JP2003035189A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine

Info

Publication number
JP2003035189A
JP2003035189A JP2001225361A JP2001225361A JP2003035189A JP 2003035189 A JP2003035189 A JP 2003035189A JP 2001225361 A JP2001225361 A JP 2001225361A JP 2001225361 A JP2001225361 A JP 2001225361A JP 2003035189 A JP2003035189 A JP 2003035189A
Authority
JP
Japan
Prior art keywords
exhaust
way catalyst
fuel ratio
air
emission control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001225361A
Other languages
Japanese (ja)
Other versions
JP4138277B2 (en
Inventor
Yoshiaki Matsuzono
義明 松薗
Masahiro Sakanushi
政浩 坂主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001225361A priority Critical patent/JP4138277B2/en
Publication of JP2003035189A publication Critical patent/JP2003035189A/en
Application granted granted Critical
Publication of JP4138277B2 publication Critical patent/JP4138277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system, capable of reducing the use amount of a noble metal three-way catalyst to reduce manufacturing cost, keeping emission control rate high and sufficiently performing an exhaust emission control from the point of time immediately after engine start. SOLUTION: In an exhaust emission control system 1, a trapping device 7 for trapping at least one of HC and NOx, a first emission control implement 81 , having a noble metal three-way catalyst and an oxygen storage agent and a second emission control implement 82 provided with a three-way catalyst having a perovskite type double oxide, are arranged sequentially from the upstream side on the downstream side of an exhaust pipe 3 in an internal combustion engine 2. The oxygen storage agent has the function for regulating the air/fuel ratio of an exhaust gas introduced into the second emission control implement 82 , so as to be within the A/F Window in the three-way catalyst having the perovskite-type double oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
システムに関する。
TECHNICAL FIELD The present invention relates to an exhaust gas purification system for an internal combustion engine.

【0002】[0002]

【従来の技術】従来,この種のシステムとして,Pt,
Rh,Pd等の貴金属よりなる三元触媒,つまり貴金属
三元触媒を用いたものが公知である。
2. Description of the Related Art Conventionally, Pt,
A three-way catalyst made of a noble metal such as Rh and Pd, that is, one using a noble metal three-way catalyst is known.

【0003】[0003]

【発明が解決しようとする課題】貴金属三元触媒におい
ては,高い排気浄化率を得ることが可能な空燃比の幅,
つまりA/F Windowが広く,したがって,貴金
属三元触媒を用いた排気浄化システムにおいては,排気
浄化率を向上させるための空燃比制御が比較的容易とな
る,といった利点がある反面,貴金属三元触媒の使用に
起因して製造コストが高い,という問題があった。また
貴金属三元触媒は機関始動後活性温度に昇温するまでは
排気浄化能が低い,という問題もあった。
In the noble metal three-way catalyst, the width of the air-fuel ratio that can obtain a high exhaust gas purification rate,
In other words, the A / F window is wide, and therefore, in the exhaust gas purification system using the noble metal three-way catalyst, there is an advantage that the air-fuel ratio control for improving the exhaust gas purification rate becomes relatively easy, while the noble metal three-way catalyst is used. There is a problem that the manufacturing cost is high due to the use of the catalyst. Another problem is that the noble metal three-way catalyst has a low exhaust gas purification performance until the temperature rises to the activation temperature after the engine is started.

【0004】[0004]

【課題を解決するための手段】本発明は,貴金属三元触
媒の使用量を減じて製造コストの低減を図ると共に排気
浄化率に関してはそれを高く維持することができ,また
機関始動直後から排気の浄化を十分に行い得るようにし
た前記排気浄化システムを提供することを目的とする。
According to the present invention, the amount of precious metal three-way catalyst used can be reduced to reduce the manufacturing cost, and the exhaust gas purification rate can be maintained high. It is an object of the present invention to provide the exhaust gas purification system capable of sufficiently purifying the exhaust gas.

【0005】前記目的を達成するため本発明によれば,
内燃機関における排気系の上流側から下流側に向って順
次,HCおよびNOxの少なくとも一方を捕捉するトラ
ップ装置,貴金属三元触媒と共に酸素ストレージ剤を有
する第1浄化器およびペロブスカイト型複酸化物を有す
る三元触媒を備えた第2浄化器を配設し,前記酸素スト
レージ剤は,前記第2浄化器に導入される排気の空燃比
を,前記ペロブスカイト型複酸化物を有する三元触媒に
おけるA/F Windowに収まるように調整する機
能を有する,内燃機関の排気浄化システムが提供され
る。
According to the present invention to achieve the above object,
A trap device for sequentially capturing at least one of HC and NOx from the upstream side to the downstream side of an exhaust system in an internal combustion engine, a first purifier having a noble metal three-way catalyst and an oxygen storage agent, and a perovskite-type mixed oxide A second purifier equipped with a three-way catalyst is provided, and the oxygen storage agent determines the air-fuel ratio of the exhaust gas introduced into the second purifier as A / in the three-way catalyst having the perovskite type double oxide. Provided is an exhaust gas purification system for an internal combustion engine, which has a function of adjusting so as to fit within F Window.

【0006】ペロブスカイト型複酸化物を有する三元触
媒は,貴金属三元触媒と略同等の触媒能を有する。そこ
で,両三元触媒を二段に配列すると,高価な貴金属三元
触媒の使用量を減じることが可能であり,これにより排
気浄化システムの製造コストを低減することができる。
The three-way catalyst having a perovskite type double oxide has a catalytic ability almost equal to that of a noble metal three-way catalyst. Therefore, by arranging the two three-way catalysts in two stages, it is possible to reduce the amount of expensive precious metal three-way catalysts used, and thereby reduce the manufacturing cost of the exhaust gas purification system.

【0007】内燃機関の排気空燃比を理論空燃比となる
ように制御した場合,貴金属三元触媒を備えた第1浄化
器入口の排気空燃比は,種々の外部要因等によって比較
的大きなばらつきを生じるが,貴金属三元触媒は広いA
/F Windowを有するので,前記ばらつきにも拘
らず排気浄化能を発揮する。同時に酸素ストレージ剤が
酸素ストレージ効果を発揮するので,第1浄化器出口の
排気空燃比はそのばらつきが僅少となるように略直線状
に収束される。
When the exhaust air-fuel ratio of the internal combustion engine is controlled to be the stoichiometric air-fuel ratio, the exhaust air-fuel ratio at the inlet of the first purifier equipped with the noble metal three-way catalyst shows a relatively large variation due to various external factors. A precious metal three-way catalyst has a wide A
Since it has / F Window, the exhaust gas purifying ability is exhibited despite the variation. At the same time, the oxygen storage agent exerts an oxygen storage effect, so that the exhaust air-fuel ratio at the outlet of the first purifier is converged in a substantially straight line shape so that its variation is small.

【0008】ペロブスカイト型複酸化物を有する三元触
媒におけるA/F Windowは,貴金属三元触媒の
それに比べて大幅に狭いが,酸素ストレージ剤による前
記排気空燃比の収束によって,その排気空燃比を幅狭の
A/F Windowに収めることができ,これにより
ペロブスカイト型複酸化物を備えた三元触媒は優れた排
気浄化能を発揮する。
The A / F window in a three-way catalyst having a perovskite type double oxide is significantly narrower than that of a noble metal three-way catalyst, but the exhaust air-fuel ratio is reduced by the convergence of the exhaust air-fuel ratio by the oxygen storage agent. It can be accommodated in a narrow A / F window, so that the three-way catalyst provided with the perovskite type complex oxide exhibits excellent exhaust gas purification ability.

【0009】ペロブスカイト型複酸化物としては,鉱石
であるバストネサイトから抽出されたランタノイド混合
物を含むものを用いると経済的である。何故ならば,バ
ストネサイトからランタノイド単体を抽出するには多く
の工数を有するためランタノイド単体の生産コストが高
くなるが,ランタノイド混合物はランタノイド単体に比
べて少ない工数で得られるので,その生産コストはラン
タノイド単体のそれよりも大幅に安くなるからである。
It is economical to use a perovskite type complex oxide containing a lanthanoid mixture extracted from the ore bastnasite. Because the lanthanoid simple substance has a lot of man-hours to extract the lanthanoid simple substance from the bastnasite, the production cost of the lanthanoid simple substance is high, but the production cost of the lanthanoid mixture is smaller than that of the lanthanoid simple substance. This is because it is significantly cheaper than that of the lanthanoid alone.

【0010】またトラップ装置は内燃機関始動直後から
HCおよび/またはNOxを捕捉し,これにより排気の
浄化が行われる。排気の昇温に伴いトラップ装置はH
C,NOxを放出するが,そのHC,NOxは活性温度
に昇温している第1および第2浄化器によって酸化,還
元処理される。さらに,トラップ装置を用いることによ
って,早期活性のために第1,第2浄化器を機関近傍に
配置する必要がなく,システムレイアウトの自由度が大
になると共に早期活性のためにセル数を増加する必要も
ないから機関の出力低下を招くこともない。
Further, the trap device traps HC and / or NOx immediately after the internal combustion engine is started, whereby the exhaust gas is purified. As the temperature of the exhaust gas rises, the trap device becomes H
Although C and NOx are released, the HC and NOx are oxidized and reduced by the first and second purifiers whose temperature is raised to the activation temperature. Further, by using the trap device, it is not necessary to dispose the first and second purifiers in the vicinity of the engine for early activation, which increases the degree of freedom in system layout and increases the number of cells for early activation. Since there is no need to do so, there will be no reduction in engine output.

【0011】[0011]

【発明の実施の形態】図1に示す第1実施例において,
排気浄化システム1は,内燃機関2の排気系,この例で
は排気管3に配置された浄化設備4と,内燃機関2に供
給される混合気の空燃比(A/F)を制御する空燃比制
御装置5とを備えている。燃料噴射装置6は,空燃比制
御装置5からの制御信号に基づいた量の燃料を内燃機関
2に噴射する。
BEST MODE FOR CARRYING OUT THE INVENTION In the first embodiment shown in FIG.
The exhaust purification system 1 is an exhaust system of an internal combustion engine 2, a purification facility 4 arranged in an exhaust pipe 3 in this example, and an air-fuel ratio for controlling an air-fuel ratio (A / F) of an air-fuel mixture supplied to the internal combustion engine 2. And a control device 5. The fuel injection device 6 injects an amount of fuel into the internal combustion engine 2 based on the control signal from the air-fuel ratio control device 5.

【0012】浄化設備4は,排気管3の上流側から下流
側に向って順次配設されたトラップ装置7,貴金属三元
触媒と共に酸素ストレージ剤を有する第1浄化器81
よびペロブスカイト型複酸化物を有する三元触媒(以
下,本欄においてペロブスカイト型三元触媒と言う。)
を備えた第2浄化器82 よりなる。酸素ストレージ剤
は,第2浄化器82 に導入される排気の空燃比をペロブ
スカイト型三元触媒が持つ狭いA/F Windowに
収まるように調整する機能を有する。トラップ装置7は
公知のものであって,機関始動直後からHCおよびNO
xの一方,実施例では,両方をトラップする機能を有す
る。
The purification equipment 4 comprises a trap device 7, which is sequentially arranged from the upstream side to the downstream side of the exhaust pipe 3, a first purifier 8 1 having an oxygen storage agent together with a noble metal three-way catalyst, and a perovskite type double oxidation. Three-way catalyst having a substance (hereinafter referred to as a perovskite type three-way catalyst in this column)
It comprises a second purifier 8 2 equipped with. The oxygen storage agent has a function of adjusting the air-fuel ratio of the exhaust gas introduced into the second purifier 8 2 so that it falls within the narrow A / F window of the perovskite type three-way catalyst. The trap device 7 is a well-known device, and the HC and NO
One of x, and in the embodiment, has a function of trapping both.

【0013】排気管3において,浄化設備4の上流側に
空燃比センサ(O2 センサ)9が配置され,その空燃比
センサ9は,内燃機関2から排出されて浄化設備4に導
入される排気の空燃比,したがって内燃機関2に供給さ
れた混合気の空燃比を酸素濃度として検出する。空燃比
制御装置5は,空燃比センサ9からの信号に基づいて,
内燃機関2に供給される混合気の空燃比を,排気管3の
浄化設備4上流,つまり第1浄化器81 上流における排
気空燃比が理論空燃比(A/F=14.7)になるよう
に制御する。
In the exhaust pipe 3, an air-fuel ratio sensor (O 2 sensor) 9 is arranged upstream of the purification equipment 4, and the air-fuel ratio sensor 9 is discharged from the internal combustion engine 2 and introduced into the purification equipment 4. Of the air-fuel ratio of the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2 is detected as the oxygen concentration. The air-fuel ratio control device 5, based on the signal from the air-fuel ratio sensor 9,
The air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2 becomes the stoichiometric air-fuel ratio (A / F = 14.7) at the upstream of the purification equipment 4 of the exhaust pipe 3, that is, at the upstream of the first purifier 8 1. To control.

【0014】前記構成において,空燃比センサ9によっ
て,内燃機関2に供給された混合気の空燃比が検出され
ると,その検出信号は空燃比制御装置5にフィードバッ
クされる。空燃比制御装置5においては,前記検出信号
に基づいて目標空燃比,つまり浄化設備4上流における
排気空燃比が理論空燃比となるように燃料噴射量が算出
され,その量の燃料が燃料噴射装置6から内燃機関2に
噴射される。
In the above structure, when the air-fuel ratio sensor 9 detects the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2, the detection signal is fed back to the air-fuel ratio controller 5. In the air-fuel ratio control device 5, the fuel injection amount is calculated based on the detection signal so that the target air-fuel ratio, that is, the exhaust air-fuel ratio upstream of the purification equipment 4, becomes the stoichiometric air-fuel ratio, and the amount of fuel is the fuel injection device. 6 is injected into the internal combustion engine 2.

【0015】内燃機関2の排気空燃比を理論空燃比とな
るように制御した場合,第1浄化器81 入口の排気空燃
比は,種々の外部要因等によって比較的大きなばらつき
を生じるが,貴金属三元触媒は広いA/F Windo
wを有するので,前記ばらつきにも拘らず排気浄化能を
発揮する。同時に,酸素ストレージ剤は酸素ストレージ
効果を発揮するので,第1浄化器81 出口の排気空燃比
はそのばらつきが僅少となるように略直線状に収束され
る。
When the exhaust air-fuel ratio of the internal combustion engine 2 is controlled so as to be the stoichiometric air-fuel ratio, the exhaust air-fuel ratio at the inlet of the first purifier 8 1 causes a relatively large variation due to various external factors, etc. Three-way catalyst has a wide A / F window
Since it has w, the exhaust gas purification performance is exhibited despite the variation. At the same time, since the oxygen storage agent exerts an oxygen storage effect, the exhaust air-fuel ratio at the outlet of the first purifier 8 1 is converged in a substantially linear shape so that its variation is small.

【0016】ペロブスカイト型三元触媒が持つA/F
Windowは,貴金属三元触媒のそれに比べて大幅に
狭いが,酸素ストレージ剤による前記排気空燃比の収束
によって,その排気空燃比を幅狭のA/F Windo
wに収めることができ,これによりペロブスカイト型三
元触媒は優れた排気浄化能を発揮する。
A / F of the perovskite type three-way catalyst
Although the window is significantly narrower than that of the noble metal three-way catalyst, the exhaust air-fuel ratio is converged by the oxygen storage agent, so that the exhaust air-fuel ratio is narrowed.
w, which allows the perovskite type three-way catalyst to exhibit excellent exhaust gas purification performance.

【0017】またトラップ装置7は内燃機関2始動直後
からHCおよび/またはNOxを捕捉し,これにより排
気の浄化が行われる。排気の昇温に伴いトラップ装置7
はHC,NOxを放出するが,そのHC,NOxは活性
温度に昇温している第1および第2浄化器81 ,82
よって酸化,還元処理される。さらに,トラップ装置7
を用いることによって,早期活性のために第1,第2浄
化器81 ,82 を機関2近傍に配置する必要がなく,シ
ステムレイアウトの自由度が大になると共に早期活性の
ためにセル数を増加する必要もないから機関2の出力低
下を招くこともない。
Further, the trap device 7 captures HC and / or NOx immediately after the start of the internal combustion engine 2, whereby the exhaust gas is purified. Trap device 7 with temperature rise of exhaust gas
Releases HC and NOx, and the HC and NOx are oxidized and reduced by the first and second purifiers 8 1 and 8 2 whose temperature has risen to the activation temperature. Furthermore, the trap device 7
By using, it is not necessary to dispose the first and second purifiers 8 1 and 8 2 in the vicinity of the engine 2 for early activation, the degree of freedom in system layout is increased, and the number of cells for early activation is increased. Since it is not necessary to increase the output of the engine 2, the output of the engine 2 is not reduced.

【0018】酸素ストレージ剤としては公知のCeZr
O,CeO2 等が用いられる。
CeZr known as an oxygen storage agent
O, CeO 2 or the like is used.

【0019】バストネサイトから抽出されたランタノイ
ド混合物を含むペロブスカイト型複酸化物としては,一
般式:Aa-x X MOb で表わされ,Aはバストネサイ
トから抽出されたランタノイド混合物であり,Bは2価
または1価の陽イオンであり,Mは,原子番号22から
30,40から51および73から80までの元素群か
ら選択された少なくとも1つの元素であり,aは1また
は2であり,bはaが1のとき3,またはaが2のとき
4であり,xは0≦x<0.7である,といったものが
用いられる。
A perovskite type complex oxide containing a lanthanoid mixture extracted from bastnasite is represented by the general formula: A ax B x MO b , where A is a lanthanoid mixture extracted from bastnasite. B is a divalent or monovalent cation, M is at least one element selected from the group of elements having atomic numbers 22 to 30, 40 to 51 and 73 to 80, and a is 1 or 2 Yes, b is 3, when a is 1, or 4 when a is 2, and x is 0 ≦ x <0.7.

【0020】ペロブスカイト型複酸化物には,例えばL
0.6 Ca0.4 CoO3 (Lnはランタノイドで,L
a,Ce,Pr,Nd等を含む。以下同じ),Ln0.83
Sr0. 17MnO3 ,Ln0.7 Sr0.3 CrO3 ,Ln
0.6 Ca0.4 Fe0.8 Mn0.2 3 ,Ln0.8 Sr0.2
Mn0.9 Ni0.04Ru0.063 ,Ln0.8 0.2 Mn
0.95Ru0.053 ,Ln0.7 Sr0.3 Cr0.95Ru0.05
3 ,LnNiO3 ,Ln2(Cu0.6 Co0.2 Ni
0.2 )O4 ,Ln0.8 0.2 Mn0.95Ru0.053 等が
該当する。
The perovskite type complex oxide is, for example, L
n0.6Ca0.4CoO3(Ln is a lanthanoid, L
a, Ce, Pr, Nd, etc. are included. The same shall apply hereinafter), Ln0.83
Sr0. 17MnO3, Ln0.7Sr0.3CrO3, Ln
0.6Ca0.4Fe0.8Mn0.2O 3, Ln0.8Sr0.2
Mn0.9Ni0.04Ru0.06O3, Ln0.8K0.2Mn
0.95Ru0.05O3, Ln0.7Sr0.3Cr0.95Ru0.05
O3, LnNiO3, Ln2(Cu0.6Co0.2Ni
0.2) OFour, Ln0.8K0.2Mn0.95Ru0.05O3Etc.
Applicable

【0021】このようなペロブスカイト型複酸化物は,
国際公開第WO97/37760号(特表2000−5
15057号)明細書および図面に開示されており,こ
こに開示されたものを本発明において用いることが可能
である。また前記のような空燃比制御装置5は,本出願
人の出願に係る特開昭60−1342号公報に開示され
ており,ここに開示された電子コントロールユニット5
が本発明において用いられる。
Such a perovskite type complex oxide is
International Publication No. WO97 / 37760 (Special Table 2000-5
No. 15057) disclosed in the specification and drawings, and those disclosed herein can be used in the present invention. Further, the air-fuel ratio control device 5 as described above is disclosed in Japanese Patent Application Laid-Open No. 60-1342 filed by the present applicant, and the electronic control unit 5 disclosed therein is disclosed.
Are used in the present invention.

【0022】以下,具体例について説明する。 〔I〕 第1浄化器81 に対応する従来型浄化器とし
て,本田技研工業株式会社製99年式アコードに用いら
れている排気浄化器であって,PdおよびRhならびに
CeZrOをγ−Al2 3 に担持させ,これを0.7
Lのハニカム支持体に保持させたものを用意した。
A specific example will be described below. As a conventional purifier corresponding to [I] first cleaner 81, Honda a 1999-type exhaust purifier used in the Accord Ltd., Pd and Rh and the CeZrO gamma-Al 2 Supported on O 3 and added to 0.7
What was hold | maintained at the honeycomb support body of L was prepared.

【0023】また第2浄化器82 として,国際公開WO
97/37760号明細書,実施例5に基づいて得られ
た,ペロブスカイト型複酸化物であるLn0.83Sr0.17
MnO3 を0.7Lのハニカム支持体にBET比表面積
が9.3m2 /gとなるように保持させたものを用意し
た。 〔II〕 従来型浄化器を内燃機関である1.5Lガソリ
ンエンジンの排気管に組込んで排気浄化ベンチテストを
行った。図1の場合と同様に,排気管において従来型浄
化器の上流側に空燃比センサを配置した。また同様の方
法で第2浄化器8 2 に関し排気浄化ベンチテストを行っ
た。
The second purifier 82As an international publication WO
97/37760, obtained on the basis of Example 5
In addition, Ln, which is a perovskite complex oxide0.83Sr0.17
MnO3BET specific surface area on 0.7 L honeycomb support
Is 9.3m2Prepare the one held so that it becomes / g
It was [II] A conventional purifier with a 1.5L gas
Exhaust purification bench test by incorporating it into the exhaust pipe of the engine
went. As in the case of Fig. 1, the conventional cleaning of the exhaust pipe
An air-fuel ratio sensor was placed upstream of the carburetor. Also similar
Second purifier 8 by law 2Exhaust purification bench test
It was

【0024】図2は従来型浄化器に関する排気空燃比と
排気浄化率との関係を示し,また図3は第2浄化器82
に関する排気空燃比と排気浄化率との関係を示す(理論
空燃比A/F=14.7)。図2,3を比較すると,ペ
ロブスカイト型三元触媒におけるA/F Window
は貴金属三元触媒のそれに比べて狭く,その貴金属三元
触媒のA/F Windowの約18%である。
FIG. 2 shows the relationship between the exhaust air-fuel ratio and the exhaust purification rate of the conventional purifier, and FIG. 3 shows the second purifier 8 2
Shows the relationship between the exhaust air-fuel ratio and the exhaust purification rate (theoretical air-fuel ratio A / F = 14.7). Comparing FIGS. 2 and 3, the A / F window in the perovskite type three-way catalyst is shown.
Is less than that of the noble metal three-way catalyst, which is about 18% of the A / F window of the noble metal three-way catalyst.

【0025】次に,従来型浄化器を1.5Lガソリンエ
ンジンを搭載した自動車の排気管に組込み,またその排
気管において,従来型浄化器の上,下流側にそれぞれ第
1,第2空燃比センサを配置して,従来型浄化器の入口
および出口における排気空燃比の経時変化を測定した。
下流側の第2空燃比センサの検出信号は第1空燃比セン
サにより算出された燃料噴射量を補正するために用いら
れる。
Next, the conventional purifier was incorporated into the exhaust pipe of an automobile equipped with a 1.5 L gasoline engine, and in the exhaust pipe, the first and second air-fuel ratios were provided above and below the conventional purifier, respectively. A sensor was placed to measure the change over time in the exhaust air-fuel ratio at the inlet and outlet of the conventional purifier.
The detection signal of the second air-fuel ratio sensor on the downstream side is used to correct the fuel injection amount calculated by the first air-fuel ratio sensor.

【0026】図4は,従来型浄化器の入口における排気
空燃比の経時変化を示す。図4より,入口における排気
空燃比には,前述のごとく,比較的大きなばらつきが生
じていることが判る。
FIG. 4 shows the change over time in the exhaust air-fuel ratio at the inlet of the conventional purifier. It can be seen from FIG. 4 that the exhaust air-fuel ratio at the inlet has a relatively large variation as described above.

【0027】図5は,従来型浄化器の出口における排気
空燃比の経時的変化を示す。図5より,CeZrOの酸
素ストレージ効果によって,出口における排気空燃比
が,前述のように略直線状に収束していることが判る。
FIG. 5 shows changes with time in the exhaust air-fuel ratio at the outlet of the conventional purifier. It can be seen from FIG. 5 that the exhaust air-fuel ratio at the outlet converges in a substantially linear shape as described above due to the oxygen storage effect of CeZrO.

【0028】このように収束された排気空燃比が,図3
に示したペロブスカイト型三元触媒におけるA/F W
indowに収まれば第2浄化器82 は高い排気浄化率
を発揮することになる。
The exhaust air-fuel ratio thus converged is shown in FIG.
A / FW in the perovskite-type three-way catalyst shown in
If it falls within the window, the second purifier 8 2 will exhibit a high exhaust purification rate.

【0029】そこで,第1浄化器81 として,Pt,P
dおよびRhならびにCeZrOをγ−Al2 3 に担
持させ,これを0.7Lのハニカム支持体に保持させた
ものを製造し,その第1浄化器81 について前記同様の
実車テストを行って第1浄化器81 の出口における排気
空燃比の経時変化を測定した。このように構成された第
1浄化器81 は比較的高い排気浄化能を有する。
Therefore, as the first purifier 8 1 , Pt, P
d and Rh and CeZrO were carried on γ-Al 2 O 3 and held on a 0.7 L honeycomb support, and the first purifier 8 1 was subjected to the same actual vehicle test as described above. The change with time of the exhaust air-fuel ratio at the outlet of the first purifier 8 1 was measured. The first purifier 8 1 thus configured has a relatively high exhaust gas purification capacity.

【0030】図6は第1浄化器81 の出口における排気
空燃比の経時変化を示す。図6から明らかなように,C
eZrOの酸素ストリージ効果によって,出口における
排気空燃比が,前述のように略直線状に収束しており,
しかも,その収束された排気空燃比が,図3に示したペ
ロブスカイト型三元触媒におけるA/F Windo
w,即ち14.73≦A/F≦14.76の幅内に収ま
っていることが判明した。
FIG. 6 shows changes with time in the exhaust air-fuel ratio at the outlet of the first purifier 8 1 . As is clear from FIG. 6, C
Due to the oxygen storage effect of eZrO, the exhaust air-fuel ratio at the outlet converges in a substantially straight line as described above,
Moreover, the converged exhaust air-fuel ratio is equal to the A / F Windo in the perovskite type three-way catalyst shown in FIG.
It was found that the width was within w, that is, 14.73 ≦ A / F ≦ 14.76.

【0031】このような第1浄化器81 と第2浄化器8
2 とを組合せると,第1浄化器81が持つ比較的高い排
気浄化能に,第2浄化器82 が発揮する高い排気浄化能
が加えられるので,排気浄化システム1の排気浄化率を
大いに高めることが可能である。
Such a first purifier 8 1 and a second purifier 8
When combined with 2 , the relatively high exhaust purification capacity of the first purifier 8 1 is added to the high exhaust purification capacity of the second purifier 8 2, so that the exhaust purification rate of the exhaust purification system 1 is increased. It can be greatly increased.

【0032】図7は第2実施例を示す。この場合,第1
浄化器81 は,主として第2浄化器82 へ導入される排
気の空燃比調整のために用いられており,排気の浄化
は,主として第2浄化器82 により行う。この場合,第
1浄化器81 を小型に構成して,その貴金属三元触媒の
使用量を減少させることが可能である。
FIG. 7 shows a second embodiment. In this case, the first
The purifier 8 1 is mainly used for adjusting the air-fuel ratio of the exhaust gas introduced into the second purifier 8 2 , and the exhaust gas is mainly purified by the second purifier 8 2 . In this case, it is possible to reduce the amount of the precious metal three-way catalyst used by configuring the first purifier 8 1 in a small size.

【0033】なお,ペロブスカイト型三元触媒における
A/F Windowを多少とも拡張するために,前記
複酸化物に少量のPd,Rh,Pt等の貴金属を添加す
ることは有効な手段である。
In order to expand the A / F window in the perovskite type three-way catalyst to some extent, it is an effective means to add a small amount of a noble metal such as Pd, Rh, Pt or the like to the complex oxide.

【0034】[0034]

【発明の効果】請求項1記載の発明によれば,前記のよ
うに構成することによって,貴金属三元触媒の使用量を
減じて製造コストの低減を図ると共に排気浄化率に関し
てはそれを高く維持し,また機関始動直後から排気の浄
化を十分に行い得るようにした,内燃機関の排気浄化シ
ステムを提供することができる。
According to the first aspect of the present invention, the construction as described above reduces the amount of the noble metal three-way catalyst used to reduce the manufacturing cost and keeps the exhaust gas purification rate high. Moreover, it is possible to provide an exhaust gas purification system for an internal combustion engine, which is capable of sufficiently purifying exhaust gas immediately after the engine is started.

【0035】請求項2記載の発明によれば,前記効果に
加え,ペロブスカイト型複酸化物の製造コストを減じ,
延いては排気浄化システムの製造コストを低減すること
ができる。
According to the second aspect of the present invention, in addition to the above effects, the production cost of the perovskite type complex oxide is reduced,
Consequently, the manufacturing cost of the exhaust gas purification system can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment.

【図2】貴金属三元触媒に関する排気空燃比と排気浄化
率の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an exhaust air-fuel ratio and an exhaust purification rate regarding a noble metal three-way catalyst.

【図3】ペロブスカイト型三元触媒に関する排気空燃比
と排気浄化率の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an exhaust air-fuel ratio and an exhaust purification rate regarding a perovskite type three-way catalyst.

【図4】従来型浄化器の入口における排気空燃比の経時
変化を示すグラフである。
FIG. 4 is a graph showing changes over time in the exhaust air-fuel ratio at the inlet of a conventional purifier.

【図5】従来型浄化器の出口における排気空燃比の経時
変化を示すグラフである。
FIG. 5 is a graph showing changes over time in the exhaust air-fuel ratio at the outlet of a conventional purifier.

【図6】第1浄化器の出口における排気空燃比の経時変
化を示すグラフである。
FIG. 6 is a graph showing changes over time in the exhaust air-fuel ratio at the outlet of the first purifier.

【図7】第2実施例のブロック図である。FIG. 7 is a block diagram of a second embodiment.

【符号の説明】[Explanation of symbols]

1 排気浄化システム 2 内燃機関 3 排気管(排気系) 7 トラップ装置 81 第1浄化器 82 第2浄化器1 Exhaust Purification System 2 Internal Combustion Engine 3 Exhaust Pipe (Exhaust System) 7 Trap Device 8 1 First Purifier 8 2 Second Purifier

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 F02D 41/14 310A F02D 41/14 310 B01D 53/36 103B Fターム(参考) 3G084 BA09 BA13 BA24 DA10 EB11 FA26 FA29 3G091 AA17 AB03 AB09 AB10 BA02 BA03 BA14 BA15 BA27 DC01 FA02 FA04 FB02 FB11 FC04 GA06 GB05W GB10W HA08 HA20 HA36 3G301 HA01 JA25 JA26 KA01 KA05 MA01 ND01 NE14 PD02Z 4D048 AA06 AA13 AA18 AB05 BA03X BA08X BA15X BA18X BA19X BA25Y BA28X BA30X BA31X BA32Y BA33X BA36Y BA37X BA38Y BA41X BA42X BB02 CC32 CC46 CD01 CD08 DA01 DA08 DA20 EA04 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/28 301 F02D 41/14 310A F02D 41/14 310 B01D 53/36 103B F term (reference) 3G084 BA09 BA13 BA24 DA10 EB11 FA26 FA29 3G091 AA17 AB03 AB09 AB10 BA02 BA03 BA14 BA15 BA27 DC01 FA02 FA04 FB02 FB11 FC04 GA06 GB05W GB10W HA08 HA20 HA36 3G301 HA01 JA25 JA26 KA01 KA05 MA01 ND01 NE14 PD02Z 4D048 AA06 BA15X30BA13 BA30 BA30BA30 BA33X BA36Y BA37X BA38Y BA41X BA42X BB02 CC32 CC46 CD01 CD08 DA01 DA08 DA20 EA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関(2)における排気系(3)の
上流側から下流側に向って順次,HCおよびNOxの少
なくとも一方を捕捉するトラップ装置(7),貴金属三
元触媒と共に酸素ストレージ剤を有する第1浄化器(8
1 )およびペロブスカイト型複酸化物を有する三元触媒
を備えた第2浄化器(82 )を配設し,前記酸素ストレ
ージ剤は,前記第2浄化器(82 )に導入される排気の
空燃比を,前記ペロブスカイト型複酸化物を有する三元
触媒におけるA/F Windowに収まるように調整
する機能を有すること特徴とする内燃機関の排気浄化シ
ステム。
1. A trap device (7) for sequentially capturing at least one of HC and NOx from an upstream side to a downstream side of an exhaust system (3) in an internal combustion engine (2), an oxygen storage agent together with a precious metal three-way catalyst. A first purifier (8)
1 ) and a second purifier (8 2 ) equipped with a three-way catalyst having a perovskite-type mixed oxide, and the oxygen storage agent is used for the exhaust gas introduced into the second purifier (8 2 ). An exhaust gas purification system for an internal combustion engine having a function of adjusting an air-fuel ratio so as to be within an A / F window of a three-way catalyst having the perovskite type double oxide.
【請求項2】 前記ペロブスカイト型複酸化物はバスト
ネサイトから抽出されたランタノイド混合物を含む,請
求項1記載の内燃機関の排気浄化システム。
2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the perovskite-type mixed oxide contains a lanthanoid mixture extracted from bastnasite.
JP2001225361A 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4138277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225361A JP4138277B2 (en) 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225361A JP4138277B2 (en) 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003035189A true JP2003035189A (en) 2003-02-07
JP4138277B2 JP4138277B2 (en) 2008-08-27

Family

ID=19058364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225361A Expired - Fee Related JP4138277B2 (en) 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4138277B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144343A (en) * 2003-11-17 2005-06-09 Mitsui Mining & Smelting Co Ltd Catalyst and device for purification of exhaust gas from internal engine
JP2013022558A (en) * 2011-07-25 2013-02-04 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
CN102953786A (en) * 2011-08-17 2013-03-06 福特环球技术公司 Methods and systems for engine emission control system
JP2013107056A (en) * 2011-11-22 2013-06-06 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144343A (en) * 2003-11-17 2005-06-09 Mitsui Mining & Smelting Co Ltd Catalyst and device for purification of exhaust gas from internal engine
JP2013022558A (en) * 2011-07-25 2013-02-04 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
CN102953786A (en) * 2011-08-17 2013-03-06 福特环球技术公司 Methods and systems for engine emission control system
JP2013107056A (en) * 2011-11-22 2013-06-06 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas

Also Published As

Publication number Publication date
JP4138277B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US9810120B2 (en) Exhaust gas purifying system
US7735313B2 (en) Method of raising temperature in exhaust-gas purifier and exhaust-gas purification system
CN105673157A (en) Zoned catalyst system for reducing N2O emissions
KR20010052088A (en) Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
JP3715211B2 (en) Exhaust gas purification device for internal combustion engine
JP2003035189A (en) Exhaust emission control system for internal combustion engine
JPH11169670A (en) Nox occlusion-reduction type ternary catalyst and apparatus for cleaning exhaust gas using same
JP3696524B2 (en) Exhaust gas purification device for lean burn engine
JP4582806B2 (en) Exhaust gas purification device
JPH11343836A (en) Exhaust emission control device for internal combustion engine
JP2001025645A (en) Exhaust gas cleaning system
JPH09253496A (en) Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JPH07308578A (en) Exhaust gas purifying catalyst
JP2001327838A (en) Exhaust cleaning device for diesel engine
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JPH05171921A (en) Exhaust gas purifying device
JP5641360B2 (en) Exhaust gas purification catalyst and use thereof
JP3106567B2 (en) Exhaust gas purification device
JPH11247654A (en) Exhaust emission control device using nox stored and reduced type three-way catalyst
JP4333612B2 (en) Exhaust gas purification device and exhaust gas purification catalyst
JP5476771B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP4326723B2 (en) Exhaust gas purification device for internal combustion engine
JP2001205085A (en) Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system
JP2022003245A (en) Exhaust emission control system for hydrogen fuel engine
JP2003322012A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees