JP4138277B2 - Exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
JP4138277B2
JP4138277B2 JP2001225361A JP2001225361A JP4138277B2 JP 4138277 B2 JP4138277 B2 JP 4138277B2 JP 2001225361 A JP2001225361 A JP 2001225361A JP 2001225361 A JP2001225361 A JP 2001225361A JP 4138277 B2 JP4138277 B2 JP 4138277B2
Authority
JP
Japan
Prior art keywords
exhaust
fuel ratio
purifier
way catalyst
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001225361A
Other languages
Japanese (ja)
Other versions
JP2003035189A (en
Inventor
義明 松薗
政浩 坂主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001225361A priority Critical patent/JP4138277B2/en
Publication of JP2003035189A publication Critical patent/JP2003035189A/en
Application granted granted Critical
Publication of JP4138277B2 publication Critical patent/JP4138277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化システムに関する。
【0002】
【従来の技術】
従来、この種のシステムとして、Pt、Rh、Pd等の貴金属よりなる三元触媒、つまり貴金属三元触媒を用いたものが公知である。
【0003】
【発明が解決しようとする課題】
貴金属三元触媒においては、高い排気浄化率を得ることが可能な空燃比の幅、つまりA/F Windowが広く、したがって、貴金属三元触媒を用いた排気浄化システムにおいては、排気浄化率を向上させるための空燃比制御が比較的容易となる、といった利点がある反面、貴金属三元触媒の使用に起因して製造コストが高い、という問題があった。また貴金属三元触媒は機関始動後活性温度に昇温するまでは排気浄化能が低い、という問題もあった。
【0004】
【課題を解決するための手段】
本発明は、貴金属三元触媒の使用量を減じて製造コストの低減を図ると共に排気浄化率に関してはそれを高く維持することができ、また機関始動直後から排気の浄化を十分に行い得るようにした前記排気浄化システムを提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、内燃機関における排気系の上流側から下流側に向って順次、HCおよびNOxの少なくとも一方を捕捉するトラップ装置、貴金属三元触媒で排気浄化能を発揮する第1浄化器と、ペロブスカイト型複酸化物を有し且つ貴金属は有しない、前記貴金属三元触媒よりもA/F Windowが狭いペロブスカイト型三元触媒で排気浄化能を発揮する第2浄化器直列に配設し、前記第1浄化器は、前記第2浄化器に導入される排気の空燃比を、前記ペロブスカイト型三元触媒におけるA/F Windowに収まるように調整する機能を有する酸素ストレージ剤を備えていることを特徴とする内燃機関の排気浄化システムが提供される。
【0006】
ペロブスカイト型複酸化物を有し且つ貴金属は有しないペロブスカイト型三元触媒は、貴金属三元触媒と略同等の触媒能を有する。そこで、両三元触媒を二段に配列すると、高価な貴金属三元触媒の使用量を減じることが可能であり、これにより排気浄化システムの製造コストを低減することができる。
【0007】
内燃機関の排気空燃比を理論空燃比となるように制御した場合、貴金属三元触媒を備えた第1浄化器入口の排気空燃比は、種々の外部要因等によって比較的大きなばらつきを生じるが、貴金属三元触媒は広いA/F Windowを有するので、前記ばらつきにも拘らず排気浄化能を発揮する。同時に酸素ストレージ剤が酸素ストレージ効果を発揮するので、第1浄化器出口の排気空燃比はそのばらつきが僅少となるように略直線状に収束される。
【0008】
ペロブスカイト型複酸化物を有し且つ貴金属は有しないペロブスカイト型三元触媒におけるA/F Windowは、貴金属三元触媒のそれに比べて大幅に狭いが、酸素ストレージ剤による前記排気空燃比の収束によって、その排気空燃比を幅狭のA/F Windowに収めることができ、これによりペロブスカイト三元触媒は優れた排気浄化能を発揮する。
【0009】
ペロブスカイト型複酸化物としては、鉱石であるバストネサイトから抽出されたランタノイド混合物を含むものを用いると経済的である。何故ならば、バストネサイトからランタノイド単体を抽出するには多くの工数を有するためランタノイド単体の生産コストが高くなるが、ランタノイド混合物はランタノイド単体に比べて少ない工数で得られるので、その生産コストはランタノイド単体のそれよりも大幅に安くなるからである。
【0010】
またトラップ装置は内燃機関始動直後からHCおよび/またはNOxを捕捉し、これにより排気の浄化が行われる。排気の昇温に伴いトラップ装置はHC、NOxを放出するが、そのHC、NOxは活性温度に昇温している第1および第2浄化器によって酸化、還元処理される。さらに、トラップ装置を用いることによって、早期活性のために第1、第2浄化器を機関近傍に配置する必要がなく、システムレイアウトの自由度が大になると共に早期活性のためにセル数を増加する必要もないから機関の出力低下を招くこともない。
【0011】
【発明の実施の形態】
図1に示す第1実施例において、排気浄化システム1は、内燃機関2の排気系、この例では排気管3に配置された浄化設備4と、内燃機関2に供給される混合気の空燃比(A/F)を制御する空燃比制御装置5とを備えている。燃料噴射装置6は、空燃比制御装置5からの制御信号に基づいた量の燃料を内燃機関2に噴射する。
【0012】
浄化設備4は、排気管3の上流側から下流側に向って順次配設されたトラップ装置7、貴金属三元触媒と共に酸素ストレージ剤を有する第1浄化器81 およびペロブスカイト型複酸化物を有し且つ貴金属は有しないペロブスカイト型三元触媒(以下、単にペロブスカイト型三元触媒と言う。)を備えた第2浄化器82 よりなる。酸素ストレージ剤は、第2浄化器82 に導入される排気の空燃比をペロブスカイト型三元触媒が持つ狭いA/F Windowに収まるように調整する機能を有する。トラップ装置7は公知のものであって、機関始動直後からHCおよびNOxの一方、実施例では、両方をトラップする機能を有する。
【0013】
排気管3において、浄化設備4の上流側に空燃比センサ(O2 センサ)9が配置され、その空燃比センサ9は、内燃機関2から排出されて浄化設備4に導入される排気の空燃比、したがって内燃機関2に供給された混合気の空燃比を酸素濃度として検出する。空燃比制御装置5は、空燃比センサ9からの信号に基づいて、内燃機関2に供給される混合気の空燃比を、排気管3の浄化設備4上流、つまり第1浄化器81 上流における排気空燃比が理論空燃比(A/F=14.7)になるように制御する。
【0014】
前記構成において、空燃比センサ9によって、内燃機関2に供給された混合気の空燃比が検出されると、その検出信号は空燃比制御装置5にフィードバックされる。空燃比制御装置5においては、前記検出信号に基づいて目標空燃比、つまり浄化設備4上流における排気空燃比が理論空燃比となるように燃料噴射量が算出され、その量の燃料が燃料噴射装置6から内燃機関2に噴射される。
【0015】
内燃機関2の排気空燃比を理論空燃比となるように制御した場合、第1浄化器81 入口の排気空燃比は、種々の外部要因等によって比較的大きなばらつきを生じるが、貴金属三元触媒は広いA/F Windowを有するので、前記ばらつきにも拘らず排気浄化能を発揮する。同時に、酸素ストレージ剤は酸素ストレージ効果を発揮するので、第1浄化器81 出口の排気空燃比はそのばらつきが僅少となるように略直線状に収束される。
【0016】
ペロブスカイト型三元触媒が持つA/F Windowは、貴金属三元触媒のそれに比べて大幅に狭いが、酸素ストレージ剤による前記排気空燃比の収束によって、その排気空燃比を幅狭のA/F Windowに収めることができ、これによりペロブスカイト型三元触媒は優れた排気浄化能を発揮する。
【0017】
またトラップ装置7は内燃機関2始動直後からHCおよび/またはNOxを捕捉し、これにより排気の浄化が行われる。排気の昇温に伴いトラップ装置7はHC、NOxを放出するが、そのHC、NOxは活性温度に昇温している第1および第2浄化器81 ,82 によって酸化、還元処理される。さらに、トラップ装置7を用いることによって、早期活性のために第1、第2浄化器81 ,82 を機関2近傍に配置する必要がなく、システムレイアウトの自由度が大になると共に早期活性のためにセル数を増加する必要もないから機関2の出力低下を招くこともない。
【0018】
酸素ストレージ剤としては公知のCeZrO、CeO2 等が用いられる。
【0019】
バストネサイトから抽出されたランタノイド混合物を含むペロブスカイト型複酸化物としては、一般式:Aa-x X MOb で表わされ、Aはバストネサイトから抽出されたランタノイド混合物であり、Bは2価または1価の陽イオンであり、Mは、原子番号22から30,40から51および73から80までの元素群から選択された少なくとも1つの元素であり、aは1または2であり、bはaが1のとき3、またはaが2のとき4であり、xは0≦x<0.7である、といったものが用いられる。
【0020】
ペロブスカイト型複酸化物には、例えばLn0.6 Ca0.4 CoO3 (Lnはランタノイドで、La、Ce、Pr、Nd等を含む。以下同じ)、Ln0.83Sr0.17MnO3 、Ln0.7 Sr0.3 CrO3 、Ln0.6 Ca0.4 Fe0.8 Mn0.2 3 、Ln0.8 Sr0.2 Mn0.9 Ni0.04Ru0.063 、Ln0.8 0.2 Mn0.95Ru0.053 、Ln0.7 Sr0.3 Cr0.95Ru0.053 、LnNiO3 、Ln2 (Cu0.6 Co0.2 Ni0.2 )O4 、Ln0.8 0.2 Mn0.95Ru0.053 等が該当する。
【0021】
このようなペロブスカイト型複酸化物は、国際公開第WO97/37760号(特表2000−515057号)明細書および図面に開示されており、ここに開示されたものを本発明において用いることが可能である。また前記のような空燃比制御装置5は、本出願人の出願に係る特開昭60−1342号公報に開示されており、ここに開示された電子コントロールユニット5が本発明において用いられる。
【0022】
以下、具体例について説明する。
〔I〕 第1浄化器81 に対応する従来型浄化器として、本田技研工業株式会社製99年式アコードに用いられている排気浄化器であって、PdおよびRhならびにCeZrOをγ−Al2 3 に担持させ、これを0.7Lのハニカム支持体に保持させたものを用意した。
【0023】
また第2浄化器82 として、国際公開WO97/37760号明細書、実施例5に基づいて得られた、ペロブスカイト型複酸化物であるLn0.83Sr0.17MnO3 を0.7Lのハニカム支持体にBET比表面積が9.3m2 /gとなるように保持させたものを用意した。
〔II〕 従来型浄化器を内燃機関である1.5Lガソリンエンジンの排気管に組込んで排気浄化ベンチテストを行った。図1の場合と同様に、排気管において従来型浄化器の上流側に空燃比センサを配置した。また同様の方法で第2浄化器82 に関し排気浄化ベンチテストを行った。
【0024】
図2は従来型浄化器に関する排気空燃比と排気浄化率との関係を示し、また図3は第2浄化器82 に関する排気空燃比と排気浄化率との関係を示す(理論空燃比A/F=14.7)。図2、3を比較すると、ペロブスカイト型三元触媒におけるA/F Windowは貴金属三元触媒のそれに比べて狭く、その貴金属三元触媒のA/F Windowの約18%である。
【0025】
次に、従来型浄化器を1.5Lガソリンエンジンを搭載した自動車の排気管に組込み、またその排気管において、従来型浄化器の上、下流側にそれぞれ第1、第2空燃比センサを配置して、従来型浄化器の入口および出口における排気空燃比の経時変化を測定した。下流側の第2空燃比センサの検出信号は第1空燃比センサにより算出された燃料噴射量を補正するために用いられる。
【0026】
図4は、従来型浄化器の入口における排気空燃比の経時変化を示す。図4より、入口における排気空燃比には、前述のごとく、比較的大きなばらつきが生じていることが判る。
【0027】
図5は、従来型浄化器の出口における排気空燃比の経時的変化を示す。図5より、CeZrOの酸素ストレージ効果によって、出口における排気空燃比が、前述のように略直線状に収束していることが判る。
【0028】
このように収束された排気空燃比が、図3に示したペロブスカイト型三元触媒におけるA/F Windowに収まれば第2浄化器82 は高い排気浄化率を発揮することになる。
【0029】
そこで、第1浄化器81 として、Pt、PdおよびRhならびにCeZrOをγ−Al2 3 に担持させ、これを0.7Lのハニカム支持体に保持させたものを製造し、その第1浄化器81 について前記同様の実車テストを行って第1浄化器81 の出口における排気空燃比の経時変化を測定した。このように構成された第1浄化器81 は比較的高い排気浄化能を有する。
【0030】
図6は第1浄化器81 の出口における排気空燃比の経時変化を示す。図6から明らかなように、CeZrOの酸素ストリージ効果によって、出口における排気空燃比が、前述のように略直線状に収束しており、しかも、その収束された排気空燃比が、図3に示したペロブスカイト型三元触媒におけるA/F Window、即ち14.73≦A/F≦14.76の幅内に収まっていることが判明した。
【0031】
このような第1浄化器81 と第2浄化器82 とを組合せると、第1浄化器81 が持つ比較的高い排気浄化能に、第2浄化器82 が発揮する高い排気浄化能が加えられるので、排気浄化システム1の排気浄化率を大いに高めることが可能である。
【0032】
図7は第2実施例を示す。この場合、第1浄化器81 は、主として第2浄化器82 へ導入される排気の空燃比調整のために用いられており、排気の浄化は、主として第2浄化器82 により行う。この場合、第1浄化器81 を小型に構成して、その貴金属三元触媒の使用量を減少させることが可能である
【0033】
【発明の効果】
請求項1記載の発明によれば、ペロブスカイト型複酸化物を有し且つ貴金属は有しないペロブスカイト型三元触媒は、貴金属三元触媒と略同等の触媒能を有するので、本発明のように互いに直列に並ぶ第1浄化器及び第2浄化器に貴金属三元触媒及びペロブスカイト型三元触媒を別々に配列したことにより、排気浄化システムにおいて高価な貴金属三元触媒の使用量を減じることが可能であり、これにより排気浄化システムの製造コストを低減できる。この場合、貴金属三元触媒を備えた第1浄化器入口の排気空燃比は、種々の外部要因等によって比較的大きなばらつきを生じるが、貴金属三元触媒は広いA/F Windowを有するので、前記ばらつきにも拘らず排気浄化能を発揮する。同時に、第1浄化器中の酸素ストレージ剤が酸素ストレージ効果を発揮するので、第1浄化器出口の排気空燃比はそのばらつきが僅少となるように略直線状に収束される。
【0034】
而して、ペロブスカイト型複酸化物を有し且つ貴金属は有しないペロブスカイト型三元触媒(第2浄化器)におけるA/F Windowは、貴金属三元触媒(第1浄化器)のそれに比べて大幅に狭いが、第1浄化器中の酸素ストレージ剤による排気空燃比の収束によって、その排気空燃比を幅狭のA/F Windowに収めることができるので、A/FWindowが大幅に狭いペロブスカイト型三元触媒にも優れた排気浄化能を発揮させることができ、以上の結果、排気浄化率を高く維持しつつ、排気浄化システムにおいて貴金属三元触媒の使用量を減じて製造コストの低減を図ることができる。またトラップ装置を用いたことにより、機関始動直後から排気の浄化を十分に行ことができる。
【0035】
請求項2記載の発明によれば、前記効果に加え、ペロブスカイト型複酸化物の製造コストを減じ、延いては排気浄化システムの製造コストを低減することができる。
【図面の簡単な説明】
【図1】 第1実施例のブロック図
【図2】 貴金属三元触媒に関する排気空燃比と排気浄化率の関係を示すグラフ
【図3】 ペロブスカイト型三元触媒に関する排気空燃比と排気浄化率の関係を示すグラフ
【図4】 従来型浄化器の入口における排気空燃比の経時変化を示すグラフ
【図5】 従来型浄化器の出口における排気空燃比の経時変化を示すグラフ
【図6】 第1浄化器の出口における排気空燃比の経時変化を示すグラフ
【図7】 第2実施例のブロック図
【符号の説明】
1 排気浄化システム
2 内燃機関
3 排気管(排気系)
7 トラップ装置
1 第1浄化器
2 第2浄化器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification system for an internal combustion engine.
[0002]
[Prior art]
Conventionally, as this type of system, a three-way catalyst made of a noble metal such as Pt, Rh, or Pd, that is, one using a noble metal three-way catalyst is known.
[0003]
[Problems to be solved by the invention]
In the precious metal three-way catalyst, the range of the air-fuel ratio that can obtain a high exhaust purification rate, that is, the A / F Window is wide. Therefore, in the exhaust purification system using the precious metal three-way catalyst, the exhaust purification rate is improved. However, there is a problem that the manufacturing cost is high due to the use of the noble metal three-way catalyst. In addition, the noble metal three-way catalyst has a problem that the exhaust purification ability is low until the temperature is raised to the activation temperature after the engine is started.
[0004]
[Means for Solving the Problems]
The present invention aims to reduce the production cost by reducing the amount of precious metal three-way catalyst used, and to keep the exhaust purification rate high, and to sufficiently perform exhaust purification immediately after the engine is started. An object of the present invention is to provide the exhaust purification system.
[0005]
In order to achieve the above-described object, according to the present invention , exhaust purification performance is achieved by a trap device that captures at least one of HC and NOx sequentially from the upstream side to the downstream side of an exhaust system in an internal combustion engine, and a noble metal three-way catalyst. a first cleaner which exhibits, perovskite type complex oxide was closed and the noble metal does not have a second purifying the a / F Window than precious metal three-way catalyst exhibits exhaust purifying performance in a narrow perovskite type three-way catalyst arranged and vessels in series, the first purifier, the air-fuel ratio of the exhaust gas introduced into the second purifier, a function of adjusting to fit a / F Window in the perovskite-type three-way catalyst An exhaust gas purification system for an internal combustion engine comprising an oxygen storage agent is provided .
[0006]
Perovskite type complex oxide chromatic was and precious metals have no perovskite type three-way catalyst has a catalytic activity substantially equivalent to the precious metal three-way catalyst. Therefore, if both the three-way catalysts are arranged in two stages, it is possible to reduce the amount of expensive noble metal three-way catalyst used, thereby reducing the manufacturing cost of the exhaust purification system.
[0007]
When the exhaust air-fuel ratio of the internal combustion engine is controlled to be the stoichiometric air-fuel ratio, the exhaust air-fuel ratio at the inlet of the first purifier equipped with the noble metal three-way catalyst varies relatively greatly due to various external factors, Since the noble metal three-way catalyst has a wide A / F window, the exhaust purification ability is exhibited despite the variation. At the same time, since the oxygen storage agent exerts an oxygen storage effect, the exhaust air-fuel ratio at the outlet of the first purifier converges substantially linearly so that the variation is small.
[0008]
Perovskite type complex oxides Yu was and noble A / F Window in no perovskite type three-way catalyst is significantly narrower than that of the noble metal three-way catalyst, wherein the convergence of the exhaust air-fuel ratio by the oxygen storage material, The exhaust air-fuel ratio can be stored in a narrow A / F window, and the perovskite type three-way catalyst exhibits an excellent exhaust purification ability.
[0009]
As the perovskite type double oxide, it is economical to use one containing a lanthanoid mixture extracted from bastonite as an ore. This is because the production cost of lanthanoids alone is high because it takes a lot of man-hours to extract lanthanoids alone from bust nesite, but the lanthanoid mixture can be obtained with less man-hours than lanthanoids alone. This is because it is much cheaper than that of lanthanoid alone.
[0010]
The trap device captures HC and / or NOx immediately after starting the internal combustion engine, thereby purifying exhaust gas. The trap device releases HC and NOx as the exhaust gas is heated, and the HC and NOx are oxidized and reduced by the first and second purifiers that have been heated to the activation temperature. In addition, by using a trap device, it is not necessary to place the first and second purifiers near the engine for early activation, increasing the degree of freedom in system layout and increasing the number of cells for early activation. There is no need to do so, so there is no reduction in engine output.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment shown in FIG. 1, the exhaust purification system 1 includes an exhaust system of an internal combustion engine 2, in this example, purification equipment 4 disposed in an exhaust pipe 3, and an air-fuel ratio of an air-fuel mixture supplied to the internal combustion engine 2. And an air-fuel ratio control device 5 for controlling (A / F). The fuel injection device 6 injects an amount of fuel into the internal combustion engine 2 based on the control signal from the air-fuel ratio control device 5.
[0012]
Purifying equipment 4, have a first purifier 8 1 and perovskite type complex oxides trap device 7 from the upstream side of the exhaust pipe 3 are sequentially disposed toward the downstream side, with a noble metal three-way catalyst having an oxygen storage agent and and precious metals do not have perovskite type three-way catalyst (hereinafter, simply referred to as the perovskite-type three-way catalyst.) made of the second purifier 8 2 with. The oxygen storage agent has a function of adjusting the air-fuel ratio of the exhaust gas is introduced into the second clarifier 82 to fit in a narrow A / F Window with perovskite type three-way catalyst. The trap device 7 is known and has a function of trapping one of HC and NOx, in the embodiment, both immediately after the engine is started.
[0013]
In the exhaust pipe 3, an air-fuel ratio sensor (O 2 sensor) 9 is disposed on the upstream side of the purification facility 4, and the air-fuel ratio sensor 9 is the air-fuel ratio of the exhaust discharged from the internal combustion engine 2 and introduced into the purification facility 4. Therefore, the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2 is detected as the oxygen concentration. Based on the signal from the air-fuel ratio sensor 9, the air-fuel ratio control device 5 converts the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2 upstream of the purification equipment 4 of the exhaust pipe 3, that is, upstream of the first purifier 8 1 . Control is performed so that the exhaust air-fuel ratio becomes the stoichiometric air-fuel ratio (A / F = 14.7).
[0014]
In the above configuration, when the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2 is detected by the air-fuel ratio sensor 9, the detection signal is fed back to the air-fuel ratio control device 5. In the air-fuel ratio control device 5, the fuel injection amount is calculated based on the detection signal so that the target air-fuel ratio, that is, the exhaust air-fuel ratio upstream of the purification equipment 4, becomes the stoichiometric air-fuel ratio. 6 is injected into the internal combustion engine 2.
[0015]
If it controlled to exhaust air-fuel ratio of the internal combustion engine 2 becomes the stoichiometric air-fuel ratio, the exhaust gas air-fuel ratio of the first cleaner 81 inlet is caused to relatively large variations by various external factors such as a noble metal three-way catalyst Has a wide A / F Window, and thus exhibits exhaust purification ability despite the above-mentioned variation. At the same time, the oxygen storage agent so exhibits an oxygen storage effect, the exhaust air-fuel ratio of the first cleaner 81 outlet is focused substantially linearly as the variation is insignificant.
[0016]
The A / F Window possessed by the perovskite type three-way catalyst is significantly narrower than that of the noble metal three-way catalyst, but the exhaust air / fuel ratio is narrowed by the convergence of the exhaust air / fuel ratio by the oxygen storage agent. As a result, the perovskite type three-way catalyst exhibits excellent exhaust purification ability.
[0017]
The trap device 7 captures HC and / or NOx immediately after the internal combustion engine 2 is started, thereby purifying the exhaust gas. The trap device 7 releases HC and NOx as the exhaust gas is heated, and the HC and NOx are oxidized and reduced by the first and second purifiers 8 1 and 8 2 that have been heated to the activation temperature. . Further, by using the trap device 7, it is not necessary to arrange the first and second purifiers 8 1 and 8 2 in the vicinity of the engine 2 for early activation, and the degree of freedom in system layout is increased and early activation is achieved. For this reason, it is not necessary to increase the number of cells, so that the output of the engine 2 is not reduced.
[0018]
As the oxygen storage agent, known CeZrO, CeO 2 or the like is used.
[0019]
The perovskite-type double oxide containing a lanthanoid mixture extracted from bust nesite is represented by the general formula: A ax B x MO b , A is a lanthanoid mixture extracted from bust nesite, and B is 2 Is a valent or monovalent cation, M is at least one element selected from the group of elements having atomic numbers 22 to 30, 40 to 51 and 73 to 80, a is 1 or 2, b Is 3 when a is 1 or 4 when a is 2, and x is 0 ≦ x <0.7.
[0020]
Perovskite type double oxides include, for example, Ln 0.6 Ca 0.4 CoO 3 (Ln is a lanthanoid, including La, Ce, Pr, Nd, etc., the same shall apply hereinafter), Ln 0.83 Sr 0.17 MnO 3 , Ln 0.7 Sr 0.3 CrO 3 , Ln 0.6 Ca 0.4 Fe 0.8 Mn 0.2 O 3 , Ln 0.8 Sr 0.2 Mn 0.9 Ni 0.04 Ru 0.06 O 3 , Ln 0.8 K 0.2 Mn 0.95 Ru 0.05 O 3 , Ln 0.7 Sr 0.3 Cr 0.95 Ru 0.05 O 3 , LnNiO 3 , Ln 2 (Cu 0.6 Co 0.2 Ni 0.2 ) O 4 , Ln 0.8 K 0.2 Mn 0.95 Ru 0.05 O 3 and the like are applicable.
[0021]
Such perovskite type double oxides are disclosed in the specification and drawings of International Publication No. WO97 / 37760 (Japanese translations of PCT publication No. 2000-515057), and those disclosed herein can be used in the present invention. is there. The air-fuel ratio control apparatus 5 as described above is disclosed in Japanese Patent Application Laid-Open No. 60-1342, which is filed by the present applicant, and the electronic control unit 5 disclosed herein is used in the present invention.
[0022]
Hereinafter, specific examples will be described.
[I] As a conventional purifier corresponding to the first purifier 8 1 , an exhaust purifier used in a 99-year accord manufactured by Honda Motor Co., Ltd., which uses Pd, Rh and CeZrO as γ-Al 2 An O 3 supported on a 0.7 L honeycomb support was prepared.
[0023]
Further, as the second purifier 8 2 , Ln 0.83 Sr 0.17 MnO 3 , which is a perovskite type double oxide obtained based on the specification of International Publication WO 97/37760, Example 5, was used as a 0.7 L honeycomb support. What was hold | maintained so that a BET specific surface area might be 9.3 m < 2 > / g was prepared.
[II] An exhaust purification bench test was conducted by incorporating a conventional purifier into the exhaust pipe of a 1.5 L gasoline engine, which is an internal combustion engine. As in the case of FIG. 1, an air-fuel ratio sensor is disposed upstream of the conventional purifier in the exhaust pipe. Also conducted an exhaust purification bench test relates second cleaner 82 in a similar manner.
[0024]
Figure 2 shows the relationship between the exhaust air-fuel ratio for a conventional type purifier exhaust purification rate, and FIG. 3 shows the relationship between the exhaust air-fuel ratio and the exhaust gas purification rate for the second cleaner 8 2 (stoichiometric air-fuel ratio A / F = 14.7). 2 and 3, the A / F window in the perovskite type three-way catalyst is narrower than that of the noble metal three-way catalyst, and is about 18% of the A / F window of the noble metal three-way catalyst.
[0025]
Next, the conventional purifier is installed in the exhaust pipe of an automobile equipped with a 1.5 L gasoline engine, and the first and second air-fuel ratio sensors are arranged on the exhaust pipe on the upstream side and the downstream side, respectively. Then, the change with time of the exhaust air-fuel ratio at the inlet and outlet of the conventional purifier was measured. The detection signal of the second air-fuel ratio sensor on the downstream side is used to correct the fuel injection amount calculated by the first air-fuel ratio sensor.
[0026]
FIG. 4 shows the change with time of the exhaust air-fuel ratio at the inlet of the conventional purifier. As can be seen from FIG. 4, the exhaust air-fuel ratio at the inlet has a relatively large variation as described above.
[0027]
FIG. 5 shows the change over time of the exhaust air-fuel ratio at the outlet of the conventional purifier. FIG. 5 shows that the exhaust air-fuel ratio at the outlet converges substantially linearly as described above due to the oxygen storage effect of CeZrO.
[0028]
Thus converged exhaust air-fuel ratio is, the second cleaner 8 2 if it fits in the A / F Window in the perovskite-type three-way catalyst as shown in Figure 3 will exhibit a high exhaust gas purification rate.
[0029]
Therefore, a first purifier 8 1 is manufactured in which Pt, Pd, Rh, and CeZrO are supported on γ-Al 2 O 3 and held on a 0.7 L honeycomb support, and the first purifier 8 1 is manufactured. vessels 8 1 was measured the time course of the exhaust air-fuel ratio in the first purifier 8 first outlet by performing the same vehicle tested. The first cleaner 8 1 configured to have a relatively high exhaust gas purifying ability.
[0030]
Figure 6 shows the time course of the exhaust air-fuel ratio in the first outlet of the purifier 8 1. As is apparent from FIG. 6, the exhaust air-fuel ratio at the outlet converges substantially linearly as described above due to the oxygen storage effect of CeZrO, and the converged exhaust air-fuel ratio is shown in FIG. In addition, it was found that the perovskite type three-way catalyst was within the range of A / F Window, that is, 14.73 ≦ A / F ≦ 14.76.
[0031]
When such a first purifier 8 1 and a second purifier 8 2 are combined, the high exhaust purification performance exhibited by the second purifier 8 2 has a relatively high exhaust purification capability of the first purifier 8 1. Therefore, the exhaust gas purification rate of the exhaust gas purification system 1 can be greatly increased.
[0032]
FIG. 7 shows a second embodiment. In this case, the first purifier 8 1 is mainly used for adjusting the air-fuel ratio of the exhaust gas introduced into the second purifier 8 2 , and the exhaust gas purification is mainly performed by the second purifier 8 2 . In this case, the first purifier 8 1 constitutes a compact, it is possible to reduce the amount of the precious metal three-way catalyst.
[0033]
【The invention's effect】
According to the first aspect of the invention, the perovskite type three-way catalyst having a perovskite type double oxide and having no precious metal has substantially the same catalytic ability as the noble metal three-way catalyst. By arranging the precious metal three-way catalyst and the perovskite type three-way catalyst separately in the first and second purifiers arranged in series, it is possible to reduce the amount of expensive precious metal three-way catalyst used in the exhaust purification system. In this way, the manufacturing cost of the exhaust purification system can be reduced. In this case, the exhaust air-fuel ratio at the inlet of the first purifier equipped with the noble metal three-way catalyst varies relatively greatly due to various external factors and the like, but the noble metal three-way catalyst has a wide A / F Window, Exhibits exhaust purification capability despite variations. At the same time, since the oxygen storage agent in the first purifier exerts an oxygen storage effect, the exhaust air / fuel ratio at the outlet of the first purifier is converged substantially linearly so that the variation is small.
[0034]
Thus, the A / F Window in the perovskite type three-way catalyst (second purifier) having a perovskite type double oxide and no precious metal is significantly larger than that of the noble metal three-way catalyst (first purifier). However, since the exhaust air / fuel ratio can be accommodated in a narrow A / F window by the convergence of the exhaust air / fuel ratio by the oxygen storage agent in the first purifier, the perovskite type 3 is greatly reduced in the A / F window. also it is possible to exhibit excellent exhaust gas purification performance based catalyst, the above results, while maintaining the exhaust gas purification rate higher, possible to reduce the manufacturing cost by reducing the amount of precious metal three-way catalyst in the exhaust purification system Can do. Moreover, the use of a trap apparatus, it is possible intends sufficiently rows purification of exhaust immediately after engine startup.
[0035]
According to the second aspect of the invention, in addition to the above effects, the manufacturing cost of the perovskite type double oxide can be reduced, and the manufacturing cost of the exhaust purification system can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of the first embodiment. FIG. 2 is a graph showing a relationship between an exhaust air-fuel ratio and an exhaust purification rate for a precious metal three-way catalyst. FIG. 3 is a graph showing an exhaust air-fuel ratio and an exhaust purification rate for a perovskite three-way catalyst. Graph showing the relationship [FIG. 4] Graph showing the time-dependent change of the exhaust air-fuel ratio at the inlet of the conventional purifier [FIG. 5] Graph showing the time-dependent change of the exhaust air-fuel ratio at the outlet of the conventional-type purifier [FIG. FIG. 7 is a graph showing the change over time in the exhaust air-fuel ratio at the outlet of the purifier. FIG. 7 is a block diagram of the second embodiment.
DESCRIPTION OF SYMBOLS 1 Exhaust purification system 2 Internal combustion engine 3 Exhaust pipe (exhaust system)
7 Trap device 8 1 First purifier 8 2 Second purifier

Claims (2)

内燃機関(2)における排気系(3)の上流側から下流側に向って順次、HCおよびNOxの少なくとも一方を捕捉するトラップ装置(7)、貴金属三元触媒で排気浄化能を発揮する第1浄化器(81 と、ペロブスカイト型複酸化物を有し且つ貴金属は有しない、前記貴金属三元触媒よりもA/F Windowが狭いペロブスカイト型三元触媒で排気浄化能を発揮する第2浄化器(82 直列に配設し、
前記第1浄化器(8 1 )は、前記第2浄化器(82 )に導入される排気の空燃比を、前記ペロブスカイト型三元触媒におけるA/F Windowに収まるように調整する機能を有する酸素ストレージ剤を備えていること特徴とする、内燃機関の排気浄化システム。
A trap device (7) that sequentially captures at least one of HC and NOx from the upstream side to the downstream side of the exhaust system (3) in the internal combustion engine (2) and a precious metal three-way catalyst that exhibits exhaust purification capability . 1 purifier (8 1), second to exert and precious metals have a perovskite type complex oxide does not have, the exhaust purification performance in a narrow perovskite type three-way catalyst a / F Window than the noble metal three-way catalyst A purifier (8 2 ) is placed in series ,
The first purifier (8 1 ) has a function of adjusting the air-fuel ratio of the exhaust gas introduced into the second purifier (8 2 ) so as to be within the A / F Window in the perovskite type three- way catalyst. An exhaust purification system for an internal combustion engine comprising an oxygen storage agent .
前記ペロブスカイト型複酸化物はバストネサイトから抽出されたランタノイド混合物を含む、請求項1記載の内燃機関の排気浄化システム。  The exhaust purification system for an internal combustion engine according to claim 1, wherein the perovskite type double oxide contains a lanthanoid mixture extracted from bastonite.
JP2001225361A 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4138277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225361A JP4138277B2 (en) 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225361A JP4138277B2 (en) 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003035189A JP2003035189A (en) 2003-02-07
JP4138277B2 true JP4138277B2 (en) 2008-08-27

Family

ID=19058364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225361A Expired - Fee Related JP4138277B2 (en) 2001-07-26 2001-07-26 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4138277B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746264B2 (en) * 2003-11-17 2011-08-10 三井金属鉱業株式会社 Exhaust gas purification catalyst and exhaust gas purification device for internal combustion engine
JP5715518B2 (en) * 2011-07-25 2015-05-07 ダイハツ工業株式会社 Exhaust gas purification catalyst
US8491860B2 (en) * 2011-08-17 2013-07-23 Ford Global Technologies, Llc Methods and systems for an engine emission control system
JP5865033B2 (en) * 2011-11-22 2016-02-17 ダイハツ工業株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2003035189A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US9810120B2 (en) Exhaust gas purifying system
KR100481904B1 (en) Exhaust purifier and purification method for internal combustion engines
EP2233711B1 (en) Exhaust gas purification device for internal combustion engine
US8828900B2 (en) Exhaust gas purification catalyst
KR101573128B1 (en) Exhaust gas purification oxidation catalyst
JPH10235192A (en) Catalyst for cleaning exhaust gas
CN105673157A (en) Zoned catalyst system for reducing N2O emissions
KR20150113192A (en) Exhaust system with a reformer catalyst
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
KR20010052088A (en) Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
JP4138277B2 (en) Exhaust gas purification system for internal combustion engine
JP3715211B2 (en) Exhaust gas purification device for internal combustion engine
JP3696524B2 (en) Exhaust gas purification device for lean burn engine
JP4582806B2 (en) Exhaust gas purification device
JPH11169670A (en) Nox occlusion-reduction type ternary catalyst and apparatus for cleaning exhaust gas using same
JPH09253496A (en) Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JPWO2007029339A1 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP2001327838A (en) Exhaust cleaning device for diesel engine
JP4333612B2 (en) Exhaust gas purification device and exhaust gas purification catalyst
JP3188011B2 (en) Exhaust gas purification method
JP5672499B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2009067664A (en) Light oil reforming apparatus and method of reforming light oil using the same
JPH0639280A (en) Catalyst for purifying aldehyde
CN116438139A (en) Exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees