JP2002310798A - Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device - Google Patents

Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device

Info

Publication number
JP2002310798A
JP2002310798A JP2001112617A JP2001112617A JP2002310798A JP 2002310798 A JP2002310798 A JP 2002310798A JP 2001112617 A JP2001112617 A JP 2001112617A JP 2001112617 A JP2001112617 A JP 2001112617A JP 2002310798 A JP2002310798 A JP 2002310798A
Authority
JP
Japan
Prior art keywords
integrating sphere
light
particles
phosphor
inorganic phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001112617A
Other languages
Japanese (ja)
Inventor
Hideo Kato
日出夫 加藤
Masashi Okubo
昌視 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001112617A priority Critical patent/JP2002310798A/en
Publication of JP2002310798A publication Critical patent/JP2002310798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spectral measuring device superior in the measuring precision of light of a far ultraviolet, vacuum ultraviolet and soft X ray area. SOLUTION: In the spectral measuring device for measuring the intensity and distribution of the spectral energy of light in which the wavelength area of the light to be measured is 300 nm or less by using an integral sphere 7, a phosphor coat containing inorganic phosphor particles and fluorine resin particles in the whole or a part of the inner face of the integral sphere 7 is provided. The fluorine resin constituting the phosphor coat provided on the inner face of the integral sphere is tetrafluoroethylene resin, its derivative and their copolymer resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の分光エネルギ
ー強度及び分布を測定する分光測定装置に用いられる積
分球、分光測定装置、分光測定方法および半導体製造用
露光焼付装置に関し、特に紫外領域の光の測定評価に、
特にその中でも従来測定が困難で精度の低かった遠紫外
領域、真空紫外領域そして軟X線領域(含EUV)での
測定精度の向上の為の有効な積分球、分光測定装置およ
び分光測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrating sphere, a spectroscopic measuring device, a spectroscopic measuring method, and an exposure printing apparatus for semiconductor manufacturing, which are used in a spectroscopic measuring device for measuring the spectral energy intensity and distribution of light. For light measurement and evaluation,
In particular, the present invention relates to an effective integrating sphere, a spectroscopic measuring device, and a spectroscopic measuring method for improving the measuring accuracy in the far ultraviolet region, the vacuum ultraviolet region, and the soft X-ray region (including EUV), which have been difficult to measure conventionally and have low accuracy. .

【0002】[0002]

【従来の技術】従来、光の分光エネルギーの測定は、分
光エネルギー分布、分光透過率、分光反射率などの測定
が行なわれ、これ等の測定は可視領域が主体で行われて
いた。分光に使用される分光器も光学プリズム、回折格
子、波長カットフィルター、干渉フィルター等が用途、
精度によって使い分けられて今日まで来ている。
2. Description of the Related Art Conventionally, the spectral energy of light is measured by measuring spectral energy distribution, spectral transmittance, spectral reflectance and the like, and these measurements are mainly performed in the visible region. The spectroscope used for spectroscopy is also used for optical prisms, diffraction gratings, wavelength cut filters, interference filters, etc.
It has been used today depending on the accuracy.

【0003】測定に使用されて来た光源としては、タン
グステン電球を中心にハロゲンランプ等の比較的安定し
たものが使用出来る為に問題は起こらなかった。また、
分光特性を測定するために用いられて来た積分球は内面
に硫酸バリウム等の白色粉末が塗工されたものが使用さ
れてきた。
As a light source used for the measurement, a relatively stable light source such as a halogen lamp, mainly a tungsten light bulb, can be used, so that no problem occurred. Also,
As the integrating sphere used for measuring the spectral characteristics, a sphere coated with white powder such as barium sulfate on the inner surface has been used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
可視領域が主体で行われてきた分光測定装置に対して、
最近、紫外領域の光線を利用した装置が各方面で使用さ
れるようになってきている。特に半導体の製造に用いら
れるステッパー等の光源には水銀灯のg線(λ=435
8Å)からi線(λ=3650Å)に、更に最近ではガ
スレーザーのKrF(λ=2486Å)レーザーへと移
行して来ている。このことは半導体の加工の限界が線幅
0.35μmから0.16μmに、そして更に0.12
μm以下へと移行しようとしていることを示している。
更に近い将来、そこで使用される光源としては真空紫外
領域のレーザーとなることは必定で、ArF(λ=19
34Å)、F2レーザー(λ=1570Å)が有望とさ
れている。
However, in contrast to the conventional spectrometer which mainly performs the visible region,
Recently, devices utilizing light rays in the ultraviolet region have been used in various fields. In particular, a light source such as a stepper used for manufacturing a semiconductor is a mercury lamp g-line (λ = 435).
8 °) to i-line (λ = 3650 °), and more recently to a gas laser KrF (λ = 2486 °) laser. This means that the limits of semiconductor processing are from line widths of 0.35 μm to 0.16 μm, and even 0.12 μm.
This indicates that it is about to shift to μm or less.
In the near future, it is inevitable that the light source used there will be a laser in the vacuum ultraviolet region, and ArF (λ = 19
34 °), an F2 laser (λ = 1570 °) is promising.

【0005】ここで大きな問題となっているのがそこに
使用される硝材および光学系である。硝材として、Kr
Fレーザーに使用している石英が使用出来るかどうか、
蛍石がどこまで対応出来るか等の問題が山積しているか
らである。また、測定評価に用いる分光スペクトル測定
装置等にしても、真空紫外領域には対応しておらず、精
度ある測定評価が望めそうにない。
The major problems here are the glass materials and optical systems used therein. As glass material, Kr
Whether the quartz used for the F laser can be used,
This is because there are many problems such as how far fluorite can handle. Further, even a spectroscopic spectrum measuring device or the like used for measurement evaluation does not correspond to the vacuum ultraviolet region, so that accurate measurement evaluation is unlikely to be expected.

【0006】紫外領域の測定には、従来から硫酸バリウ
ム等の白色顔料を内面に塗工した積分球が用いられてい
る。従来は可視領域の光が主体であったので問題は見ら
れなかったが、紫外領域、特に遠紫外、真空紫外領域に
於は吸収が大きく十分に性能を発揮することができなか
った。
[0006] In the measurement of the ultraviolet region, an integrating sphere having a white pigment such as barium sulfate coated on its inner surface has been used. In the past, there was no problem because light in the visible region was mainly used, but in the ultraviolet region, particularly in the deep ultraviolet and vacuum ultraviolet regions, absorption was large and sufficient performance could not be exhibited.

【0007】本発明は、この様な従来技術の問題に鑑み
てなされたものであり、特に紫外領域の光、特に遠紫
外、真空紫外、軟X線領域光の測定精度の優れた積分球
およびそれを用いた分光測定装置、分光測定方法および
その分光測定装置を用いた半導体製造用露光焼付装置を
提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. It is an object of the present invention to provide a spectrometer and a spectrometer using the same and an exposure printing apparatus for semiconductor production using the spectrometer.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、光の分
光エネルギー強度及び分布を測定する分光測定装置に用
いられる積分球であって、内面に無機蛍光体粒子と弗素
樹脂粒子を含有する蛍光体皮膜が設けられていることを
特徴とする積分球である。
That is, the present invention relates to an integrating sphere used in a spectrometer for measuring the spectral energy intensity and distribution of light, wherein the inner surface contains inorganic phosphor particles and fluororesin particles. An integrating sphere characterized by having a phosphor film.

【0009】また、本発明は、光の分光エネルギー強度
及び分布を積分球を用いて測定する分光測定装置におい
て、該積分球の内面に無機蛍光体粒子と弗素樹脂粒子を
含有する蛍光体皮膜が設けられていることを特徴とする
分光測定装置である。
The present invention also provides a spectrometer for measuring the spectral energy intensity and distribution of light using an integrating sphere, wherein a phosphor film containing inorganic phosphor particles and fluororesin particles is provided on the inner surface of the integrating sphere. A spectrometer is provided.

【0010】また、本発明は、上記の分光測定装置を用
いた半導体製造用露光焼付装置である。また、本発明
は、光の分光エネルギー強度及び分布を測定する分光測
定方法において、内面に無機蛍光体粒子と弗素樹脂粒子
を含有する蛍光体皮膜が設けられている積分球に光を照
射して蛍光光線を発光させる工程、該発光した蛍光光線
を積分球の内面で拡散反射させて該蛍光光線の分光エネ
ルギー強度及び分布を測定する工程を有することを特徴
とする分光測定方法である。
Further, the present invention is an exposure printing apparatus for manufacturing a semiconductor using the above-mentioned spectrometer. Further, the present invention provides a spectroscopic measurement method for measuring the spectral energy intensity and distribution of light, wherein light is applied to an integrating sphere in which a phosphor film containing inorganic phosphor particles and fluororesin particles is provided on the inner surface. A spectrometric method comprising the steps of: emitting fluorescent light; and diffusely reflecting the emitted fluorescent light on the inner surface of the integrating sphere to measure the spectral energy intensity and distribution of the fluorescent light.

【0011】前記測定される光の波長領域が300nm
以下であるのが好ましい。前記積分球の内面の全面に無
機蛍光体粒子と弗素樹脂粒子を含有する蛍光体皮膜が設
けられていることが好ましい。前記積分球の内面の一部
に無機蛍光体粒子と弗素樹脂粒子を含有する蛍光体皮膜
が設けられていることが好ましい。前記積分球の内面の
全面または一部に設けられた無機蛍光体粒子と弗素樹脂
粒子を含有する蛍光体皮膜が光拡散反射材を兼ねること
が好ましい。
The wavelength range of the light to be measured is 300 nm.
It is preferred that: It is preferable that a phosphor film containing inorganic phosphor particles and fluororesin particles is provided on the entire inner surface of the integrating sphere. It is preferable that a phosphor film containing inorganic phosphor particles and fluororesin particles is provided on a part of the inner surface of the integrating sphere. It is preferable that the phosphor film containing the inorganic phosphor particles and the fluororesin particles provided on the entire surface or a part of the inner surface of the integrating sphere also serves as the light diffusion reflector.

【0012】前記積分球の内面に設けられる蛍光体皮膜
が、無機蛍光体粒子を懸架支持する為のバインダーとし
ての弗素樹脂を含有することが好ましい。前記バインダ
ーの含有量が蛍光体粒子100に対して50重量%以下
であることが好ましい。前記積分球の内面に設けられる
無機蛍光体粒子と弗素樹脂粒子を含有する蛍光体皮膜が
加熱処理されていることが好ましい。
It is preferable that the phosphor film provided on the inner surface of the integrating sphere contains a fluorine resin as a binder for suspending and supporting the inorganic phosphor particles. It is preferable that the content of the binder is 50% by weight or less based on 100 of the phosphor particles. It is preferable that the phosphor film containing the inorganic phosphor particles and the fluororesin particles provided on the inner surface of the integrating sphere is subjected to heat treatment.

【0013】前記無機蛍光体粒子がBaMg2 Al16
27:Eu、(SrCaBa)5 (PO43 Cl:E
u、BaSi25:Pb、YPO4 :Ce、Sr22
7 :Eu、ZnS:Cu,Al、CaWO4 ,BaF
Br:Eu、CaF2 :Eu、BaSO4 :Pbから選
ばれた少なくとも1種であることが好ましい。
The inorganic phosphor particles are made of BaMg 2 Al 16 O
27: Eu, (SrCaBa) 5 (PO 4) 3 Cl: E
u, BaSi 2 O 5 : Pb, YPO 4 : Ce, Sr 2 P 2
O 7 : Eu, ZnS: Cu, Al, CaWO 4 , BaF
It is preferably at least one selected from Br: Eu, CaF 2 : Eu, and BaSO 4 : Pb.

【0014】前記積分球の内面に設けられる蛍光体皮膜
を構成する弗素樹脂が四弗化エチレン樹脂及びその誘導
体及びそれらの共重合体樹脂であることが好ましい。
It is preferable that the fluororesin constituting the phosphor film provided on the inner surface of the integrating sphere is an ethylene tetrafluoride resin, a derivative thereof and a copolymer resin thereof.

【0015】[0015]

【発明の実施の形態】本発明者等は、光のエネルギーの
測定において、紫外領域、特に遠紫外、真空紫外領域、
軟X線領域の光に、上記の従来の硫酸バリウム等の白色
顔料を内面に塗工した積分球を用いた場合に発生する問
題を改善、解決して、精度の高い測定評価と技術の進展
を図る為に分光エネルギーの測定、評価の要点である積
分球の改良改善を試みた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the measurement of light energy in the ultraviolet region, in particular, the deep ultraviolet region, the vacuum ultraviolet region,
Improves and solves the problems that occur when using an integrating sphere with the above-mentioned conventional white pigment such as barium sulfate applied to the light in the soft X-ray range. In order to achieve this, we attempted to improve and improve the integrating sphere, which is the main point of measurement and evaluation of spectral energy.

【0016】その結果、従来の積分球は可視光線の測定
に対応した硫酸バリウム等の白色顔料が塗工されている
が、遠紫外領域の光線に対して吸収が大きい為に十分な
反射光量が得られず、低応答の出力が測定の精度の悪い
原因となっていることが大きな問題となっていることを
見出した。
As a result, the conventional integrating sphere is coated with a white pigment such as barium sulfate corresponding to the measurement of visible light, but has a sufficient amount of reflected light due to its large absorption of light in the far ultraviolet region. It has been found that a serious problem is that the output of low response is a cause of poor measurement accuracy.

【0017】従来、積分球に要求される特性として、
1.高反射率、2.均一な拡散(散乱)、3.均一な分
光特性が挙げられる。これに加えて遠紫外、真空紫外等
の光エネルギーを測定するためには、4.測定器の感応
波長域への変換、5.環境、雰囲気による汚染の防止な
どが挙げられる。しかし、従来の可視光線の測定に用い
られている光測定器の感応波長域への変換は、分光測定
用の光電管等の受光器が窓材を含めて遠紫外、真空紫外
の領域に対応していないために、その結果として遠紫
外、真空紫外の直接測定は困難である。
Conventionally, as a characteristic required for an integrating sphere,
1. 1. high reflectance; 2. uniform diffusion (scattering); Uniform spectral characteristics. In addition, in order to measure light energy such as far ultraviolet light and vacuum ultraviolet light, it is necessary to set the light energy to 4. 4. Conversion of measuring instrument to sensitive wavelength range; Prevention of pollution by environment and atmosphere. However, the conversion of the light measuring instrument used for measuring the visible light into the sensitive wavelength range is based on the fact that the photodetector such as a photoelectric tube for spectroscopic measurement corresponds to the far ultraviolet and vacuum ultraviolet regions including the window material. As a result, direct measurement of deep ultraviolet and vacuum ultraviolet is difficult as a result.

【0018】従って、本発明は、積分球の内面に蛍光体
を含有する蛍光体皮膜を用いることにより、遠紫外、真
空紫外等の光を波長変換によって蛍光波長の長波長光線
に変換し、受光器の特性に合わせた発光波長領域で測定
を行うことを特徴とする。また、ここで大きな問題とな
っている遠紫外、真空紫外等の長波長への変換効率の向
上、積分球の反射率、反射特性の改善を行うために画期
的な方策を提案する。これらの特徴を挙げれば、1.蛍
光体の利用による紫外光の長波長への波長変換、2.無
機の蛍光体の採用、設置による変換効率の向上、3.無
機の蛍光体を反射拡散材として更に利用、兼用し、この
ことにより更なる変換効率の向上等である。
Accordingly, the present invention uses a phosphor film containing a phosphor on the inner surface of an integrating sphere to convert light such as far ultraviolet light or vacuum ultraviolet light into a long-wavelength light having a fluorescent wavelength by wavelength conversion. It is characterized in that measurement is performed in the emission wavelength range that matches the characteristics of the device. In addition, we propose innovative measures to improve the conversion efficiency to long wavelengths such as far ultraviolet and vacuum ultraviolet, and to improve the reflectance and reflection characteristics of the integrating sphere, which are major problems here. These features include: 1. wavelength conversion of ultraviolet light to long wavelength by using a phosphor; 2. Improvement of conversion efficiency by adoption and installation of inorganic phosphor. Inorganic phosphors are further utilized and used as a reflection / diffusion material, thereby further improving conversion efficiency.

【0019】すなわち、本発明の分光測定装置は、内面
に無機蛍光体粒子と弗素樹脂粒子を含有する蛍光体皮膜
が設けられている積分球を用いて、遠紫外、真空紫外等
の光の分光エネルギー強度及び分布を測定することを特
徴とする。
That is, the spectrometer of the present invention uses an integrating sphere having an inner surface provided with a phosphor film containing inorganic phosphor particles and fluororesin particles for spectroscopy of light such as far ultraviolet and vacuum ultraviolet. It is characterized by measuring energy intensity and distribution.

【0020】また、光の分光エネルギー強度及び分布を
測定する分光測定方法は、内面に無機蛍光体粒子と弗素
樹脂粒子を含有する蛍光体皮膜が設けられている積分球
に光を照射して蛍光光線を発光させる工程、該発光した
蛍光光線を積分球の内面で拡散反射させて該蛍光光線の
分光エネルギー強度及び分布を測定する工程を有するこ
とを特徴とする。
The spectral measurement method for measuring the spectral energy intensity and distribution of light is performed by irradiating light onto an integrating sphere having a phosphor film containing inorganic phosphor particles and fluororesin particles on its inner surface. A step of emitting a light beam; and a step of diffusing and reflecting the emitted fluorescent light beam on the inner surface of the integrating sphere to measure the spectral energy intensity and distribution of the fluorescent light beam.

【0021】図1は、本発明の分光測定装置の一例を示
す説明図である。同図1において、1は光源、2は光
線、3は分光器、4は単色光、5はセクターミラー、1
1は参照光、12は試料光、6a、6bは反射ミラー、
7は積分球、sは試料を示す。
FIG. 1 is an explanatory view showing an example of the spectrometer of the present invention. In FIG. 1, 1 is a light source, 2 is a light beam, 3 is a spectroscope, 4 is monochromatic light, 5 is a sector mirror, 1
1 is reference light, 12 is sample light, 6a and 6b are reflection mirrors,
7 is an integrating sphere, and s is a sample.

【0022】図1に示す光の分光エネルギー強度及び分
布を測定する分光測定装置において、光源1から発せら
れた光線2は分光器3によって単色光4化される。単色
光4はセクターミラー5により参照光11と試料光12
に分割される。参照光11は反射ミラー6bによって積
分球7に導かれる。一方、試料光12は反射ミラー6a
によって試料sを介して積分球7に導かれる。
In the spectrometer for measuring the spectral energy intensity and distribution of light shown in FIG. 1, a light beam 2 emitted from a light source 1 is converted into a monochromatic light 4 by a spectroscope 3. The monochromatic light 4 is converted into a reference light 11 and a sample light 12 by a sector mirror 5.
Is divided into The reference light 11 is guided to the integrating sphere 7 by the reflection mirror 6b. On the other hand, the sample light 12 is reflected by the reflection mirror 6a.
Is guided to the integrating sphere 7 through the sample s.

【0023】図2および図3は本発明の分光測定装置に
用いられる積分球の概略図であり、図2は光の照射方向
に対して直角方向から見た断面図、図3は光の照射方向
から見た断面図である。積分球7の内面には、無機蛍光
体粒子と弗素樹脂粒子を含有する蛍光体皮膜10が設け
られている。図1に示す分光測定装置の試料sを介して
導かれた試料光12は、積分球7の入射窓8を通って、
試料光の直接照射を受ける光照射領域15に照射され
る。試料光12の照射により蛍光体を含む蛍光体皮膜1
0から蛍光光線22が発光し、該発光した蛍光光線22
はさらに積分球7の内面の前記光照射領域15以外の光
反射拡散領域16の表面で反射拡散しながら受光窓9を
通って光電管(フォトマル)からなる検知器13に達し
て測定に供される。一方、図1に示す分光測定装置の反
射ミラー6bから導かれた参照光11は図2の入射窓8
に対して90度ずれた角度(紙面に対して上方)から別
の入射窓(不図示)を通って積分球7の内面の位置(紙
面に対して下方)の蛍光体皮膜10に照射され、同様に
発光した蛍光光線は積分球の内面の光反射拡散領域16
の表面を反射拡散しながら光電管(フォトマル)からな
る検知器13に達して測定に供される。
FIGS. 2 and 3 are schematic views of an integrating sphere used in the spectrometer of the present invention. FIG. It is sectional drawing seen from the direction. On the inner surface of the integrating sphere 7, a phosphor film 10 containing inorganic phosphor particles and fluororesin particles is provided. The sample light 12 guided through the sample s of the spectrometer shown in FIG. 1 passes through the entrance window 8 of the integrating sphere 7 and
The light is irradiated to the light irradiation area 15 which is directly irradiated with the sample light. Phosphor film 1 containing a phosphor by irradiation with sample light 12
The fluorescent light 22 emits from 0, and the emitted fluorescent light 22
Further, the light is reflected and diffused on the surface of the light reflection / diffusion area 16 other than the light irradiation area 15 on the inner surface of the integrating sphere 7 and reaches the detector 13 composed of a photoelectric tube (photomultiplier) through the light receiving window 9 for measurement. You. On the other hand, the reference light 11 guided from the reflection mirror 6b of the spectrometer shown in FIG.
Irradiates the phosphor film 10 at the position of the inner surface of the integrating sphere 7 (below the paper surface) through another entrance window (not shown) from an angle (upper to the paper surface) shifted by 90 degrees from Similarly, the emitted fluorescent light is reflected by the light reflection / diffusion region 16 on the inner surface of the integrating sphere.
While reflecting and diffusing the surface of the photodetector, the light reaches the detector 13 composed of a phototube and used for measurement.

【0024】ここで未変換の試料光12は反射、拡散を
積分球内面の光反射拡散領域16の表面でくり返すこと
により波長変換が進み変換効率が向上する。
Here, the unconverted sample light 12 is repeatedly reflected and diffused on the surface of the light reflection / diffusion region 16 inside the integrating sphere, whereby the wavelength conversion proceeds and the conversion efficiency is improved.

【0025】本発明の分光測定装置は、光の波長領域が
300nm以下、好ましくは120〜250nmの遠紫
外、真空紫外、軟X線領域の分光測定及び光量の測定に
適用することができる。
The spectrometer of the present invention can be applied to spectrometry and light quantity measurement in the deep ultraviolet, vacuum ultraviolet, and soft X-ray regions where the wavelength region of light is 300 nm or less, preferably 120 to 250 nm.

【0026】本発明の積分球の内面に設けられる蛍光体
皮膜に使用する無機蛍光体粒子は、遠紫外、真空紫外領
域、軟X線領域の光に刺激を受け蛍光光線を発光する蛍
光体を使用する。検知器(光電管)の特性(分光感度)
と蛍光体の発光波長とを合致させれば高感度の高性能の
測定が期待出来る訳であるが、実際には検知器(光電
管)の種類は限られており、それに対応して無機蛍光体
粒子の種類を選択することが好ましい。無機蛍光体粒子
に要求される他の条件としては発光時間、残半特性、安
定性、耐候性が上げられる。
The inorganic phosphor particles used in the phosphor film provided on the inner surface of the integrating sphere of the present invention are phosphors that emit fluorescent light upon stimulation by light in the far ultraviolet, vacuum ultraviolet, and soft X-ray regions. use. Detector (phototube) characteristics (spectral sensitivity)
High sensitivity and high performance measurement can be expected if the emission wavelength of the phosphor is matched with that of the phosphor. However, the types of detectors (phototubes) are actually limited, and the inorganic phosphor It is preferred to select the type of particles. Other conditions required for the inorganic phosphor particles include emission time, remaining half characteristics, stability, and weather resistance.

【0027】本発明では、無機蛍光体粒子に用いる無機
蛍光体は、その種類を特に限定する必要は無いが、例え
ばBaMg2 Al1627:Eu、(SrCaBa)5
(PO 43 Cl:Eu、BaSi25:Pb、YPO
4 :Ce、Sr227 :Eu、ZnS:Cu,A
l、CaWO4 ,BaFBr:Eu、CaF2 :Eu、
BaSO4 :Pbから選ばれた少なくとも1種が挙げら
れる。
In the present invention, the inorganic phosphor particles
It is not necessary to specifically limit the type of phosphor, but for example,
BaMgTwo Al16O27: Eu, (SrCaBa)Five 
(PO Four )Three Cl: Eu, BaSiTwoOFive: Pb, YPO
Four : Ce, SrTwo PTwo O7 : Eu, ZnS: Cu, A
1, CaWOFour , BaFBr: Eu, CaFTwo : Eu,
BaSOFour : At least one selected from Pb
It is.

【0028】これらの無機蛍光体粒子は平均粒子径が2
0〜1μm、好ましくは8〜4μm程度の白色の粒子が
望ましい。
These inorganic phosphor particles have an average particle diameter of 2
White particles of about 0 to 1 μm, preferably about 8 to 4 μm are desirable.

【0029】本発明の積分球の内面に設けられる蛍光体
皮膜に使用する弗素樹脂として代表的なものを挙げる
と、四弗化エチレン樹脂及びその誘導体及びそれらの共
重合体樹脂として総称されるものであり、具体的には、
四弗化エチレン樹脂、弗化ビニレン樹脂、弗化ビニリデ
ン樹脂、弗化ビニル樹脂、四弗化エチレンパーフロロア
ルキルビニルエーテル共重合樹脂、三弗化塩化エチレン
−エチレン共重合樹脂等が挙げられる。
Typical examples of the fluororesin used for the phosphor film provided on the inner surface of the integrating sphere of the present invention include those generally referred to as ethylene tetrafluoride resin and its derivatives and copolymer resins thereof. And specifically,
Examples include ethylene tetrafluoride resin, vinylene fluoride resin, vinylidene fluoride resin, vinyl fluoride resin, ethylene tetrafluoride perfluoroalkyl vinyl ether copolymer resin, and trifluoroethylene chloride-ethylene copolymer resin.

【0030】これらの弗素樹脂粒子は平均粒子径が20
〜1μm、好ましくは10〜4μm程度の白色の粒子が
望ましい。
These fluororesin particles have an average particle diameter of 20.
White particles of about 1 to 1 μm, preferably about 10 to 4 μm are desirable.

【0031】無機蛍光体粒子と弗素樹脂粒子の配合割合
は、無機蛍光体粒子が100〜10重量部、好ましくは
50〜20重量部に対して、弗素樹脂粒子が50〜1重
量部、好ましくは20〜5重量部の範囲が望ましい。
The mixing ratio of the inorganic phosphor particles and the fluororesin particles is 100 to 10 parts by weight, preferably 50 to 20 parts by weight, of the inorganic phosphor particles and 50 to 1 part by weight, preferably 50 to 1 part by weight. A range of 20 to 5 parts by weight is desirable.

【0032】従来、蛍光体を懸架支持する為のバインダ
ー樹脂としては、これまでは取扱の簡便さもあって、水
溶性の樹脂が使用されてきた。代表的なものとして、ポ
リビニルアルコール、カルボキシメチルセルロース、ボ
リビニルピロリドン等が挙げられる。従来は可視領域の
測定が主体であったために問題が表面に出て来なかった
が、真空紫外領域に入ってくると酸素、水、有機物質等
の光吸収が影響を及ぼし問題となってくる。
Conventionally, a water-soluble resin has been used as a binder resin for suspending and supporting the phosphor, because of its easy handling. Representative examples include polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, and the like. In the past, the problem did not appear on the surface because measurement was mainly in the visible region, but when entering the vacuum ultraviolet region, light absorption of oxygen, water, organic substances, etc. affected and became a problem .

【0033】本発明は、積分球の内面に設けられる蛍光
体皮膜に、無機蛍光体粒子と弗素樹脂粒子を懸架支持す
る為のバインダー樹脂として弗素樹脂を用いて加熱処理
をすることにより、非水系基材の適用が可能となった。
弗素樹脂としては、上記の四弗化エチレン樹脂及びその
誘導体及びそれらの共重合体樹脂が用いられる。
According to the present invention, a non-aqueous phosphor film is provided on a phosphor film provided on the inner surface of an integrating sphere by using a fluorine resin as a binder resin for suspending and supporting the inorganic phosphor particles and the fluorine resin particles. Application of the substrate became possible.
As the fluorine resin, the above-mentioned ethylene tetrafluoride resin and its derivatives and their copolymer resins are used.

【0034】本発明において、積分球の中空球体の内面
には上記の無機蛍光体粒子と弗素樹脂粒子を塗布して蛍
光体皮膜を形成して用いる。蛍光体皮膜は、無機蛍光体
粒子と弗素樹脂粒子の単独からなる蛍光体皮膜、および
無機蛍光体粒子と弗素樹脂粒子と蛍光体を懸架支持する
バインダーを含有する蛍光体皮膜のいずれでもよい。
In the present invention, the above-mentioned inorganic phosphor particles and fluororesin particles are applied to the inner surface of the hollow sphere of the integrating sphere to form a phosphor film and used. The phosphor film may be either a phosphor film composed of inorganic phosphor particles and fluororesin particles alone, or a phosphor film containing inorganic phosphor particles, fluororesin particles and a binder for suspending and supporting the phosphor.

【0035】無機蛍光体粒子と弗素樹脂粒子の単独から
なる蛍光体皮膜は、無機蛍光体粒子と弗素樹脂粒子の粉
末をアルコール等の溶媒に分散して積分球の中空球体の
内面に塗布して乾燥し、加熱処理することにより形成す
ることができる。
A phosphor film consisting of inorganic phosphor particles and fluororesin particles alone is prepared by dispersing powders of inorganic phosphor particles and fluororesin particles in a solvent such as alcohol and coating the inner surface of an integrating sphere hollow sphere. It can be formed by drying and heat treatment.

【0036】また、無機蛍光体粒子と弗素樹脂粒子と懸
架支持するバインダーを含有する蛍光体皮膜は、無機蛍
光体粒子と弗素樹脂粒子の粉末、バインダーおよび溶媒
を含有する溶液を積分球の中空球体の内面に塗布して乾
燥し、加熱処理することにより形成することができる。
Further, the phosphor film containing the inorganic phosphor particles and the binder for suspending and supporting the fluororesin particles may be a solution containing the powder of the inorganic phosphor particles and the fluororesin particles, a binder and a solvent. Can be formed by applying the composition to the inner surface of the substrate, drying and heating.

【0037】蛍光体皮膜中のバインダーの含有量は、乾
燥重量基準で無機蛍光体100に対して50重量%以下
で、好ましくは20〜5重量%が望ましい。蛍光体皮膜
の膜厚は約0.5〜2mmの範囲が好ましい。また、上
記の蛍光体皮膜の反射率は90%以上の光反射拡散材か
らなるのが好ましい。
The content of the binder in the phosphor film is 50% by weight or less, preferably 20 to 5% by weight, based on the inorganic phosphor 100 on a dry weight basis. The thickness of the phosphor film is preferably in the range of about 0.5 to 2 mm. Further, it is preferable that the above-mentioned phosphor film is made of a light reflection / diffusion material having a reflectance of 90% or more.

【0038】積分球の中空球体の内面に蛍光体皮膜を形
成する方法は、上記の塗布方法に限定されることはな
く、蛍光体を蒸着、堆積することにより形成することも
できる。
The method of forming the phosphor film on the inner surface of the hollow sphere of the integrating sphere is not limited to the above-mentioned coating method, but may be formed by vapor-depositing and depositing a phosphor.

【0039】前記無機蛍光体粒子と弗素樹脂粒子を含有
する蛍光体皮膜は、積分球の内面の全面に設けられても
よいし、または積分球の内面の一部の領域に設けられて
いてもよい。積分球の内面の全面または一部の領域に設
けられた無機蛍光体粒子と弗素樹脂粒子を含有する蛍光
体皮膜が光拡散反射材を兼ねることができる。
The phosphor film containing the inorganic phosphor particles and the fluororesin particles may be provided on the entire inner surface of the integrating sphere, or may be provided on a part of the inner surface of the integrating sphere. Good. The phosphor film containing the inorganic phosphor particles and the fluororesin particles provided on the entire surface or a part of the inner surface of the integrating sphere can also serve as the light diffusion reflector.

【0040】積分球内面の一部の領域に上記の蛍光体皮
膜を設けた場合、他の領域には弗素樹脂粒子膜等の紫外
光線反射膜が設けられる。積分球は、通常検知器と組み
合わせて用いられ、検知器に光を受光する受光窓9と、
光束を中空球体内に入れる入射窓8の大きさは、球の内
径の1/10程度が好ましい。
When the above-mentioned phosphor film is provided in a part of the inner surface of the integrating sphere, an ultraviolet ray reflection film such as a fluororesin particle film is provided in another region. The integrating sphere is usually used in combination with a detector, and a light receiving window 9 for receiving light to the detector,
The size of the entrance window 8 through which the light beam enters the hollow sphere is preferably about 1/10 of the inner diameter of the sphere.

【0041】積分球の中空球体は、特に制限はなく通常
使用されているものを用いることができ、例えば基材と
してはアルミニウム、ジュラルミン、黄銅等の金属、セ
ラミックス、プラスチックなどが使用出来る。高反射特
性を得るためには内面にアルミニウム、銀、マグネシウ
ム、ガリウム等の金属を真空蒸着、鍍(メッキ)等の成
膜法を用いて成膜する。耐候性を向上させる為に弗化マ
グネシウム等の弗化金属を更に積層した後、塗工するこ
とも効果がある。
The hollow sphere of the integrating sphere is not particularly limited and may be a commonly used one. For example, as a base material, metals such as aluminum, duralumin, brass, ceramics, plastics and the like can be used. In order to obtain high reflection characteristics, a metal such as aluminum, silver, magnesium, and gallium is formed on the inner surface by a film forming method such as vacuum deposition and plating. It is also effective to apply a metal fluoride, such as magnesium fluoride, after further laminating it to improve the weather resistance.

【0042】本発明の分光測定装置は、上記の積分球を
用いることにより、光の波長領域が300nm以下の遠
紫外、真空紫外、軟X線領域の光の分光エネルギー強度
及び分布等のエネルギーの測定を行うことができる。本
発明の半導体製造用露光焼付装置は、上記の分光測定装
置を用いて作製することができる。
The spectrometer of the present invention uses the above-mentioned integrating sphere to obtain the spectral energy intensity and distribution of light in the deep ultraviolet, vacuum ultraviolet, and soft X-ray regions having a wavelength region of 300 nm or less. A measurement can be made. The exposure printing apparatus for manufacturing a semiconductor according to the present invention can be manufactured using the above-described spectrometer.

【0043】[0043]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0044】実施例1 本実施例の積分球は、アルミニウムのブロックを切削、
研磨により内面が鏡面に加工されている中空球体を用い
た。先ず、蛍光体を積分球の中空球体の内面に塗工する
為の塗工液を調整した。蛍光体として、BaMg2 Al
1627:Eu粉末(平均粒子径6μm)を10重量部、
四弗化エチレン樹脂粉末(平均粒子径7μm)4重量
部、エチルアルコールを20重量部用意した。
Embodiment 1 The integrating sphere of this embodiment cuts an aluminum block,
A hollow sphere whose inner surface was processed into a mirror surface by polishing was used. First, a coating solution for coating the phosphor on the inner surface of the hollow sphere of the integrating sphere was prepared. BaMg 2 Al as phosphor
16 O 27 : 10 parts by weight of Eu powder (average particle size: 6 μm)
4 parts by weight of ethylene tetrafluoride resin powder (average particle diameter 7 μm) and 20 parts by weight of ethyl alcohol were prepared.

【0045】蛍光体を容器に秤量した後、エチルアルコ
ールを加えて攪拌した。十分に粉粒が分散した後、四弗
化エチレン樹脂粉末を加え更に混合撹拌することにより
基材液を調製した。
After the phosphor was weighed in a container, ethyl alcohol was added and stirred. After the particles were sufficiently dispersed, the base liquid was prepared by adding tetrafluoroethylene resin powder and further mixing and stirring.

【0046】予め恒温槽中で一定の温度(一例として5
0℃)に保った積分球の半球を回転板の上にセットした
後、回転させながら塗工液を刷毛を用いて塗工した。出
来上がった積分球の内面は白色無光沢のむらの無い均一
な仕上がりであった。塗工された半球は十分に乾燥した
後マッフル炉を用いて350℃の熱処理を施した。熱処
理された膜体は十分に強化され実用が可能となった。
A constant temperature (for example, 5
After setting the hemisphere of the integrating sphere kept at 0 ° C.) on a rotating plate, the coating solution was applied using a brush while rotating. The inner surface of the completed integrating sphere had a white, matte, uniform finish with no unevenness. After the coated hemisphere was sufficiently dried, it was subjected to a heat treatment at 350 ° C. using a muffle furnace. The heat-treated film was sufficiently strengthened and became practical.

【0047】両半球を合わせて積分球を形成し、図1に
示す分光測定装置にセットして、従来の硫酸バリウムを
用いた積分球の測定結果と比較したところ、紫外光が4
50nm中心の可視光変換され、光電管の分光感度と相
まって従来に比べて出力が約10倍になったために、ノ
イズの少ない安定した分光測定結果が得られた。
An integrating sphere was formed by combining the two hemispheres. The integrating sphere was set in the spectrometer shown in FIG. 1 and compared with a measurement result of a conventional integrating sphere using barium sulfate.
Visible light conversion was performed at the center of 50 nm, and the output was increased about 10 times as compared with the conventional one in combination with the spectral sensitivity of the phototube. Therefore, stable spectral measurement results with less noise were obtained.

【0048】実施例2 積分球基材に黄銅を用いて、切削研磨により加工され表
面に銀鍍された積分球を使用した。本実施例は、蛍光体
として(SrCaBa)5 (PO43 Cl:Eu(平
均粒子径8μm)を使用した。実施例1と同様に基材液
を調整した。蛍光体10重量部、エチルアルコール15
重量部、弗素樹脂として弗化ビニリデン樹脂粉末(平均
粒子径10μm)3重量部を同様に攪拌して均一に混合
した。調整された基材液をスプレーガンを用いて同様に
積分球の半球ずつ塗工、乾燥して均一に塗工された白色
無光沢の積分球の半球を得た。320℃の加熱処理を施
して後、両半球を組み合わせて積分球を形成した後、図
1に示す分光測定装置にセットした。
Example 2 Using an integrating sphere substrate, brass was used, and an integrating sphere processed by cutting and polishing and silver-plated on the surface was used. This embodiment, as the phosphor (SrCaBa) 5 (PO 4) 3 Cl: Using Eu (average particle size 8 [mu] m). A substrate liquid was prepared in the same manner as in Example 1. Phosphor 10 parts by weight, ethyl alcohol 15
3 parts by weight of vinylidene fluoride resin powder (average particle diameter: 10 μm) as a fluorine resin were uniformly stirred and mixed. The prepared substrate liquid was similarly applied to each hemisphere of the integrating sphere using a spray gun, and dried to obtain a uniformly coated white matte hemisphere. After the heat treatment at 320 ° C., the two hemispheres were combined to form an integrating sphere, and then set in the spectrometer shown in FIG.

【0049】実施例1と同様に従来の硫酸バリウムを用
いた積分球の測定結果と比較したところ、出力が450
nm中心の変換波長と相まって約8倍となったことでノ
イズの少ない安定した測定結果が得られた。
As compared with the measurement result of the integrating sphere using the conventional barium sulfate, the output was 450
Since the wavelength was increased about 8 times in combination with the converted wavelength at the center of nm, a stable measurement result with little noise was obtained.

【0050】実施例3 実施例1に於て、紫外線の直接照射を受ける領域にのみ
塗工液を塗工した。蛍光体としてBaSi25:Pb
(平均粒子径7μm)を10重量部、四弗化エチレンパ
ーフロロアルキルビニルエーテル共重合樹脂(平均粒子
径10μm)を4重量部、エチルアルコールを12重量
部を用意した。実施例1と同様に混合撹拌することによ
り基材液を調整し、塗工後、320℃の熱処理を行っ
た。
Example 3 In Example 1, the coating liquid was applied only to the area which was directly irradiated with ultraviolet rays. BaSi 2 O 5 : Pb as phosphor
10 parts by weight (average particle diameter: 7 μm), 4 parts by weight of ethylene tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (average particle diameter: 10 μm), and 12 parts by weight of ethyl alcohol were prepared. The substrate liquid was adjusted by mixing and stirring in the same manner as in Example 1, and after coating, a heat treatment at 320 ° C. was performed.

【0051】その後、非塗工領域に四弗化エチレン樹脂
粒子のPVA(5%水溶液)、エチルアルコール分散液
(混合比、弗素樹脂:PVA溶液:アルコール=10:
2:15)からなる塗工液を刷毛を用いて塗工した。全
体として白色の無光沢の均一な仕上がりであった。両半
球を組み合わせて積分球を形成した後、図1に示す分光
測定装置にセットした。
Thereafter, PVA (5% aqueous solution) of tetrafluoroethylene resin particles and ethyl alcohol dispersion (mixing ratio, fluorine resin: PVA solution: alcohol = 10:
2:15) was applied using a brush. The result was a white, matte, uniform finish as a whole. After combining the two hemispheres to form an integrating sphere, it was set in the spectrometer shown in FIG.

【0052】実施例1と同様に従来の硫酸バリウムを用
いた積分球の測定結果と比較したところ、紫外光が35
0nm中心の近紫外光に変換され、光電管の分光感度と
相まって従来に比べて出力が約8倍のノイズの少ない安
定した分光測定結果が得られた。
As compared with the measurement result of the integrating sphere using barium sulfate in the same manner as in Example 1, it was found that the ultraviolet light was 35%.
The light was converted to near-ultraviolet light having a center of 0 nm, and a stable spectral measurement result with a noise of about eight times the output and less noise was obtained in combination with the spectral sensitivity of the phototube.

【0053】実施例4 実施例1〜3に於て蛍光体としてYPO4 :Ce、Sr
227 :Eu、ZnS:Cu,Al等を、弗素樹脂
として四弗化ビニル樹脂、三弗化塩化エチレンーエチレ
ン共重合樹脂等を使用して同様の方法を用いて積分球を
作成した。いずれの場合に於ても作成した積分球は光電
管の分光感度と相まってノイズの少ない安定した測定結
果を提供した。
Example 4 In Examples 1 to 3, YPO 4 : Ce, Sr was used as the phosphor.
2 P 2 O 7 : Eu, ZnS: Cu, Al, etc., and an integrating sphere is made by the same method using vinyl tetrafluoride resin, ethylene trifluoride chloride-ethylene copolymer resin, etc. as a fluorine resin. did. In each case, the integrating spheres produced provided stable measurement results with little noise in combination with the spectral sensitivity of the phototube.

【0054】実施例5 実施例1と同様にして、図1に示す分光測定装置の光学
系全体を窒素置換により無酸素雰囲気にして分光測定を
行った。200nm以下の波長領域において従来に比べ
て格段にノイズの少ない高精度の測定が可能となった。
図4は弗化カルシウム硝材の真空紫外領域の分光透過率
を測定したデータであり理論値にのった高精度の測定が
出来た。
Example 5 In the same manner as in Example 1, the entire optical system of the spectrometer shown in FIG. 1 was subjected to spectrometry in an oxygen-free atmosphere by purging with nitrogen. In the wavelength region of 200 nm or less, high-precision measurement with much less noise than before can be performed.
FIG. 4 shows data obtained by measuring the spectral transmittance of the calcium fluoride glass material in the vacuum ultraviolet region, and a high-precision measurement according to the theoretical value was possible.

【0055】実施例6 直径20mmの内面球状の積分球を作成した。基材はア
ルミニウムのブロックを半球ずつ切削して作成した。実
施例1と同様の工程を経て積分球内面に四弗化エチレン
をバインダーとした蛍光体BaMg2 Al1627:Eu
の塗膜を形成した。
Example 6 An integrating sphere having an inner spherical surface with a diameter of 20 mm was prepared. The substrate was made by cutting aluminum blocks into hemispheres. Through the same steps as in Example 1, a phosphor BaMg 2 Al 16 O 27 : Eu using ethylene tetrafluoride as a binder is formed on the inner surface of the integrating sphere.
Was formed.

【0056】図5は半導体製造用露光焼付け装置の露光
照度を測定する装置を示す摸式図である。半導体製造用
露光焼付け装置の露光照度を測定する為に露光ステージ
21に上記積分球を設置した。投影光学系24により投
影された照射光の一部が、測定の為にステージ21上に
設けたピンホール23を通して積分球25に導入され
る。導入された測定光は内面の蛍光体皮膜26により長
波長の光に変換されて検知器27に送られて測定に供さ
れる。この方式の適用によって従来測定が不可能であっ
た真空紫外線、軟X線等の照度及び照度ムラを高感度、
高精度に測定することが可能となり、結果として生産性
の向上に寄与出来た。
FIG. 5 is a schematic view showing an apparatus for measuring the exposure illuminance of an exposure printing apparatus for manufacturing semiconductors. The integrating sphere was set on the exposure stage 21 for measuring the exposure illuminance of the exposure printing apparatus for semiconductor production. Part of the irradiation light projected by the projection optical system 24 is introduced into the integrating sphere 25 through a pinhole 23 provided on the stage 21 for measurement. The introduced measurement light is converted into long-wavelength light by the phosphor film 26 on the inner surface, sent to the detector 27, and used for measurement. By applying this method, the illuminance and illuminance non-uniformity of vacuum ultraviolet rays, soft X-rays, etc., which were impossible to measure conventionally
Measurements can be made with high accuracy, and as a result, the productivity can be improved.

【0057】[0057]

【発明の効果】以上説明した様に、本発明によれば、特
に紫外領域の光、特に遠紫外、真空紫外、軟X線領域に
於て分光エネルギー分布および強度などの測定を精度よ
く行うことができる積分球、それを用いた分光測定装置
および分光測定方法を提供することができる。また、紫
外領域の光、特に遠紫外、真空紫外領域、軟X線領域の
光の分光エネルギー強度及び分布の測定を精度よく行う
ことができる分光測定装置を用いた半導体製造用露光焼
付装置を提供することができる。
As described above, according to the present invention, it is possible to accurately measure the spectral energy distribution and intensity in the ultraviolet region, particularly in the deep ultraviolet, vacuum ultraviolet, and soft X-ray regions. , A spectrometer and a spectrometer using the same. Also, there is provided an exposure printing apparatus for semiconductor manufacturing using a spectrometer capable of accurately measuring the spectral energy intensity and distribution of light in the ultraviolet region, particularly in the deep ultraviolet, vacuum ultraviolet region, and soft X-ray region. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分光測定装置の一例を示す説明図であ
る。
FIG. 1 is an explanatory diagram illustrating an example of a spectrometer according to the present invention.

【図2】本発明の積分球を示す概略図である。FIG. 2 is a schematic diagram showing an integrating sphere of the present invention.

【図3】本発明の積分球を示す概略図である。FIG. 3 is a schematic diagram showing an integrating sphere of the present invention.

【図4】実施例5における弗化カルシウム硝材の真空紫
外領域の分光透過率を測定したデータを示す図である。
FIG. 4 is a view showing data obtained by measuring a spectral transmittance of a calcium fluoride glass material in a vacuum ultraviolet region in Example 5.

【図5】半導体製造用露光焼付け装置の露光照度を測定
する装置を示す摸式図である。
FIG. 5 is a schematic view showing an apparatus for measuring exposure illuminance of an exposure printing apparatus for manufacturing a semiconductor.

【符号の説明】[Explanation of symbols]

1 光源 2 光線 3 分光器 4 単色光 5 セクターミラー 6a、6bは反射ミラー 7 積分球 8 入射窓 9 受光窓 10 蛍光体皮膜 11 参照光 12 試料光 13 検知器 14 中空球体 15 光照射領域 16 光反射拡散領域 22 蛍光光線 s 試料 21 露光ステージ 23 ピンホール 24 投影光学系 25 積分球 26 蛍光体皮膜 27 検知器 28 ウエハ Reference Signs List 1 light source 2 light beam 3 spectroscope 4 monochromatic light 5 sector mirrors 6a and 6b are reflection mirrors 7 integrating sphere 8 entrance window 9 light reception window 10 phosphor film 11 reference light 12 sample light 13 detector 14 hollow sphere 15 light irradiation area 16 light Reflection / diffusion area 22 fluorescent light s sample 21 exposure stage 23 pinhole 24 projection optical system 25 integrating sphere 26 phosphor film 27 detector 28 wafer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G020 AA05 BA20 CA01 CB23 CB43 CB44 CB55 CD23 2H097 CA13 LA10 5F046 DB01 DB11 GA14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G020 AA05 BA20 CA01 CB23 CB43 CB44 CB55 CD23 2H097 CA13 LA10 5F046 DB01 DB11 GA14

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 光の分光エネルギー強度及び分布を測定
する分光測定装置に用いられる積分球であって、内面に
無機蛍光体粒子と弗素樹脂粒子を含有する蛍光体皮膜が
設けられていることを特徴とする積分球。
1. An integrating sphere used in a spectrometer for measuring the spectral energy intensity and distribution of light, wherein an inner surface is provided with a phosphor film containing inorganic phosphor particles and fluororesin particles. Integrating sphere to feature.
【請求項2】 前記測定される光の波長領域が300n
m以下である請求項1記載の積分球。
2. The wavelength range of the measured light is 300 n.
2. The integrating sphere according to claim 1, wherein m is equal to or less than m.
【請求項3】 前記積分球の内面の全面に無機蛍光体粒
子と弗素樹脂粒子を含有する蛍光体皮膜が設けられてい
る請求項1記載の積分球。
3. The integrating sphere according to claim 1, wherein a phosphor film containing inorganic phosphor particles and fluororesin particles is provided on the entire inner surface of said integrating sphere.
【請求項4】 前記積分球の内面の一部に無機蛍光体粒
子と弗素樹脂粒子を含有する蛍光体皮膜が設けられてい
る請求項1記載の積分球。
4. The integrating sphere according to claim 1, wherein a phosphor coating containing inorganic phosphor particles and fluororesin particles is provided on a part of the inner surface of said integrating sphere.
【請求項5】 前記積分球の内面の全面または一部に設
けられた無機蛍光体粒子と弗素樹脂粒子を含有する蛍光
体皮膜が光拡散反射材を兼ねる請求項3または4記載の
積分球。
5. The integrating sphere according to claim 3, wherein the phosphor film containing the inorganic phosphor particles and the fluororesin particles provided on the entire surface or a part of the inner surface of the integrating sphere also functions as a light diffusion reflector.
【請求項6】 前記積分球の内面に設けられる蛍光体皮
膜に、無機蛍光体粒子を懸架支持する為のバインダーと
しての弗素樹脂を含有する請求項1乃至5のいずれかの
項に記載の積分球。
6. The integration according to claim 1, wherein the phosphor coating provided on the inner surface of the integrating sphere contains a fluororesin as a binder for suspending and supporting the inorganic phosphor particles. ball.
【請求項7】 前記バインダーとしての弗素樹脂の含有
量が無機蛍光体粒子100に対して50重量%以下であ
る請求項6記載の積分球。
7. The integrating sphere according to claim 6, wherein the content of the fluorine resin as the binder is 50% by weight or less based on 100 of the inorganic phosphor particles.
【請求項8】 前記積分球の内面に設けられる無機蛍光
体粒子と弗素樹脂粒子を含有する蛍光体皮膜が加熱処理
されている請求項1記載の積分球。
8. The integrating sphere according to claim 1, wherein the phosphor film containing the inorganic phosphor particles and the fluororesin particles provided on the inner surface of the integrating sphere is subjected to a heat treatment.
【請求項9】 前記無機蛍光体粒子がBaMg2 Al16
27:Eu、(SrCaBa)5 (PO43 Cl:E
u、BaSi25:Pb、YPO4 :Ce、Sr22
7 :Eu、ZnS:Cu,Al、CaWO4 ,BaF
Br:Eu、CaF2 :Eu、BaSO4 :Pbから選
ばれた少なくとも1種である請求項1乃至8のいずれか
の項に記載の積分球。
9. The method according to claim 9, wherein the inorganic phosphor particles are BaMg 2 Al 16
O 27 : Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: E
u, BaSi 2 O 5 : Pb, YPO 4 : Ce, Sr 2 P 2
O 7 : Eu, ZnS: Cu, Al, CaWO 4 , BaF
Br: Eu, CaF 2: Eu , BaSO 4: integrating sphere according to any one of claims 1 to 8 is at least one selected from Pb.
【請求項10】 前記積分球の内面に設けられる蛍光体
皮膜を構成する弗素樹脂が四弗化エチレン樹脂及びその
誘導体及びそれらの共重合体樹脂である請求項1乃至8
のいずれかの項に記載の積分球。
10. The fluororesin constituting the phosphor film provided on the inner surface of the integrating sphere is an ethylene tetrafluoride resin, a derivative thereof, and a copolymer resin thereof.
The integrating sphere according to any one of the above items.
【請求項11】 光の分光エネルギー強度及び分布を積
分球を用いて測定する分光測定装置において、請求項1
乃至10のいずれかに記載の積分球を用いたことを特徴
とする分光測定装置。
11. A spectrometer for measuring the spectral energy intensity and distribution of light using an integrating sphere.
A spectrometer using the integrating sphere according to any one of claims 1 to 10.
【請求項12】 請求項11に記載の分光測定装置を用
いた半導体製造用露光焼付装置。
12. An exposure printing apparatus for manufacturing a semiconductor using the spectrometer according to claim 11.
【請求項13】 光の分光エネルギー強度及び分布を測
定する分光測定方法において、内面に無機蛍光体粒子と
弗素樹脂粒子を含有する蛍光体皮膜が設けられている積
分球に光を照射して蛍光光線を発光させる工程、該発光
した蛍光光線を積分球の内面で拡散反射させて該蛍光光
線の分光エネルギー強度及び分布を測定する工程を有す
ることを特徴とする分光測定方法。
13. A spectrophotometric method for measuring the spectral energy intensity and distribution of light, comprising: irradiating light onto an integrating sphere having a phosphor film containing inorganic phosphor particles and fluororesin particles on an inner surface thereof to emit light. A method of emitting a light beam, and a step of measuring the spectral energy intensity and distribution of the emitted fluorescent light by diffusely reflecting the emitted fluorescent light on an inner surface of an integrating sphere.
【請求項14】 前記測定される光の波長領域が300
nm以下である請求項13記載の分光測定方法。
14. The wavelength range of the measured light is 300.
The spectrometry method according to claim 13, which is not more than nm.
JP2001112617A 2001-04-11 2001-04-11 Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device Pending JP2002310798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112617A JP2002310798A (en) 2001-04-11 2001-04-11 Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112617A JP2002310798A (en) 2001-04-11 2001-04-11 Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device

Publications (1)

Publication Number Publication Date
JP2002310798A true JP2002310798A (en) 2002-10-23

Family

ID=18964005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112617A Pending JP2002310798A (en) 2001-04-11 2001-04-11 Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device

Country Status (1)

Country Link
JP (1) JP2002310798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077455A1 (en) * 2006-01-06 2007-07-12 Inovink Limited Improvements in and relating to security printing
JP2009081221A (en) * 2007-09-26 2009-04-16 Nikon Corp Optical characteristic measuring apparatus and method, exposure apparatus and method, and manufacturing method of device
JP2020521825A (en) * 2017-05-20 2020-07-27 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Dispersion of MILK and LUMILUX

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077455A1 (en) * 2006-01-06 2007-07-12 Inovink Limited Improvements in and relating to security printing
JP2009081221A (en) * 2007-09-26 2009-04-16 Nikon Corp Optical characteristic measuring apparatus and method, exposure apparatus and method, and manufacturing method of device
JP2020521825A (en) * 2017-05-20 2020-07-27 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Dispersion of MILK and LUMILUX
JP7123973B2 (en) 2017-05-20 2022-08-23 ハネウェル・インターナショナル・インコーポレーテッド Dispersion of MILK and LUMILUX

Similar Documents

Publication Publication Date Title
JPH09292281A (en) Method for measuring quantum efficiency of phosphor, and measuring device thereof
JPH0468571B2 (en)
JP2023021247A (en) Spectroscopic measurement method
Krumrey et al. Precision soft x-ray reflectometry of curved multilayer optics
JP2002310798A (en) Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device
JP2000321126A (en) Integrating sphere and spectroscopic measuring apparatus employing it
Tremsin et al. UV radiation resistance and solar blindness of CsI and KBr photocathodes
US3512895A (en) Spectroreflectrometric reference standard and method
JP2003028716A (en) Spectrometric instrument and method for spectrometric measurement
Bernad et al. Deviation of white diffuse reflectance standards from perfect reflecting diffuser at visible and near-infrared spectral ranges
JP2000321128A (en) Integrating sphere and spectroscopic measuring apparatus employing it
JP2000321127A (en) Integrating sphere and spectrally meaturing apparatus using it
Key et al. The establishment of ultraviolet spectral emission scales using synchrotron radiation
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
JP2002303547A (en) Integrating sphere, and spectrometer and spectrometry using the same
JP2023007710A (en) Light emission measuring device and light emission measuring method
JP2000321129A (en) Integrating sphere and spectroscopic measuring apparatus employing it
Lv et al. Extension of NIM illuminance scale to very low levels (1× 10− 10 lx to 2 lx)
Ohkubo et al. Quantum efficiency measurement of lamp phosphors in accordance with radiometric standards
JP2003028710A (en) Integrating sphere, spectrometric instrument using the same, exposure device, and spectrometry
JP2003031467A (en) Projection aligner, projection exposure method, and manufacturing method of semiconductor
Santourian et al. Novel LED-based radiation source and its application in diffuse reflectometry and polarization measurements
Ohno et al. NIST facility for total spectral radiant flux calibration
Ohno Realization of NIST luminous flux scale using an integrating sphere with an external source
Miller Noncoherent sources