JP2001205085A - Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system - Google Patents

Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system

Info

Publication number
JP2001205085A
JP2001205085A JP2000013387A JP2000013387A JP2001205085A JP 2001205085 A JP2001205085 A JP 2001205085A JP 2000013387 A JP2000013387 A JP 2000013387A JP 2000013387 A JP2000013387 A JP 2000013387A JP 2001205085 A JP2001205085 A JP 2001205085A
Authority
JP
Japan
Prior art keywords
hydrogen
exhaust gas
catalyst
storage material
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000013387A
Other languages
Japanese (ja)
Inventor
Sumiaki Hiramoto
純章 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000013387A priority Critical patent/JP2001205085A/en
Publication of JP2001205085A publication Critical patent/JP2001205085A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen supply/exhaust gas cleaning catalyst which is capable of adjusting a hydrogen concentration on the downstream side of the catalyst and an exhaust gas cleaning system for upgrading the cleaning performance of an NOx cleaning catalyst to be installed on the downstream side of the hydrogen supply/exhaust gas cleaning catalyst. SOLUTION: This hydrogen supply/exhaust gas cleaning catalyst contains a hydrogen generating catalyst component and a hydrogen occluding material and performs the generation, occlusion retention and emission of hydrogen to adjust the hydrogen concentration of an exhaust gas on the downstream side. In addition, the catalyst contains a hydrogen occlusion alloy as a hydrogen occluding material and/or a carbon nanotube. Further, the exhaust gas cleaning system has the NOx cleaning catalyst arranged on the downstream side of the hydrogen supply/exhaust gas cleaning catalyst. In addition, the system restricts the oxidation/consumption of hydrogen by occluding and retaining the hydrogen in the hydrogen occluding material and thereby increases the supply of the hydrogen to the NOx cleaning catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関や燃焼器
等から排出される排気ガスを浄化する排気ガス浄化触媒
及びこれを用いた排気ガス浄化システムに係り、特に水
素を利用して、リーンバーン内燃機関からの排気ガス中
の窒素酸化物(NOx)を高効率で浄化する排気ガス浄
化システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine, a combustor or the like, and an exhaust gas purifying system using the same. The present invention relates to an exhaust gas purification system that purifies nitrogen oxides (NOx) in exhaust gas from a burn internal combustion engine with high efficiency.

【0002】[0002]

【従来の技術】従来より、自動車等の内燃機関から排出
される排気ガスに含まれる一酸化炭素(CO)、炭化水
素類(HC)及び窒素酸化物(NOx)等を浄化する触
媒やシステムとしては、理論空燃比で働く三元触媒やそ
れを用いた排気浄化システムが知られている。また、内
燃機関の排気ガスが酸素過剰のときのように、窒素酸化
物の浄化が三元触媒では不可能な場合の窒素酸化物の浄
化方法としては、特許掲載第2600429号公報に示
されているように、排気ガスが酸素過剰の時にNOxを
吸収させ、吸収させたNOxをNOx吸収剤に流入する
排気ガス中の酸素濃度を低下させて放出させ、浄化処理
するという浄化システムが用いられている。
2. Description of the Related Art Heretofore, as a catalyst or a system for purifying carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx) and the like contained in exhaust gas discharged from an internal combustion engine of an automobile or the like. A three-way catalyst that operates at a stoichiometric air-fuel ratio and an exhaust gas purification system using the same are known. Further, as a method for purifying nitrogen oxides in a case where purification of nitrogen oxides is impossible with a three-way catalyst, such as when the exhaust gas of an internal combustion engine is excessive in oxygen, a method disclosed in Japanese Patent Publication No. 2640029 is disclosed. As described above, a purification system has been used in which NOx is absorbed when the exhaust gas is in excess of oxygen, and the absorbed NOx is released by reducing the concentration of oxygen in the exhaust gas flowing into the NOx absorbent, thereby purifying the NOx. I have.

【0003】しかし、かかる三元触媒を用いた排気浄化
システムや特許掲載第2600429号公報に記載され
ているような浄化システムでは、吸収させたNOxを脱
離して浄化する時には、還元剤としてHCやCOを用い
ており、これら従来技術では、NOxを反応浄化させる
ためにはHCやCOを浄化触媒に供給する必要がある。
このため、NOx浄化触媒には、HCやCOの一部が残
ってしまうことがあり、より高いレベルで排気ガスを浄
化することが困難であった。
However, in such an exhaust gas purifying system using a three-way catalyst or a purifying system as described in Japanese Patent Publication No. 2600429, when the absorbed NOx is desorbed and purified, HC or a reducing agent is used as a reducing agent. CO is used, and in these conventional techniques, it is necessary to supply HC or CO to the purification catalyst in order to purify NOx by reaction.
For this reason, a part of HC and CO may remain in the NOx purification catalyst, and it has been difficult to purify exhaust gas at a higher level.

【0004】一方、特開平6−126174号公報、特
開平8−10574号公報及び特開平9−195858
号公報には、NOx浄化に利用する還元剤として、水素
を用いる排気ガス浄化システムが開示されている。具体
的には、特開平6−126174号公報では、希土類金
属、貴金属及び水素からなる水素貯蔵活性を備えた合金
(Mn−Pd系、Ce−Ru系、Ce−Pd系、La−
Ru系及びLa−Pd系合金)を用いて、排気ガスの熱
により、かかる合金が加熱される際に排出される水素と
NOxとを選択的に反応させる排気ガス浄化用触媒が開
示されている。
On the other hand, JP-A-6-126174, JP-A-8-10574 and JP-A-9-195858.
Japanese Patent Application Publication No. JP-A-2005-115139 discloses an exhaust gas purification system using hydrogen as a reducing agent used for NOx purification. Specifically, JP-A-6-126174 discloses an alloy having a hydrogen storage activity composed of a rare earth metal, a noble metal and hydrogen (Mn-Pd-based, Ce-Ru-based, Ce-Pd-based, La-
Disclosed is an exhaust gas purifying catalyst that selectively reacts NOx with hydrogen discharged when the alloy is heated by the heat of the exhaust gas using an Ru-based or La-Pd-based alloy). .

【0005】また、特開平8−10574号公報では、
酸素過剰の排気ガスであって水素が共存する排気ガス中
のNOxを、多孔質担体貴金属及びモリブデンを含んだ
窒素酸化物浄化触媒によって、90℃〜250℃の範囲
で反応除去する窒素酸化物浄化方法が開示されている。
In Japanese Patent Application Laid-Open No. Hei 8-10574,
Nitrogen oxide purification by reacting and removing NOx in exhaust gas containing excess oxygen and in which hydrogen coexists with a nitrogen oxide purification catalyst containing a porous carrier noble metal and molybdenum in the range of 90 ° C to 250 ° C. A method is disclosed.

【0006】更に、特開平9−195858号公報で
は、ディーゼル機関の排気浄化装置として、燃焼室に接
続される吸気通路に水素吸蔵合金を収納するタンクを接
続し、高負荷時にタンクから水素供給を行い、燃焼時に
排出される煤を低減させる方法が開示されている。
Further, in Japanese Patent Application Laid-Open No. 9-195858, a tank containing a hydrogen storage alloy is connected to an intake passage connected to a combustion chamber as an exhaust gas purifying device for a diesel engine, and hydrogen is supplied from the tank at a high load. A method for reducing soot emissions during combustion is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、水素吸
蔵合金を配置して、排気ガス成分全体の残存率をより一
層低減させようとした場合、HCやCO成分の影響でN
OxとHの反応が阻害されるため、NOxのみなら
ず、HCやCOの十分な浄化性能を得られなくなるとい
う課題があった。また、特開平8−10574号公報に
開示されている方法では、水素を還元剤として作用させ
るには、排気ガス温度を250℃以下にしなければ窒素
酸化物を有効に還元できないが、実際の排気ガス浄化で
は、暖気後は排気ガス温度が300℃以上となる領域が
殆どであるため、NOxを有効に還元することが不充分
であるという課題があった。
However, when the hydrogen storage alloy is arranged to further reduce the residual ratio of the entire exhaust gas component, the influence of the HC and CO components causes N
Since the reaction between Ox and H 2 is inhibited, not NOx only, there is a problem that the resulting longer sufficient purification performance of HC and CO. Further, in the method disclosed in Japanese Patent Application Laid-Open No. H8-10574, in order to make hydrogen act as a reducing agent, nitrogen oxides cannot be effectively reduced unless the exhaust gas temperature is set to 250 ° C. or less. In the gas purification, there is a problem that the exhaust gas temperature becomes 300 ° C. or more in most cases after warming, and it is insufficient to effectively reduce NOx.

【0008】更に、特開平9−195858号公報など
に開示されている方法では、H供給装置を設置しなけ
ればならず、排気システムの複雑化・大型化が余儀なく
されるという課題があった。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 9-195858 and the like, it is necessary to install an H 2 supply device, and there is a problem that the exhaust system becomes complicated and large in size. .

【0009】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、触媒の下流側における水素濃度を調整し得る水素供
給排気ガス浄化触媒、及びこの水素供給排気ガス浄化触
媒の下流側に設置するNOx浄化触媒の浄化性能を向上
し得る排気ガス浄化システムを提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a hydrogen supply exhaust gas purifying catalyst capable of adjusting the hydrogen concentration downstream of the catalyst. It is an object of the present invention to provide an exhaust gas purification system capable of improving the purification performance of a NOx purification catalyst installed downstream of the hydrogen supply exhaust gas purification catalyst.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究を重ねた結果、水素生成触媒成分と
水素吸蔵材を併用し、水素吸蔵材に吸蔵保持させた水素
を、適切なタイミングで放出させることにより、上記課
題が解決することを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that the hydrogen storage catalyst is used together with the hydrogen storage material, and the hydrogen stored and held in the hydrogen storage material is It has been found that the above-mentioned problems can be solved by discharging at an appropriate timing, and the present invention has been completed.

【0011】即ち、本発明の水素供給排気ガス浄化触媒
は、内燃機関又は燃焼装置の排気ガス通路に設置され、
少なくとも炭化水素類及び一酸化炭素を浄化し水素を生
成する水素生成触媒成分と、水素吸蔵材とを含有し、水
素を生成し、吸蔵保持し、放出し、上記排気ガス通路の
上記設置位置よりも下流側における排気ガス中の水素濃
度を調整し得ることを特徴とする。
That is, the hydrogen supply exhaust gas purifying catalyst of the present invention is installed in an exhaust gas passage of an internal combustion engine or a combustion device,
A hydrogen generation catalyst component that purifies at least hydrocarbons and carbon monoxide to generate hydrogen, and contains a hydrogen storage material, and generates, stores, releases, and releases hydrogen from the installation position of the exhaust gas passage. Is characterized in that the concentration of hydrogen in the exhaust gas on the downstream side can be adjusted.

【0012】また、本発明の水素供給排気ガス浄化触媒
の好適形態は、上記水素生成触媒成分が、炭化水素類、
一酸化炭素及び窒素酸化物を浄化し、且つ白金、ロジウ
ム及びパラジウムから成る群より選ばれた少なくとも1
種の貴金属元素を含有することを特徴とする。
In a preferred embodiment of the hydrogen supply exhaust gas purifying catalyst of the present invention, the hydrogen generating catalyst component comprises a hydrocarbon,
At least one selected from the group consisting of platinum, rhodium and palladium for purifying carbon monoxide and nitrogen oxides;
It is characterized by containing a kind of noble metal element.

【0013】更に、本発明の水素供給排気ガス浄化触媒
の他の好適形態は、上記水素生成触媒成分が水素生成触
媒部を形成するとともに、上記水素吸蔵材が水素吸蔵材
部を形成し、該水素生成触媒部を該水素吸蔵材部よりも
上記排気ガス通路の上流側に配置して成ることを特徴と
する。
Further, in another preferred embodiment of the hydrogen supply exhaust gas purifying catalyst according to the present invention, the hydrogen generating catalyst component forms a hydrogen generating catalyst portion, and the hydrogen storage material forms a hydrogen storage material portion. The hydrogen generation catalyst section is arranged on the upstream side of the exhaust gas passage from the hydrogen storage section.

【0014】更にまた、本発明の水素供給排気ガス浄化
触媒の更に他の好適形態は、上記水素生成触媒成分が水
素生成触媒部を形成するとともに、上記水素吸蔵材が水
素吸蔵材部を形成し、該水素生成触媒部の上に該水素吸
蔵材部を被覆して成ることを特徴とする。
Still further, in still another preferred embodiment of the hydrogen supply exhaust gas purifying catalyst of the present invention, the hydrogen generation catalyst component forms a hydrogen generation catalyst portion, and the hydrogen storage material forms a hydrogen storage material portion. And the hydrogen generating catalyst portion is covered with the hydrogen storage material portion.

【0015】また、本発明の水素供給排気ガス浄化触媒
の他の好適形態は、窒素酸化物浄化触媒成分を含む窒素
酸化物浄化触媒部を、上記水素生成触媒部及び上記水素
吸蔵触媒部よりも上記排気ガス通路の下流側に配置して
成ることを特徴とする。
Further, in another preferred embodiment of the hydrogen supply exhaust gas purifying catalyst of the present invention, the nitrogen oxide purifying catalyst section containing the nitrogen oxide purifying catalyst component is provided more than the hydrogen generation catalyst section and the hydrogen storage catalyst section. It is characterized by being arranged downstream of the exhaust gas passage.

【0016】更に、本発明の水素供給排気ガス浄化触媒
の更に他の好適形態は、上記水素吸蔵材が、水素吸蔵合
金及び/又はカーボンナノチューブを含むことを特徴と
する。
Still another preferred embodiment of the hydrogen supply exhaust gas purifying catalyst of the present invention is characterized in that the hydrogen storage material contains a hydrogen storage alloy and / or a carbon nanotube.

【0017】更にまた、本発明の排気ガス浄化システム
は、内燃機関又は燃焼装置の排気ガス通路の上流側に、
上記水素供給排気ガス浄化触媒を配置し、その下流側
に、少なくとも水素を還元剤として窒素酸化物を浄化す
るNOx浄化触媒を配置して成り、水素を上記水素供給
浄化触媒の水素吸蔵材に吸蔵保持させることにより、こ
の水素が酸化消費されるのを抑制し、上記NOx浄化触
媒の水素供給量を増大し得ることを特徴とする。
Still further, the exhaust gas purifying system of the present invention further comprises:
The hydrogen supply exhaust gas purifying catalyst is disposed, and a NOx purifying catalyst that purifies nitrogen oxides using at least hydrogen as a reducing agent is disposed downstream of the catalyst. The hydrogen is stored in the hydrogen storage material of the hydrogen supply purifying catalyst. By keeping the hydrogen, the hydrogen is suppressed from being oxidized and consumed, and the amount of hydrogen supplied to the NOx purification catalyst can be increased.

【0018】また、本発明の排気ガス浄化システムの好
適形態は、上記NOx浄化触媒の入口ガスが、次式
(A) H量/TR量≧0.3…(A) (式中のTR量は、排気ガス中の全還元成分量を示す)
で表されるガス組成を満足することを特徴とする。
Further, in a preferred embodiment of the exhaust gas purifying system of the present invention, the inlet gas of the NOx purifying catalyst is expressed by the following formula (A) H 2 / TR amount ≧ 0.3 (A) (TR in the formula) The amount indicates the amount of all reducing components in the exhaust gas.)
Satisfies the gas composition represented by

【0019】更に、本発明の排気ガス浄化システムの他
の好適形態は、上記内燃機関又は燃焼装置の排気ガスの
空燃比A/Fをリーンからストイキ〜リッチに変動さ
せ、この際、上記水素供給浄化触媒の水素吸蔵材に吸蔵
保持させた水素を放出させることを特徴とする。
Further, in another preferred embodiment of the exhaust gas purifying system of the present invention, the air-fuel ratio A / F of the exhaust gas of the internal combustion engine or the combustion device is varied from lean to stoichiometric to rich. The hydrogen stored in the hydrogen storage material of the purification catalyst is released.

【0020】更にまた、本発明の排気ガス浄化システム
の更に他の好適形態は、上記NOx浄化触媒が、上記排
気ガスの空燃比A/Fがリーンのときに窒素酸化物を吸
蔵し、ストイキ〜リッチのときに吸蔵した窒素酸化物を
放出するNOx吸蔵浄化触媒であることを特徴とする。
In still another preferred embodiment of the exhaust gas purifying system of the present invention, the NOx purifying catalyst stores nitrogen oxides when the air-fuel ratio A / F of the exhaust gas is lean, and the NOx purifying catalyst is stoichiometric. It is a NOx storage purification catalyst that releases nitrogen oxides stored when it is rich.

【0021】[0021]

【作用】本発明の水素供給排気ガス浄化触媒において
は、水素生成触媒成分と、水素吸蔵材とを含有させた。
よって、これらが水素を生成し、吸蔵保持し、放出する
ことにより、排気ガス通路のこの触媒の設置位置よりも
下流側における排気ガス中の水素濃度を調整し得る。ま
た、本発明の排ガス浄化システムにおいては、上記水素
供給排気ガス浄化触媒の下流側に、少なくとも水素を還
元剤として窒素酸化物を浄化するNOx浄化触媒を配置
した。よって、上記水素供給浄化触媒の水素吸蔵材に吸
蔵保持させた水素を適切なタイミングで放出すれば、N
Oxを効率良く浄化することができる。
In the hydrogen supply exhaust gas purifying catalyst of the present invention, a hydrogen generating catalyst component and a hydrogen storage material are contained.
Therefore, these generate, store, and release hydrogen, thereby adjusting the hydrogen concentration in the exhaust gas downstream of the catalyst installation position in the exhaust gas passage. Further, in the exhaust gas purifying system of the present invention, a NOx purifying catalyst for purifying nitrogen oxides using at least hydrogen as a reducing agent is disposed downstream of the hydrogen supply exhaust gas purifying catalyst. Therefore, if hydrogen stored and held in the hydrogen storage material of the hydrogen supply purification catalyst is released at an appropriate timing, N
Ox can be efficiently purified.

【0022】[0022]

【発明の実施の形態】以下、本発明の水素供給排気ガス
浄化触媒について詳細に説明する。上述の如く、本発明
の水素供給排気ガス浄化触媒は、内燃機関又は燃焼装置
の排気ガス通路に設置され、水素生成触媒成分と、水素
吸蔵材とを含有して成る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a hydrogen supply exhaust gas purifying catalyst of the present invention will be described in detail. As described above, the hydrogen supply exhaust gas purifying catalyst of the present invention is provided in the exhaust gas passage of an internal combustion engine or a combustion device, and includes a hydrogen generating catalyst component and a hydrogen storage material.

【0023】ここで、上記水素生成触媒成分は、少なく
とも炭化水素類(HC)及び一酸化炭素(CO)を浄化
し水素(H)を生成できれば十分であり、卑金属や酸
化物などの酸化触媒成分を含有させたり、HCやCOな
どの各排気ガス成分に応じた浄化触媒成分を複数種含有
させることができるが、特に、HC、CO及びNOxを
浄化するものであって、白金(Pt)、ロジウム(R
h)又はパラジウム(Pd)及びこれらの任意の組合せ
に係る貴金属元素を含有することが好ましい。代表的に
は三元触媒成分を例示できる。かかる水素生成触媒成分
であれば、HC、CO及びNOxをより効率良く浄化
し、Hが有効に生成され易いからである。
Here, it is sufficient for the hydrogen generation catalyst component to purify at least hydrocarbons (HC) and carbon monoxide (CO) to generate hydrogen (H 2 ). Component, or a plurality of types of purification catalyst components corresponding to each exhaust gas component such as HC and CO. Particularly, the component purifies HC, CO, and NOx, and contains platinum (Pt). , Rhodium (R
h) or palladium (Pd) and a precious metal element according to any combination thereof. Typically, a three-way catalyst component can be exemplified. With such a hydrogen generating catalyst components, HC, and more efficiently purify CO and NOx, since H 2 is likely to be effectively generated.

【0024】更に、上記水素生成触媒成分は、上記水素
供給排気ガス浄化触媒1L容量中1〜40gの割合で含
有させることが好ましい。1g未満では低温活性や浄化
性能が十分に発現できず、40gを超えると、触媒活性
が飽和し易く、添加量に見合う性能向上が得られにくく
なるからである。また、経済性にも乏しくなりやすい。
Further, it is preferable that the hydrogen-producing catalyst component is contained at a ratio of 1 to 40 g in 1 L of the hydrogen-supplying exhaust gas purifying catalyst. If the amount is less than 1 g, the low-temperature activity and purification performance cannot be sufficiently exhibited, and if it exceeds 40 g, the catalytic activity tends to be saturated, and it is difficult to obtain a performance improvement commensurate with the added amount. In addition, the economy tends to be poor.

【0025】一方、上記水素吸蔵材としては、Hを吸
蔵保持し、放出する機能を有するものであれば使用で
き、特に、水素吸蔵合金及び/又はカーボンナノチュー
ブを含むを用いることが好ましい。例えば、水素吸蔵合
金としては、La−Ni系、Mg−Ni系、Ti−Fe
系及びPd−Ce系合金などが例示でき、カーボンナノ
チューブとしては、外径が10〜100nmで長さが1
0〜100μm程度であるものを例示できる。また、か
かる水素吸蔵材を使用する場合には、経済性や性能向上
効果などを考慮し、上記水素供給排気ガス浄化触媒1L
容量中10〜100g程度の割合で含有させることが好
ましい。
On the other hand, as the hydrogen absorbing material, and H 2 occludes held, it can be used as long as it has a function of releasing, in particular, is preferably used comprising a hydrogen storage alloy and / or carbon nanotubes. For example, as a hydrogen storage alloy, La—Ni, Mg—Ni, Ti—Fe
And Pd-Ce-based alloys. Examples of carbon nanotubes include an outer diameter of 10 to 100 nm and a length of 1 to 100 nm.
One having a thickness of about 0 to 100 μm can be exemplified. When such a hydrogen storage material is used, the hydrogen supply / exhaust gas purification catalyst 1 L
It is preferable that the content is contained at a ratio of about 10 to 100 g in the capacity.

【0026】上述した水素生成触媒成分及び水素吸蔵材
により、本発明の水素供給排気ガス浄化触媒は、内燃機
関又は燃焼装置の排気ガスから水素を生成し、吸蔵保持
し、放出し、かかる触媒の設置位置よりも下流側におけ
る排気ガス中の水素濃度を調整し得る。
The hydrogen supply exhaust gas purifying catalyst of the present invention generates, stores, retains and releases hydrogen from the exhaust gas of an internal combustion engine or a combustion device by using the above-described hydrogen generating catalyst component and the hydrogen storage material. The concentration of hydrogen in the exhaust gas downstream of the installation position can be adjusted.

【0027】ここで、上記「水素」とは、上記水素生成
触媒成分により生成されるHのみならず、排気ガス中
に含まれるHをも含むものである。また、上記「下流
側」とは、排気ガスの流れに対して上記水素供給排気ガ
ス浄化触媒より下流側であることを意味し、触媒直後の
位置だけでなく触媒から一定の距離をおいた位置をも含
むものである。更に、水素濃度の調整には、水素濃度の
増減のみならず、下流側へ供給されるH量がゼロであ
る場合も含まれ、具体的にHの吸蔵中は下流への供給
量がほとんどゼロになる。
Here, the term “hydrogen” includes not only H 2 generated by the hydrogen generation catalyst component but also H 2 contained in exhaust gas. Further, the “downstream side” means downstream of the hydrogen supply exhaust gas purifying catalyst with respect to the flow of exhaust gas, and not only a position immediately after the catalyst but also a position at a certain distance from the catalyst. Is also included. Furthermore, the adjustment of the hydrogen concentration, not only the increase or decrease of the hydrogen concentration, H 2 amount supplied to the downstream side is also included if it is zero, specifically the supply of H 2 in storage of H 2 is the downstream The amount will be almost zero.

【0028】また、上記水素供給排気ガス浄化触媒の下
流側における排気ガス中の水素濃度(下流へ供給された
量)は、上記水素吸蔵材が、上記水素生成触媒成分
が生成したH及び/又は排気ガス中のHをOなど
により酸化消費されることなく吸蔵保持し、これを放出
することにより調整され得る。この水素を適切なタイミ
ング、例えば酸化成分が少ない雰囲気下で放出すれば、
下流側での水素濃度が増大する。Hの放出は、水素吸
蔵材を減圧処理し又は水素吸蔵材を加熱することで制御
できる。
The hydrogen concentration (the amount of H 2 supplied downstream) in the exhaust gas on the downstream side of the hydrogen supply exhaust gas purifying catalyst is determined by the fact that the hydrogen occluding material is H 2 generated by the hydrogen generation catalyst component. And / or by storing and releasing H 2 in the exhaust gas without being oxidized and consumed by O 2 or the like, and releasing it. If this hydrogen is released at an appropriate timing, for example, in an atmosphere with little oxidizing component,
The hydrogen concentration on the downstream side increases. The release of H 2 can be controlled by decompressing the hydrogen storage material or heating the hydrogen storage material.

【0029】上述のような水素吸蔵材の機能から、水素
吸蔵材による吸蔵保持が上記水素生成触媒成分が生成し
たHを対象とする場合には、水素吸蔵材は、水素生成
触媒成分の後に排気ガスと接触するか又は、ほぼ同時に
若しくは先に接触しても水素生成触媒成分より遅れて活
性化することが望ましいと言える。一方、かかる吸蔵保
持が排気ガス中のHを対象とする場合には、水素生成
触媒成分を経由せずに吸蔵保持するので、水素吸蔵材は
早期に活性化していることが望ましいと言える。
[0029] From the function of the hydrogen storage material as described above, when the storage retention by the hydrogen storage material is directed of H 2 produced is the hydrogen generating catalyst component, hydrogen storage material, after the hydrogen generating catalyst component It can be said that it is desirable that the catalyst be activated after being in contact with the exhaust gas or almost simultaneously or earlier than the hydrogen generation catalyst component. On the other hand, such storage retention when the target of H 2 in the exhaust gas, so occludes held without passing through the hydrogen generating catalyst component, hydrogen storage material can be said to be desirable to have activated prematurely.

【0030】かかる観点から、本発明の水素供給排気ガ
ス浄化触媒では、水素吸蔵材を水素生成触媒成分と区分
して配置することが可能である。
From such a viewpoint, in the hydrogen supply exhaust gas purifying catalyst of the present invention, it is possible to arrange the hydrogen storage material separately from the hydrogen generation catalyst component.

【0031】また、図4に示すように、上記水素生成触
媒成分(三元触媒成分)が形成する水素生成触媒部を、
上記水素吸蔵材が形成する水素吸蔵材部よりも上記排気
ガス通路の上流側に配置することができる。この場合に
は、水素吸蔵材部が水素生成触媒部でHが消費(酸
化)されるのを抑制し、水素生成触媒部で生成されるH
をより効率良く吸蔵保持・放出できるので好適であ
る。かかる触媒配置は、具体的には、1つの担体上に水
素生成触媒部と水素吸蔵材部とを塗り分けて配置するこ
とや水素生成触媒部と水素吸蔵材部とを別々の担体に独
立させてタンデム配置することによって実現できる。
As shown in FIG. 4, the hydrogen generation catalyst component formed by the hydrogen generation catalyst component (three-way catalyst component) is:
The hydrogen storage material may be disposed on the upstream side of the exhaust gas passage with respect to the hydrogen storage material portion formed by the hydrogen storage material. In this case, the hydrogen storage material section suppresses consumption (oxidation) of H 2 in the hydrogen generation catalyst section, and H 2 generated in the hydrogen generation catalyst section.
2 can be more efficiently stored and released, which is preferable. Specifically, such a catalyst arrangement is such that the hydrogen generation catalyst section and the hydrogen storage material section are separately arranged on a single carrier, or the hydrogen generation catalyst section and the hydrogen storage material section are made independent on separate carriers. It can be realized by tandem arrangement.

【0032】更に、図2及び図5に示すように、上記水
素吸蔵材部、代表的には水素吸蔵材層を上記水素生成触
媒部(三元触媒部)、代表的には水素生成触媒層の上に
被覆することもできる。この場合には、水素生成触媒部
で生成されるHに加えて、排気ガス中のHをより吸
蔵保持し易いため有効である。なお、このように水素生
成触媒層に水素吸蔵材層を被覆して一体化するときは、
上記水素吸蔵材部を、触媒1L容量中10〜50gの割
合でコートして、上記水素生成触媒部の活性を効率良く
発現させることがより好ましい。
Further, as shown in FIGS. 2 and 5, the hydrogen storage material portion, typically, the hydrogen storage material layer is replaced with the hydrogen generation catalyst portion (three-way catalyst portion), typically, the hydrogen generation catalyst layer. It can also be coated on. This is effective because H 2 in the exhaust gas can be more easily stored and held in addition to H 2 generated in the hydrogen generation catalyst section. When the hydrogen generation catalyst layer is coated with the hydrogen storage material layer and integrated as described above,
It is more preferable that the hydrogen storage material part is coated at a rate of 10 to 50 g per 1 L of the catalyst to efficiently exhibit the activity of the hydrogen generation catalyst part.

【0033】更にまた、本発明の水素供給排気ガス浄化
触媒では、上記水素生成触媒部及び上記水素吸蔵材部よ
りも上記排気ガス通路の下流側に、窒素酸化物浄化触媒
成分を含む窒素酸化物浄化触媒部を配置することができ
る。この場合には、上記水素吸蔵材部から放出されるH
を利用して窒素酸化物浄化触媒部がNOxを効率良く
浄化でき、後述する本発明の排気ガス浄化システムにお
けるNOx浄化触媒が浄化すべきNOxを低減できるの
で有効である。また、窒素酸化物浄化触媒成分として
は、例えば、Pt、Pd及びRhなどを例示できる。な
お、上記窒素酸化物浄化触媒部の上流側でHC及びCO
が殆ど浄化処理できるため、上記窒素酸化物浄化触媒部
は必ずしもHC及びCO浄化性能を有する必要はない。
Further, in the hydrogen supply exhaust gas purifying catalyst according to the present invention, the nitrogen oxide containing a nitrogen oxide purifying catalyst component is located downstream of the hydrogen generation catalyst section and the hydrogen storage material section in the exhaust gas passage. A purification catalyst section can be arranged. In this case, H released from the hydrogen storage material portion
This is effective because the nitrogen oxide purifying catalyst section can efficiently purify NOx by utilizing NO.2 and the NOx purifying catalyst in the exhaust gas purifying system of the present invention described later can reduce NOx to be purified. Examples of the nitrogen oxide purification catalyst component include, for example, Pt, Pd, and Rh. Note that HC and CO are located upstream of the nitrogen oxide purifying catalyst section.
Since most of the nitrogen oxides can be purified, the nitrogen oxide purification catalyst section does not necessarily need to have HC and CO purification performance.

【0034】本発明の水素供給排気ガス浄化触媒は、粒
状やペレット状でも使用することができるが、反応効率
を向上すべく、上述した水素生成触媒成分、水素吸蔵材
成分や窒素酸化物浄化触媒成分を一体構造型担体にコー
トして用いることが好ましい。 かかる一体構造型担体
としては、耐熱性材料から成るモノリス担体やメタル担
体などを例示できる。特に、自動車の排気ガス浄化に使
用するに当たっては、ハニカム状担体にコートすること
により、触媒等と排気ガスとの接触面積(反応表面積)
を拡大でき、圧力損失も減少できるため、より有効とな
る。なお、かかるハニカム状担体としては、一般にセラ
ミック等のコージェライト質のものが多く用いられる
が、フェライト系ステンレス等の金属材料からなるハニ
カム材料を用いることも可能であり、更には触媒成分粉
末そのものをハニカム状に成形してもよい。
The catalyst for purifying hydrogen-supplied exhaust gas of the present invention can be used in the form of granules or pellets. However, in order to improve the reaction efficiency, the above-mentioned hydrogen-producing catalyst component, hydrogen-absorbing material component and nitrogen oxide-purifying catalyst are used. It is preferred that the components are coated on a monolithic carrier for use. Examples of the monolithic carrier include a monolith carrier and a metal carrier made of a heat-resistant material. In particular, when used for purification of exhaust gas from automobiles, a honeycomb carrier is coated to form a contact area (reaction surface area) between catalyst and the like and exhaust gas.
And the pressure loss can be reduced, which is more effective. Note that, as such a honeycomb-shaped carrier, cordierite-based materials such as ceramics are generally used in many cases, but it is also possible to use a honeycomb material made of a metal material such as a ferritic stainless steel. It may be formed into a honeycomb shape.

【0035】また、本水素供給排気ガス浄化触媒を上記
ハニカム状担体にコートする場合の触媒成分量は、上述
した触媒成分のトータルで、触媒1L当たり50g〜4
00gとすることが好ましい。これは、触媒成分担持層
は触媒活性や触媒寿命の面からは厚い(担持量が多い)
ことが好ましいが、コート層が厚くなりすぎると、反応
ガスが拡散不良となりコート層内部の触媒と十分に接触
できなくなる、言い換えれば、活性に対する増量効果が
飽和し、ガスの通過抵抗も大きくなるためである。
When the present hydrogen-supplying exhaust gas purifying catalyst is coated on the honeycomb-shaped carrier, the amount of the catalyst component is 50 g to 4 g per liter of the total of the above-mentioned catalyst components.
It is preferably set to 00 g. This is because the catalyst component-supporting layer is thick in terms of catalyst activity and catalyst life (the amount of support is large).
However, if the coat layer is too thick, the diffusion of the reaction gas becomes insufficient and the catalyst inside the coat layer cannot be sufficiently contacted.In other words, the effect of increasing the amount of the active substance is saturated, and the gas passage resistance increases. It is.

【0036】次に、本発明の排気ガス浄化システムにつ
いて詳細に説明する。かかる排気ガス浄化システムは、
内燃機関又は燃焼装置の排気ガス通路の上流側に、上述
の水素供給排気ガス浄化触媒を配置し、その下流側に、
少なくともH を還元剤として窒素酸化物を浄化するN
Ox浄化触媒を配置して成る。例えば、図1に示すよう
に触媒配置した排気ガス浄化システムとすることができ
る。
Next, an exhaust gas purification system according to the present invention will be described.
And will be described in detail. Such an exhaust gas purification system is:
On the upstream side of the exhaust gas passage of the internal combustion engine or the combustion device,
The hydrogen supply exhaust gas purification catalyst of
At least H 2To purify nitrogen oxides using nitrogen as a reducing agent
An Ox purification catalyst is provided. For example, as shown in FIG.
Exhaust gas purification system with a catalyst
You.

【0037】また、上記排気ガス浄化システムでは、上
流側に設置する上記水素供給排気ガス浄化触媒が、上述
のように排気ガス成分からHを生成・吸蔵保持・放出
するが、この際の放出Hを調整して、下流側の上記N
Ox浄化触媒の入口ガスを、次式(A) H量/TR量≧0.3…(A) (式中のTR量は、排気ガス中の全還元成分量を示す)
で表されるガス組成を満足するように制御することが望
ましい。この関係を満足させれば、NOx浄化に好適な
還元剤をNOx浄化触媒に確実に供給することができ
る。
In the exhaust gas purifying system, the hydrogen supply exhaust gas purifying catalyst installed on the upstream side generates, stores, holds and releases H 2 from the exhaust gas component as described above. adjust the H 2, on the downstream side the N
The inlet gas of the Ox purification catalyst is expressed by the following equation (A) H 2 / TR amount ≧ 0.3 (A) (The TR amount in the equation indicates the total amount of reducing components in the exhaust gas.)
It is desirable to control so as to satisfy the gas composition represented by If this relationship is satisfied, a reducing agent suitable for NOx purification can be reliably supplied to the NOx purification catalyst.

【0038】更に、上記排気ガス浄化システムでは、上
記水素供給浄化触媒の水素吸蔵材に吸蔵保持させたH
を所望のタイミングで下流側に放出させることで、水素
供給量を増大し、NOx浄化触媒に効率の良いNOx浄
化処理を行わせることができる。Hの放出タイミング
は、例えば、上記内燃機関又は燃焼装置の排気ガスの空
燃比A/Fをリーンからストイキ〜リッチに変動させた
時点とすることができる。
Further, in the exhaust gas purifying system, the H 2 stored and held in the hydrogen storage material of the hydrogen supply purifying catalyst may be used.
Is released to the downstream side at a desired timing, the amount of hydrogen supply is increased, and the NOx purification catalyst can perform an efficient NOx purification process. Release timing of H 2, for example, may be a time when the air-fuel ratio A / F of the exhaust gas was varied from lean to stoichiometric-rich of the internal combustion engine or a combustion device.

【0039】また、上記NOx浄化触媒は、上記排気ガ
スの空燃比A/Fがリーンのときに窒素酸化物を吸蔵
し、ストイキ〜リッチのときに吸蔵した窒素酸化物を放
出する触媒であることが好ましく、この場合には、還元
剤の主成分となるHの放出タイミングに合わせて、N
Oxも放出されるため、より効率良くNOxの浄化処理
を行うことができる。
The NOx purification catalyst is a catalyst that stores nitrogen oxides when the air-fuel ratio A / F of the exhaust gas is lean, and releases the stored nitrogen oxides when the air-fuel ratio A / F of the exhaust gas is stoichiometric to rich. In this case, in accordance with the release timing of H 2 , which is the main component of the reducing agent,
Since Ox is also released, the purification process of NOx can be performed more efficiently.

【0040】以上のように、本発明の排気ガス浄化シス
テムでは、空燃比A/Fや排ガス温度などの変化により
NOx浄化に要する還元剤量が変動する場合、代表的に
は、NOx浄化触媒がより還元剤を必要とする場合に、
を適度な量供給し、NOxを効率良く還元浄化する
ことができる。
As described above, in the exhaust gas purifying system of the present invention, when the amount of reducing agent required for purifying NOx fluctuates due to changes in the air-fuel ratio A / F, the temperature of exhaust gas, etc., the NOx purifying catalyst is typically used. If you need more reducing agent,
Of H 2 and moderate amount supplied, NOx can be efficiently reduced and purified.

【0041】[0041]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0042】(1)水素供給排気ガス浄化触媒出口のH
量測定 以下の実施例及び比較例では、排気ガス通路に設置する
水素供給排気ガス浄化触媒及び他の触媒(比較例)を製
造し、この触媒に排気ガスを流通し触媒出口の排気ガス
中のH量を測定した。
(1) H at the outlet of the hydrogen supply exhaust gas purification catalyst
In the following Examples and Comparative Examples, a hydrogen supply exhaust gas purifying catalyst and another catalyst (comparative example) installed in an exhaust gas passage were manufactured, and the exhaust gas was passed through the catalyst and the exhaust gas was discharged from the catalyst outlet. of H 2 amount was measured.

【0043】(実施例1)活性アルミナ粉末に硝酸パラ
ジウム水溶液を含浸し、150℃で12時間乾燥した
後、400℃で1時間焼成して、Pd担持活性アルミナ
粉末(粉末A)を得た。この粉末AのPd濃度は6.0
重量%であった。上記粉末Aを150g、活性セリア粉
末Bを50g、硝酸水溶液200g磁性ボールミルに投
入し、混合・粉砕してスラリーを得た。このスラリー液
をコージェライト質モノリス担体(0.1L、400セ
ル/平方インチ)の排気入口端部から出口側にかけて担
体全長の50%までに付着させ、空気流にてセル内の余
剰のスラリーを除去・乾燥し、500℃で1時間焼成し
た。コート量重量100g/L−担体の触媒Aを得た。
Pd担持量は4.5g/L−担体であった。
Example 1 Activated alumina powder was impregnated with an aqueous solution of palladium nitrate, dried at 150 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour to obtain Pd-supported activated alumina powder (powder A). The Pd concentration of this powder A was 6.0.
% By weight. 150 g of the powder A, 50 g of the activated ceria powder B, and 200 g of an aqueous nitric acid solution were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to 50% of the entire length of the cordierite monolithic carrier (0.1 L, 400 cells / square inch) from the exhaust inlet end to the outlet side of the carrier, and the excess slurry in the cells is air-flowed. It was removed, dried and calcined at 500 ° C. for 1 hour. A catalyst A having a coat weight of 100 g / L-carrier was obtained.
The supported amount of Pd was 4.5 g / L-carrier.

【0044】La−Fe系水素吸蔵合金を100g、活
性アルミナを100g、純水を200g磁性ボールミル
に投入し、混合・粉砕してスラリーを得た。このスラリ
ー液を触媒Aの排気出口端部から入口側にかけて担体全
長の50%までに付着させ、空気流にてセル内の余剰の
スラリーを除去・乾燥し、500℃で1時間焼成して水
素供給排気ガス浄化触媒を得た。水素吸蔵材コート層の
コート量重量は100g/L−担体であった。
A La-Fe-based hydrogen storage alloy (100 g), activated alumina (100 g), and pure water (200 g) were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to 50% of the entire length of the carrier from the exhaust outlet end to the inlet side of the catalyst A, and the excess slurry in the cell is removed and dried by an air flow, and calcined at 500 ° C. for 1 hour to obtain hydrogen. A supply exhaust gas purification catalyst was obtained. The coat weight of the hydrogen storage material coat layer was 100 g / L-carrier.

【0045】(実施例2)Pd含有層をモノリス担体
(0.1L、400セル/平方インチ)に第1コート層
としてコートした後、水素吸蔵材層を、Pd含有層の上
層にコートした以外は、実施例1と同様の操作を繰り返
し、水素供給排気ガス浄化触媒を得た。
Example 2 A Pd-containing layer was coated on a monolithic carrier (0.1 L, 400 cells / square inch) as a first coat layer, and then a hydrogen storage material layer was coated on the Pd-containing layer. The same operation as in Example 1 was repeated to obtain a hydrogen supply exhaust gas purifying catalyst.

【0046】(比較例1)水素吸蔵合金層(La−Fe
系水素吸蔵合金)をコートせず、Pd含有層のみの触媒
層構成とした以外は、実施例2と同様の操作を繰り返
し、排気ガス浄化触媒を得た。
(Comparative Example 1) Hydrogen storage alloy layer (La-Fe
The same operation as in Example 2 was repeated except that the catalyst layer configuration was made only of the Pd-containing layer without coating with the Pt-based hydrogen storage alloy) to obtain an exhaust gas purification catalyst.

【0047】(比較例2)モノリス担体の排気入口側に
水素吸蔵材層を(Pdに代えて水素吸蔵材を)配置し、
排気出口側にPd含有層を(水素吸蔵材に代えてPd
を)配置した以外は、実施例1と同様の操作を繰り返
し、排気ガス浄化触媒を得た。
(Comparative Example 2) A hydrogen storage material layer (a hydrogen storage material instead of Pd) was disposed on the exhaust inlet side of the monolithic carrier.
A Pd-containing layer is formed on the exhaust outlet side (Pd instead of hydrogen storage material).
)), But the same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst.

【0048】(比較例3)水素吸蔵材層をモノリス担体
(0.1L、400セル/平方インチ)に第1コート層
としてコートした後、水素吸蔵材層の上層にPd含有層
をコートした(実施例2の第1コート層と第2コート層
との位置を逆にした)以外は、実施例2と同様の操作を
繰り返し、排気ガス浄化触媒を得た。
Comparative Example 3 A hydrogen storage material layer was coated as a first coat layer on a monolithic carrier (0.1 L, 400 cells / square inch), and then a Pd-containing layer was coated on the hydrogen storage material layer ( Except that the positions of the first coat layer and the second coat layer in Example 2 were reversed, the same operation as in Example 2 was repeated to obtain an exhaust gas purification catalyst.

【0049】上記実施例1〜2及び比較例1〜3で得ら
れた排気ガス浄化触媒の貴金属担持量(触媒1L中にお
けるPt、Pdの含有量)、水素吸蔵材担持量及び触媒
の構造・配置をそれぞれ表1に示す。
The amount of the noble metal carried (the content of Pt and Pd in 1 L of the catalyst), the amount of the hydrogen storage material carried, and the structure of the catalyst in the exhaust gas purifying catalysts obtained in the above Examples 1-2 and Comparative Examples 1-3 The arrangement is shown in Table 1.

【0050】[0050]

【表1】 [Table 1]

【0051】[性能評価]実施例1〜2及び比較例1〜
3で得られた排気ガス浄化触媒について、C 、H
、O及びNを含むモデルガスによるリッチ・リー
ン切り替え(各10sec)モードでのH消費量評価
を行った。評価温度は400℃、ガス流量は20L/m
in(SV=12,000h−1相当)とした。モデル
ガスのリーン時及びリッチ時のガス組成を表2に示す。
また、触媒出口のH量(H消費量)を測定し、比較
例1を基準とした相対比の形で比較した。この評価結果
を図3のグラフに示す。
[Evaluation of Performance] Examples 1 and 2 and Comparative Examples 1 and 2
About the exhaust gas purification catalyst obtained in 3,3H 6, H
2, O2And N2Rich Lee with model gas containing
In switching mode (10 sec each)2Consumption evaluation
Was done. Evaluation temperature is 400 ° C, gas flow rate is 20L / m
in (SV = 12,000h-1Equivalent). model
Table 2 shows the gas composition when the gas is lean and when the gas is rich.
In addition, H at the catalyst outlet2Quantity (H2Consumption)) and compare
The comparison was made in the form of a relative ratio based on Example 1. This evaluation result
Is shown in the graph of FIG.

【0052】[0052]

【表2】 [Table 2]

【0053】(2)排気ガス浄化システムの構築及びN
Ox浄化量測定 上記(1)で用いた水素供給排気ガス浄化触媒の下流側
にNOx浄化触媒を配置して各例の排気ガス浄化システ
ムを構築し、NOx浄化触媒出口のNOx浄化量を測定
した。
(2) Construction of exhaust gas purification system and N
Ox Purification Amount Measurement The NOx purification catalyst was arranged downstream of the hydrogen supply exhaust gas purification catalyst used in (1) above to construct an exhaust gas purification system of each example, and the NOx purification amount at the NOx purification catalyst outlet was measured. .

【0054】(実施例3及び実施例4)実施例1又は2
で得られた水素供給排気ガス浄化触媒をNOx浄化触媒
(Pd、Rh+Ba/活性アルミナ)と組み合せて各例
の排気ガス浄化システムを得た。
(Embodiments 3 and 4) Embodiment 1 or 2
By combining the hydrogen supply exhaust gas purification catalyst obtained in the above with a NOx purification catalyst (Pd, Rh + Ba / activated alumina), an exhaust gas purification system of each example was obtained.

【0055】(比較例4〜6)比較例1〜3で得られた
水素供給排気ガス浄化触媒を用いた以外は、実施例3と
同様の構成を採用し、各例の排気ガス浄化システムを得
た。
(Comparative Examples 4 to 6) Except for using the hydrogen supply exhaust gas purifying catalysts obtained in Comparative Examples 1 to 3, the same configuration as in Example 3 was adopted, and the exhaust gas purifying system of each example was used. Obtained.

【0056】[性能評価]得られた排気ガス浄化システ
ムについて、C、H、O、NO、HO、C
及びNを含むモデルガスによるリッチ・リーン切
り替え(各10sec)モードでのNOx浄化性能評価
を行った。評価温度は400℃、ガス流量は20L/m
inとした。モデルガスのリーン時及びリッチ時のガス
組成を表3に示す。また、平均NOx浄化量を比較例1
を基準とした相対比の形で比較した。この評価結果を図
6のグラフ示す。
[Evaluation of Performance] Regarding the obtained exhaust gas purification system, C 3 H 6 , H 2 , O 2 , NO, H 2 O, C
The NOx purification performance was evaluated in a rich / lean switching mode (10 sec each) using a model gas containing O 2 and N 2 . Evaluation temperature is 400 ° C, gas flow rate is 20L / m
in. Table 3 shows the gas composition at the time of lean and rich model gas. In addition, the average NOx purification amount was compared with Comparative Example 1.
The comparison was made in the form of a relative ratio based on. The evaluation results are shown in the graph of FIG.

【0057】[0057]

【表3】 [Table 3]

【0058】図3に示すように、実施例1及び実施例2
は、本発明の好適範囲内である水素供給排気ガス浄化触
媒としたため、触媒出口から排出される排気ガスは、高
いH 存在率を有していることがわかる。なお、実施例
1及び実施例2より、タンデム配置(図4)よりも二層
コート配置(図5)の方がより出口H量が多いことが
わかる。これに対し、比較例1〜3は、水素吸蔵材を用
いない構成(比較例1)や各触媒を上記実施例とは逆の
位置に配置した構成(比較例2及び3)より成る排気ガ
ス浄化触媒であり、これらは本発明の好適形態から逸脱
するため、出口H量が実施例に比して減少しているこ
とがわかる。
As shown in FIG. 3, Embodiment 1 and Embodiment 2
Is a hydrogen supply exhaust gas purification catalyst that is within the preferred range of the present invention.
The exhaust gas discharged from the catalyst outlet
H 2It turns out that it has a presence rate. Example
1 and Example 2, two layers more than the tandem arrangement (FIG. 4)
The exit H is more in the court arrangement (Fig. 5).2Large amount
Understand. In contrast, Comparative Examples 1 to 3 use a hydrogen storage material.
No configuration (Comparative Example 1) or each catalyst
Exhaust gas having a configuration (Comparative Examples 2 and 3) arranged at a position
Purification catalysts, which deviate from the preferred form of the present invention.
Exit H2That the amount is smaller than in the example.
I understand.

【0059】また、実施例及び比較例で得られた排気ガ
ス浄化触媒をNOx浄化触媒と組み合せた排気ガス浄化
システムにおいても、本発明の好適範囲にある水素供給
排気ガス浄化触媒を用いた排気ガス浄化システム(実施
例3及び4)では、放出されるH量が多いことから、
比較例4〜6の排気ガス浄化システムに対してNOx浄
化量が良好であることがわかる(図6)。
Also, in an exhaust gas purifying system in which the exhaust gas purifying catalysts obtained in Examples and Comparative Examples are combined with a NOx purifying catalyst, an exhaust gas using a hydrogen supply exhaust gas purifying catalyst falling within a preferable range of the present invention is also used. In the purification system (Examples 3 and 4), since the amount of released H 2 is large,
It can be seen that the NOx purification amount is better than the exhaust gas purification systems of Comparative Examples 4 to 6 (FIG. 6).

【0060】[0060]

【発明の効果】以上説明してきたように、本発明によれ
ば、水素生成触媒成分と水素吸蔵材を併用し、水素吸蔵
材に吸蔵保持させた水素を、適切なタイミングで放出さ
せることとしたため、触媒の下流側における水素濃度を
調整し得る水素供給排気ガス浄化触媒、及びこの水素供
給排気ガス浄化触媒の下流側に設置するNOx浄化触媒
の浄化性能を向上し得る排気ガス浄化システムを提供す
ることができる。また、本発明の水素供給排気ガス浄化
触媒及び排気ガス浄化システムを用いれば、排気ガス中
に含まれるHC、COを高い転化率で浄化できるととも
に、リーン域におけるNOxも還元剤濃度の制御によ
り、高い転化率で浄化できる。
As described above, according to the present invention, the hydrogen storage catalyst component and the hydrogen storage material are used in combination, and the hydrogen stored and held in the hydrogen storage material is released at an appropriate timing. A hydrogen supply exhaust gas purification catalyst capable of adjusting the hydrogen concentration downstream of the catalyst, and an exhaust gas purification system capable of improving the purification performance of a NOx purification catalyst installed downstream of the hydrogen supply exhaust gas purification catalyst. be able to. Further, by using the hydrogen supply exhaust gas purifying catalyst and the exhaust gas purifying system of the present invention, HC and CO contained in the exhaust gas can be purified at a high conversion rate, and NOx in the lean region can be reduced by controlling the reducing agent concentration. It can be purified at a high conversion rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気ガス浄化システムの一実施形態を
示す概略図である。
FIG. 1 is a schematic diagram showing one embodiment of an exhaust gas purification system of the present invention.

【図2】本発明の水素供給排気ガス浄化触媒のコート層
の一例を示す部分断面図及びその拡大図である。
FIG. 2 is a partial sectional view showing an example of a coat layer of a hydrogen supply exhaust gas purifying catalyst of the present invention and an enlarged view thereof.

【図3】水素供給排気ガス浄化触媒のH消費特性を対
比したグラフである。
FIG. 3 is a graph comparing H 2 consumption characteristics of a hydrogen supply exhaust gas purifying catalyst.

【図4】触媒成分をタンデム配置した場合のH吸蔵保
持・放出のメカニズムを示す図である。
FIG. 4 is a diagram showing a mechanism of H 2 occlusion retention / release when a catalyst component is arranged in tandem.

【図5】図2の水素供給排気ガス浄化触媒におけるH
吸蔵保持・放出のメカニズムを示す図である。
FIG. 5 shows H 2 in the hydrogen supply exhaust gas purifying catalyst of FIG. 2;
It is a figure showing the mechanism of occlusion retention and release.

【図6】排気ガス浄化システムの平均NOx浄化量を対
比したグラフである。
FIG. 6 is a graph comparing the average NOx purification amount of the exhaust gas purification system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/08 B 3/10 A 3/10 3/24 E 3/24 3/28 301C 3/28 301 301E B01D 53/36 101A 102B Fターム(参考) 3G091 AA02 AA12 AA17 AB03 AB04 AB06 AB08 AB09 BA14 BA15 BA19 BA38 CA19 CB02 DA01 DA02 DA03 FB10 FB11 FB12 FC02 GA01 GA06 GB01W GB01X GB01Y GB03Y GB04Y GB05W GB06W GB07W GB10W GB10X GB16X HA08 HA18 HA19 HA20 HA47 4D048 AA06 AB02 AB03 BA03X BA15X BA19X BA30Y BA31X BA33X BA41X BA42X BB02 CA01 CC32 CC38 CC46 CD01 CD08 4G066 AA02B AA04B AA28B CA28 CA38 DA02 GA06 GA37 4G069 AA03 BA01B BB02A BB02B BC43B BC71A BC71B BC72A BC72B BC75A CA02 CA03 CA08 CA10 CA13 DA06 EA19──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/08 F01N 3/08 B 3/10 A 3/10 3/24 E 3/24 3/28 301C 3/28 301 301E B01D 53/36 101A 102B F term (reference) 3G091 AA02 AA12 AA17 AB03 AB04 AB06 AB08 AB09 BA14 BA15 BA19 BA38 CA19 CB02 DA01 DA02 DA03 FB10 FB11 FB12 FC02 GA01 GA06 GB01W GB01 GB04 GB10 GB03 GB03 GB03 GB16X HA08 HA18 HA19 HA20 HA47 4D048 AA06 AB02 AB03 BA03X BA15X BA19X BA30Y BA31X BA33X BA41X BA42X BB02 CA01 CC32 CC38 CC46 CD01 CD08 4G066 AA02B AA04B AA28B CA28 CA38 DA02 GA06 GA37 4G073 BC02 BC02A01BCAB BCBC DA06 EA19

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関又は燃焼装置の排気ガス通路に
設置され、少なくとも炭化水素類及び一酸化炭素を浄化
し水素を生成する水素生成触媒成分と、水素吸蔵材とを
含有し、 水素を生成し、吸蔵保持し、放出し、上記排気ガス通路
の上記設置位置よりも下流側における排気ガス中の水素
濃度を調整し得ることを特徴とする水素供給排気ガス浄
化触媒。
1. A hydrogen generation catalyst component, which is provided in an exhaust gas passage of an internal combustion engine or a combustion device and purifies at least hydrocarbons and carbon monoxide to generate hydrogen, and a hydrogen storage material, and generates hydrogen. A hydrogen supply / exhaust gas purifying catalyst, wherein the hydrogen supply / exhaust gas purifying catalyst is capable of adjusting the concentration of hydrogen in the exhaust gas downstream of the installation position of the exhaust gas passage.
【請求項2】 上記水素生成触媒成分が、炭化水素類、
一酸化炭素及び窒素酸化物を浄化し、且つ白金、ロジウ
ム及びパラジウムから成る群より選ばれた少なくとも1
種の貴金属元素を含有することを特徴とする請求項1記
載の水素供給排気ガス浄化触媒。
2. The method according to claim 1, wherein the hydrogen generating catalyst component is a hydrocarbon,
At least one selected from the group consisting of platinum, rhodium and palladium for purifying carbon monoxide and nitrogen oxides;
The catalyst for purifying hydrogen-supplied exhaust gas according to claim 1, wherein the catalyst contains at least one noble metal element.
【請求項3】 上記水素生成触媒成分が水素生成触媒部
を形成するとともに、上記水素吸蔵材が水素吸蔵材部を
形成し、該水素生成触媒部を該水素吸蔵材部よりも上記
排気ガス通路の上流側に配置して成ることを特徴とする
請求項1又は2に記載の水素供給排気ガス浄化触媒。
3. The hydrogen generation catalyst component forms a hydrogen generation catalyst portion, the hydrogen storage material forms a hydrogen storage material portion, and the hydrogen generation catalyst portion is disposed in the exhaust gas passage more than the hydrogen storage material portion. The hydrogen supply exhaust gas purifying catalyst according to claim 1 or 2, wherein the catalyst is disposed upstream of the hydrogen supply exhaust gas.
【請求項4】 上記水素生成触媒成分が水素生成触媒部
を形成するとともに、上記水素吸蔵材が水素吸蔵材部を
形成し、該水素生成触媒部の上に該水素吸蔵材部を被覆
して成ることを特徴とする請求項1又は2に記載の水素
供給排気ガス浄化触媒。
4. The hydrogen generation catalyst component forms a hydrogen generation catalyst portion, the hydrogen storage material forms a hydrogen storage material portion, and the hydrogen generation catalyst portion covers the hydrogen storage material portion. The hydrogen supply exhaust gas purifying catalyst according to claim 1, wherein the catalyst is formed.
【請求項5】 窒素酸化物浄化触媒成分を含む窒素酸化
物浄化触媒部を、上記水素生成触媒部及び上記水素吸蔵
触媒部よりも上記排気ガス通路の下流側に配置して成る
ことを特徴とする請求項3又は4記載の水素供給排気ガ
ス浄化触媒。
5. A nitrogen oxide purifying catalyst section containing a nitrogen oxide purifying catalyst component is disposed downstream of the exhaust gas passage with respect to the hydrogen generation catalyst section and the hydrogen storage catalyst section. The hydrogen supply exhaust gas purifying catalyst according to claim 3 or 4, wherein:
【請求項6】 上記水素吸蔵材が、水素吸蔵合金及び/
又はカーボンナノチューブを含むことを特徴とする請求
項1〜5のいずれか1つの項に記載の水素供給排気ガス
浄化触媒。
6. The method according to claim 1, wherein the hydrogen storage material is a hydrogen storage alloy and / or a hydrogen storage alloy.
The catalyst for purifying hydrogen-supplied exhaust gas according to any one of claims 1 to 5, further comprising a carbon nanotube.
【請求項7】 内燃機関又は燃焼装置の排気ガス通路の
上流側に、請求項1〜6のいずれか1つの項に記載の水
素供給排気ガス浄化触媒を配置し、その下流側に、少な
くとも水素を還元剤として窒素酸化物を浄化するNOx
浄化触媒を配置して成り、 水素を上記水素供給浄化触媒の水素吸蔵材に吸蔵保持さ
せることにより、この水素が酸化消費されるのを抑制
し、上記NOx浄化触媒の水素供給量を増大し得ること
を特徴とする排気ガス浄化システム。
7. A hydrogen supply exhaust gas purifying catalyst according to claim 1, which is disposed upstream of an exhaust gas passage of an internal combustion engine or a combustion device, and at least hydrogen is disposed downstream of the catalyst. NOx Purifies Nitrogen Oxide Using Oxygen as Reducing Agent
By arranging a purifying catalyst, and storing and holding hydrogen in the hydrogen storage material of the hydrogen supply purifying catalyst, the hydrogen can be suppressed from being oxidized and consumed, and the hydrogen supply amount of the NOx purifying catalyst can be increased. An exhaust gas purification system characterized in that:
【請求項8】 上記NOx浄化触媒の入口ガスが、次式
(A) H量/TR量≧0.3…(A) (式中のTR量は、排気ガス中の全還元成分量を示す)
で表されるガス組成を満足することを特徴とする請求項
7記載の排気ガス浄化システム。
8. The gas at the inlet of the NOx purification catalyst is expressed by the following equation (A) H 2 / TR amount ≧ 0.3 (A) (wherein the TR amount represents the total reducing component amount in the exhaust gas. Show)
The exhaust gas purification system according to claim 7, wherein a gas composition represented by the following formula is satisfied.
【請求項9】 上記内燃機関又は燃焼装置の排気ガスの
空燃比A/Fをリーンからストイキ〜リッチに変動さ
せ、この際、上記水素供給浄化触媒の水素吸蔵材に吸蔵
保持させた水素を放出させることを特徴とする請求項7
又は8記載の排気ガス浄化システム。
9. The air-fuel ratio A / F of the exhaust gas of the internal combustion engine or the combustion device is varied from lean to stoichiometric to rich, and at this time, the hydrogen stored and held in the hydrogen storage material of the hydrogen supply purification catalyst is released. 8. The method according to claim 7, wherein
Or the exhaust gas purification system according to 8.
【請求項10】 上記NOx浄化触媒が、上記排気ガス
の空燃比A/Fがリーンのときに窒素酸化物を吸蔵し、
ストイキ〜リッチのときに吸蔵した窒素酸化物を放出す
るNOx吸蔵浄化触媒であることを特徴とする請求項7
〜9のいずれか1つの項に記載の排気ガス浄化システ
ム。
10. The NOx purifying catalyst stores nitrogen oxides when the air-fuel ratio A / F of the exhaust gas is lean,
8. A NOx storage / purification catalyst that releases stored nitrogen oxides during a stoichiometric to rich operation.
10. The exhaust gas purification system according to any one of items 9 to 9.
JP2000013387A 2000-01-21 2000-01-21 Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system Pending JP2001205085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013387A JP2001205085A (en) 2000-01-21 2000-01-21 Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013387A JP2001205085A (en) 2000-01-21 2000-01-21 Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system

Publications (1)

Publication Number Publication Date
JP2001205085A true JP2001205085A (en) 2001-07-31

Family

ID=18540982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013387A Pending JP2001205085A (en) 2000-01-21 2000-01-21 Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system

Country Status (1)

Country Link
JP (1) JP2001205085A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071289A (en) * 2001-08-30 2003-03-11 Toyota Central Res & Dev Lab Inc Nitrogen oxide reduction catalyst and method for reducing nitrogen oxide
JP2010031820A (en) * 2008-07-31 2010-02-12 Mazda Motor Corp Exhaust emission control method and exhaust emission control catalyst device
JP2011136278A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas cleaning method using the same, and exhaust gas cleaning apparatus
CN104363750A (en) * 2012-01-27 2015-02-18 N/C探索有限责任公司 Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071289A (en) * 2001-08-30 2003-03-11 Toyota Central Res & Dev Lab Inc Nitrogen oxide reduction catalyst and method for reducing nitrogen oxide
JP2010031820A (en) * 2008-07-31 2010-02-12 Mazda Motor Corp Exhaust emission control method and exhaust emission control catalyst device
JP2011136278A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas cleaning method using the same, and exhaust gas cleaning apparatus
CN104363750A (en) * 2012-01-27 2015-02-18 N/C探索有限责任公司 Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion
CN104363750B (en) * 2012-01-27 2017-07-21 N/C探索有限责任公司 The manufacture method of the CNT of the plant growth produced for the emission for promoting edaphon and internal combustion

Similar Documents

Publication Publication Date Title
JP3642273B2 (en) Exhaust gas purification system
JP4270224B2 (en) Exhaust gas purification device for internal combustion engine
JP2002364343A (en) Exhaust emission control system
JP2009165904A (en) Exhaust gas purifier
WO2006059471A1 (en) NOx PURIFICAITION SYSTEM
JP2006263582A (en) Exhaust-gas cleaning catalyst
JP2008114153A (en) Catalyst for purification of exhaust gas and system and method for purification of exhaust gas
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP2001123827A (en) Exhaust gas control system
JP3789231B2 (en) Exhaust gas purification catalyst
JP4412299B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0957098A (en) Catalyst for purification of exhaust gas
JP2001205085A (en) Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system
JP3560147B2 (en) Exhaust gas purification system
JP2005087963A (en) Exhaust gas cleaning apparatus
JP2004275814A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP5094199B2 (en) Exhaust gas purification device
JP5078638B2 (en) Exhaust gas purification device
JP2003290629A (en) Cleaning system for exhaust gas
JP2001293374A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning system
JP3682851B2 (en) Exhaust gas purification system
JP2002168117A (en) Exhaust emission control system
JP2000126554A (en) Exhaust gas cleaning apparatus and method of using the same
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device