
CN112805842A (en) Thermoelectric module
US3392439A (en) Method and materials for obtaining low-resistance bonds to telluride thermoelectric bodies
KR102456680B1 (en) Thermoelectric element
KR102332357B1 (en) Thermoelectric moudule and device using the same
JP3007904U (en) Thermal battery
US3594237A (en) Thermoelectric device including tungsten granules for obtaining low resistance bonds
US20230139556A1 (en) Thermoelectric conversion module
KR20170107273A (en) Thermoelectric module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Ref document number: 3629533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term