JP2003028716A - Spectrometric instrument and method for spectrometric measurement - Google Patents

Spectrometric instrument and method for spectrometric measurement

Info

Publication number
JP2003028716A
JP2003028716A JP2001210667A JP2001210667A JP2003028716A JP 2003028716 A JP2003028716 A JP 2003028716A JP 2001210667 A JP2001210667 A JP 2001210667A JP 2001210667 A JP2001210667 A JP 2001210667A JP 2003028716 A JP2003028716 A JP 2003028716A
Authority
JP
Japan
Prior art keywords
phosphor film
light
measurement
spectroscopic measurement
integrating sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001210667A
Other languages
Japanese (ja)
Inventor
Masashi Okubo
昌視 大久保
Hideo Kato
日出夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001210667A priority Critical patent/JP2003028716A/en
Publication of JP2003028716A publication Critical patent/JP2003028716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a color center of a fatigue effect by irradiating a phosphor with an energy beam before and after measurement, to stabilize the measurement by negatively accelerated phosphorescence of an aftergrow, and to precisely measure a spectroscopic energy distribution and intensity. SOLUTION: This spectrometric instrument for measuring the spectroscopic energy distribution and the intensity of light has an integrating sphere 7 in the inside of which a phosphor film for converting the wavelength of the measured light is laid, and an energy beam emitting means 20 for emitting the energy beam 9 to the phosphor film before or after, or before and after the measurement to form the color center, and for negatively accelerating phosphorescence of the aftergrow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光の分光エネルギ
ー強度及び分布を測定する分光測定装置および分光測定
方法に関し、特に紫外領域の光の測定評価に、特にその
中でも従来測定が困難で精度の低かった遠紫外領域、真
空紫外領域での測定精度の向上の為の有効な分光測定装
置および分光測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic measurement device and a spectroscopic measurement method for measuring the spectral energy intensity and distribution of light, and particularly to the measurement and evaluation of light in the ultraviolet region. The present invention relates to an effective spectroscopic measurement device and a spectroscopic measurement method for improving measurement accuracy in the far ultraviolet region and vacuum ultraviolet region, which are low.

【0002】[0002]

【従来の技術】従来、光の分光エネルギーの測定は、分
光エネルギー分布、分光透過率、分光反射率などの測定
が行なわれ、これ等の測定は可視領域が主体で行われて
いた。分光に使用される分光器も光学プリズム、回折格
子、波長カットフィルター、干渉フィルター等が用途、
精度によって使い分けられて今日まで来ている。
2. Description of the Related Art Conventionally, the spectral energy of light is measured by measuring the spectral energy distribution, spectral transmittance, spectral reflectance, etc., and these measurements have been performed mainly in the visible region. The spectroscope used for spectroscopy also uses optical prisms, diffraction gratings, wavelength cut filters, interference filters, etc.
They are used properly depending on the precision and have come to the present day.

【0003】測定に使用されて来た光源としては、タン
グステン電球を中心にハロゲンランプ等の比較的安定し
たものが使用出来る為に問題は起こらなかった。また、
分光特性を測定するために用いられて来た積分球は内面
に硫酸バリウム等の白色粉末が塗工されて使用されてき
た。
As a light source used for the measurement, since a relatively stable one such as a halogen lamp or a halogen lamp can be used, no problem has occurred. Also,
The integrating sphere that has been used to measure the spectral characteristics has been used by coating the inner surface with white powder such as barium sulfate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
可視領域が主体で行われてきた分光測定装置に対して、
近年、紫外領域の光線を利用した装置が各方面で使用さ
れるようになってきている。特に半導体の製造に用いら
れるステッパー等の光源には水銀灯のg線(λ=435
8Å)からi線(λ=3650Å)に、更に最近ではガ
スレーザーのKrF(λ=2486Å)レーザーへと移
行して来ている。このことは半導体の加工の限界が線幅
0.35μmから0.16μmに、そして更に0.12
μm以下へと移行しようとしていることを示している。
更に近い将来、そこで使用される光源としては真空紫外
領域のレーザーとなることは必定で、ArF(λ=19
34Å)、F2レーザー(λ=1570Å)が有望とさ
れている。
However, in contrast to the conventional spectroscopic measurement apparatus which has been mainly performed in the visible region,
In recent years, devices utilizing light rays in the ultraviolet region have come to be used in various fields. In particular, a g-line (λ = 435) of a mercury lamp is used for a light source such as a stepper used for manufacturing a semiconductor.
From 8Å) to i-line (λ = 3650Å), and more recently to the gas laser KrF (λ = 2486Å) laser. This means that the limit of semiconductor processing is from 0.35 μm line width to 0.16 μm and 0.12 μm further.
It indicates that the transition to the μm or less is going on.
In the near future, it is inevitable that the light source used there will be a laser in the vacuum ultraviolet region, and ArF (λ = 19
34Å), F2 laser (λ = 1570Å) is promising.

【0005】ここで大きな問題となっているのがそこに
使用される硝材および光学系である。硝材として、Kr
Fレーザーに使用している石英が使用出来るかどうか、
蛍石がどこまで対応出来るか等の問題が山積しているか
らである。また、測定評価に用いる分光スペクトル測定
装置等にしても、真空紫外領域には対応しておらず、精
度ある測定評価が望めそうにない。
The major problem here is the glass material and optical system used therein. As a glass material, Kr
Whether quartz used for F laser can be used,
This is because there are many problems such as how much fluorite can handle. Further, even a spectral spectrum measuring device used for measurement and evaluation does not support the vacuum ultraviolet region, and it is unlikely that accurate measurement and evaluation can be expected.

【0006】紫外光の測定において、紫外光を長波長の
光エネルギーの光に変換して測定する方法が行われ、光
エネルギーの長波長への変換には、従来サリチル酸ソー
ダが知られているが、変換効率が低く、使用するにして
も出力が得られず、測定精度の向上は期待することがで
きなかった。
[0006] In the measurement of ultraviolet light, a method of converting ultraviolet light into light of long wavelength light energy for measurement is performed, and sodium salicylate is conventionally known for conversion of light energy into long wavelength. However, the conversion efficiency was low, no output was obtained even when used, and improvement in measurement accuracy could not be expected.

【0007】本発明は、この様な従来技術の問題に鑑み
てなされたものであり、特に紫外領域の光、特に遠紫
外、真空紫外領域の光の測定精度の優れた分光測定装置
および分光測定方法を提供することを目的とするもので
ある。
The present invention has been made in view of the problems of the prior art as described above, and in particular, a spectroscopic measuring device and a spectroscopic measurement having excellent measurement accuracy of light in the ultraviolet region, particularly light in the far ultraviolet region or vacuum ultraviolet region. It is intended to provide a method.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の第一の発
明は、光の分光エネルギー強度及び分布を測定する分光
測定装置において、測定される光を波長変換するための
蛍光体膜を内部に設置した積分球と、該蛍光体膜に測定
の前、後または前後にエネルギー線を照射するエネルギ
ー線照射手段を有することを特徴とする分光測定装置で
ある。
That is, the first invention of the present invention is a spectroscopic measurement device for measuring the spectral energy intensity and distribution of light, which internally includes a phosphor film for wavelength-converting the light to be measured. The spectroscopic measurement device is characterized in that it has an integrating sphere installed in 1. and an energy ray irradiation means for irradiating the phosphor film with energy rays before, after, or before and after the measurement.

【0009】前記エネルギー線照射手段が測定される光
の光路を通してエネルギー線を蛍光体膜の表面から照射
するのが好ましい。前記エネルギー線照射手段がエネル
ギー線を蛍光体膜の裏面から照射するのが好ましい。
It is preferable that the energy ray irradiating means irradiates the energy ray from the surface of the phosphor film through the optical path of the light to be measured. It is preferable that the energy ray irradiation means irradiates the energy ray from the back surface of the phosphor film.

【0010】本発明の第二の発明は、光の分光エネルギ
ー強度及び分布を積分球を用いて測定する分光測定方法
において、測定される光を波長変換するための蛍光体膜
を内部に設置した積分球の蛍光体膜に、測定の前、後ま
たは前後にエネルギー線を照射することを特徴とする分
光測定方法である。
A second aspect of the present invention is a spectroscopic measurement method for measuring the spectral energy intensity and distribution of light using an integrating sphere, wherein a phosphor film for converting the wavelength of the measured light is installed inside. The spectroscopic measurement method is characterized in that the phosphor film of the integrating sphere is irradiated with energy rays before, after, or before and after the measurement.

【0011】本発明の分光測定方法は、測定される光を
波長変換するための蛍光体膜を内部に設置した積分球を
用いて、積分球の蛍光体膜にエネルギー線を照射する工
程、該積分球の蛍光体膜に光を照射して蛍光光線を発光
させる工程、該発光した蛍光光線を積分球の内面で拡散
反射させて該蛍光光線の分光エネルギー強度及び分布を
測定する工程を有するのが好ましい。
The spectroscopic measurement method of the present invention comprises the steps of irradiating the phosphor film of the integrating sphere with energy rays by using an integrating sphere having a phosphor film for converting the wavelength of the light to be measured therein. The method comprises the steps of irradiating the phosphor film of the integrating sphere with light to emit fluorescent light, and diffusing and reflecting the emitted fluorescent light on the inner surface of the integrating sphere to measure the spectral energy intensity and distribution of the fluorescent light. Is preferred.

【0012】また、本発明の分光測定方法は、測定され
る光を波長変換するための蛍光体膜を内部に設置した積
分球を用いて、積分球の蛍光体膜に光を照射して蛍光光
線を発光させる工程、該発光した蛍光光線を積分球の内
面で拡散反射させて該蛍光光線の分光エネルギー強度及
び分布を測定する工程、測定した後に積分球の蛍光体膜
にエネルギー線を照射する工程を有するのが好ましい。
Further, the spectroscopic measurement method of the present invention uses an integrating sphere in which a phosphor film for wavelength-converting the light to be measured is installed, and the phosphor film of the integrating sphere is irradiated with light to cause fluorescence. A step of emitting a light beam, a step of diffusing and reflecting the emitted fluorescent light on the inner surface of an integrating sphere to measure the spectral energy intensity and distribution of the fluorescent light, and irradiating the phosphor film of the integrating sphere with an energy ray after the measurement. It is preferable to have a process.

【0013】また、本発明の分光測定方法は、測定され
る光を波長変換するための蛍光体膜を内部に設置した積
分球を用いて、積分球の蛍光体膜にエネルギー線を照射
する工程、該積分球の蛍光体膜に光を照射して蛍光光線
を発光させる工程、該発光した蛍光光線を積分球の内面
で拡散反射させて該蛍光光線の分光エネルギー強度及び
分布を測定する工程、測定した後に積分球の蛍光体膜に
エネルギー線を照射する工程を有するのが好ましい。
Further, in the spectroscopic measurement method of the present invention, a step of irradiating the phosphor film of the integrating sphere with energy rays by using an integrating sphere having a phosphor film for converting the wavelength of the light to be measured therein. A step of irradiating the phosphor film of the integrating sphere with light to emit a fluorescent ray, a step of diffusely reflecting the emitted fluorescent ray on the inner surface of the integrating sphere, and measuring the spectral energy intensity and distribution of the fluorescent ray, It is preferable to have a step of irradiating the phosphor film of the integrating sphere with energy rays after the measurement.

【0014】次に、本発明の分光測定装置および分光測
定方法の好ましい実施態様を下記に示す。前記蛍光体膜
に紫外線、可視光線または赤外光線から選ばれる少なく
とも一種のエネルギー線を照射するのが好ましい。前記
エネルギー線を照射することにより積分球内部の蛍光体
膜に疲労効果の付与および残光の消尽により測定の安定
化を図るのが好ましい。前記疲労効果の付与が色中心の
形成であるのが好ましい。
Next, preferred embodiments of the spectroscopic measurement device and spectroscopic measurement method of the present invention will be shown below. It is preferable to irradiate the phosphor film with at least one energy ray selected from ultraviolet rays, visible rays, and infrared rays. It is preferable to stabilize the measurement by irradiating the energy beam with a fatigue effect on the phosphor film inside the integrating sphere and exhaustion of afterglow. It is preferable that the impartation of the fatigue effect is the formation of color centers.

【0015】前記測定の前に、測定される光の光路を通
して蛍光体膜の表面に紫外光線を照射して蛍光体膜へ疲
労効果を与るのが好ましい。前記照射される紫外光線が
波長300nm以下の遠紫外、真空紫外光線であるのが
好ましい。前記測定の前後に、測定される光の光路を通
して蛍光体膜の表面に赤及び赤外光線を照射して蛍光体
膜の残光の消尽を行うのが好ましい。
Before the measurement, it is preferable that the surface of the phosphor film is irradiated with an ultraviolet ray through the optical path of the light to be measured to exert a fatigue effect on the phosphor film. It is preferable that the irradiated ultraviolet ray is far ultraviolet ray or vacuum ultraviolet ray having a wavelength of 300 nm or less. Before and after the measurement, it is preferable to exhaust the afterglow of the phosphor film by irradiating the surface of the phosphor film with red and infrared rays through the optical path of the light to be measured.

【0016】前記測定の前に、蛍光体膜の裏面に紫外光
線を照射して蛍光体膜へ疲労効果を与るのが好ましい。
前記照射される紫外光線が波長300nm以下の遠紫
外、真空紫外光線であるのが好ましい。前記測定の前後
に、蛍光体膜の裏面に赤及び赤外光線を照射して蛍光体
膜の残光の消尽を行うのが好ましい。
Before the measurement, it is preferable that the back surface of the phosphor film is irradiated with ultraviolet rays to exert a fatigue effect on the phosphor film.
It is preferable that the irradiated ultraviolet ray is far ultraviolet ray or vacuum ultraviolet ray having a wavelength of 300 nm or less. Before and after the measurement, it is preferable to irradiate the back surface of the phosphor film with red and infrared rays to exhaust the afterglow of the phosphor film.

【0017】前記照射される紫外光線、赤及び赤外光線
が、分光測定装置の単色光線及び外部光源を使用したレ
ーザー、ダイオード、及びタングステン、水銀、ハロゲ
ン、キセノン等のランプ類から得られる光線であるのが
好ましい。前記エネルギー線の照射および光の分光エネ
ルギー強度及び分布の測定を、窒素、ヘリウムによるガ
ス置換及び減圧、真空等の非酸素雰囲気で行うのが好ま
しい。
The ultraviolet rays, red rays and infrared rays to be applied are monochromatic rays of a spectrophotometer and rays obtained from lasers, diodes, and lamps such as tungsten, mercury, halogen and xenon using an external light source. Preferably. It is preferable that the irradiation of the energy rays and the measurement of the spectral energy intensity and distribution of light are performed in a non-oxygen atmosphere such as gas replacement with nitrogen or helium and reduced pressure or vacuum.

【0018】[0018]

【発明の実施の形態】本発明者等は、光のエネルギーの
測定において、紫外領域、特に遠紫外、真空紫外領域の
光に、上記の従来の硫酸バリウム等の白色顔料を内面に
塗工した積分球を用いた場合に発生する問題を改善、解
決して、精度の高い測定評価と技術の進展を図る為に分
光エネルギーの測定、評価の要点である積分球の改良改
善を試みた。
BEST MODE FOR CARRYING OUT THE INVENTION In the measurement of light energy, the present inventors applied the above-mentioned conventional white pigment such as barium sulfate to the inner surface of light in the ultraviolet region, particularly far ultraviolet and vacuum ultraviolet region. In order to improve and solve the problems that occur when an integrating sphere is used and to measure and evaluate with high accuracy and to advance the technology, we attempted to improve and improve the integrating sphere, which is the main point of spectral energy measurement and evaluation.

【0019】その結果、従来の積分球は可視光線の測定
に対応した硫酸バリウム等の白色顔料が塗工されている
が、遠紫外領域の光線に対して吸収が大きい為に十分な
反射光量が得られず、低応答の出力が測定の精度の悪い
原因となっていることが大きな問題となっていることを
見出した。
As a result, the conventional integrating sphere is coated with a white pigment such as barium sulfate corresponding to the measurement of visible light, but since it has a large absorption for light in the far ultraviolet region, it has a sufficient amount of reflected light. It has been found that a serious problem is that the low response output is a cause of poor measurement accuracy.

【0020】従来、積分球に要求される特性として、
1.高反射率、2.均一な拡散(散乱)、3.均一な分
光特性が挙げられる。これに加えて遠紫外、真空紫外等
の光エネルギーを測定するためには、4.紫外光線高反
射材料の使用、5.エネルギーを損なわない雰囲気、
6.汚染の防止などが挙げられる。しかし、従来の可視
光線の測定に用いられている光測定器を用いて紫外光線
の直接測定では、分光測定用の光電管等の受光器が窓材
を含めて遠紫外、真空紫外の領域の使用に対応していな
いために、その結果として遠紫外、真空紫外の直接測定
は困難である。
Conventionally, the characteristics required of the integrating sphere are:
1. High reflectance, 2. Uniform diffusion (scattering), 3. It has uniform spectral characteristics. In addition to this, in order to measure light energy such as far ultraviolet and vacuum ultraviolet, 4. 4. Use of highly reflective material for ultraviolet rays, An atmosphere that does not damage energy,
6. Examples include prevention of pollution. However, in the direct measurement of ultraviolet rays using the light measuring device used for conventional visible light measurement, the photodetector such as a spectrophotometer is used in the far ultraviolet and vacuum ultraviolet regions including the window material. As a result, direct measurement of far ultraviolet and vacuum ultraviolet is difficult.

【0021】従って、本発明は、この問題を打開する為
に蛍光体の利用により紫外光線を波長変換することによ
って受光器の特性に合わせた領域での測定を可能にする
ことを提案する。これは、ここで大きな問題となってい
る積分球の反射率、分光反射特性の低下の問題を、白色
拡散反射材の紫外線の吸収の少ない長波長領域で測定す
ることにより解決することである。その特徴を上げれ
ば、l.可視光に発光する蛍光体の採用、2.測定光照
射領域に蛍光体の設置、3.紫外線低吸収性の懸架支持
用のバインダー樹脂の採用、4.環境に優しい(配慮し
た)塗工、4.蛍光体の再利用(リサイクル)等であ
る。
Therefore, the present invention proposes to overcome this problem by converting the wavelength of ultraviolet rays by using a phosphor, thereby making it possible to perform measurement in a region matched to the characteristics of the light receiver. This is to solve the problem of the deterioration of the reflectance of the integrating sphere and the spectral reflectance characteristic, which is a big problem here, by measuring in the long wavelength region where the white diffuse reflection material absorbs little ultraviolet light. To raise its characteristics, l. Use of a phosphor that emits visible light, 2. 2. Place a phosphor in the measurement light irradiation area; 3. Adoption of a binder resin with low UV absorption for supporting suspension. Environmentally friendly (consideration) coating, 4. This is the reuse (recycling) of the phosphor.

【0022】利用する蛍光体の発光波長分布として望ま
しい特性は、従来から使用している白色拡散反射材の吸
収の少ない波長領域であること、具体的には硫酸バリウ
ムの場合は300nmより長波長領域である。この条件
に合う蛍光体として次のものが上げられる。BaMg2
Al1627:Eu、(SrCaBa)5 (PO43
l:Eu、BaSi25 :Pb、YPO4 :Ce、S
227 :Eu、ZnS:Cu,Alから選ばれた
少なくとも1種が挙げられる。
A desirable characteristic of the emission wavelength distribution of the phosphor to be used is a wavelength region in which the white diffuse reflection material used conventionally has a small absorption, specifically, in the case of barium sulfate, a wavelength region longer than 300 nm. Is. The phosphors that meet this condition are listed below. BaMg 2
Al 16 O 27 : Eu, (SrCaBa) 5 (PO 4 ) 3 C
1: Eu, BaSi 2 O 5 : Pb, YPO 4 : Ce, S
At least one selected from r 2 P 2 O 7 : Eu and ZnS: Cu, Al can be mentioned.

【0023】これらの蛍光体は微細な粒状の形態であ
る。静止状態で使用するには水、アルコール等に分散し
て刷毛及びスプレーでの塗工が可能であるが丈夫な膜体
にするには懸架支持する為のバインダー樹脂が必要であ
る。蛍光体を懸架支持する為のバインダー樹脂として
は、これも特に限定する必要は無いが水溶性の樹脂が適
用できる。代表的なものとして、ポリビニルアルコー
ル、カルボキシメチルセルロース、ポリビニルピロリド
ン等が挙げられる。白色拡散反射材としては、従来から
硫酸バリウムを代表としてアルミナ、酸化チタン、酸化
亜鉛等が使用されている。可視領域においては吸収が少
なく良好な性能が得られる。積分球への塗工には蛍光体
と同様の上記水溶性バインダー樹脂が適用出来る。
These phosphors are in the form of fine particles. To use it in a stationary state, it can be dispersed in water, alcohol or the like and coated with a brush or a spray, but a binder resin for suspending and supporting is required to form a durable film. The binder resin for suspending and supporting the phosphor is not particularly limited, but a water-soluble resin can be applied. Typical examples include polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, and the like. As the white diffuse reflector, alumina, titanium oxide, zinc oxide, etc. have been conventionally used, typically barium sulfate. In the visible region, good absorption is obtained with little absorption. The same water-soluble binder resin as the phosphor can be applied to the coating on the integrating sphere.

【0024】積分球の内部に蛍光体膜を設置して、その
蛍光体を利用して高精度の測定を行おうとすると、問題
となってくるのが蛍光体の疲労効果である色中心(カラ
ーセンター)の形成に起因すると考えられる発光強度の
低下及び蛍光体特有の残光である。蛍光体に照射する紫
外光線が波長250nm以上の分光測定においては比較
的カラーセンターの形成は少ないので問題は見られなか
った。
When a phosphor film is installed inside the integrating sphere and high-precision measurement is performed using the phosphor, the problem is the fatigue effect of the phosphor on the center of color (color). The decrease in emission intensity is considered to be caused by the formation of (center) and the afterglow peculiar to the phosphor. No problem was observed in the spectroscopic measurement in which the wavelength of ultraviolet light with which the phosphor was irradiated was 250 nm or more, because the formation of color centers was relatively small.

【0025】ところが、本発明者等は更に真空紫外領域
ヘの適用を図ったことで問題が提起した。真空紫外領域
(波長200nm以下)でのカラーセンターは、照射紫
外光の波長が短い程多く形成され、測定に大きな影響を
与える。即ち、測定精度の低下を招くことになる。そこ
で本発明者等は鋭利検討した結果、その対策として提案
する方法は、分光測定の前行程として、蛍光体にエネル
ギー線を照射してカラーセンターを前もって形成させて
おくことにより、再現性のよい測定を可能とすること、
及び蛍光体の種類によっても差が大きいが蛍光体にエネ
ルギー線を照射して蛍光の残光の消尽(解尽)を計った
ことである。消尽には赤外光線、可視光線が適用でき
る。
However, the inventors of the present invention have further raised the problem by applying to the vacuum ultraviolet region. Color centers in the vacuum ultraviolet region (wavelength of 200 nm or less) are formed more as the wavelength of the irradiation ultraviolet light is shorter, which greatly affects the measurement. That is, the measurement accuracy is lowered. Then, as a result of the inventors' keen examination, the method proposed as a countermeasure thereof has a good reproducibility by preliminarily forming a color center by irradiating the phosphor with energy rays as a pre-process of the spectroscopic measurement. Enable measurement,
Also, the difference is large depending on the type of the phosphor, but the phosphor is irradiated with an energy ray to measure the exhaustion of the afterglow of the fluorescence. Infrared rays and visible rays can be used for exhaustion.

【0026】エネルギー線として紫外光線を分光器(モ
ノクロメーター)を用いて単色光化して積分球に送り込
む際に、分光素子として回折格子を用いる。回折格子は
ブレーズ波長が問題となる場合には紫外用と赤外用の二
つを備え切り替えながら使用することが出来る。
A diffraction grating is used as a spectroscopic element when converting an ultraviolet ray as an energy ray into a monochromatic light using a spectroscope (monochromator) and sending it to an integrating sphere. When the blaze wavelength is a problem, the diffraction grating is provided with two for ultraviolet and one for infrared and can be used by switching.

【0027】一活照射の蛍光体にエネルギー線の光源と
して、同様に紫外線用として、例えば重水素ランプ、赤
外用にタングステンランブを切り替えながら又は混合し
て使用することが出来る。また同時に照射する場合には
キセノンアークランプが使用出来る。
As a light source for energy rays, a phosphor for one-time irradiation can also be used for ultraviolet rays, for example, deuterium lamps, and tungsten lamps for infrared rays can be used while being switched or mixed. A xenon arc lamp can be used for simultaneous irradiation.

【0028】すなわち、本発明の分光測定装置は、光の
分光エネルギー強度及び分布を積分球を用いて測定する
分光測定装置において、測定される光を波長変換するた
めの蛍光体膜を内部に設置した積分球と、該蛍光体膜に
測定の前、後または前後にエネルギー線を照射するエネ
ルギー線照射手段を有することを特徴とする。
That is, the spectroscopic measurement device of the present invention is a spectroscopic measurement device for measuring the spectral energy intensity and distribution of light using an integrating sphere, and a phosphor film for wavelength conversion of the measured light is installed inside. And an energy beam irradiation means for irradiating the phosphor film with an energy beam before, after, or before and after the measurement.

【0029】図1は、本発明第一の実施態様の分光測定
装置の一例を示す説明図である。同図1において、1は
光源、2は光線、3は分光器、4は単色光、5はセクタ
ーミラー、6a、6bは反射ミラー、7は積分球、8は
ミラー、9はエネルギー線、10はエネルギー線の光
源、11は参照光、12は試料光、sは試料を示す。2
0はエネルギー線照射手段を示し、ミラー8、エネルギ
ー線9およびエネルギー線の光源10からなる。
FIG. 1 is an explanatory view showing an example of a spectroscopic measurement device according to the first embodiment of the present invention. In FIG. 1, 1 is a light source, 2 is a light beam, 3 is a spectroscope, 4 is monochromatic light, 5 is a sector mirror, 6a and 6b are reflection mirrors, 7 is an integrating sphere, 8 is a mirror, 9 is an energy ray, and 10 is an energy ray. Is a light source of energy rays, 11 is reference light, 12 is sample light, and s is a sample. Two
Reference numeral 0 denotes an energy ray irradiation means, which comprises a mirror 8, an energy ray 9 and a light source 10 for the energy ray.

【0030】図1に示す光の分光エネルギー強度及び分
布を測定する分光測定装置において、光源1から発せら
れた光線2は分光器3によって単色光4化される。単色
光4はセクターミラー5により参照光11と試料光12
に分割される。参照光11は反射ミラー6bによって積
分球7に導かれる。一方、試料光12は反射ミラー6a
によって試料sを介して積分球7に導かれる。
In the spectroscopic measuring apparatus for measuring the spectral energy intensity and distribution of light shown in FIG. 1, a light beam 2 emitted from a light source 1 is converted into a monochromatic light 4 by a spectroscope 3. The monochromatic light 4 is converted into the reference light 11 and the sample light 12 by the sector mirror 5.
Is divided into The reference light 11 is guided to the integrating sphere 7 by the reflecting mirror 6b. On the other hand, the sample light 12 is reflected by the reflection mirror 6a.
Is guided to the integrating sphere 7 via the sample s.

【0031】図2および図3は本発明第一の実施態様の
分光測定装置に用いられる積分球の概略図であり、図2
は光の照射方向に対して直角方向から見た断面図、図3
は光の照射方向から見た断面図である。図1に示す分光
測定装置の試料sを介して導かれた試料光12は、積分
球7の入射窓14を通って、試料光の直接照射を受ける
光照射領域15の蛍光体膜18に照射される。試料光1
2の照射により蛍光体膜18から蛍光光線22が発光
し、該発光した蛍光光線22はさらに積分球7の内面の
前記光照射領域15以外の反射拡散材からなる光反射拡
散領域16の表面で反射拡散しながら受光窓19を通っ
て光電管(フォトマル)からなる検知器13に達して測
定に供される。
2 and 3 are schematic views of an integrating sphere used in the spectroscopic measurement device according to the first embodiment of the present invention.
Is a cross-sectional view seen from a direction perpendicular to the light irradiation direction, FIG.
FIG. 4 is a cross-sectional view seen from the light irradiation direction. The sample light 12 guided through the sample s of the spectroscopic measurement device shown in FIG. 1 passes through the entrance window 14 of the integrating sphere 7 and is applied to the phosphor film 18 in the light irradiation region 15 which is directly irradiated with the sample light. To be done. Sample light 1
The fluorescent light beam 22 is emitted from the phosphor film 18 by the irradiation of 2, and the emitted fluorescent light beam 22 is further reflected on the surface of the light reflection diffusion region 16 made of the reflection diffusion material other than the light irradiation region 15 on the inner surface of the integrating sphere 7. While reflecting and diffusing, it passes through the light receiving window 19 and reaches the detector 13 composed of a photoelectric tube (photomul) for measurement.

【0032】一方、図1に示す分光測定装置の反射ミラ
ー6bから導かれた参照光11は図2の入射窓14に対
して90度ずれた角度(紙面に対して上方)から別の入
射窓(不図示)を通って積分球7の内面の位置(紙面に
対して下方)に設けられた蛍光体膜18に照射され、同
様に発光した蛍光光線は積分球内面の光反射拡散領域1
6の表面で反射拡散しながら光電管(フォトマル)から
なる検知器13に達して測定に供される。
On the other hand, the reference beam 11 guided from the reflection mirror 6b of the spectroscopic measurement device shown in FIG. 1 is shifted from the incident window 14 shown in FIG. A fluorescent light beam, which passes through (not shown) and is irradiated to the phosphor film 18 provided at the position of the inner surface of the integrating sphere 7 (downward with respect to the paper surface) and similarly emitted, is a light reflection / diffusion region 1 on the inner surface of the integrating sphere.
While reflecting and diffusing on the surface of 6, it reaches a detector 13 composed of a photoelectric tube (photomul) for measurement.

【0033】ここで蛍光体膜18は積分球7の内面の測
定される試料光12の照射位置に塗工設置されている。
ここでエネルギー線照射手段20により、蛍光体膜18
に上記の測定の前、後または前後にエネルギー線9を照
射する。紫外、可視及び赤外光線から成るエネルギー線
9は、光路の途中からミラー8を介して測定光線の試料
光12と同じ光路を通って蛍光体膜18の表面に照射さ
れる。この場合、試料sをセットせずに、エネルギー線
の光照射を積分球内部の蛍光体表面に与えておき、十分
にカラーセンターが形成された後に試料をセットして、
ミラー8を切り替えて測定を行う。測定後、試料を外し
た後、更にエネルギー線の照射を続けることにより残光
の多い蛍光体の蛍光の消尽(解尽)を行う。
Here, the phosphor film 18 is coated and installed on the inner surface of the integrating sphere 7 at the irradiation position of the sample light 12 to be measured.
Here, the phosphor film 18 is irradiated by the energy beam irradiation means 20.
The energy beam 9 is irradiated before, after, or before and after the above measurement. An energy ray 9 composed of ultraviolet, visible and infrared rays is applied to the surface of the phosphor film 18 from the middle of the optical path through the mirror 8 and the same optical path as the sample light 12 of the measuring light. In this case, without setting the sample s, light irradiation of energy rays is given to the phosphor surface inside the integrating sphere, and the sample is set after the color center is sufficiently formed,
Measurement is performed by switching the mirror 8. After the measurement, the sample is removed, and the irradiation of energy rays is further continued to exhaust the fluorescence of the phosphor having a large amount of afterglow.

【0034】本発明の分光測定方法の第一の実施態様
は、上記の様に、光の分光エネルギー強度及び分布を積
分球を用いて測定する方法において、測定される光を波
長変換するための蛍光体膜を内部に設置した積分球を用
いて、該積分球の蛍光体膜に光を照射して蛍光光線を発
光させる工程と、該発光した蛍光光線を積分球の内面で
拡散反射させて該蛍光光線の分光エネルギー強度及び分
布を測定する工程と、測定の前、後または前後に積分球
の蛍光体膜にエネルギー線を照射する工程とを有する測
定方法である。
The first embodiment of the spectroscopic measurement method of the present invention is, as described above, a method for converting the wavelength of the light to be measured in the method of measuring the spectral energy intensity and distribution of light using an integrating sphere. Using an integrating sphere in which a phosphor film is installed, a step of irradiating the phosphor film of the integrating sphere with light to emit a fluorescent ray, and diffusing and reflecting the emitted fluorescent ray on the inner surface of the integrating sphere. The measuring method comprises a step of measuring the spectral energy intensity and distribution of the fluorescent light and a step of irradiating the phosphor film of the integrating sphere with an energy ray before, after, or before and after the measurement.

【0035】前記蛍光体膜に照射するエネルギー線は、
紫外線、可視光線または赤外光線から選ばれる少なくと
も一種が好ましく用いられ、測定される光の光路を通し
てエネルギー線を蛍光体膜の表面に照射するのが好まし
い。
The energy rays applied to the phosphor film are
At least one selected from ultraviolet rays, visible rays or infrared rays is preferably used, and it is preferable to irradiate the surface of the phosphor film with energy rays through the optical path of the light to be measured.

【0036】エネルギー線として紫外線を用いる場合に
は、前記測定の前に、測定される光の光路を通して蛍光
体膜の表面に紫外光線を照射して蛍光体膜へ疲労効果を
与るのが好ましく、照射される紫外光線が波長300n
m以下の遠紫外、真空紫外光線であるのが好ましい。ま
た、分光測定前の紫外光線の照射により与えられる疲労
効果の一つが色中心(カラーセンター)の形成であるこ
とが好ましい。
When ultraviolet rays are used as the energy rays, it is preferable to irradiate the surface of the phosphor film with ultraviolet rays through the optical path of the light to be measured to exert a fatigue effect on the phosphor film before the measurement. , The wavelength of ultraviolet light emitted is 300n
Far-ultraviolet rays and vacuum ultraviolet rays of m or less are preferable. Further, it is preferable that one of the fatigue effects given by the irradiation of ultraviolet rays before the spectroscopic measurement is the formation of color centers.

【0037】エネルギー線として可視光線または赤外光
線を用いる場合には、前記分光測定の測定光の照射前、
照射後または照射前後の両方で、測定される光の光路を
通して蛍光体膜の表面に赤または赤外光線を照射して蛍
光体膜の残光の消尽を行うのが好ましい。
When visible light or infrared light is used as the energy ray, before irradiation with the measurement light of the spectroscopic measurement,
It is preferable to exhaust the afterglow of the phosphor film by irradiating the surface of the phosphor film with red or infrared rays through the optical path of the light to be measured both before and after irradiation.

【0038】前記照射される紫外光線、赤及び赤外光線
が、分光測定装置の単色光線及び外部光源を使用したレ
ーザー、ダイオード、及びタングステン、水銀、ハロゲ
ン、キセノン等のランプ類から得られる光線であるのが
好ましい。
The above-mentioned ultraviolet rays, red rays and infrared rays to be irradiated are monochromatic rays of a spectrophotometer and rays obtained from lasers, diodes, and lamps such as tungsten, mercury, halogen, xenon using an external light source. Preferably.

【0039】前記エネルギー線の照射および光の分光エ
ネルギー強度及び分布の測定を、窒素、ヘリウムによる
ガス置換及び減圧、真空等の非酸素雰囲気で行うのが好
ましい。
Irradiation of the energy rays and measurement of the spectral energy intensity and distribution of light are preferably carried out in a non-oxygen atmosphere such as gas replacement with nitrogen or helium and reduced pressure or vacuum.

【0040】図4は、本発明第二の実施態様の分光測定
装置の一例を示す説明図である。同図4において、20
aはエネルギー線照射手段を示し、エネルギー線照射手
段20aはエネルギー線9およびエネルギー線の光源1
0からなり、エネルギー線9は透光性基材を設けた積分
球7の裏面から、即ち透光性基材を通して蛍光体膜にエ
ネルギー線9を照射して、安定した高精度の分光測定を
可能とすることを特徴とする。
FIG. 4 is an explanatory view showing an example of the spectroscopic measurement device according to the second embodiment of the present invention. In FIG. 4, 20
Reference numeral a denotes an energy ray irradiation means, and the energy ray irradiation means 20a denotes an energy ray 9 and an energy ray light source 1
0, and the energy ray 9 irradiates the phosphor film with the energy ray 9 from the back surface of the integrating sphere 7 provided with the light-transmissive base material, that is, through the light-transmissive base material to perform stable and highly accurate spectroscopic measurement. The feature is that it is possible.

【0041】図5は本発明の第二の実施態様の分光測定
装置に用いられる積分球の概略図であり、図5は光の照
射方向に対して直角方向から見た断面図である。図4に
示す分光測定装置の試料sを介して導かれた試料光12
は、積分球7の入射窓14を通って、試料光の直接照射
を受ける光照射領域15の蛍光体膜18に照射される。
試料光12の照射により蛍光体膜18から蛍光光線22
が発光し、該発光した蛍光光線22はさらに積分球7の
内面の前記光照射領域15以外の反射拡散材からなる光
反射拡散領域16の表面で反射拡散しながら受光窓19
を通って光電管(フォトマル)からなる検知器13に達
して測定に供される。
FIG. 5 is a schematic view of an integrating sphere used in the spectroscopic measurement device according to the second embodiment of the present invention, and FIG. 5 is a sectional view seen from a direction perpendicular to the light irradiation direction. Sample light 12 guided through the sample s of the spectroscopic measurement device shown in FIG.
Is irradiated through the entrance window 14 of the integrating sphere 7 onto the phosphor film 18 in the light irradiation region 15 which is directly irradiated with the sample light.
The fluorescent light beam 22 is emitted from the phosphor film 18 by irradiation of the sample light 12.
Is emitted, and the emitted fluorescent light beam 22 is further reflected and diffused on the surface of the light reflection / diffusion region 16 made of a reflection / diffusion material other than the light irradiation region 15 on the inner surface of the integrating sphere 7 while receiving the light.
After passing through, it reaches a detector 13 composed of a phototube and is used for measurement.

【0042】一方、図4に示す分光測定装置の反射ミラ
ー6bから導かれた参照光11は図5の入射窓14に対
して90度ずれた角度(紙面に対して上方)から別の入
射窓(不図示)を通って積分球7の内面の位置(紙面に
対して下方)に設けられた蛍光体膜18に照射され、同
様に発光した蛍光光線は積分球の内面の光反射拡散領域
16の表面で反射拡散しながら光電管(フォトマル)か
らなる検知器13に達して測定に供される。ここで蛍光
体膜18は積分球7を構成する透光性基材17上に塗工
設置されている。ここでエネルギー線照射手段20aに
より、上記の測定の前、後または前後にエネルギー線9
を積分球7の外側から透光性基材17を透して蛍光体膜
18の裏側から照射する。紫外、可視及び赤外光線から
成るエネルギー線9は、分光測定、即ち参照光11と試
料光12の非照射時に照射する。
On the other hand, the reference beam 11 guided from the reflection mirror 6b of the spectroscopic measurement device shown in FIG. 4 is shifted from the incident window 14 shown in FIG. A fluorescent light beam, which passes through (not shown) and is irradiated to a phosphor film 18 provided at a position on the inner surface of the integrating sphere 7 (downward with respect to the paper surface) and similarly emitted, is a light reflection / diffusion region 16 on the inner surface of the integrating sphere. While being reflected and diffused on the surface of the device, it reaches the detector 13 composed of a photoelectric tube (photomul) for measurement. Here, the phosphor film 18 is coated and installed on the translucent base material 17 that constitutes the integrating sphere 7. Here, by the energy ray irradiation means 20a, the energy ray 9 is emitted before, after, or before and after the above measurement.
Is transmitted through the translucent base material 17 from the outside of the integrating sphere 7 and is irradiated from the back side of the phosphor film 18. The energy ray 9 composed of ultraviolet rays, visible rays and infrared rays is irradiated during spectroscopic measurement, that is, when the reference light 11 and the sample light 12 are not irradiated.

【0043】本発明の分光測定方法の第二の実施態様
は、上記の様に、光の分光エネルギー強度及び分布を積
分球を用いて測定する方法において、紫外光線を波長変
換するための蛍光体膜を積分球内部に設置し、かつ蛍光
体膜の裏面から紫外光線、赤及び赤外光線等のエネルギ
ー線を照射する為の手段を設けたことを特徴とする。
The second embodiment of the spectroscopic measurement method of the present invention is a method for measuring the spectral energy intensity and distribution of light using an integrating sphere, as described above, and a phosphor for wavelength conversion of ultraviolet rays. It is characterized in that the film is installed inside the integrating sphere, and means for irradiating energy rays such as ultraviolet rays, red rays and infrared rays from the back surface of the phosphor film is provided.

【0044】透光性基材としては、エネルギー線を透過
する材料からなるものであればよく、例えば石英、蛍
石、パイレックス(登録商標)等が用いられる。
The translucent substrate may be made of a material that transmits energy rays, and for example, quartz, fluorite, Pyrex (registered trademark) or the like is used.

【0045】エネルギー線として紫外光線を用いる場合
には、前記蛍光体膜への紫外光線の照射が分光測定の前
行程であることが好ましい。前記蛍光体膜への紫外光線
の照射が蛍光体への疲労効果を予め与える為の手段であ
ること、蛍光体膜へ予め与える疲労効果の一つが色中心
(カラーセンター)の形成であることが好ましい。紫外
光線が波長300nm以下の遠紫外光線及び真空紫外光
線であることが好ましい。前記蛍光体膜に裏面から与え
る紫外光線の照射手段が、紫外線レーザー、ダイオード
及び重水素、水銀等のランプなどの光源であることが好
ましい。
When an ultraviolet ray is used as the energy ray, it is preferable that irradiation of the ultraviolet ray to the phosphor film is performed before the spectroscopic measurement. Irradiation of the ultraviolet rays to the phosphor film is a means for imparting a fatigue effect to the phosphor in advance, and one of the fatigue effects imparted to the phosphor film in advance is the formation of a color center. preferable. It is preferable that the ultraviolet rays are far ultraviolet rays and vacuum ultraviolet rays having a wavelength of 300 nm or less. The means for irradiating the phosphor film with ultraviolet rays from the back side is preferably a light source such as an ultraviolet laser, a diode, and a lamp such as deuterium or mercury.

【0046】エネルギー線として紫外光線を用いる場合
には、前記蛍光体膜への赤及び赤外光線の照射が分光測
定の前及び後行程であることが好ましい。また、前記蛍
光体膜を設置する基板が紫外、赤及び赤外光線の透過可
能な硝材であることが好ましい。前記赤及び赤外光線の
照射が分光測定により生ずる蛍光体の残光を消去する為
の手段であること、蛍光体膜に裏面から赤及び赤外光線
の照射手段が波長600nm以上の波長の光を発する光
源、即ちレーザー、ダイオード及びタングステン、ハロ
ゲンランプ等であることが好ましい。
When ultraviolet rays are used as the energy rays, it is preferable that the phosphor film is irradiated with red and infrared rays before and after the spectroscopic measurement. Further, it is preferable that the substrate on which the phosphor film is placed is a glass material capable of transmitting ultraviolet rays, red rays and infrared rays. The irradiation of the red and infrared rays is a means for erasing the afterglow of the phosphor produced by the spectroscopic measurement, and the means for irradiating the phosphor film with the red and infrared rays from the back surface has a wavelength of 600 nm or more. It is preferable that the light source emits light, that is, a laser, a diode, tungsten, a halogen lamp, or the like.

【0047】[0047]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。なお、「部」は相対的量(重量)基準を示す。
EXAMPLES The present invention will be specifically described below with reference to examples. In addition, "part" shows a relative amount (weight) standard.

【0048】実施例1 図1〜図3に示す分光測定装置で測定を行った。本実施
例で使用する積分球は、アルミニウムのプロックを切
削、研磨により内面が加工されているものを用いた。又
測定光線、即ち試料光12と参照光11の導入口及び光
電管(フォトマル)の測定口用の穴状の入口を加工し
た。
Example 1 Measurement was carried out with the spectroscopic measurement device shown in FIGS. The integrating sphere used in this example had an inner surface processed by cutting and polishing an aluminum block. Further, the measurement light beam, that is, the inlet for introducing the sample light 12 and the reference light 11 and the hole-shaped inlet for the measuring aperture of the photoelectric tube (Photomul) were processed.

【0049】先ず、白色光拡散反射材としての硫酸バリ
ウムを積分球内面に塗工する為の塗工液を調整した。硫
酸バリウム10部、2%PVA水溶液3部、エチルアル
コール10部を用意した。硫酸バリウム粉末にエタノー
ルを加えて撹拌混合した後、PVA溶液を加え更に混合
して琉酸バリウム塗工液を調整した。次いで、積分球の
半球ずつの内面に刷毛を用いて塗工、送風乾燥を行っ
た。
First, a coating solution for coating barium sulfate as a white light diffuse reflection material on the inner surface of the integrating sphere was prepared. 10 parts of barium sulfate, 3 parts of 2% PVA aqueous solution, and 10 parts of ethyl alcohol were prepared. After ethanol was added to the barium sulfate powder and mixed by stirring, the PVA solution was added and further mixed to prepare a barium silicate coating solution. Next, the inner surface of each hemisphere of the integrating sphere was coated with a brush and air-dried.

【0050】一方、蛍光体は予め円形状に残した未塗工
域基板上に塗工設置した。蛍光体としてBaMg2 Al
1627:Euを10部、エチルアルコールを10部、2
%PVA水溶液2部を用意した。蛍光体を容器に秤量し
た後、エチルアルコール、PVA水溶液を加えて撹拌し
た。十分に粉粒が分散した後、塗工液が準備できた。
On the other hand, the phosphor was applied by coating on an uncoated area substrate left in a circular shape in advance. BaMg 2 Al as a phosphor
16 O 27 : 10 parts of Eu, 10 parts of ethyl alcohol, 2
% Of PVA aqueous solution was prepared. After weighing the phosphor in a container, ethyl alcohol and a PVA aqueous solution were added and stirred. After the powder particles were sufficiently dispersed, the coating liquid was ready.

【0051】積分球を回転塗工機の回転盤上にセットし
た後、回転させながら塗工液を刷毛を用いて塗工した。
塗工された表面は白色無光沢のむらの無い均一な仕上が
りであった。乾操した後、積分球を組合わせて分光測定
機にセットした。測定の環境は光学系全体を窒素ガス置
換による脱酸素雰囲気にした。
After setting the integrating sphere on the rotary plate of the rotary coating machine, the coating liquid was coated with a brush while rotating.
The coated surface had a white, matte and even finish. After drying, the integrating spheres were combined and set on a spectrophotometer. The measurement environment was such that the entire optical system was in a deoxygenated atmosphere by nitrogen gas replacement.

【0052】次に、本発明の分光測定装置での測定結果
を説明する。図6は従来の測定によるレンズの分光透過
率の測定結果である。測定は脱酸素、脱水雰囲気にする
ために窒素ガス中で、一昼夜放置後に行った。分かり易
くするために5回繰り返し測定を行った。図中1〜5は
1回目〜5回目を示す。この場合、透過率の数値が回を
重ねる毎に増えて行く。この結果4回目位から測定値が
安定した。
Next, the measurement results of the spectroscopic measurement device of the present invention will be described. FIG. 6 shows the measurement result of the spectral transmittance of the lens by the conventional measurement. The measurement was carried out in nitrogen gas to leave it in a deoxidized and dehydrated atmosphere, after leaving it overnight. Measurements were repeated 5 times for clarity. In the figure, 1 to 5 indicate the first to fifth times. In this case, the numerical value of the transmittance increases with each repetition. As a result, the measured value was stable from the fourth time.

【0053】そこで測定の前に測定試料をセットせず
に、図1に示す様に、ミラー8を介してエネルギー線9
の刺激光(キセノンランプ)照射を1分間行った。直後
に本測定を行った結果が図7である。同様に測定を5回
を繰り返した結果、5回の測定結果は同一の透過率を示
した。
Therefore, without setting the measurement sample before the measurement, as shown in FIG.
Was irradiated for 1 minute with stimulating light (xenon lamp). FIG. 7 shows the result of the actual measurement performed immediately after. Similarly, as a result of repeating the measurement 5 times, the measurement results of 5 times showed the same transmittance.

【0054】以上の結果は遠紫外、真空紫外領域の分光
測定に於いて、蛍光体を利用して長波長光(450n
m)へ変換することと、光電管の分光感度との組み合わ
せにより従来の蛍光体を用いない測定と比べて出力が約
10倍になったことと、更に測定前後の刺激光の照射に
よりカラーセンターが形成されたことと、残光が消尽さ
れたことで測定が安定して高出力、高精度の安定した測
定結果が得られることを示している。
The above results show that in the spectral measurement in the far ultraviolet and vacuum ultraviolet regions, long wavelength light (450 n
m) and the spectral sensitivity of the phototube, the output was about 10 times that of conventional measurements that did not use phosphors, and the stimulating light irradiation before and after the measurement caused the color center to increase. It is shown that the formation is stable and the afterglow is exhausted, so that the measurement can be stably performed with high output and high accuracy.

【0055】実施例2 図4および図5に示す分光測定装置で測定を行った。積
分球の測定光直接照射領域に石英基板をはめ込んだ。実
施例1と同様に積分球内面に硫酸バリウムの白色拡散反
射体を設置した。今回は蛍光体としてZnS:Cu,A
lを用いた。塗工液はZnS:Cu,Alを10部、P
VAの1%水溶液を4部、エチルアルコール6部で混合
調整した。
Example 2 Measurement was carried out with the spectroscopic measurement device shown in FIGS. 4 and 5. A quartz substrate was fitted into the measuring light direct irradiation area of the integrating sphere. As in Example 1, a white diffuse reflector of barium sulfate was placed on the inner surface of the integrating sphere. This time ZnS: Cu, A as the phosphor
1 was used. The coating liquid is ZnS: Cu, Al 10 parts, P
A 1% aqueous solution of VA was mixed and adjusted with 4 parts and 6 parts of ethyl alcohol.

【0056】分光測定の測定前行程として、キセノンラ
ンプを用いて蛍光体裏面の石英基板を通して光線を1分
間照射した。この場合、紫外から赤外のエネルギ線を同
時に照射することにより、カラーセンターの形成と蛍光
の残光の消尽を同時に行ったと考えられる。測定を5回
を繰り返した結果、図7と同様の結果であった。5回の
測定結果は同一の透過率を示した。
As a pre-measurement step of the spectroscopic measurement, a light beam was irradiated for 1 minute through a quartz substrate on the back surface of the phosphor using a xenon lamp. In this case, it is considered that the color center was formed and the afterglow of the fluorescence was exhausted at the same time by simultaneously irradiating the ultraviolet to infrared energy rays. As a result of repeating the measurement five times, the results were the same as those in FIG. 7. The results of five measurements showed the same transmittance.

【0057】以上の結果は遠紫外、真空紫外領域の分光
測定に於いて、紫外光を蛍光体を利用した長波長光(5
30nm)への変換と、光電管の分光感度との組み合わ
せで従来の蛍光体を用いない測定と比べて出力が約9倍
になったことと、更に測定前後の可視及び赤外光線の照
射とにより、高出力、高精度の安定した測定結果を得る
ことが出来た。
The above results show that in spectroscopic measurement in the far-ultraviolet and vacuum-ultraviolet regions, long-wavelength light (5
(30 nm) and the spectral sensitivity of the phototube, the output was about 9 times that of conventional measurements that did not use phosphors, and the irradiation of visible and infrared rays before and after the measurement We were able to obtain stable measurement results with high output and high accuracy.

【0058】実施例3 実施例1において、今回は白色拡散反射材にも同様の蛍
光体(SrCaBa) 5 (PO43 Cl:Euを使用
した。塗工液は蛍光体10部、メチルアルコール15
部.ポリビニルアルコール1%水溶液2部を同様に撹拌
して均一に分散した。調整された塗工液をスプレーガン
を用いて同様に積分球の半球ずつ塗工、乾燥して均一に
塗工された白色の無光択の積分球が得られた。
Example 3 In Example 1, this time, a similar firefly was used for the white diffuse reflection material.
Light body (SrCaBa) Five (POFour )3 Cl: Eu is used
did. The coating liquid is phosphor 10 parts, methyl alcohol 15
Department. Stir 2 parts of 1% aqueous solution of polyvinyl alcohol similarly
And dispersed evenly. Spray gun with adjusted coating liquid
In the same way, apply the hemispheres of the integrating sphere in the same way, dry and even
A coated white, non-selective integrating sphere was obtained.

【0059】十分に乾燥した後、両半球を同様に組合わ
せて積分球を設置して、分光測定機にセットして分光測
定を行った。一回の測定毎に測定光路の途中から水銀ラ
ンプとタングステンランプとを使用して交互にセクター
ミラーを用いて蛍光体面を照射した。
After being sufficiently dried, both hemispheres were combined in the same manner, an integrating sphere was set, and the hemispheres were set in a spectrophotometer for spectroscopic measurement. For each measurement, a mercury lamp and a tungsten lamp were alternately used from the middle of the measurement optical path to irradiate the phosphor surface using a sector mirror.

【0060】従来の蛍光体を使用しない測定結果と比較
したところ、出力が約10倍となったことと、繰り返し
測定の数値が一致して極めてノイズの少ない安定した測
定結果が得られた。
As a result of comparison with the measurement result without using the conventional phosphor, the output became about 10 times, and the numerical values of repeated measurement coincided with each other, and a stable measurement result with very little noise was obtained.

【0061】実施例4 実施例1において、蛍光体にBaSi25 :Pb10
部、バインダ樹脂としてカルボキシメチルセルロース2
%水溶液1部、エチルアルコール15部を用いて塗工液
を調整した。同様の工程を経て均一に塗工された白色無
光択の積分球と蛍光板が得られた。
Example 4 In Example 1, the phosphor was made of BaSi 2 O 5 : Pb10.
Part, carboxymethyl cellulose 2 as binder resin
% Aqueous solution and 15 parts of ethyl alcohol to prepare a coating solution. Through a similar process, a white non-selective integrating sphere and a fluorescent plate which were uniformly coated were obtained.

【0062】今回は測定において、特に外部からエネル
ギー線(刺激光線)を与えず、予め測定の前に試料をセ
ットせずに20分間波長スキャンを行った。連続して試
料をセットして分光測定を行った。
In this measurement, a wavelength scan was performed for 20 minutes without particularly applying an energy ray (stimulating ray) from the outside and setting the sample in advance before the measurement. The sample was continuously set and the spectroscopic measurement was performed.

【0063】測定は5回繰り返して行った。結果は図7
と同様の安定した結果であった。このことは連続した波
長スキャンの途中に測定を行うことでも同様のカラーセ
ンターの形成と残光の消去が図れることを示している。
The measurement was repeated 5 times. The result is Figure 7.
It was a stable result similar to. This means that the same color center formation and afterglow erasure can be achieved by performing measurements during continuous wavelength scanning.

【0064】実施例5 図1〜図3に示す分光測定装置で測定を行った。本実施
例で使用する積分球はアルミニウムのブロックを切削、
研磨により内面が加工されている。又紫外光線、即ち試
料光12と参照光11の導入口及び光電管(フォトマ
ル)の測定口用の穴状の入口を加工した。
Example 5 Measurement was carried out with the spectroscopic measurement device shown in FIGS. The integrating sphere used in this embodiment is made by cutting an aluminum block,
The inner surface is processed by polishing. In addition, an ultraviolet ray, that is, an inlet for introducing the sample light 12 and the reference light 11 and a hole-shaped inlet for the measuring port of the photoelectric tube (Photomul) were processed.

【0065】先ず、白色光拡散反射材としての硫酸バリ
ウムを積分球内面に塗工する為の塗工液を調整した。硫
酸バリウム10部、2%PVA溶液5部、エタノール1
0部を用意した。硫酸バリウム粉末にエタノールを加え
て撹拌混合した後、PVA溶液を加え更に混合して硫酸
バリウム塗工液を調整した。次いで積分球の半球ずつの
内面に刷毛を用いて塗工、送風乾燥を行った。
First, a coating solution for coating barium sulfate as a white light diffuse reflection material on the inner surface of the integrating sphere was prepared. Barium sulfate 10 parts, 2% PVA solution 5 parts, ethanol 1
0 parts were prepared. After adding ethanol to the barium sulfate powder and stirring and mixing, a PVA solution was added and further mixed to prepare a barium sulfate coating solution. Next, the inner surface of each of the integrating spheres was coated with a brush and air-dried.

【0066】一方、蛍光体は予め円形状に残した未塗工
域基板上に塗工設置した。蛍光体としてBaMg2 Al
1627:Euを10部、ポリビニルアルコールの2%水
溶液を3部、エチルアルコールを10部用意した。蛍光
体を容器に秤量した後、エチルアルコールを加えて撹拌
した。十分に粉粒が分散した後、ポリビニルアルコール
水溶液を加え、更に撹拌することにより塗工液が準備で
きた。積分球を回転塗工機の回転盤上にセットした後、
回転させながら塗工液を刷毛を用いて塗工した。塗工さ
れた表面は白色無光択のむらの無い均一な仕上がりであ
った。
On the other hand, the phosphor was applied by coating on an uncoated area substrate left in a circular shape in advance. BaMg 2 Al as a phosphor
16 O 27 : 10 parts of Eu, 3 parts of a 2% aqueous solution of polyvinyl alcohol, and 10 parts of ethyl alcohol were prepared. After weighing the phosphor in a container, ethyl alcohol was added and stirred. After the powder particles were sufficiently dispersed, a polyvinyl alcohol aqueous solution was added and further stirred to prepare a coating liquid. After setting the integrating sphere on the turntable of the spin coater,
The coating liquid was applied using a brush while rotating. The coated surface had a white, non-selective and even finish.

【0067】十分に乾燥した後、積分球を組み合わせて
分光測定機にセットした。測定の環境は光学系全体を窒
素ガス置換による無酸素雰囲気にした。分光測定は予め
測定試料のない状態で波長160nmを中心に真空紫外
領域の光線をスキャンさせて10回繰り返し照射した。
その直後引き続いて試料に反射防止膜を設けたレンズを
セットして分光透過率の測定を行った。図8および図9
はレンズの分光透過率の測定結果である。分かり易くす
るために5回繰り返し測定を行った。図8は従来の測定
結果で、この場合透過率の数値が最初高く、回を重ねる
毎に減って行くことが認められる。図9は本発明の測定
直前の疲労効果を与えた結果である。同様に測定を5回
を繰り返した、5回の測定結果は同一の透過率を示し
た。
After being sufficiently dried, the integrating spheres were combined and set in a spectrophotometer. The measurement environment was an oxygen-free atmosphere in which the entire optical system was replaced with nitrogen gas. In the spectroscopic measurement, a light beam in the vacuum ultraviolet region around a wavelength of 160 nm was scanned in the absence of a measurement sample in advance and irradiation was repeated 10 times.
Immediately after that, the lens having the antireflection film was set on the sample and the spectral transmittance was measured. 8 and 9
Is the measurement result of the spectral transmittance of the lens. Measurements were repeated 5 times for clarity. FIG. 8 shows the result of the conventional measurement. In this case, it is recognized that the numerical value of the transmittance is high in this case and decreases with each repetition. FIG. 9 shows the result of giving the fatigue effect immediately before the measurement of the present invention. Similarly, the measurement was repeated 5 times, and the measurement results of 5 times showed the same transmittance.

【0068】以上の結果は遠紫外、真空紫外領域の分光
測定に於いて、遠紫外、真空紫外光の蛍光体を利用した
長波長光(450nm)への変換と、光電管の分光感度
との組み合わせで従来の蛍光体を用いない測定と比べて
出力が約10倍になったことと、更に蛍光体の疲労効果
の適用によって、高精度の安定した測定結果を得ること
が出来たことを示している。
The above results show that, in the spectroscopic measurement in the far ultraviolet and vacuum ultraviolet regions, the conversion of far ultraviolet and vacuum ultraviolet light into long wavelength light (450 nm) using a phosphor and the spectral sensitivity of the photoelectric tube are combined. Shows that the output is about 10 times that of the conventional measurement without using a phosphor, and that the application of the fatigue effect of the phosphor has made it possible to obtain highly accurate and stable measurement results. There is.

【0069】実施例6 実施例5において、今回は白色拡散反射材として蛍光体
(SrCaBa)5 (PO43 Cl:Euを使用し
た。同様に塗工液を調整した。蛍光体10部、エチルア
ルコール20部、ポリビニルアルコール5%水溶液4部
を同様に撹拌して均一に分散した。調整された塗工液を
スプレーガンを用いて同様に積分球の半球ずつ塗工、乾
燥して均一に塗工された白色の無光択の積分球が得られ
た。
Example 6 In Example 5, a phosphor (SrCaBa) 5 (PO 4 ) 3 Cl: Eu was used as the white diffuse reflector this time. Similarly, the coating liquid was prepared. 10 parts of the phosphor, 20 parts of ethyl alcohol, and 4 parts of a 5% aqueous solution of polyvinyl alcohol were similarly stirred and uniformly dispersed. The adjusted coating liquid was similarly applied to each of the integrating sphere hemispheres using a spray gun and dried to obtain a uniformly coated white non-selective integrating sphere.

【0070】十分に乾燥した後、両半球を同様に組合わ
せて分光測定機にセットして分光測定を行った。測定の
直前に低圧水銀燈を用いて遠紫外光を5分間照射した。
照射の為に回転セクターの前光路に反射ミラーを用いて
遠紫外光を導入した。測定結果は同様に5回の繰り返し
の測定結果が極めて良く一致した。従来に比べて出力が
約8倍となったことと併せて極めてノイズノ少ない安定
した測定結果が得られた。
After being sufficiently dried, both hemispheres were similarly combined and set in a spectrophotometer for spectroscopic measurement. Immediately before the measurement, far ultraviolet light was irradiated for 5 minutes using a low pressure mercury lamp.
Far ultraviolet light was introduced into the front optical path of the rotating sector using a reflecting mirror for irradiation. Similarly, the measurement results were in good agreement with the measurement results of 5 repetitions. Along with the output being about 8 times that of the conventional one, stable measurement results with very little noise were obtained.

【0071】実施例7 実施例6において、蛍光体にBaSi25 :Pbl0
部、バインタ樹脂としてカルボキシメチルセルロース1
%水溶液3部、エチルアルコール15部を用いて塗工液
を調整した。同様の工程を経て均一に塗工された白色無
光択の積分球が得られた。
Example 7 In Example 6, the phosphor was made of BaSi 2 O 5 : Pbl0.
Part, carboxymethyl cellulose 1 as binder resin
% Aqueous solution 3 parts and ethyl alcohol 15 parts to prepare a coating liquid. Through a similar process, a uniformly coated white non-selective integrating sphere was obtained.

【0072】蛍光体への疲労効果を与える為に重水素ラ
ンプを用いた。同様に途中の光路から紫外線を導入して
分光測定の直前に照射を行った。分光測定の結果も良好
で従来に比較してノイズの少ない安定した測定結果が得
られた。
A deuterium lamp was used to give a fatigue effect to the phosphor. Similarly, ultraviolet rays were introduced from an optical path on the way and irradiation was performed immediately before the spectroscopic measurement. The spectroscopic measurement results were also good, and stable measurement results with less noise were obtained compared to the conventional method.

【0073】実施例8 実施例6に於いて、蛍光体にZnS:Cu,Alを用い
て塗工液を調整した。積分球の内面に硫酸バリウム白色
拡散反射材の塗工の後、蛍光体10部、エチルアルコー
ル10部、ポリビニルアルコール2%水溶液5部からな
る塗工液を調整した。そして測定光線の照射を受ける領
域にのみ塗工を行った。而して均一に塗工された白色無
光択の積分球が得られた。十分に乾燥した後、両半球を
同様に組合わせて分光測定機にセットして分光測定を行
った。
Example 8 In Example 6, a coating liquid was prepared by using ZnS: Cu, Al for the phosphor. After the barium sulfate white diffuse reflection material was applied to the inner surface of the integrating sphere, a coating solution containing 10 parts of the phosphor, 10 parts of ethyl alcohol, and 5 parts of a 2% aqueous solution of polyvinyl alcohol was prepared. Then, the coating was applied only to the area receiving the irradiation of the measuring light beam. Thus, a uniformly white unselected integrating sphere was obtained. After being sufficiently dried, both hemispheres were similarly combined and set in a spectrophotometer for spectroscopic measurement.

【0074】測定の直前に赤色フィルターとタングステ
ンランプを組み合わせた赤色光を数秒照射した。照射の
為には測定光の光路中に反射ミラーを設置した。
Immediately before the measurement, a red light combining a red filter and a tungsten lamp was irradiated for several seconds. A reflective mirror was installed in the optical path of the measurement light for irradiation.

【0075】従来はバラツキが大きく信頼性に欠けてい
たが、今回の測定では安定した結果を示した。従来の蛍
光体を使用しない方式に比べて出力が約8倍となったこ
とと併せて高精度の安定した測定結果が得られた。
Conventionally, there were large variations and lack of reliability, but the present measurement showed stable results. The output was about 8 times that of the conventional method that does not use a phosphor, and high-precision and stable measurement results were obtained.

【0076】実施例9 実施例6の光学系全体をヘリウム置換により無酸素雰囲
気にして分光測定を行った。160nm近辺の波長領域
に於いても従来に比べてノイズの少ない高精度の測定が
できた。
Example 9 The entire optical system of Example 6 was subjected to spectroscopic measurement in an oxygen-free atmosphere by helium substitution. Even in the wavelength region around 160 nm, it was possible to perform highly accurate measurement with less noise compared to the conventional case.

【0077】実施例10 図4および図5に示す分光測定装置で測定を行った。本
実施例で用いた積分球はアルミニウムのブロックを切
削、研磨により内面が加工されている。又測定光線、即
ち試料光と参照光を通過させる入口及び蛍光体を塗工す
る透光性基坂を設置する穴状の入口を加工した。
Example 10 Measurement was carried out by the spectroscopic measurement device shown in FIGS. 4 and 5. The integrating sphere used in this embodiment has an inner surface processed by cutting and polishing an aluminum block. In addition, an inlet for passing the measurement light, that is, the sample light and the reference light, and a hole-shaped inlet for installing a translucent substrate for coating the phosphor were processed.

【0078】先ず、白色光拡散反射材として硫酸バリウ
ムを積分球内面に塗工する為の塗工液を調整した。硫酸
バリウム10部、2%PVA溶液5部、エタノール10
部を用意した。硫酸バリウム粉末にエタノールを加えて
撹拌混合した後、PVA溶液を加え更に混合して硫酸バ
リウム塗工液を調整した。積分球の半球ずつ内面に刷毛
を用いて塗工、送風乾燥を行った。
First, a coating solution for coating barium sulfate on the inner surface of the integrating sphere as a white light diffuse reflection material was prepared. Barium sulfate 10 parts, 2% PVA solution 5 parts, ethanol 10
I prepared a section. After adding ethanol to the barium sulfate powder and stirring and mixing, a PVA solution was added and further mixed to prepare a barium sulfate coating solution. Each hemisphere of the integrating sphere was coated on the inner surface with a brush and air-dried.

【0079】一方、蛍光体は石英の円形透光性基板上に
塗工設置した。蛍光体としてBaMg2 Al1627:E
uを10部、ボリビニルアルコールの2%水溶液を3
部、エチルアルコールを10部用意した。蛍光体を容器
に秤量した後エチルアルコールを加えて撹拌した。十分
に粉粒が分散した後、ポリビニルアルコール水溶液を加
え更に撹拌することにより塗工液が準備できた。パイレ
ックス(登録商標)の基板を回転塗工機の回転盤上にセ
ットした後回転させながら塗工液を刷毛を用いて塗工し
た。塗工された表面は白色無光択のむらの無い均一な仕
上がりであった。
On the other hand, the phosphor was coated and set on a circular transparent substrate made of quartz. BaMg 2 Al 16 O 27 : E as a phosphor
10 parts of u and 3% of a 2% aqueous solution of polyvinyl alcohol
And 10 parts of ethyl alcohol were prepared. The phosphor was weighed in a container, ethyl alcohol was added, and the mixture was stirred. After the powder particles were sufficiently dispersed, a coating solution could be prepared by adding an aqueous solution of polyvinyl alcohol and further stirring. The Pyrex (registered trademark) substrate was set on the rotary plate of a rotary coating machine, and then the coating liquid was applied using a brush while rotating. The coated surface had a white, non-selective and even finish.

【0080】積分球を組み合わせた後、蛍光体基板を分
光測定機にセットした。測定の環境は光学系全体を窒素
ガス置換による無酸素雰囲気にした。図10は本発明を
用いない従来の測定による反射防止膜を設けたレンズの
分光透過率の測定結果である。分かり易くするために5
回繰り返し測定を行った。この場合透過率の数値が回を
重ねる毎に低下した。
After combining the integrating spheres, the phosphor substrate was set in the spectrophotometer. The measurement environment was an oxygen-free atmosphere in which the entire optical system was replaced with nitrogen gas. FIG. 10 shows the measurement results of the spectral transmittance of the lens provided with the antireflection film by the conventional measurement not using the present invention. 5 for clarity
The measurement was repeated repeatedly. In this case, the numerical value of the transmittance decreased with each repetition.

【0081】図11は測定光の照射前、即ち第一回目の
測定の開始前に低圧水銀ランプを用いて遠紫外線を積分
球の蛍光体に裏面から照射した結果である。この場合基
板に石英を使用したので波長200nm以下の光をも透
過した。同様に測定を5回を繰り返した。5回の測定結
果は極めて良く合致した。
FIG. 11 shows the results obtained by irradiating the phosphor of the integrating sphere from the back surface with far ultraviolet rays using a low-pressure mercury lamp before irradiation of the measurement light, that is, before the start of the first measurement. In this case, since quartz was used for the substrate, light having a wavelength of 200 nm or less was also transmitted. Similarly, the measurement was repeated 5 times. The results of the 5 measurements agree very well.

【0082】以上の結果は遠紫外、真空紫外領域の分光
測定に於いて、紫外光の蛍光体を利用した長波長光(4
50nm)への変換と、光電管の分光感度と相まって従
来の蛍光体を用いない測定と比べて出力が約10倍にな
ったことと、更に測定前の紫外光線の照射による疲労効
果とにより高出力、高精度の安定した測定結果を得るこ
とが出来た。
The above results show that in the spectral measurement in the far ultraviolet and vacuum ultraviolet regions, long wavelength light (4
(50 nm) and the spectral sensitivity of the phototube, the output was about 10 times that of conventional measurements that did not use phosphors, and the high output due to the fatigue effect of irradiation with ultraviolet rays before measurement. It was possible to obtain highly accurate and stable measurement results.

【0083】実施例11 実施例10において、今回は白色拡散反射材として蛍光
体(SrCaBa)5(PO43 Cl:Euを使用し
た。同様に塗工液を調整した。蛍光体10部、エチルア
ルコール20部、ポリビニルアルコール5%水溶液4部
を同様に撹拌して均一に分散した。調整された塗工液を
スプレーガンを用いて同様に積分球の半球ずつ塗工、乾
燥して均一に塗工された白色の無光択の積分球が得られ
た。
Example 11 In Example 10, a phosphor (SrCaBa) 5 (PO 4 ) 3 Cl: Eu was used as the white diffuse reflector this time. Similarly, the coating liquid was prepared. 10 parts of the phosphor, 20 parts of ethyl alcohol, and 4 parts of a 5% aqueous solution of polyvinyl alcohol were similarly stirred and uniformly dispersed. The adjusted coating liquid was similarly applied to each of the integrating sphere hemispheres using a spray gun and dried to obtain a uniformly coated white non-selective integrating sphere.

【0084】一方、透光性基板には蛍石を用いた。上記
蛍光体塗工液を同様の方法で塗工した。十分に乾燥した
後、両半球を同様に組合わせて蛍光体を設置、分光測定
機にセットして分光測定を行った。今回は測定の直前に
裏面から重水素ランプを用いて遠紫外光線を十分に照射
した。その後、連続して分光測定を行った。繰り返し測
定の数値が極めて良く一致してノイズノ少ない安定した
測定結果が得られた。従来の蛍光体を使用しない測定結
果と比較したところ出力が約8倍であった。
On the other hand, fluorite was used for the transparent substrate. The phosphor coating solution was applied in the same manner. After being sufficiently dried, both hemispheres were combined in the same manner to set a phosphor, and the phosphor was set in a spectrophotometer for spectroscopic measurement. This time, just before the measurement, a deep-ultraviolet ray was sufficiently irradiated from the back surface using a deuterium lamp. Then, the spectroscopic measurement was continuously performed. The values of repeated measurement were in good agreement and stable measurement results with less noise were obtained. The output was about 8 times as compared with the measurement result without using the conventional phosphor.

【0085】実施例12 実施例11において、蛍光体にBaSi25 :Pbl
0部、バインダー樹脂としてカルボキシメチルセルロー
ス1%水溶液3部、エチルアルコール15部を用いて塗
工液を調整した。同様の工程を経て均一に塗工された白
色無光択の積分球と蛍光体が得られた。測定の直前に蛍
光体の裏面から照射する光線にArFレーザーを用い
た。測定の結果は良好で従来に比較してノイズの少ない
安定した測定結果が得られた。
Example 12 In Example 11, the phosphor was made of BaSi 2 O 5 : Pbl.
A coating solution was prepared by using 0 part, 3 parts of a 1% aqueous solution of carboxymethyl cellulose as a binder resin, and 15 parts of ethyl alcohol. Through a similar process, a uniformly coated white non-luminous integrating sphere and phosphor were obtained. An ArF laser was used for the light beam irradiated from the back surface of the phosphor immediately before the measurement. The measurement results were good, and stable measurement results with less noise were obtained compared to the conventional method.

【0086】実施例13 実施例11に於いて、蛍光体にYPO4 :Ce、Sr2
27 :Eu、ZnS:Cu,Al等を用いて塗工液
を調整、同様に塗工を行った。蛍光体への裏面からの照
射に水銀ランプ等を用いた。同様に分光測定装置にセッ
トして測定を行ったところ、従来に比較して格段に安定
したノイズの少ない高精度の測定ができた。
Example 13 In Example 11, the phosphor was YPO 4 : Ce, Sr 2
A coating solution was prepared using P 2 O 7 : Eu, ZnS: Cu, Al and the like, and the same coating was performed. A mercury lamp or the like was used to irradiate the phosphor from the back surface. Similarly, when the measurement was carried out by setting it in a spectroscopic measurement device, it was possible to perform highly stable and highly accurate measurement with much less noise than in the past.

【0087】実施例14 実施例10において、白色拡散反射材として硫酸バリウ
ムを使用、蛍光体にはZnS:CuAlを選択した。同
様に塗工液を調整した。硫酸バリウム10部、エチルア
ルコール20部、ポリビニルアルコール5%水溶液4部
を同様に撹拌して均一に分散した。調整された塗工液を
スプレーガンを用いて同様に積分球の半球ずつ塗工、乾
燥して均一に塗工された白色の無光択の積分球が得られ
た。
Example 14 In Example 10, barium sulfate was used as the white diffuse reflection material, and ZnS: CuAl was selected as the phosphor. Similarly, the coating liquid was prepared. Barium sulfate 10 parts, ethyl alcohol 20 parts, and polyvinyl alcohol 5% aqueous solution 4 parts were similarly stirred and uniformly dispersed. The adjusted coating liquid was similarly applied to each of the integrating sphere hemispheres using a spray gun and dried to obtain a uniformly coated white non-selective integrating sphere.

【0088】一方、蛍光体ZnS:CuAl10部、エ
チルアルコール10部、ポリビニルアルコール2%溶液
5部を同様に撹拌混合して塗工液を調整した。透光性基
板にはパイレックス(登録商標)を使用した。上記蛍光
体塗工液を回転塗工機と刷毛を用いて透光性基板上に塗
工した。十分に乾燥した後、両半球を同様に組み合わせ
て蛍光体を取り付け、分光測定装置に組み込んで分光測
定を行った。
On the other hand, 10 parts of phosphor ZnS: CuAl, 10 parts of ethyl alcohol, and 5 parts of a 2% solution of polyvinyl alcohol were similarly stirred and mixed to prepare a coating solution. Pyrex (registered trademark) was used for the transparent substrate. The phosphor coating solution was applied onto a translucent substrate using a spin coater and a brush. After being sufficiently dried, both hemispheres were combined in the same manner, a phosphor was attached, and the hemisphere was incorporated into a spectroscopic measurement device for spectroscopic measurement.

【0089】今回は測定直前にパイレックス(登録商
標)基板の裏面からHe−Neレーザー光線を照射し
た。その後、一回の測定毎に繰り返し基板の裏面からH
e−Neレーザー光線を照射した。その結果得られた数
値はバラツキは小さく安定していた。
This time, immediately before the measurement, the He-Ne laser beam was irradiated from the back surface of the Pyrex (registered trademark) substrate. After that, after each measurement, the H
It was irradiated with an e-Ne laser beam. The obtained numerical values were stable with little variation.

【0090】実施例15 実施例10の光学系全体を窒素及びヘリウム置換により
無酸素雰囲気にして分光測定を行った。本実施例の測定
において、160nm近辺の波長領域に於いても従来に
比べてノイズの少ない高精度の測定が出来た。
Example 15 The entire optical system of Example 10 was subjected to spectroscopic measurement in an oxygen-free atmosphere by substituting nitrogen and helium. In the measurement of the present example, even in the wavelength region around 160 nm, high-precision measurement with less noise than the conventional case was possible.

【0091】[0091]

【発明の効果】以上説明した様に、本発明によれば、特
に紫外領域の光、特に遠紫外、真空紫外領域に於いて、
測定前後のエネルギー線の照射により蛍光体へ、疲労効
果であるカラーセンターが形成されたことと、また残光
が消尽されたことで測定が安定し、分光エネルギー分布
および強度などの測定を精度よく行なうことができる分
光測定装置および分光測定方法を提供することができ
る。
As described above, according to the present invention, particularly in the ultraviolet region, particularly in the far ultraviolet region and the vacuum ultraviolet region,
The irradiation of energy rays before and after the measurement formed a fluorescent color center in the phosphor, and afterglow was exhausted, the measurement was stable and the spectral energy distribution and intensity could be measured accurately. A spectroscopic measurement device and a spectroscopic measurement method that can be performed can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分光測定装置の一例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an example of a spectroscopic measurement device of the present invention.

【図2】本発明に用いられる積分球を示す概略図であ
る。
FIG. 2 is a schematic view showing an integrating sphere used in the present invention.

【図3】本発明に用いられる積分球を示す概略図であ
る。
FIG. 3 is a schematic view showing an integrating sphere used in the present invention.

【図4】本発明の分光測定装置の他の例を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing another example of the spectroscopic measurement device of the present invention.

【図5】本発明に用いられる積分球を示す概略図であ
る。
FIG. 5 is a schematic view showing an integrating sphere used in the present invention.

【図6】従来の測定によるレンズの分光透過率の測定結
果を示す図である。
FIG. 6 is a diagram showing a measurement result of a spectral transmittance of a lens by a conventional measurement.

【図7】実施例1の測定によるレンズの分光透過率の測
定結果を示す図である。
FIG. 7 is a diagram showing a measurement result of a spectral transmittance of a lens by the measurement of Example 1.

【図8】従来の測定によるレンズの分光透過率の測定結
果を示す図である。
FIG. 8 is a diagram showing a measurement result of a spectral transmittance of a lens by a conventional measurement.

【図9】実施例5の測定によるレンズの分光透過率の測
定結果を示す図である。
FIG. 9 is a diagram showing a measurement result of a spectral transmittance of a lens obtained by measurement in Example 5;

【図10】従来の測定によるレンズの分光透過率の測定
結果を示す図である。
FIG. 10 is a diagram showing a measurement result of a spectral transmittance of a lens by a conventional measurement.

【図11】実施例10の測定によるレンズの分光透過率
の測定結果を示す図である。
FIG. 11 is a diagram showing a measurement result of a spectral transmittance of a lens obtained by measurement in Example 10;

【符号の説明】[Explanation of symbols]

1 光源 2 光線 3 分光器 4 単色光 5 セクターミラー 6a、6bは反射ミラー 7 積分球 8 ミラー 9 エネルギー線 10 エネルギー線の光源 11 参照光 12 試料光 13 検知器 14 入射窓 15 光照射領域 16 光反射拡散領域 17 透光性基材 18 蛍光体膜 19 受光窓 20,20a エネルギー線照射手段 22 蛍光光線 s 試料 1 light source Two rays 3 spectroscope 4 monochromatic light 5 sector mirror 6a and 6b are reflection mirrors 7 integrating sphere 8 mirror 9 energy rays 10 Energy ray light source 11 Reference light 12 Sample light 13 detectors 14 incident window 15 Light irradiation area 16 Light reflection diffusion area 17 Translucent base material 18 Phosphor film 19 Light receiving window 20, 20a Energy ray irradiation means 22 Fluorescent light s sample

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G020 AA04 AA05 BA02 BA20 CB05 CB25 CB26 CB27 CB32 CB33 CB34 CB43 CB44 CC02 CC26 CC47 CD13 CD14 CD23 2G059 BB08 EE01 EE12 FF09 GG01 GG02 GG10 HH03 HH04 JJ01 JJ13 JJ16 KK02 2G065 AA04 AB04 AB05 AB09 AB11 AB23 AB27 AB28 BA18 BA29 BB14 BB15 BB26 BB42 DA05 2G086 FF06    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G020 AA04 AA05 BA02 BA20 CB05                       CB25 CB26 CB27 CB32 CB33                       CB34 CB43 CB44 CC02 CC26                       CC47 CD13 CD14 CD23                 2G059 BB08 EE01 EE12 FF09 GG01                       GG02 GG10 HH03 HH04 JJ01                       JJ13 JJ16 KK02                 2G065 AA04 AB04 AB05 AB09 AB11                       AB23 AB27 AB28 BA18 BA29                       BB14 BB15 BB26 BB42 DA05                 2G086 FF06

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】 光の分光エネルギー強度及び分布を測定
する分光測定装置において、測定される光を波長変換す
るための蛍光体膜を内部に設置した積分球と、該蛍光体
膜に測定の前、後または前後にエネルギー線を照射する
エネルギー線照射手段を有することを特徴とする分光測
定装置。
1. In a spectroscopic measurement device for measuring the spectral energy intensity and distribution of light, an integrating sphere in which a phosphor film for converting the wavelength of the light to be measured is installed, and the phosphor film before measurement. A spectroscopic measurement device having an energy ray irradiation means for irradiating the energy ray after or before and after.
【請求項2】 前記蛍光体膜に紫外線、可視光線または
赤外光線から選ばれる少なくとも一種のエネルギー線を
照射する請求項1記載の分光測定装置。
2. The spectroscopic measurement device according to claim 1, wherein the phosphor film is irradiated with at least one energy ray selected from ultraviolet rays, visible rays, and infrared rays.
【請求項3】 前記エネルギー線照射手段が測定される
光の光路を通してエネルギー線を蛍光体膜の表面に照射
する請求項1記載の分光測定装置。
3. The spectroscopic measurement device according to claim 1, wherein the energy ray irradiating means irradiates the surface of the phosphor film with energy rays through an optical path of the light to be measured.
【請求項4】 前記エネルギー線照射手段がエネルギー
線を蛍光体膜の裏面から照射する請求項1記載の分光測
定装置。
4. The spectroscopic measurement apparatus according to claim 1, wherein the energy ray irradiating means radiates energy rays from the back surface of the phosphor film.
【請求項5】 前記エネルギー線を照射することにより
積分球内部の蛍光体膜に疲労効果の付与および残光の消
尽により測定の安定化を図る請求項1乃至4のいずれか
の項に記載の分光測定装置。
5. The measurement according to claim 1, wherein irradiation with the energy beam imparts a fatigue effect to the phosphor film inside the integrating sphere and exhausts the afterglow to stabilize the measurement. Spectrometer.
【請求項6】 前記疲労効果の付与が色中心の形成であ
る請求項5記載の分光測定装置。
6. The spectroscopic measurement device according to claim 5, wherein the application of the fatigue effect is the formation of color centers.
【請求項7】 前記測定の前に、測定される光の光路を
通して蛍光体膜の表面に紫外光線を照射して蛍光体膜へ
疲労効果を与る請求項1乃至6のいずれかの項に記載の
分光測定装置。
7. The method according to claim 1, wherein before the measurement, the surface of the phosphor film is irradiated with an ultraviolet ray through the optical path of the light to be measured to exert a fatigue effect on the phosphor film. The spectroscopic measurement device described.
【請求項8】 前記照射される紫外光線が波長300n
m以下の遠紫外、真空紫外光線である請求項7記載の分
光測定装置。
8. The ultraviolet ray for irradiation has a wavelength of 300 n.
The spectroscopic measurement device according to claim 7, which is far ultraviolet ray or vacuum ultraviolet ray of m or less.
【請求項9】 前記測定の前後に、測定される光の光路
を通して蛍光体膜の表面に赤及び赤外光線を照射して蛍
光体膜の残光の消尽を行う請求項1乃至6のいずれかの
項に記載の分光測定装置。
9. The method according to claim 1, wherein before and after the measurement, the surface of the phosphor film is irradiated with red and infrared rays through the optical path of the light to be measured to exhaust the afterglow of the phosphor film. The spectroscopic measurement device described in that item.
【請求項10】 前記測定の前に、蛍光体膜の裏面に紫
外光線を照射して蛍光体膜へ疲労効果を与る請求項1乃
至6のいずれかの項に記載の分光測定装置。
10. The spectroscopic measurement device according to claim 1, wherein before the measurement, the back surface of the phosphor film is irradiated with ultraviolet rays to exert a fatigue effect on the phosphor film.
【請求項11】 前記照射される紫外光線が波長300
nm以下の遠紫外、真空紫外光線である請求項10記載
の分光測定装置。
11. The ultraviolet ray for irradiation has a wavelength of 300.
The spectroscopic measurement device according to claim 10, which is far ultraviolet rays or vacuum ultraviolet rays having a wavelength of nm or less.
【請求項12】 前記測定の前後に、蛍光体膜の裏面に
赤及び赤外光線を照射して蛍光体膜の残光の消尽を行う
請求項1乃至6のいずれかの項に記載の分光測定装置。
12. The spectrum according to claim 1, wherein before and after the measurement, the back surface of the phosphor film is irradiated with red and infrared rays to exhaust the afterglow of the phosphor film. measuring device.
【請求項13】 前記照射される紫外光線、赤及び赤外
光線が、分光測定装置の単色光線及び外部光源を使用し
たレーザー、ダイオード、及びタングステン、水銀、ハ
ロゲン、キセノンのランプ類から得られる光線である請
求項7乃至11のいずれかの項に記載の分光測定装置。
13. The irradiating ultraviolet rays, red rays and infrared rays are obtained from monochromatic rays of a spectrophotometer and lasers, diodes, and lamps of tungsten, mercury, halogen and xenon using an external light source. The spectroscopic measurement device according to any one of claims 7 to 11.
【請求項14】 光の分光エネルギー強度及び分布を測
定する分光測定方法において、測定される光を波長変換
するための蛍光体膜を内部に設置した積分球の蛍光体膜
に、測定の前、後または前後にエネルギー線を照射する
ことを特徴とする分光測定方法。
14. In a spectroscopic measurement method for measuring the spectral energy intensity and distribution of light, a phosphor film of an integrating sphere in which a phosphor film for converting the wavelength of the light to be measured is installed, before measurement, A spectroscopic measurement method characterized by irradiating energy rays behind or before and after.
【請求項15】 測定される光を波長変換するための蛍
光体膜を内部に設置した積分球を用いて、積分球の蛍光
体膜にエネルギー線を照射する工程、該積分球の蛍光体
膜に光を照射して蛍光光線を発光させる工程、該発光し
た蛍光光線を積分球の内面で拡散反射させて該蛍光光線
の分光エネルギー強度及び分布を測定する工程を有する
請求項14記載の分光測定方法。
15. A step of irradiating an energy ray to the phosphor film of the integrating sphere by using an integrating sphere having a phosphor film for converting the wavelength of the light to be measured therein, the phosphor film of the integrating sphere. 15. The spectroscopic measurement according to claim 14, further comprising the steps of irradiating light on the surface to emit fluorescent light and measuring the spectral energy intensity and distribution of the fluorescent light by diffusing and reflecting the emitted fluorescent light on the inner surface of the integrating sphere. Method.
【請求項16】 測定される光を波長変換するための蛍
光体膜を内部に設置した積分球を用いて、積分球の蛍光
体膜に光を照射して蛍光光線を発光させる工程、該発光
した蛍光光線を積分球の内面で拡散反射させて該蛍光光
線の分光エネルギー強度及び分布を測定する工程、測定
した後に積分球の蛍光体膜にエネルギー線を照射する工
程を有する請求項14記載の分光測定方法。
16. A step of irradiating the phosphor film of the integrating sphere with light to emit a fluorescent ray by using an integrating sphere having a phosphor film for converting the wavelength of the light to be measured therein, 15. The method according to claim 14, further comprising the steps of: diffusing and reflecting the fluorescent light on the inner surface of the integrating sphere to measure the spectral energy intensity and distribution of the fluorescent light; Spectroscopic measurement method.
【請求項17】 測定される光を波長変換するための蛍
光体膜を内部に設置した積分球を用いて、積分球の蛍光
体膜にエネルギー線を照射する工程、該積分球の蛍光体
膜に光を照射して蛍光光線を発光させる工程、該発光し
た蛍光光線を積分球の内面で拡散反射させて該蛍光光線
の分光エネルギー強度及び分布を測定する工程、測定し
た後に積分球の蛍光体膜にエネルギー線を照射する工程
を有する請求項14記載の分光測定方法。
17. A step of irradiating the phosphor film of the integrating sphere with energy rays by using an integrating sphere having a phosphor film for converting the wavelength of the light to be measured therein, the phosphor film of the integrating sphere. A step of irradiating a fluorescent light to emit light, a step of measuring the spectral energy intensity and distribution of the fluorescent light by diffusively reflecting the emitted fluorescent light on the inner surface of the integrating sphere, and a phosphor of the integrating sphere after measurement. The spectroscopic measurement method according to claim 14, further comprising the step of irradiating the film with energy rays.
【請求項18】 前記蛍光体膜に紫外線、可視光線また
は赤外光線から選ばれる少なくとも一種のエネルギー線
を照射する請求項14乃至17のいずれかの項に記載の
分光測定方法。
18. The spectroscopic measurement method according to claim 14, wherein the phosphor film is irradiated with at least one energy ray selected from ultraviolet rays, visible rays, and infrared rays.
【請求項19】 前記エネルギー線を測定される光の光
路を通して蛍光体膜の表面から照射する請求項14乃至
17のいずれかの項に記載の分光測定方法。
19. The spectroscopic measurement method according to claim 14, wherein the energy beam is irradiated from the surface of the phosphor film through the optical path of the light to be measured.
【請求項20】 前記エネルギー線を蛍光体膜の裏面か
ら照射する請求項14乃至17のいずれかの項に記載の
分光測定方法。
20. The spectroscopic measurement method according to claim 14, wherein the energy beam is irradiated from the back surface of the phosphor film.
【請求項21】 前記エネルギー線を照射することによ
り積分球内部の蛍光体膜に疲労効果の付与および残光の
消尽により測定の安定化を図る請求項14乃至20のい
ずれかの項に記載の分光測定方法。
21. The measurement is stabilized by applying a fatigue effect to the phosphor film inside the integrating sphere and exhausting afterglow by irradiating with the energy beam. Spectroscopic measurement method.
【請求項22】 前記疲労効果の付与が色中心の形成で
ある請求項21記載の分光測定方法。
22. The spectroscopic measurement method according to claim 21, wherein the imparting of the fatigue effect is the formation of color centers.
【請求項23】 前記測定の前に、測定される光の光路
を通して蛍光体膜の表面に紫外光線を照射して蛍光体膜
へ疲労効果を与る請求項14乃至22のいずれかの項に
記載の分光測定方法。
23. Before the measurement, the surface of the phosphor film is irradiated with an ultraviolet ray through the optical path of the light to be measured to exert a fatigue effect on the phosphor film. The spectroscopic measurement method described.
【請求項24】 前記照射される紫外光線が波長300
nm以下の遠紫外、真空紫外光線である請求項23記載
の分光測定方法。
24. The ultraviolet ray for irradiation has a wavelength of 300.
24. The spectroscopic measurement method according to claim 23, which is far ultraviolet rays or vacuum ultraviolet rays having a wavelength of nm or less.
【請求項25】 前記測定の前後に、測定される光の光
路を通して蛍光体膜の表面に赤及び赤外光線を照射して
蛍光体膜の残光の消尽を行う請求項14乃至22のいず
れかの項に記載の分光測定方法。
25. Before and after the measurement, the surface of the phosphor film is irradiated with red and infrared rays through an optical path of the light to be measured to exhaust the afterglow of the phosphor film. The spectroscopic measurement method described in that section.
【請求項26】 前記測定の前に、蛍光体膜の裏面に紫
外光線を照射して蛍光体膜へ疲労効果を与る請求項14
乃至24のいずれかの項に記載の分光測定方法。
26. Before the measurement, the back surface of the phosphor film is irradiated with ultraviolet rays to exert a fatigue effect on the phosphor film.
25. The spectroscopic measurement method according to any one of items 24 to 24.
【請求項27】 前記照射される紫外光線が波長300
nm以下の遠紫外、真空紫外光線である請求項26記載
の分光測定方法。
27. The ultraviolet ray for irradiation has a wavelength of 300.
27. The method for spectroscopic measurement according to claim 26, which is far ultraviolet rays or vacuum ultraviolet rays having a wavelength of nm or less.
【請求項28】 前記測定の前後に、蛍光体膜の裏面に
赤及び赤外光線を照射して蛍光体膜の残光の消尽を行う
請求項14乃至24のいずれかの項に記載の分光測定装
置。
28. The spectrum according to claim 14, wherein before and after the measurement, the back surface of the phosphor film is irradiated with red and infrared rays to exhaust the afterglow of the phosphor film. measuring device.
【請求項29】 前記エネルギー線の照射および光の分
光エネルギー強度及び分布の測定を、窒素、ヘリウムに
よるガス置換及び減圧、真空等の非酸素雰囲気で行う請
求項14乃至28のいずれかの項に記載の分光測定方
法。
29. The method according to any one of claims 14 to 28, wherein the irradiation of the energy rays and the measurement of the spectral energy intensity and distribution of light are performed in a non-oxygen atmosphere such as gas replacement with nitrogen or helium and reduced pressure or vacuum. The spectroscopic measurement method described.
JP2001210667A 2001-07-11 2001-07-11 Spectrometric instrument and method for spectrometric measurement Pending JP2003028716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210667A JP2003028716A (en) 2001-07-11 2001-07-11 Spectrometric instrument and method for spectrometric measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210667A JP2003028716A (en) 2001-07-11 2001-07-11 Spectrometric instrument and method for spectrometric measurement

Publications (1)

Publication Number Publication Date
JP2003028716A true JP2003028716A (en) 2003-01-29

Family

ID=19046099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210667A Pending JP2003028716A (en) 2001-07-11 2001-07-11 Spectrometric instrument and method for spectrometric measurement

Country Status (1)

Country Link
JP (1) JP2003028716A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510005A (en) * 2016-01-13 2016-04-20 中国工程物理研究院激光聚变研究中心 Measuring instrument for transmittance and reflectivity of optical element
CN105628196A (en) * 2015-12-22 2016-06-01 中国电子科技集团公司第四十一研究所 Device and method of testing ultraviolet focal plane array response features
CN109459216A (en) * 2018-12-27 2019-03-12 北京航天长征飞行器研究所 Extraterrestrial target various dimensions dynamic optical characteristic integrated measuring system and method
CN110470813A (en) * 2019-09-25 2019-11-19 长沙市宇驰检测技术有限公司 A kind of surface water quality monitoring system and method
CN112485854A (en) * 2020-12-24 2021-03-12 中国工程物理研究院激光聚变研究中心 Transmission reflector and application thereof in reducing damage risk of back scattering light to laser driver
KR102540641B1 (en) * 2022-12-27 2023-06-07 주식회사 에네스지 Optical equivalent thermal radiation device for active thermography of non-destructive inspection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628196A (en) * 2015-12-22 2016-06-01 中国电子科技集团公司第四十一研究所 Device and method of testing ultraviolet focal plane array response features
CN105510005A (en) * 2016-01-13 2016-04-20 中国工程物理研究院激光聚变研究中心 Measuring instrument for transmittance and reflectivity of optical element
CN105510005B (en) * 2016-01-13 2019-01-15 中国工程物理研究院激光聚变研究中心 A kind of optical element Transflective rate measuring instrument
CN109459216A (en) * 2018-12-27 2019-03-12 北京航天长征飞行器研究所 Extraterrestrial target various dimensions dynamic optical characteristic integrated measuring system and method
CN109459216B (en) * 2018-12-27 2019-07-30 北京航天长征飞行器研究所 Extraterrestrial target various dimensions dynamic optical characteristic integrated measuring system and method
CN110470813A (en) * 2019-09-25 2019-11-19 长沙市宇驰检测技术有限公司 A kind of surface water quality monitoring system and method
CN112485854A (en) * 2020-12-24 2021-03-12 中国工程物理研究院激光聚变研究中心 Transmission reflector and application thereof in reducing damage risk of back scattering light to laser driver
KR102540641B1 (en) * 2022-12-27 2023-06-07 주식회사 에네스지 Optical equivalent thermal radiation device for active thermography of non-destructive inspection

Similar Documents

Publication Publication Date Title
JP3287775B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
JP3228479B2 (en) Dual spectrometer color sensor
JPH0468571B2 (en)
JP2003028716A (en) Spectrometric instrument and method for spectrometric measurement
JP2020534705A (en) Broadband semiconductor-based UV light source for spectrum analyzers
JP2000321126A (en) Integrating sphere and spectroscopic measuring apparatus employing it
CN209400422U (en) A kind of test device of quantum yield
JP4146761B2 (en) Fluorescence measuring device
JP3611015B2 (en) Method and apparatus for measuring optical properties of phosphor sample
JP2020159867A (en) Spectroscopic measurement device and spectroscopic measurement program
JP2000321127A (en) Integrating sphere and spectrally meaturing apparatus using it
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
CN110132541A (en) Light supply apparatus and optical mirror slip test macro
JP2002310798A (en) Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device
JP2000321128A (en) Integrating sphere and spectroscopic measuring apparatus employing it
JP2002303547A (en) Integrating sphere, and spectrometer and spectrometry using the same
JP2000321129A (en) Integrating sphere and spectroscopic measuring apparatus employing it
US20230258566A1 (en) Fluorimeter cell and its calibration
CN217332170U (en) Semi-integrating sphere sample measurement system
JP4646288B2 (en) Method for judging the color tone of a coating film
JPH0748063B2 (en) Fluorescent substance mixing ratio measuring method and apparatus
Ohno et al. NIST facility for total spectral radiant flux calibration
JP2003028710A (en) Integrating sphere, spectrometric instrument using the same, exposure device, and spectrometry
Toriumi et al. Variable‐angle ultraviolet total‐internal‐reflection fluorescence spectroscopy using a white excitation light source
JP2003031467A (en) Projection aligner, projection exposure method, and manufacturing method of semiconductor