JP2003031625A - Method of processing polyimide resin - Google Patents

Method of processing polyimide resin

Info

Publication number
JP2003031625A
JP2003031625A JP2001210463A JP2001210463A JP2003031625A JP 2003031625 A JP2003031625 A JP 2003031625A JP 2001210463 A JP2001210463 A JP 2001210463A JP 2001210463 A JP2001210463 A JP 2001210463A JP 2003031625 A JP2003031625 A JP 2003031625A
Authority
JP
Japan
Prior art keywords
polyimide resin
polyimide
film
heat treatment
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001210463A
Other languages
Japanese (ja)
Other versions
JP4784009B2 (en
Inventor
Shuichi Ogasawara
修一 小笠原
Taku Sugiura
卓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001210463A priority Critical patent/JP4784009B2/en
Publication of JP2003031625A publication Critical patent/JP2003031625A/en
Application granted granted Critical
Publication of JP4784009B2 publication Critical patent/JP4784009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of processing a polyimide molded body which maintains uniform and higher size accuracy in order to obtain mounting components such as TAB and CSP having higher density, accuracy and reliability. SOLUTION: In this method of processing polyimide resin, a polyimide resin molded body is partly etched. In this method, after the molding of polyimide resin molded body, heat treatment is performed before the etching process. It is preferable that this heat treatment is conducted within the range where the breakdown strength of the polyimide resin molded body after the heat treatment is maintained at 50% or more of the breakdown strength before the heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリイミド樹脂成
形体の加工方法に関し、特にポリイミド樹脂成形体の加
工寸法精度の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a polyimide resin molded body, and more particularly to improving the processing dimensional accuracy of the polyimide resin molded body.

【0002】[0002]

【従来の技術】ICおよびLSIの実装部品として知ら
れるTAB、CSPなどは、ポリイミド樹脂を成形したポリイ
ミド樹脂フィルム表面に、銅皮膜を積層した、所謂銅ポ
リイミド基板を材料とし、フォトリソグラフィー技法な
どによって、銅皮膜のパターニング、およびポリイミド
樹脂フィルムのエッチング処理を行うことによって得ら
れている。
2. Description of the Related Art TAB, CSP, etc., which are known as mounting parts for ICs and LSIs, are made of a so-called copper-polyimide substrate in which a copper film is laminated on the surface of a polyimide resin film formed by molding a polyimide resin. , A copper film is patterned, and a polyimide resin film is etched.

【0003】一方、最近の携帯用電子機器の小型、薄型
化にともない、当然のことながら上記TAB、CSPなどに対
しても小型、薄型化、すなわち、高密度化が要求され、
加工寸法に対しても極めて高い寸法精度が要求されるよ
うになっている。
On the other hand, with the recent miniaturization and thinning of portable electronic devices, it is natural that the above TAB, CSP and the like are required to be small and thin, that is, high density.
Extremely high dimensional accuracy is required for processing dimensions.

【0004】上記したポリイミド樹脂フィルムのエッチ
ング加工は、ポリイミド樹脂フィルム表面に銅などの金
属被膜あるいは有機系レジストをエッチングレジストと
して形成し、露出した部分のポリイミド樹脂フィルムを
アルカリ性溶液などによって溶解加工する方法が一般的
に用いられている。
The above-mentioned etching processing of the polyimide resin film is a method of forming a metal film such as copper or an organic resist as an etching resist on the surface of the polyimide resin film and dissolving and processing the exposed portion of the polyimide resin film with an alkaline solution or the like. Is commonly used.

【0005】この方法は、従来のTAB、CSPなどの製造方
法として幅広く用いられている。しかしながら、前述の
ように、さらなる高密度化、これにともなう加工寸法に
対する極めて高い寸法精度が要求されるような事態にな
った場合、従来の加工方法ではポリイミド樹脂フィルム
の加工寸法が要求精度を満足できないという問題があっ
た。
This method is widely used as a conventional method for manufacturing TAB, CSP and the like. However, as described above, in the case where further densification and extremely high dimensional accuracy with respect to the processing dimensions accompanying this are required, the processing dimensions of the polyimide resin film satisfy the required accuracy in the conventional processing method. There was a problem that I could not.

【0006】[0006]

【発明が解決しようとする課題】上記問題を解決するた
め、本発明は、上記したポリイミド樹脂の加工方法にお
いて、ポリイミド樹脂フィルムに要求される極めて高い
寸法精度を満足するポリイミド樹脂の加工方法を提供す
ることを課題とする。
In order to solve the above problems, the present invention provides a method for processing a polyimide resin, which satisfies the extremely high dimensional accuracy required for a polyimide resin film, in the method for processing a polyimide resin described above. The task is to do.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ポリイミド樹脂成型体の一部をエッチン
グすることによって行うポリイミド樹脂の加工方法にお
いて、ポリイミド樹脂成形体を成型後、エッチング処理
を行う前に熱処理を行うことを特徴とするポリイミド樹
脂の加工方法である。
In order to solve the above-mentioned problems, the present invention provides a method for processing a polyimide resin by etching a part of a polyimide resin molded body, wherein after the polyimide resin molded body is molded, an etching treatment is performed. In the method for processing a polyimide resin, a heat treatment is performed before the step.

【0008】また、前記ポリイミド樹脂成形体のエッチ
ング処理前の熱処理は、熱処理後のポリイミド樹脂成型
体の破断強度が、熱処理前の破断強度の50%以上を保
持する範囲で行うことを特徴とするポリイミド樹脂の加
工方法である。
Further, the heat treatment of the polyimide resin molded body before the etching treatment is carried out within a range in which the breaking strength of the polyimide resin molded body after the heat treatment holds 50% or more of the breaking strength before the heat treatment. This is a method of processing a polyimide resin.

【0009】[0009]

【発明の実施の形態】本発明者は、ポリイミド樹脂フィ
ルムを従来の方法によってエッチング加工した場合、ポ
リイミド樹脂フィルムの部位によって、加工精度にばら
つきが発生すること、およびこのばらつきとポリイミド
樹脂フィルム中のポリイミド配向性の歪み度合いに相関
があること、さらに、ポリイミド樹脂フィルムに適切な
熱処理を施すことによって、配向性の歪み度合いを緩和
し、上記問題を解決することができることを見出し、本
発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that when a polyimide resin film is etched by a conventional method, the processing accuracy varies depending on the location of the polyimide resin film, and this variation and the polyimide resin film It was found that there is a correlation in the degree of distortion of the polyimide orientation, and further, by subjecting the polyimide resin film to an appropriate heat treatment, the degree of orientation distortion can be relaxed and the above problems can be solved, leading to the present invention. It was

【0010】すなわち、本発明は、ポリイミド樹脂成型
体の一部をエッチングすることによって行うことを特徴
とするポリイミド樹脂の加工方法において、ポリイミド
樹脂成形体を成型後、エッチング処理を行う前に熱処理
を行うものである。また、上記熱処理は、熱処理後のポ
リイミド樹脂成型体の破断強度が熱処理前の破断強度の
50%以上を保持する範囲で行うことが好ましい。
That is, according to the present invention, in a method for processing a polyimide resin, which is performed by etching a part of the polyimide resin molded body, a heat treatment is performed after the polyimide resin molded body is molded and before the etching treatment. It is something to do. Further, the heat treatment is preferably performed in a range in which the breaking strength of the polyimide resin molded body after the heat treatment is 50% or more of the breaking strength before the heat treatment.

【0011】一般に、ポリイミド樹脂フィルムを成型す
る方法としては、ポリイミド前駆体であるポリアミック
酸をDMAc(ジメチルアセトアミド)などの極性高沸点
有機溶媒に溶融させ、金属支持体表面にキャスティング
し半硬化状態とし、剥離しながら所定の熱処理を行うこ
とによって溶媒の除去およびイミド縮合を促進させ、最
終的にフィルム状の成型体を得る方法などが知られてい
る。
Generally, as a method for molding a polyimide resin film, a polyimide precursor polyamic acid is melted in a polar high-boiling organic solvent such as DMAc (dimethylacetamide) and cast on the surface of a metal support to form a semi-cured state. There is known a method in which a solvent is removed and imide condensation is promoted by performing a predetermined heat treatment while peeling, and finally a film-shaped molded product is obtained.

【0012】また、ポリイミドフィルムの機械的強度な
どを強化することを目的として、前記熱処理と共に延伸
加工を施したり、あるいはフィルムとして成型するため
にフィルムの厚さや幅を調整することを目的として、フ
ィルム端部をジグなどでチャッキングし、幅方向に応力
を加えることによって支持しながら成型する場合が多
い。
Further, for the purpose of strengthening the mechanical strength of the polyimide film, the film is subjected to a stretching process together with the above heat treatment, or to adjust the thickness and width of the film for molding as a film. In many cases, the end portion is chucked with a jig or the like and is molded while being supported by applying stress in the width direction.

【0013】上記処理によって得られたポリイミド樹脂
フィルムにおけるポリイミド高分子の配向性は、フィル
ム成型時に加えられた応力の強さおよび方向に影響を受
け、その配向は、応力を受けた方向に向くことが知られ
ている。例えば、2軸延伸加工を行った場合は、ポリイ
ミド高分子の配向はM.D.(ロール長さ方向)あるいはT.
D.(ロール幅方向)に対し2軸の延伸力の合成方向に揃
い、またその方向はフィルムのT.D.位置によって異なる
が、連続的に同一条件で成型されたポリイミド樹脂フィ
ルムのM.D.では、位置によらずその向きはほぼ同様な傾
向を有する。
The orientation of the polyimide polymer in the polyimide resin film obtained by the above treatment is affected by the strength and direction of the stress applied during the film molding, and the orientation should be oriented in the stressed direction. It has been known. For example, when biaxially stretched, the orientation of the polyimide polymer is MD (roll length direction) or T.
D. (Roll width direction) is aligned in the direction in which the biaxial stretching force is combined, and that direction differs depending on the TD position of the film, but in the MD of the polyimide resin film continuously molded under the same conditions, Regardless, the directions tend to be similar.

【0014】一方、前述のようにポリイミド成型体をエ
ッチング加工した場合、例えば、ポリイミド樹脂フィル
ム表面に形成された銅皮膜を、フォトリソグラフィー技
法を用い円形状に溶解除去することによってその部分の
ポリイミド樹脂を露出させた後、ヒドラジン一水和物溶
液を用いてポリイミド樹脂をエッチングしてビアホール
を形成した場合、フィルムT.D.中央部では、ビアホール
トップ部およびボトム部ではほぼ円形状となり、特にそ
の形状に歪みなどは観察されない。
On the other hand, when the polyimide molded body is etched as described above, for example, the copper film formed on the surface of the polyimide resin film is dissolved and removed into a circular shape by the photolithography technique to remove the polyimide resin in that portion. After exposing, the polyimide resin was etched using a hydrazine monohydrate solution to form a via hole.When the via hole was formed in the center of the film TD, the via hole top and bottom were almost circular, and the shape was distorted. Are not observed.

【0015】しかしながら、T.D.位置において端部にな
るに従い、上記円が楕円形状となり、その変形の程度が
著しくなり、また楕円の長軸の向きは、ポリイミド樹脂
フィルムのM.D.では位置によらず、ほぼ同方向を向くこ
とが判明した。
However, at the TD position, the circle becomes an elliptical shape toward the end and the degree of deformation thereof becomes remarkable, and the direction of the major axis of the ellipse is almost the same regardless of the position in the MD of the polyimide resin film. It turned out to face the same direction.

【0016】以上の知見より、ポリイミド高分子の配向
性とエッチングの異方性に相関が認められた。よって本
発明者は、ポリイミド成型体をエッチング加工した際の
寸法精度を高めるためには、ポリイミド高分子の配向が
成型体の部位によってある方向に偏る現象、すなわち、
歪みを緩和する方法が効果的であると考え、その手法と
して、エッチング加工を行う前に、ポリイミド成型体に
熱処理を施すことに着目し鋭意研究した結果、所定の熱
処理を施すことによって上記目的が達成できることが見
出した。
From the above findings, a correlation was observed between the orientation of the polyimide polymer and the etching anisotropy. Therefore, the present inventors, in order to improve the dimensional accuracy when etching the polyimide molded body, a phenomenon in which the orientation of the polyimide polymer is biased in a certain direction depending on the site of the molded body, that is,
It is thought that the method of relaxing the strain is effective, and as a method therefor, before carrying out the etching process, as a result of diligent research focusing on the heat treatment of the polyimide molded body, the above-mentioned object can be achieved by applying a predetermined heat treatment. I found that I could achieve it.

【0017】本発明で行う熱処理は、ポリイミド高分子
の構造、成型体の厚さ、成型時に要した熱処理条件、お
よび成型時に加わった応力の大きさなどによって影響を
受けるため、一概には限定されず、予め適正な熱処理条
件範囲をエッチング加工後の寸法精度の点から求めれば
良いが、概ね、熱処理を高温および長時間行った方が、
その後に行うエッチング加工の寸法精度が改善される傾
向にある。
The heat treatment carried out in the present invention is influenced by the structure of the polyimide polymer, the thickness of the molded body, the heat treatment conditions required during molding, the magnitude of the stress applied during molding, etc., and therefore is generally limited. Instead, an appropriate heat treatment condition range may be obtained in advance from the viewpoint of dimensional accuracy after etching, but in general, it is better to perform heat treatment at high temperature for a long time.
The dimensional accuracy of the etching process performed thereafter tends to be improved.

【0018】しかしながら、上記熱処理をポリイミドの
ガラス転移点をはるかに超える温度で行ったり、極めて
長時間に亘って行った場合は、ポリイミド成型体の機械
的な特性が変化し、期待された特性が十分得られなくな
る問題が発生する。
However, when the above heat treatment is carried out at a temperature far exceeding the glass transition point of polyimide or for a very long time, the mechanical characteristics of the polyimide molded body are changed, and the expected characteristics are not obtained. There is a problem that it cannot be obtained sufficiently.

【0019】よって、本発明では、熱処理によって基板
に加えられる熱負荷量が、熱処理後のポリイミド樹脂成
型体の破断強度が熱処理前の破断強度の50%以上を保
持する範囲にすることが好ましいことを合わせて見出し
た。これは、例えば、Kapton(東レ・デュポン製)、NP
I(鐘淵化学製)などのポリイミドフィルムに対して
は、概ね300〜500℃、10分〜2時間程度の熱処
理を行えば良いことに相当する。
Therefore, in the present invention, it is preferable that the heat load applied to the substrate by the heat treatment is in a range in which the breaking strength of the polyimide resin molded body after the heat treatment is 50% or more of the breaking strength before the heat treatment. Was found together. This is, for example, Kapton (Toray DuPont), NP
For a polyimide film such as I (manufactured by Kanegafuchi Chemical Co., Ltd.), it is equivalent to performing heat treatment at about 300 to 500 ° C. for about 10 minutes to 2 hours.

【0020】本発明は、ポリイミドのエッチング加工方
法には特に限定されず、前述のようにヒドラジンやアル
カリ溶液を用いた溶解加工を行う場合、あるいは炭酸ガ
スレーザ、エキシマレーザなどのレーザ加工を行う場合
などに対して幅広く効果が発揮され適用可能である。
The present invention is not particularly limited to the polyimide etching method, and as described above, when performing dissolution processing using hydrazine or an alkaline solution, or when performing laser processing such as carbon dioxide gas laser or excimer laser, etc. It has a wide range of effects and can be applied.

【0021】[0021]

【実施例】次に実施例および比較例によって本発明をさ
らに詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0022】(実施例1)ポリイミドフィルムとして厚
さ50μm、幅1048mmに成型されたKaptonENを用
い、これに対し、窒素雰囲気中で400℃、30分間の
熱処理を行った。なお、熱処理前のポリイミドフィルム
の破断強度は340MPa(JIS C-2318により測定)、熱
処理後の破断強度は300MPaであり、破断強度の保持
率は88%であった。
Example 1 Kapton EN molded into a polyimide film having a thickness of 50 μm and a width of 1048 mm was used, and this was heat-treated at 400 ° C. for 30 minutes in a nitrogen atmosphere. The breaking strength of the polyimide film before heat treatment was 340 MPa (measured by JIS C-2318), the breaking strength after heat treatment was 300 MPa, and the retention rate of breaking strength was 88%.

【0023】その後、フィルムの両面にめっき法によっ
て厚さ1μmの銅皮膜を形成し、その銅表面に厚さ20
μmのレジスト層を形成し、一方の面に最狭部における
リード幅が20μm、リード間隔が20μmとなるように
フォトリソグラフィー手法によってレジスト層をパター
ニングした後、これをめっきレジストとして露出した銅
表面に電気めっき法によってリードを形成した。
After that, a copper film having a thickness of 1 μm is formed on both surfaces of the film by a plating method, and the copper surface has a thickness of 20 μm.
After forming a resist layer of μm and patterning the resist layer by photolithography so that the lead width in the narrowest part is 20 μm and the lead interval is 20 μm on one surface, this is used as a plating resist on the exposed copper surface. Leads were formed by electroplating.

【0024】その後、めっきレジスト層を除去し、リー
ドを形成した他方の面に、同様なフォトリソグラフィー
手法によって直径200μmの円状にパターニングし、
これをエッチングレジストとして露出した銅めっき皮膜
をエッチング除去すると共に、リード間に露出した厚さ
1μmの銅めっき皮膜をエッチング除去した。その後、
リードを形成した他方の面に直径200μmの円形状に
露出したポリイミド部をエッチングにより溶解させた。
エッチング加工条件は、エッチング液は、ヒドラジン一
水和物濃度:800 ml/リットル、無水エチレンジアミ
ン濃度:200 ml/リットルとし、エッチング条件は、
温度を50℃とし、時間を5分とした。
After that, the plating resist layer is removed, and the other surface on which the leads are formed is patterned into a circle with a diameter of 200 μm by the same photolithography technique.
Using this as an etching resist, the exposed copper plating film was removed by etching, and the copper plating film having a thickness of 1 μm exposed between the leads was removed by etching. afterwards,
On the other surface on which the leads were formed, a circularly exposed polyimide portion having a diameter of 200 μm was dissolved by etching.
The etching processing conditions were as follows: hydrazine monohydrate concentration: 800 ml / liter, anhydrous ethylenediamine concentration: 200 ml / liter.
The temperature was 50 ° C. and the time was 5 minutes.

【0025】以上の処理によって得られたポリイミドフ
ィルムに形成されたビアホール部を顕微鏡を用いて観察
した結果、ビアホールトップ部においては直径210μ
m、ビアホールボトム部においては直径110μmの円形
状にエッチング加工されていることが確認され、また、
その形状および寸法は、フィルムM.D.、およびT.D.位置
によってほとんど変化せず、フィルム全面に亘って均
一、かつ精度良くポリイミド樹脂がエッチング加工され
ていることが分かった。
As a result of observing with a microscope, the via hole formed in the polyimide film obtained by the above treatment, the diameter of the via hole top was 210 μm.
It was confirmed that m and the bottom of the via hole were etched into a circular shape with a diameter of 110 μm.
It was found that the shape and size of the polyimide resin hardly changed depending on the positions of the MD and TD of the film, and the polyimide resin was uniformly and accurately etched over the entire surface of the film.

【0026】(実施例2)ポリイミドフィルムに施す熱
処理を、500℃、10分間とした以外は実施例1と同
様な手順に従い、ポリイミドフィルムの片面に銅リード
を形成し、その反対面からビアホールを形成した。な
お、熱処理後のポリイミドフィルムの破断強度保持率は
55%であった。
(Example 2) A copper lead was formed on one surface of a polyimide film and a via hole was formed from the opposite surface according to the same procedure as in Example 1 except that the heat treatment applied to the polyimide film was 500 ° C for 10 minutes. Formed. The polyimide film after heat treatment had a breaking strength retention rate of 55%.

【0027】以上の処理によって得られたポリイミドフ
ィルムに形成されたビアホール部を顕微鏡を用いて観察
した結果、ビアホールトップ部においては直径210μ
m、ビアホールボトム部においては直径110μmの円形
状にエッチング加工されていることが確認され、また、
その形状および寸法は、フィルムM.D.およびT.D.位置に
よってほとんど変化せず、フィルム全面に亘って均一、
かつ精度良くポリイミド樹脂がエッチング加工されてい
ることが分かった。
As a result of observing with a microscope the via hole portion formed in the polyimide film obtained by the above treatment, the diameter of the via hole top portion was 210 μm.
It was confirmed that m and the bottom of the via hole were etched into a circular shape with a diameter of 110 μm.
Its shape and dimensions hardly change depending on the film MD and TD positions, and it is uniform over the entire surface of the film.
It was also found that the polyimide resin was accurately etched.

【0028】(実施例3)ポリイミドフィルムに施す熱
処理を、300℃、2時間とした以外は実施例1と同様
な手順に従い、ポリイミドフィルムの片面に銅リードを
形成し、その反対面からビアホールを形成した。なお、
熱処理後のポリイミドフィルムの破断強度保持率は94
%であった。
(Example 3) A copper lead was formed on one side of a polyimide film and a via hole was formed on the opposite side in the same procedure as in Example 1 except that the heat treatment applied to the polyimide film was 300 ° C for 2 hours. Formed. In addition,
The breaking strength retention of the polyimide film after heat treatment is 94.
%Met.

【0029】以上の処理によって得られたポリイミドフ
ィルムに形成されたビアホール部を顕微鏡を用いて観察
した結果、ビアホールトップ部においては直径210μ
m、ビアホールボトム部においては直径110μmの円形
状にエッチング加工されていることが確認され、また、
その形状および寸法は、フィルムM.D.およびT.D.位置に
よってほとんど変化せず、フィルム全面に亘って均一、
かつ精度良くポリイミド樹脂がエッチング加工されてい
ることが分かった。
As a result of observing the via hole portion formed in the polyimide film obtained by the above treatment with a microscope, the diameter of the via hole top portion was 210 μm.
It was confirmed that m and the bottom of the via hole were etched into a circular shape with a diameter of 110 μm.
Its shape and dimensions hardly change depending on the film MD and TD positions, and it is uniform over the entire surface of the film.
It was also found that the polyimide resin was accurately etched.

【0030】(実施例4)ポリイミドフィルムとして厚
さ50μm、幅1028mmに成型されたNPIを用い
た以外は実施例1と同様な手順に従い、ポリイミドフィ
ルムの片面に銅リードを形成し、その反対面からビアホ
ールを形成した。なお、熱処理後のポリイミドフィルム
の破断強度保持率は83%であった。
Example 4 A copper lead was formed on one surface of a polyimide film according to the same procedure as in Example 1 except that NPI molded to a thickness of 50 μm and a width of 1028 mm was used as the polyimide film, and the opposite surface was formed. A via hole was formed from. The polyimide film after heat treatment had a breaking strength retention rate of 83%.

【0031】以上の処理によって得られたポリイミドフ
ィルムに形成されたビアホール部を顕微鏡を用いて観察
した結果、ビアホールトップ部においては直径210μ
m、ビアホールボトム部においては直径130μmの円形
状にエッチング加工されていることが確認され、また、
その形状および寸法は、フィルムM.D.およびT.D.位置に
よってほとんど変化せず、フィルム全面に亘って均一、
かつ精度良くポリイミド樹脂がエッチング加工されてい
ることが分かった。
As a result of observing the via hole portion formed in the polyimide film obtained by the above treatment with a microscope, the diameter of the via hole top portion was 210 μm.
It was confirmed that the bottom of the m and via holes were etched into a circular shape with a diameter of 130 μm.
Its shape and dimensions hardly change depending on the film MD and TD positions, and it is uniform over the entire surface of the film.
It was also found that the polyimide resin was accurately etched.

【0032】(実施例5)実施例1においてポリイミド
のエッチング加工を、炭酸ガスレーザーを用い、加工エ
ネルギー 100J/cm2 、ショット数2によって露
出したポリイミド部を除去することによって行いビアホ
ールを形成した以外は、同様な手順に従った。
(Embodiment 5) The polyimide etching processing in Embodiment 1 was performed by using a carbon dioxide gas laser to remove the exposed polyimide portion at a processing energy of 100 J / cm 2 and a shot number of 2, except that a via hole was formed. Followed a similar procedure.

【0033】以上の処理によって得られたポリイミドフ
ィルムに形成されたビアホール部を顕微鏡を用いて観察
した結果、ビアホールトップ部においては直径200μ
m、ビアホールボトム部においては直径180μmの円形
状にエッチング加工されていることが確認され、また、
その形状および寸法は、フィルムM.D.およびT.D.位置に
よってほとんど変化せず、フィルム全面に亘って均一、
かつ精度良くポリイミド樹脂がエッチング加工されてい
ることが分かった。
As a result of observing the via hole portion formed in the polyimide film obtained by the above treatment with a microscope, the diameter of the via hole top portion was 200 μm.
It was confirmed that the bottom of the via hole was etched into a circular shape with a diameter of 180 μm.
Its shape and dimensions hardly change depending on the film MD and TD positions, and it is uniform over the entire surface of the film.
It was also found that the polyimide resin was accurately etched.

【0034】(比較例1)実施例1において、ポリイミ
ドフィルムに対する熱処理を行わなかった以外は同様な
手順に従い、ポリイミドフィルムの片面に銅リードを形
成し、その反対面からビアホールを形成した。
Comparative Example 1 A copper lead was formed on one surface of the polyimide film and a via hole was formed on the opposite surface thereof in the same procedure as in Example 1 except that the heat treatment was not performed on the polyimide film.

【0035】以上の処理によって得られたポリイミドフ
ィルムに形成されたビアホール部を顕微鏡を用いて観察
した結果、ポリイミドフィルムのT.D.中央部のビアホー
ルトップ部においては直径210μm、ビアホールボト
ム部においては直径130μmの円形状にエッチング加
工されていることが確認された。一方、同一のM.D.位置
においてT.D.端部になるにしたがい、ビアホールトップ
およびボトムの形状が楕円形状となり、T.D.中心から4
80mm位置では、ビアホールトップ部がM.D.に対し40
度方向に230μmの長軸、および長軸に直交するよう
に200μmの短軸を有する楕円形状、およびビアホー
ルボトム部がM.D.に対し40度方向に130μmの長
軸、および長軸に直交するように100μmの短軸を有
する楕円形状に加工されていることが判明した。
As a result of observing the via hole portion formed in the polyimide film obtained by the above treatment with a microscope, the via hole top portion in the TD central portion of the polyimide film had a diameter of 210 μm and the via hole bottom portion had a diameter of 130 μm. It was confirmed that it was etched into a circular shape. On the other hand, at the same MD position, the via hole top and bottom shapes become elliptical as they reach the TD end, and 4 from the TD center.
At 80mm position, via hole top is 40 against MD
The elliptical shape having a major axis of 230 μm in the direction of degree and a minor axis of 200 μm so as to be orthogonal to the major axis, and the via hole bottom portion being 130 μm in the direction of 40 degrees with respect to MD, and being orthogonal to the major axis. It was found to be processed into an elliptical shape having a short axis of 100 μm.

【0036】これは、フィルム全面に亘って均一、かつ
精度良くポリイミドがエッチング加工されているとは言
えず、TAB、CSPなどの実装部品として用いた場合
の信頼性に欠けるものであった。
This does not mean that the polyimide is uniformly and accurately etched over the entire surface of the film, and lacks reliability when used as a mounting component such as TAB and CSP.

【0037】(比較例2)ポリイミドフィルムに施す熱
処理を、600℃、10分間とした以外は実施例1と同
様な手順に従い、ポリイミドフィルムの片面に銅リード
を形成し、その反対面からビアホールを形成した。な
お、熱処理後のポリイミドフィルムの破断強度保持率は
48%であり、これをTAB、CSPなどの実装部品の
素材として用いた場合、信頼性に欠けるものである。
(Comparative Example 2) A copper lead was formed on one surface of a polyimide film and a via hole was formed on the opposite surface in the same procedure as in Example 1 except that the heat treatment applied to the polyimide film was 600 ° C. for 10 minutes. Formed. The polyimide film after heat treatment has a breaking strength retention rate of 48%, which is unreliable when used as a material for mounting components such as TAB and CSP.

【0038】[0038]

【発明の効果】本発明によれば、従来困難であったポリ
イミド成型体全域に亘って、極めて均一で高い寸法精度
を維持した加工が可能となり、高密度・高精度・高信頼
性TAB、CSPなどの実装部品を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to perform processing which is extremely uniform and maintains high dimensional accuracy over the entire area of the polyimide molded body, which has been difficult in the past, resulting in high density / high accuracy / high reliability TAB and CSP. It is possible to obtain mounted parts such as.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミド樹脂成型体の一部をエッチン
グすることを特徴とするポリイミド樹脂の加工方法にお
いて、ポリイミド樹脂成形体を成型後、エッチング処理
を行う前に熱処理を行うことを特徴とするポリイミド樹
脂の加工方法。
1. A method of processing a polyimide resin, which comprises etching a part of a polyimide resin molding, wherein the polyimide resin molding is heat-treated before the etching treatment. Resin processing method.
【請求項2】 熱処理後のポリイミド樹脂成型体の破断
強度が、熱処理前の破断強度の50%以上を保持する範
囲で、熱処理を行うことを特徴とする請求項1記載のポ
リイミド樹脂の加工方法。
2. The method for processing a polyimide resin according to claim 1, wherein the heat treatment is performed within a range in which the breaking strength of the polyimide resin molded body after the heat treatment holds 50% or more of the breaking strength before the heat treatment. .
JP2001210463A 2001-07-11 2001-07-11 Processing method of polyimide resin film Expired - Lifetime JP4784009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210463A JP4784009B2 (en) 2001-07-11 2001-07-11 Processing method of polyimide resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210463A JP4784009B2 (en) 2001-07-11 2001-07-11 Processing method of polyimide resin film

Publications (2)

Publication Number Publication Date
JP2003031625A true JP2003031625A (en) 2003-01-31
JP4784009B2 JP4784009B2 (en) 2011-09-28

Family

ID=19045935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210463A Expired - Lifetime JP4784009B2 (en) 2001-07-11 2001-07-11 Processing method of polyimide resin film

Country Status (1)

Country Link
JP (1) JP4784009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201658A (en) * 2010-08-25 2015-11-12 宇部興産株式会社 Method of manufacturing flexible printed circuit board
JP2018059070A (en) * 2016-09-30 2018-04-12 住友化学株式会社 Optical film and production method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187776A (en) * 1990-11-21 1992-07-06 Sumitomo Metal Mining Co Ltd Method for etching polyimide resin
JPH05121491A (en) * 1991-10-25 1993-05-18 Sumitomo Metal Mining Co Ltd Manufacture of two-layer electronic component
JPH05235114A (en) * 1992-02-19 1993-09-10 Sumitomo Metal Mining Co Ltd Manufacture of metal-coated polyimide board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187776A (en) * 1990-11-21 1992-07-06 Sumitomo Metal Mining Co Ltd Method for etching polyimide resin
JPH05121491A (en) * 1991-10-25 1993-05-18 Sumitomo Metal Mining Co Ltd Manufacture of two-layer electronic component
JPH05235114A (en) * 1992-02-19 1993-09-10 Sumitomo Metal Mining Co Ltd Manufacture of metal-coated polyimide board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201658A (en) * 2010-08-25 2015-11-12 宇部興産株式会社 Method of manufacturing flexible printed circuit board
JP2018059070A (en) * 2016-09-30 2018-04-12 住友化学株式会社 Optical film and production method of the same
JP7021887B2 (en) 2016-09-30 2022-02-17 住友化学株式会社 Optical film manufacturing method

Also Published As

Publication number Publication date
JP4784009B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US7527505B2 (en) Semiconductor device contact resistant to deterioration due to heat and method for manufacturing contact
US8426029B2 (en) Metallic laminate and method for preparing the same
JP3103398B2 (en) Copolyimide film with improved properties
TW535467B (en) Wiring board, manufacturing method thereof, polyimide film for use with wiring board, and etchant for use according to said method
US20100230142A1 (en) Method for manufacturing printed wiring board
KR100602537B1 (en) Semiconductor Joining Substrate-Use Tape with Adhesive and Copper-Clad Laminate Sheet Using It
US6211468B1 (en) Flexible circuit with conductive vias having off-set axes
US6596968B2 (en) Method of producing through-hole in aromatic polyimide film
TWI635136B (en) Polyimine film
CN1183887A (en) Printed wiring board(s) having polyimidebenzoxazole dielectric layer(s) and manufacture thereof
KR20020077188A (en) Surface treatment of polyimide film and polyimide film having a thin metal layer
KR20060126693A (en) Production method for pattern-worked porous molding or nonwoven fabric, and electric circuit components
JP2012210780A (en) Polyimide board, bored polyimide board, and metal- laminated polyimide board
KR100628504B1 (en) Flexible metal stacked body
TW200848254A (en) Metal-clad laminate, and method for production of metal-clad laminate
Chen et al. Interfacial liquid film transfer printing of versatile flexible electronic devices with high yield ratio
JP4784009B2 (en) Processing method of polyimide resin film
WO2017213167A1 (en) Graphite-sheet processed article and graphite-sheet processed article manufacturing method
JP5310345B2 (en) Laminated body
JP2004128365A (en) Flexible copper clad circuit board
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
JPH10178053A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
WO2008082152A1 (en) Polyimide film with improved adhesiveness
JP2005135985A (en) Manufacturing method for printed wiring board
JPH07273466A (en) Manufacturing method of multilayer-wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4784009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

EXPY Cancellation because of completion of term