JP2000321128A - Integrating sphere and spectroscopic measuring apparatus employing it - Google Patents

Integrating sphere and spectroscopic measuring apparatus employing it

Info

Publication number
JP2000321128A
JP2000321128A JP11134031A JP13403199A JP2000321128A JP 2000321128 A JP2000321128 A JP 2000321128A JP 11134031 A JP11134031 A JP 11134031A JP 13403199 A JP13403199 A JP 13403199A JP 2000321128 A JP2000321128 A JP 2000321128A
Authority
JP
Japan
Prior art keywords
light
phosphor
integrating sphere
coating
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11134031A
Other languages
Japanese (ja)
Inventor
Hideo Kato
日出夫 加藤
Masashi Okubo
昌視 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11134031A priority Critical patent/JP2000321128A/en
Publication of JP2000321128A publication Critical patent/JP2000321128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an integrating sphere exhibiting excellent measurement accuracy in far ultraviolet and vacuum ultraviolet regions by providing a phosphor coating containing a phosphor and a fluororesin coating containing fluororesin particles on the inner surface of a hollow sphere having a light incident window and a light receiving window. SOLUTION: A sample light 12 passes through the incident window 8 of an integrating sphere 7 and irradiates a light irradiating region 15, i.e., a phosphor coating 10 containing a phosphor, being irradiated directly with the sample light 12. A fluorescent light beam 22 emitted by irradiating the sample light 12 reaches a light reflecting/ diffusing region 16 on the inner surface of the integrating sphere 7 other than the light irradiating region 15, i.e., a detector 13 comprising a fluororesin coating 17 containing fluororesin particles and used for measurement. On the other hand, a reference light introduced from the reflector passes through another incident window from an angle shifted by 90 deg. from the incident window 8 and irradiates the phosphor coating 10 and eventually reaches the detector 13 while being diffuse reflected on the surface of the fluororesin coating 17 and used for measurement. A light having far ultraviolet or vacuum ultraviolet wavelength region of 300 nm or less is employed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の分光エネルギ
ー強度及び分布を測定する分光測定装置に用いられる積
分球および分光測定装置に関し、特に紫外領域の光の測
定評価に、その中でも従来測定が困難で精度の低かった
遠紫外領域、真空紫外領域での測定精度の向上の為に有
効な積分球および分光測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrating sphere and a spectrometer for use in a spectrometer for measuring the spectral energy intensity and distribution of light. The present invention relates to an integrating sphere and a spectrometer that are effective for improving measurement accuracy in the deep ultraviolet region and the vacuum ultraviolet region, which are difficult and have low accuracy.

【0002】[0002]

【従来の技術】従来、光のエネルギーの測定は、分光エ
ネルギー分布、分光透過率、分光反射率などの測定が行
なわれ、これ等の測定は可視領域が主体で行われてい
た。分光測定装置は、光源から発せられた光線を分光器
によって単色光とし、該単色光はセクターミラーにより
参照光と試料光に分割し、参照光は反射ミラーによって
直接積分球に導かれ、一方、試料光は反射ミラーによっ
て試料を介して積分球に導かれ、積分球から取り出され
た各々の光の光束を比較することにより光のエネルギー
の測定が行なわれる。
2. Description of the Related Art Conventionally, light energy is measured by measuring spectral energy distribution, spectral transmittance, spectral reflectance, and the like, and these measurements are mainly performed in the visible region. The spectrometer measures the light emitted from the light source into monochromatic light by a spectroscope, splits the monochromatic light into reference light and sample light by a sector mirror, and the reference light is guided directly to an integrating sphere by a reflection mirror, The sample light is guided to the integrating sphere via the sample by the reflection mirror, and the energy of the light is measured by comparing the luminous flux of each light taken out from the integrating sphere.

【0003】分光測定装置における分光に使用される分
光器は、光学プリズム、回折格子、波長カットフィルタ
ー、干渉フィルター等が用途、精度によって使い分けら
れている。
As a spectroscope used for spectroscopy in a spectrometer, an optical prism, a diffraction grating, a wavelength cut filter, an interference filter, and the like are properly used depending on the application and accuracy.

【0004】また、測定に使用される光源としては、タ
ングステン電球を中心にハロゲンランプ等の比較的安定
したものが使用させている為に問題は起こらなかった。
分光特性を測定するために用いられて来た積分球は、内
面に硫酸バリウム等の白色粉末が塗工されて使用されて
きた。
[0004] Further, since a relatively stable light source such as a halogen lamp, mainly a tungsten light bulb, is used as a light source used for the measurement, no problem occurred.
Integrating spheres that have been used to measure spectral characteristics have been used with white powder such as barium sulfate applied to the inner surface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
可視領域が主体で行われてきた分光測定装置に対して、
最近、紫外領域の光線を利用した装置が各方面で使用さ
れるようになってきている。特に半導体の製造に用いら
れるステッパー等の光源には水銀灯のg線(λ=435
8Å)からi線(λ=3650Å)に、更に最近ではガ
スレーザーのKrF(λ=2486Å)レーザーへと移
行して来ている。このことは半導体の加工の限界が線幅
0.35μmから0.16μmに、そして更に0.12
μm以下へと移行しようとしていることを示している。
更に近い将来、そこで使用される光源としては真空紫外
領域のレーザーとなることは必定で、ArF(λ=19
34Å)、F2レーザー(λ=1570Å)が有望とさ
れている。
However, in contrast to the conventional spectrometer which mainly performs the visible region,
Recently, devices utilizing light rays in the ultraviolet region have been used in various fields. In particular, a light source such as a stepper used for manufacturing a semiconductor is a mercury lamp g-line (λ = 435).
8 °) to i-line (λ = 3650 °), and more recently to a gas laser KrF (λ = 2486 °) laser. This means that the limits of semiconductor processing are from line widths of 0.35 μm to 0.16 μm, and even 0.12 μm.
This indicates that it is about to shift to μm or less.
In the near future, it is inevitable that the light source used there will be a laser in the vacuum ultraviolet region, and ArF (λ = 19)
34 °), and F2 laser (λ = 1570 °) is promising.

【0006】ここで大きな問題となっているのがそこに
使用される光学系である。硝材として、KrFレーザー
に使用している石英が使用出来るかどうか、蛍石がどこ
まで対応出来るか等の問題が山積しているからである。
また、測定評価に用いる分光スペクトル測定装置等にし
ても、真空紫外領域には対応しておらず、精度ある測定
評価が望めそうにない。
The major problem here is the optical system used therein. This is because there are many problems, such as whether the quartz used for the KrF laser can be used as a glass material and how far fluorite can handle.
Further, even a spectroscopic spectrum measuring device or the like used for measurement evaluation does not correspond to the vacuum ultraviolet region, so that accurate measurement evaluation is unlikely to be expected.

【0007】紫外領域の測定には従来から硫酸バリウム
等の白色顔料を積分球内面に塗工して用いられている。
従来は可視領域の光が主体であったので問題は見られな
かったが、紫外領域、特に遠紫外、真空紫外領域に於て
は吸収が大きく十分に性能を発揮することができなかっ
た。
For the measurement of the ultraviolet region, a white pigment such as barium sulfate is conventionally applied to the inner surface of the integrating sphere.
In the past, there was no problem because light mainly in the visible region was present, but in the ultraviolet region, particularly in the deep ultraviolet and vacuum ultraviolet regions, absorption was large and sufficient performance could not be exhibited.

【0008】本発明は、この様な従来技術の問題に鑑み
てなされたものであり、特に紫外領域の光、特に遠紫
外、真空紫外領域に於て測定精度の優れた積分球および
それを用いた分光測定装置を提供することを目的とする
ものである。
The present invention has been made in view of such problems of the prior art, and more particularly, an integrating sphere having excellent measurement accuracy in light in the ultraviolet region, particularly in the deep ultraviolet and vacuum ultraviolet regions, and the use thereof. It is an object of the present invention to provide a spectrometer that has been used.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は、光の分
光エネルギー強度及び分布を測定する分光測定装置に用
いられる積分球であって、光を入射する入射窓及び光を
受光する受光窓を各々少なくとも1つ有する中空球体の
内面に蛍光体を含有する蛍光体被膜および弗素樹脂の粒
子を含有する弗素樹脂被膜が設られていることを特徴と
する積分球である。
That is, the present invention relates to an integrating sphere for use in a spectrometer for measuring the spectral energy intensity and distribution of light, wherein the incident window receives light and the light receiving window receives light. And a fluorescent film containing a fluorescent material and a fluororesin film containing particles of a fluororesin are provided on the inner surface of a hollow sphere having at least one of the following.

【0010】また、本発明は、上記の積分球を用いた光
の分光エネルギー強度及び分布を測定する分光測定装置
である。
The present invention is also a spectrometer for measuring the spectral energy intensity and distribution of light using the integrating sphere.

【0011】前記光の波長領域が300nm以下である
のが好ましい。前記中空球体の内面が金属または金属の
薄膜からなる光反射性基材からなるのが好ましい。前記
蛍光体が無機蛍光体または有機蛍光体であるのが好まし
い。前記無機蛍光体がBaMg2 Al1627:Eu、
(SrCaBa)5 (PO43 Cl:Eu、BaSi2
5 :Pb、YPO4 :Ce、Sr227 :E
u、ZnS:Cu,Alから選ばれた少なくとも1種で
あるのが好ましい。
Preferably, the wavelength range of the light is 300 nm or less. It is preferable that the inner surface of the hollow sphere is made of a light-reflective substrate made of metal or a thin film of metal. Preferably, the phosphor is an inorganic phosphor or an organic phosphor. The inorganic phosphor is BaMg 2 Al 16 O 27 : Eu;
(SrCaBa) 5 (PO 4 ) 3 Cl: Eu, BaSi 2
O 5 : Pb, YPO 4 : Ce, Sr 2 P 2 O 7 : E
u, ZnS: preferably at least one selected from Cu and Al.

【0012】前記蛍光体被膜が蛍光体と蛍光体を懸架支
持するバインダーを、蛍光体100重量部に対してバイ
ンダー0〜10重量部含有するのが好ましい。前記バイ
ンダーが水溶性樹脂からなるのが好ましい。前記蛍光体
被膜が中空球体の内面の入射する光の直接照射を受ける
光照射領域に設けられているのが好ましい。
It is preferable that the phosphor coating contains the phosphor and a binder for suspending and supporting the phosphor in an amount of 0 to 10 parts by weight based on 100 parts by weight of the phosphor. Preferably, the binder comprises a water-soluble resin. It is preferable that the phosphor coating is provided in a light irradiation area of the inner surface of the hollow sphere which is directly irradiated with the incident light.

【0013】前記弗素樹脂の粒子が四弗化エチレン樹脂
及びその誘導体及びそれらの共重合体樹脂の粒子である
のが好ましい。前記弗素樹脂被膜が弗素樹脂の粒子と該
弗素樹脂の粒子を懸架支持するバインダーを、弗素樹脂
の粒子100重量部に対してバインダー0〜10重量部
含有するのが好ましい。前記バインダーが水溶性樹脂か
らなるのが好ましい。前記弗素樹脂被膜が中空球体の内
面の入射する光の直接照射を受ける光照射領域以外の領
域に設られているのが好ましい。
It is preferable that the fluororesin particles are particles of a tetrafluoroethylene resin, a derivative thereof, and a copolymer resin thereof. It is preferable that the fluororesin film contains 0 to 10 parts by weight of a binder for suspending and supporting the fluororesin particles and the fluororesin particles based on 100 parts by weight of the fluororesin particles. Preferably, the binder comprises a water-soluble resin. It is preferable that the fluororesin coating is provided in an area other than a light irradiation area on the inner surface of the hollow sphere where the incident light is directly irradiated.

【0014】[0014]

【発明の実施の形態】本発明者等は、光のエネルギーの
測定において、紫外領域、特に遠紫外、真空紫外領域の
光に、上記の従来の硫酸バリウム等の白色顔料を内面に
塗工した積分球を用いた場合に発生する問題を改善、解
決して、精度の高い測定評価と技術の進展を図る為に分
光エネルギーの測定、評価の要点である積分球の改良改
善を試みた。その結果、従来の積分球は可視光線の測定
に対応した硫酸バリウム等の白色顔料が塗工されている
が、遠紫外領域の光線に対して吸収が大きい為に十分な
反射光量が得られず、低応答の測定となることが精度の
悪い原因となっていることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION In the measurement of light energy, the present inventors applied the above-mentioned conventional white pigment such as barium sulfate on the inner surface to light in the ultraviolet region, particularly in the deep ultraviolet and vacuum ultraviolet regions. In order to improve and solve the problems that occur when using an integrating sphere, we attempted to improve and improve the integrating sphere, which is the main point of measurement and evaluation of spectral energy, in order to achieve highly accurate measurement evaluation and technological progress. As a result, the conventional integrating sphere is coated with a white pigment such as barium sulfate corresponding to the measurement of visible light, but a sufficient amount of reflected light cannot be obtained due to large absorption for light in the far ultraviolet region. It has been found that the measurement of low response causes poor accuracy.

【0015】従来、積分球に要求される特性として、
1.高反射率、2.均一な拡散(散乱)、3.均一な分
光特性が挙げられる。これに加えて遠紫外、真空紫外の
光エネルギーを測定するためには、4.測定器の感応波
長域への変換、5.環境、雰囲気による汚染の防止など
が挙げられる。しかし、従来の可視光線の測定に用いら
れている光測定器の感応波長域への変換は、分光測定用
の光電管等の受光器が窓材を含めて遠紫外、真空紫外の
領域に対応していないために、その結果として遠紫外、
真空紫外の直接測定は困難である。
Conventionally, as a characteristic required of an integrating sphere,
1. 1. high reflectance; 2. uniform diffusion (scattering); Uniform spectral characteristics. In addition, in order to measure the light energy of far ultraviolet light and vacuum ultraviolet light, it is necessary to use 4. 4. Conversion of measuring instrument to sensitive wavelength range; Prevention of pollution by environment and atmosphere. However, the conversion of the light measuring device used for measuring the visible light into the sensitive wavelength range is based on the fact that the photodetector such as a photoelectric tube for spectroscopic measurement corresponds to the far ultraviolet and vacuum ultraviolet regions including the window material. Not as a result, far ultraviolet,
Direct measurement of vacuum ultraviolet is difficult.

【0016】従って、本発明は、積分球の中空球体の内
面の一部の光照射領域に蛍光体を含有する蛍光体被膜を
用いることにより、紫外光線を波長変換によって蛍光波
長の長波長光線に変換し、受光器の特性に合わせた可視
光の長波長領域で測定を行うことを特徴とする。これら
の特徴を挙げれば、1.長波長に発光する蛍光体の採
用、2.直接光照射領域のみに蛍光体の設置、3.紫外
線非吸収性の懸架支持用のバインダ−樹脂の採用、4.
環境に優しい(配慮した)塗工、4.蛍光体の再利用
(リサイクル)等である。
Accordingly, the present invention uses a phosphor coating containing a phosphor in a part of the inner surface of the hollow sphere of the integrating sphere, which is irradiated with the phosphor, to convert the ultraviolet light into a long-wavelength light having a fluorescence wavelength by wavelength conversion. It is characterized in that the measurement is performed in a long wavelength region of visible light that is converted and adapted to the characteristics of the light receiver. These features include: 1. Adoption of a phosphor that emits light at a long wavelength. 2. Place phosphor only in the direct light irradiation area; 3. Adoption of a binder resin for suspension support which does not absorb ultraviolet rays.
3. Eco-friendly (consideration) coating; For example, the phosphor is reused (recycled).

【0017】また、本発明は、従来大きな問題となって
いる積分球の内面の反射率、反射特性の低下の問題を、
前記光照射領域以外の領域に弗素樹脂の粒子を含有する
弗素樹脂被膜からなる白色反射拡散材を使用して測定を
行うことを特徴とする。
Further, the present invention solves the problems of a decrease in the reflectivity and reflection characteristics of the inner surface of the integrating sphere, which have been serious problems.
The measurement is performed using a white reflective diffuser made of a fluororesin film containing fluororesin particles in a region other than the light irradiation region.

【0018】これらの特徴を挙げれば、1.弗素樹脂の
粒子からなる被膜の使用による蛍光波(紫外光)反射効
率の向上、2.弗っ素樹脂の粒状コントロ−ルによる拡
散反射特性の改善、3.積分球基材に蛍光波(紫外光)
高反射材料を用いた反射特性の改善、4.環境に優しい
(配慮した)塗工、4.弗っ素樹脂粒子の再利用(リサ
イクル)等である。
If these characteristics are mentioned, 1. Improvement of the reflection efficiency of the fluorescent wave (ultraviolet light) by using a coating made of fluororesin particles. 2. Improvement of diffuse reflection characteristics by using a particulate control of fluororesin. Fluorescent wave (ultraviolet light) on integrating sphere substrate
3. Improvement of reflection characteristics using high reflection material. 3. Eco-friendly (consideration) coating; This includes reusing (recycling) fluorine resin particles.

【0019】図1は、本発明の分光測定装置の一例を示
す説明図である。同図1において、1は光源、2は光
線、3は分光器、4は単色光、5はセクターミラー、1
1は参照光、12は試料光、6a、6bは反射ミラー、
7は積分球、sは試料を示す。
FIG. 1 is an explanatory view showing an example of the spectrometer of the present invention. In FIG. 1, 1 is a light source, 2 is a light beam, 3 is a spectroscope, 4 is monochromatic light, 5 is a sector mirror, 1
1 is reference light, 12 is sample light, 6a and 6b are reflection mirrors,
7 is an integrating sphere, and s is a sample.

【0020】図1に示す光の分光エネルギー強度及び分
布を測定する分光測定装置において、光源1から発せら
れた光線2は分光器3によって単色光4化される。単色
光4はセクターミラー5により参照光11と試料光12
に分割される。参照光11は反射ミラー6bによって積
分球7に導かれる。一方、試料光12は反射ミラー6a
によって試料sを介して積分球7に導かれる。
In the spectrometer for measuring the spectral energy intensity and distribution of light shown in FIG. 1, a light beam 2 emitted from a light source 1 is converted into a monochromatic light 4 by a spectroscope 3. The monochromatic light 4 is converted into a reference light 11 and a sample light 12 by a sector mirror 5.
Is divided into The reference light 11 is guided to the integrating sphere 7 by the reflection mirror 6b. On the other hand, the sample light 12 is
Is guided to the integrating sphere 7 through the sample s.

【0021】図2は本発明の分光測定装置に用いられる
積分球の概略図であり、図2(a)は光の照射方向に対
して直角方向から見た断面図、図2(b)は光の照射方
向から見た断面図である。図1に示す分光測定装置の試
料sを介して導かれた試料光12は、積分球7の入射窓
8を通って、試料光の直接照射を受ける光照射領域15
である、蛍光体を含有する蛍光体被膜10に照射され
る。試料光12の照射により発光した蛍光光線22はさ
らに積分球7の内面の前記光照射領域15以外の光反射
拡散領域16である、弗素樹脂の粒子を含有する弗素樹
脂被膜17の表面で反射拡散しながら受光窓9を通って
光電管(フォトマル)からなる検知器13に達して測定
に供される。一方、図1に示す分光測定装置の反射ミラ
ー6bから導かれた参照光11は図2(a)の入射窓8
に対して90度ずれた角度(紙面に対して上方)から別
の入射窓(不図示)を通って積分球7の内面の位置(紙
面に対して下方)の蛍光体被膜10に照射され、同様に
発光した蛍光光線は積分球の内面の高反射拡散材の弗素
樹脂被膜17の表面を反射拡散しながら光電管(フォト
マル)からなる検知器13に達して測定に供される。
FIG. 2 is a schematic view of an integrating sphere used in the spectrometer of the present invention. FIG. 2 (a) is a sectional view seen from a direction perpendicular to the light irradiation direction, and FIG. It is sectional drawing seen from the irradiation direction of light. The sample light 12 guided through the sample s of the spectrometer shown in FIG. 1 passes through the entrance window 8 of the integrating sphere 7 and the light irradiation area 15 which is directly irradiated with the sample light.
Is applied to the phosphor coating 10 containing the phosphor. The fluorescent light 22 emitted by the irradiation of the sample light 12 is further reflected and diffused on the surface of the fluororesin coating 17 containing fluororesin particles, which is a light reflection and diffusion region 16 other than the light irradiation region 15 on the inner surface of the integrating sphere 7. While passing through the light receiving window 9, the light reaches the detector 13 composed of a photoelectric tube (photomultiplier) and is used for measurement. On the other hand, the reference light 11 guided from the reflection mirror 6b of the spectrometer shown in FIG.
From another angle (above the plane of the paper) through another entrance window (not shown) to the phosphor coating 10 at the position of the inner surface of the integrating sphere 7 (below the plane of the paper), Similarly, the emitted fluorescent light is reflected and diffused on the surface of the fluororesin film 17 of the highly reflective diffusion material on the inner surface of the integrating sphere, reaches the detector 13 composed of a phototube, and is subjected to measurement.

【0022】本発明の分光測定装置には、光の波長領域
が300nm以下、好ましくは120〜250nmの遠
紫外、真空紫外領域の光のエネルギーの測定を行う積分
球が用いられのが望ましい。
In the spectrometer of the present invention, it is desirable to use an integrating sphere for measuring the energy of light in a far ultraviolet or vacuum ultraviolet region having a wavelength region of light of 300 nm or less, preferably 120 to 250 nm.

【0023】図2に示す様に、本発明の積分球は、光を
入射する入射窓8及び検知器に光を受光する受光窓9を
各々少なくとも1つ有する中空球体14の内面の一部の
入射する光の直接照射を受ける光照射領域15に蛍光体
を含有する蛍光体被膜10が設られ、また該光照射領域
15以外の領域である光反射拡散領域16に弗素樹脂の
粒子を含有する弗素樹脂被膜17が設けられていること
を特徴とする。
As shown in FIG. 2, the integrating sphere of the present invention has a part of the inner surface of a hollow sphere 14 having at least one entrance window 8 for receiving light and at least one reception window 9 for receiving light at the detector. A phosphor coating 10 containing a phosphor is provided in a light irradiation area 15 which is directly irradiated with incident light, and a fluororesin particle is contained in a light reflection / diffusion area 16 which is an area other than the light irradiation area 15. It is characterized in that a fluorine resin film 17 is provided.

【0024】積分球は、通常検知器と組み合わせて用い
られ、検知器に光を受光する受光窓9と、光束を中空球
体内に入れる入射窓8の大きさは、球の内径の1/10
程度が好ましい。
The integrating sphere is usually used in combination with a detector, and the size of a light receiving window 9 for receiving light to the detector and an entrance window 8 for allowing a light beam to enter the hollow sphere is 1/10 of the inner diameter of the sphere.
The degree is preferred.

【0025】積分球の中空球体は、特に制限はなく通常
使用されているものを用いることができ、例えば基材と
してはアルミニウム、ジュラルミン、黄銅等の金属、セ
ラミックス、プラスチックなどが使用出来る。高反射特
性を得るためには内面にアルミニウム、銀、マグネシウ
ム、ガリウム等の金属を真空蒸着、鍍(メッキ)等の成
膜法を用いて成膜する。耐候性を向上させる為に弗化マ
グネシウム等の弗化金属を更に積層した後、塗工するこ
とも効果がある。
The hollow sphere of the integrating sphere is not particularly limited and may be a commonly used hollow sphere. For example, as a base material, metals such as aluminum, duralumin, brass, ceramics, plastics and the like can be used. In order to obtain high reflection characteristics, a metal such as aluminum, silver, magnesium, and gallium is formed on the inner surface by a film forming method such as vacuum deposition and plating. It is also effective to apply a metal fluoride, such as magnesium fluoride, after further laminating it to improve the weather resistance.

【0026】本発明の蛍光体被膜10に使用する蛍光体
は、紫外領域の光、特に遠紫外、真空紫外領域の光によ
り刺激を受けて発光し蛍光光線を発生する蛍光体が用い
られる。光電管の特性(分光感度)と蛍光体の分光感度
を合致させれば高感度の高性能の測定を行なうこがで
き、光電管の種類に対応して蛍光体の種類を選択すれば
よい。蛍光体に要求される条件としては、発光時間、残
光特性、安定性、耐候性が良好なものが好ましい。
As the phosphor used in the phosphor coating 10 of the present invention, a phosphor that emits light when stimulated by light in the ultraviolet region, particularly, light in the far ultraviolet or vacuum ultraviolet region to generate a fluorescent light is used. If the characteristics (spectral sensitivity) of the phototube and the spectral sensitivity of the phosphor are matched, high-sensitivity and high-performance measurement can be performed, and the type of the phosphor may be selected according to the type of the phototube. As the conditions required for the phosphor, those having good emission time, afterglow characteristics, stability, and weather resistance are preferable.

【0027】蛍光体には無機蛍光体または有機蛍光体が
用いられる。特にその種類を限定する必要は無いが、無
機蛍光体としては、例えばBaMg2 Al1627:E
u、(SrCaBa)5 (PO43 Cl:Eu、Ba
Si25 :Pb、YPO4 :Ce、Sr227
Eu、ZnS:Cu,Al等が挙げられる。また、有機
蛍光体としては、例えばサリチル酸ナトリウム、エオシ
ン、アントラセン、ジアミノスチルベン誘導体、テルフ
ェニル、リュモゲン、コローネン等が挙げられる。ま
た、無機蛍光体は、耐久性において有機蛍光体よりも優
れているので好ましい。
As the phosphor, an inorganic phosphor or an organic phosphor is used. Although there is no particular limitation on the type, examples of the inorganic phosphor include BaMg 2 Al 16 O 27 : E
u, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, Ba
Si 2 O 5 : Pb, YPO 4 : Ce, Sr 2 P 2 O 7 :
Eu, ZnS: Cu, Al, and the like. Examples of the organic phosphor include, for example, sodium salicylate, eosin, anthracene, a diaminostilbene derivative, terphenyl, lumogen, and coronene. Further, inorganic phosphors are preferable because they are superior in durability to organic phosphors.

【0028】本発明において、積分球の中空球体の内面
の光照射領域には上記の蛍光体を塗布して蛍光体被膜を
形成して用いる。蛍光体被膜は、蛍光体の単独からなる
被膜、および蛍光体と蛍光体を懸架支持するバインダー
を含有する被膜のいずれでもよい。
In the present invention, the above-mentioned phosphor is applied to the light irradiation area on the inner surface of the hollow sphere of the integrating sphere to form a phosphor coating and used. The phosphor coating may be either a coating consisting of a single phosphor or a coating containing a phosphor and a binder for suspending and supporting the phosphor.

【0029】蛍光体の単独からなる蛍光体被膜は、蛍光
体の粉末をアルコール等の溶媒に分散して積分球の中空
球体の内面に塗布して乾燥させることにより形成するこ
とができる。
The phosphor coating consisting of the phosphor alone can be formed by dispersing the phosphor powder in a solvent such as alcohol, coating the inner surface of the hollow sphere of the integrating sphere, and drying.

【0030】また、蛍光体と蛍光体を懸架支持するバイ
ンダーを含有する蛍光体被膜は、蛍光体の粉末、バイン
ダーおよび溶媒を含有する溶液を積分球の中空球体の内
面に塗布して乾燥させることにより形成することができ
る。
The phosphor film containing the phosphor and a binder for suspending and supporting the phosphor is obtained by applying a solution containing a phosphor powder, a binder and a solvent to the inner surface of the hollow sphere of the integrating sphere and drying the solution. Can be formed.

【0031】蛍光体を懸架支持する為のバインダーとし
ては、特に限定する必要は無いが水溶性樹脂が好まし
い。水溶性樹脂として、例えばポリビニルアルコール
(PVA)、カルボキシメチルセルロース(CMC)、
ポリビニルピロリドン(PVP)等が挙げられる。蛍光
体被膜中のバインダーの含有量は、乾燥重量基準で蛍光
体100重量部に対してバインダー0〜10重量部、好
ましくは0.1〜2重量部が望ましい。
The binder for suspending and supporting the phosphor is not particularly limited, but is preferably a water-soluble resin. Examples of the water-soluble resin include polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC),
Polyvinylpyrrolidone (PVP) and the like. The content of the binder in the phosphor coating is desirably 0 to 10 parts by weight, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the phosphor on a dry weight basis.

【0032】蛍光体被膜の膜厚は約0.5〜2mmの範
囲が好ましい。また、上記の蛍光体被膜は反射率は90
%以上の光反射拡散材からなるのが好ましい。積分球の
中空球体の内面に蛍光体被膜を形成する方法は、上記の
塗布方法に限定されることはなく、蛍光体を蒸着、堆積
することにより形成することもできる。
The thickness of the phosphor film is preferably in the range of about 0.5 to 2 mm. The above-mentioned phosphor coating has a reflectance of 90.
% Of the light reflecting / diffusing material. The method of forming the phosphor coating on the inner surface of the hollow sphere of the integrating sphere is not limited to the above-described coating method, and may be formed by depositing and depositing a phosphor.

【0033】他方、本発明の光反射拡散領域16には、
弗素樹脂の粒子を含有する弗素樹脂被膜を設けることを
特徴とするが、該弗素樹脂を粒状化することにより拡散
反射性能を高めることができる。
On the other hand, in the light reflection / diffusion region 16 of the present invention,
The method is characterized by providing a fluororesin coating containing fluororesin particles. However, by granulating the fluororesin, the diffuse reflection performance can be improved.

【0034】弗素樹脂の粒子としては、四弗っ化エチレ
ン樹脂及びその誘導体、共重合体樹脂が使用可能であ
る。その代表的なものとしては、四弗化エチレン樹脂
(PTFE)、弗化ビニリデン樹脂(PVDF)、弗化
ビニル樹脂(VDF)、三弗化塩化エチレン樹脂(PC
TFE)、四弗化エチレン−パ−フロロアルキルビニル
エ−テル共重合樹脂(PFA)、四弗化エチレン−六弗
化プロピレン共重合樹脂(FEP)、四弗化エチレン−
エチレン共重合樹脂(ETFE)、三弗化塩化エチレン
−エチレン共重合樹脂(ECTFE)等の粒子が挙げら
れる。
As the fluororesin particles, ethylene tetrafluoride resin and its derivatives and copolymer resins can be used. Representative examples are ethylene tetrafluoride resin (PTFE), vinylidene fluoride resin (PVDF), vinyl fluoride resin (VDF), and ethylene trifluoride chloride (PC).
TFE), ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin (PFA), ethylene tetrafluoride-hexafluoropropylene copolymer resin (FEP), ethylene tetrafluoride
Particles such as ethylene copolymer resin (ETFE) and ethylene trifluoride-ethylene copolymer resin (ECTFE) are exemplified.

【0035】弗素樹脂の粒子の粒径は、平均粒径が2〜
10μm、好ましくは5〜7μmの範囲のものが好まし
い。また、弗素樹脂の粒子の粒径、粒度分布を制御する
ことにより特定の波長の応答を高めることも可能であ
る。
The average particle diameter of the fluororesin particles is 2 to 2.
Those having a range of 10 μm, preferably 5 to 7 μm are preferred. In addition, it is possible to increase the response at a specific wavelength by controlling the particle size and particle size distribution of the fluororesin particles.

【0036】本発明において、積分球の中空球体の内面
には上記の弗素樹脂の粒子を塗布して弗素樹脂被膜を形
成して用いる。弗素樹脂被膜は、弗素樹脂の粒子の単独
からなる被膜、および弗素樹脂の粒子と該弗素樹脂の粒
子を懸架支持するバインダーを含有する被膜のいずれで
もよい。
In the present invention, the above-mentioned fluororesin particles are applied to the inner surface of the hollow sphere of the integrating sphere to form a fluororesin coating and used. The fluororesin coating may be either a coating consisting of fluororesin particles alone or a coating containing fluororesin particles and a binder for suspending and supporting the fluororesin particles.

【0037】弗素樹脂の粒子の単独からなる弗素樹脂被
膜は、弗素樹脂の粒子をアルコール等の溶媒に分散して
積分球の中空球体の内面に塗布して乾燥させることによ
り形成することができる。
The fluororesin coating consisting of the fluororesin particles alone can be formed by dispersing the fluororesin particles in a solvent such as alcohol, coating the inner surface of the hollow sphere of the integrating sphere, and drying.

【0038】また、弗素樹脂の粒子と該弗素樹脂の粒子
を懸架支持するバインダーを含有する弗素樹脂被膜は、
弗素樹脂の粒子、バインダーおよび溶媒を含有する溶液
を積分球の中空球体の内面に塗布して乾燥させることに
より形成することができる。
Further, the fluororesin film containing the fluororesin particles and the binder for suspending and supporting the fluororesin particles is
It can be formed by applying a solution containing fluororesin particles, a binder and a solvent to the inner surface of the hollow sphere of the integrating sphere and drying.

【0039】弗素樹脂の粒子を懸架支持する為のバイン
ダーとしては、特に限定する必要は無いが水溶性樹脂が
好ましい。水溶性樹脂として、例えばポリビニルアルコ
ール(PVA)、カルボキシメチルセルロース(CM
C)、ポリビニルピロリドン(PVP)等が挙げられ
る。弗素樹脂被膜中のバインダーの含有量は、乾燥重量
基準で弗素樹脂の粒子100重量部に対してバインダー
0〜10重量部、好ましくは0.1〜2重量部が望まし
い。
The binder for suspending and supporting the fluororesin particles is not particularly limited, but is preferably a water-soluble resin. Examples of the water-soluble resin include polyvinyl alcohol (PVA) and carboxymethyl cellulose (CM
C) and polyvinylpyrrolidone (PVP). The content of the binder in the fluororesin coating is desirably 0 to 10 parts by weight, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the fluororesin particles on a dry weight basis.

【0040】弗素樹脂被膜の膜厚は約0.5〜2mmの
範囲が好ましい。また、上記の弗素樹脂被膜は反射率は
90%以上の光拡散反射材からなるのが好ましい。積分
球の中空球体の内面に弗素樹脂被膜を形成する方法は、
上記の塗布方法に限定されることはなく、堆積により形
成することもできる。
The thickness of the fluorine resin film is preferably in the range of about 0.5 to 2 mm. Further, it is preferable that the above-mentioned fluororesin coating is made of a light diffusion reflector having a reflectance of 90% or more. The method of forming a fluororesin coating on the inner surface of the hollow sphere of the integrating sphere is as follows:
It is not limited to the above-mentioned coating method, but can be formed by deposition.

【0041】従来から積分球の中空球体の内面に使用し
ている拡散反射材は、可視光用の硫酸バリウムに代表さ
れる白色顔料が挙げられる。これらは可視光線に対して
良好な特性を持っているが遠紫外領域では吸収が大き
い。ようするに従来の方式では測定の際、受光する光電
管に過剰な負担が要求されるので結果としてノイズの大
きい、精度の悪い測定結果が得られる。本発明は、かか
る状況をかんがみ、積分球の内面に塗工する為の材料に
紫外光線に対して良好な特性を有する弗素樹脂を取り上
げた。弗素樹脂は粒状化することにより拡散性能が高め
られる。分光特性も極めて良好で200nm以下の真空
紫外領域に於ても十分に対応可能である。さらに塗工さ
れる積分球の基材に紫外光高反射性の材料を用いること
により更なる拡散反射特性の向上が期待出来る。
As the diffuse reflection material conventionally used on the inner surface of the hollow sphere of the integrating sphere, a white pigment typified by barium sulfate for visible light can be used. These have good characteristics for visible light, but have large absorption in the far ultraviolet region. As described above, in the conventional method, an excessive load is required for the phototube receiving light at the time of measurement, and as a result, a measurement result with large noise and inaccuracy is obtained. In view of such a situation, the present invention has taken up a fluororesin having a good property with respect to ultraviolet rays as a material for coating the inner surface of the integrating sphere. The diffusion performance of the fluororesin is enhanced by granulation. The spectral characteristics are also very good, and it can sufficiently cope with the vacuum ultraviolet region of 200 nm or less. Furthermore, by using a material having high reflectivity for ultraviolet light for the base material of the integrating sphere to be coated, further improvement in diffuse reflection characteristics can be expected.

【0042】図2(b)に示す様に、入射窓を通って照
射された波長領域が300nm以下低波長の遠紫外、真
空紫外領域の光(試料光12)は、積分球の中空球体の
内面の一部に設けられた蛍光体を含有する蛍光体被膜1
0からなる光照射領域15に直接照射して波長領域が3
50〜500nmの高波長の蛍光光線22を発光し、該
蛍光光線22はさらに積分球7の内面の光照射領域15
以外の光反射拡散領域16の、弗素樹脂の粒子を含有す
る弗素樹脂被膜17の表面で反射拡散し、さらに、蛍光
光線22は光反射拡散領域16で反射拡散を繰り返し受
光窓9を通って光電管(フォトマル)からなる検知器1
3に達して測定に供される。
As shown in FIG. 2 (b), the light (sample light 12) irradiated through the entrance window and having a low wavelength of 300 nm or less in the deep ultraviolet or vacuum ultraviolet region (sample light 12) is emitted from the hollow sphere of the integrating sphere. Phosphor coating film 1 containing a phosphor provided on a part of the inner surface
Directly irradiating the light irradiation area 15 consisting of 0
A fluorescent light beam 22 having a high wavelength of 50 to 500 nm is emitted, and the fluorescent light beam 22 is further irradiated with a light irradiation area 15 on the inner surface of the integrating sphere 7.
Reflection and diffusion of the surface of the fluororesin film 17 containing the fluororesin particles in the light reflection / diffusion region 16 other than the light reflection / diffusion region 16, and the fluorescent light 22 repeats reflection and diffusion in the light reflection / diffusion region 16, passes through the light receiving window 9, and passes through the photoelectric tube. (Photomaru) detector 1
It reaches 3 and is used for measurement.

【0043】検知器で測定される蛍光光線22の波長
は、通常350nm以上、好ましくは400〜500n
mの範囲である。
The wavelength of the fluorescent light 22 measured by the detector is usually 350 nm or more, preferably 400 to 500 n.
m.

【0044】本発明の分光測定装置は、上記の積分球を
用いることにより、光の波長領域が300nm以下の遠
紫外、真空紫外領域の光の分光エネルギー強度及び分布
等のエネルギーの測定を行うことができる。
The spectrometer of the present invention uses the above-mentioned integrating sphere to measure the energy such as the spectral energy intensity and distribution of light in the far ultraviolet and vacuum ultraviolet regions where the wavelength of light is 300 nm or less. Can be.

【0045】[0045]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0046】実施例1 本実施例の積分球は、アルミニウムのブロックを切削、
研磨により内面が鏡面に加工されている中空球体を用い
た。先ず、蛍光体を積分球の中空球体の内面に塗工する
為の塗工液を調整した。蛍光体として、BaMg2 Al
1627:Eu粉末(中心粒径6.2μm、粒径4.5〜
8.5μmの粒子が85%以上)を10重量部、ポリビ
ニルアルコ−ルの2%水溶液を5重量部、エチルアルコ
−ルを10重量部用意した。
Embodiment 1 The integrating sphere of this embodiment cuts an aluminum block,
A hollow sphere whose inner surface was processed into a mirror surface by polishing was used. First, a coating solution for coating the phosphor on the inner surface of the hollow sphere of the integrating sphere was prepared. BaMg 2 Al as phosphor
16 O 27 : Eu powder (center particle size 6.2 μm, particle size 4.5 to 4.5)
10 parts by weight of 8.5 μm particles (85% or more), 5 parts by weight of a 2% aqueous solution of polyvinyl alcohol, and 10 parts by weight of ethyl alcohol.

【0047】蛍光体を容器に秤量した後、エチルアルコ
ールを加えて攪拌した。十分に粉粒が分散した後、ポリ
ビニルアルコール水溶液を加え更に攪拌することにより
塗工液を調製した。
After the phosphor was weighed in a container, ethyl alcohol was added and stirred. After the powder particles were sufficiently dispersed, a coating solution was prepared by adding an aqueous polyvinyl alcohol solution and further stirring.

【0048】一方、積分球の中空球体の内面に塗工する
為の反射拡散材として、弗素樹脂の粒子を用いた塗工液
を調整した。弗素樹脂として四弗化エチレン樹脂(PT
FE)を使用した。樹脂の粒子サイズは平均粒径約6μ
m(0.2μmの粒子の集合体としての粒子の大きさ
で、5〜7μmの範囲にピークをもつ粒径)である。弗
素樹脂を10重量部、ポリビニルアルコ−ルの5%水溶
液を5重量部、エチルアルコ−ルを10重量部用意し
た。弗素樹脂を容器に秤量した後、エチルアルコ−ルを
加えて攪拌した。十分に粉粒が分散した後、ポリビニル
アルコ−ル水溶液を加え更に攪拌することにより塗工液
を調整した。
On the other hand, a coating liquid using fluororesin particles was prepared as a reflection / diffusion material for coating the inner surface of the hollow sphere of the integrating sphere. As a fluorine resin, tetrafluoroethylene resin (PT
FE) was used. Resin particle size is about 6μ average particle size
m (particle size as an aggregate of 0.2 μm particles having a peak in the range of 5 to 7 μm). 10 parts by weight of a fluorine resin, 5 parts by weight of a 5% aqueous solution of polyvinyl alcohol, and 10 parts by weight of ethyl alcohol were prepared. After weighing the fluororesin in the container, ethyl alcohol was added and stirred. After the particles were sufficiently dispersed, a coating solution was prepared by adding an aqueous polyvinyl alcohol solution and further stirring.

【0049】塗工は、予め恒温槽で一定の温度(一例と
して50℃)に保った中空球体の半球を回転板の上にセ
ットした後、回転させながら、先ず反射拡散材の弗素樹
脂塗工液を刷毛を用いて塗工した。次いで、蛍光体塗工
液を同様の方法で直接紫外光の照射される領域に塗工
し、乾燥した。その結果、無光択のむらの無い均一な仕
上がりであった。
The coating is performed by setting a hemisphere of a hollow sphere, which has been previously maintained at a constant temperature (for example, 50 ° C.) in a thermostat, on a rotating plate, and then, while rotating, first coating a fluororesin as a reflection diffusion material. The solution was applied using a brush. Next, a phosphor coating solution was applied in a similar manner to an area directly irradiated with ultraviolet light, and dried. As a result, a uniform finish without unevenness was obtained.

【0050】両半球を合わせて(積分球)、図1に示す
分光測定装置をセットした。試料には20mm厚のCa
2 を用いて、波長140〜200nmの紫外光を用い
て光の各波長に対する透過率を測定した。その結果を図
3に示す。
The two hemispheres were combined (integrating sphere), and the spectrometer shown in FIG. 1 was set. The sample contains 20 mm thick Ca
With F 2, the transmittance was measured for each wavelength of light by using the ultraviolet light having a wavelength of 140~200Nm. The result is shown in FIG.

【0051】紫外光が蛍光体により450nm中心の可
視光に変換され、光電管の分光感度と相まって、理論値
とほぼ近い値で、ノイズの少ない安定した測定結果が得
られた。
The ultraviolet light was converted into visible light at the center of 450 nm by the phosphor, and together with the spectral sensitivity of the phototube, a stable measurement result with a value close to the theoretical value and little noise was obtained.

【0052】実施例2 積分球の中空球体にポリカーボネート樹脂で内面にアル
ミニウム蒸着膜を成膜してあるものを用いた。本実施例
では、積分球の中空球体の内面に塗工する為の蛍光体と
して、(SrCaBa) 5(PO43 Cl:Euを使
用した。
Example 2 An integrating sphere having a hollow spherical body and an aluminum vapor-deposited film formed on the inner surface of a polycarbonate resin was used. In this embodiment, as a phosphor for coating the inner surface of the hollow sphere of the integrating sphere, (SrCaBa) 5 (PO 4 ) 3 Cl: Using Eu.

【0053】実施例1と同様に塗工液を調整した。蛍光
体10重量部、エチルアルコール10重量部、ポリビニ
ルアルコール5%水溶液2重量部を実施例1と同様に攪
拌して均一に分散し塗工液を調製した。
A coating solution was prepared in the same manner as in Example 1. 10 parts by weight of a phosphor, 10 parts by weight of ethyl alcohol, and 2 parts by weight of a 5% aqueous solution of polyvinyl alcohol were stirred and dispersed uniformly as in Example 1 to prepare a coating liquid.

【0054】一方、積分球の中空球体の内面に塗工する
為の拡散反射材の弗素樹脂被膜として、弗素樹脂の粒子
の素材に四弗化エチレン−六弗化プロピレン共重合樹脂
(FEP)を使用した。粒子のサイズは平均粒径約8μ
mである。塗工液の調整は、弗素樹脂10重量部、エチ
ルアルコ−ル20重量部、ポリビニルアルコ−ル2%水
溶液5重量部を実施例1と同様に攪拌して均一に分散し
た。
On the other hand, as a fluororesin coating of a diffusion reflecting material for coating the inner surface of the hollow sphere of the integrating sphere, a tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP) is used as a material of the fluororesin particles. used. Particle size is about 8μ average particle size
m. For the preparation of the coating liquid, 10 parts by weight of a fluororesin, 20 parts by weight of ethyl alcohol, and 5 parts by weight of a 2% aqueous solution of polyvinyl alcohol were stirred and dispersed uniformly as in Example 1.

【0055】調整された塗工液を刷毛を用いて、実施例
1と同様に中空球体の半球の各々に、所定の直接紫外光
の照射される領域に蛍光体塗工液を塗工し、該領域以外
の非直接照射領域(光反射拡散領域)に弗素樹脂塗工液
を塗工した後、乾燥した。その結果、内面が均一に塗工
された白色無光択の半球が得られた。
Using a brush, the adjusted coating solution is applied to each of the hollow sphere hemispheres in the same manner as in Example 1 in a predetermined area to be directly irradiated with ultraviolet light by a phosphor coating solution. A fluororesin coating liquid was applied to a non-direct irradiation area (light reflection / diffusion area) other than the area, and then dried. As a result, a white non-selective hemisphere whose inner surface was uniformly coated was obtained.

【0056】両半球を合わせて(積分球)、図1に示す
分光測定装置をセットした。試料には20mm厚のCa
2 を用いて、波長140〜200nmの紫外光を用い
て光の各波長に対する透過率を測定した。その結果、実
施例1と同様の透過率で、ノイズの少ない安定した測定
結果が得られた。
The two hemispheres were combined (integrating sphere), and the spectrometer shown in FIG. 1 was set. The sample contains 20 mm thick Ca
With F 2, the transmittance was measured for each wavelength of light by using the ultraviolet light having a wavelength of 140~200Nm. As a result, a stable measurement result with little noise and a transmittance similar to that of Example 1 was obtained.

【0057】実施例3 実施例1において、弗素樹脂の粒子の素材に、三弗化塩
化エチレン−エチレン共重合樹脂(ECTFE)を用い
て塗工液を調整し、実施例1と同様に非直接照射領域
(光反射拡散領域)に塗工を行った。
Example 3 In Example 1, a coating liquid was prepared by using trifluorinated ethylene-ethylene copolymer resin (ECTFE) as a material for the particles of the fluororesin, and the non-direct coating was performed in the same manner as in Example 1. The irradiation area (light reflection diffusion area) was coated.

【0058】一方、蛍光体にはBaSi25 :Pb1
0重量部、バインダ樹脂としてカルボキシメチルセルロ
−ス1%水溶液3重量部、エチルアルコ−ル15重量部
を用いて塗工液を調整し、実施例1と同様に、紫外光の
直接照射領域に塗工を行った。
On the other hand, the phosphor is BaSi 2 O 5 : Pb1.
The coating liquid was prepared using 0 parts by weight, 3 parts by weight of a 1% aqueous solution of carboxymethyl cellulose as a binder resin, and 15 parts by weight of ethyl alcohol. Work was done.

【0059】分光測定装置にセットし、実施例1と同様
に測定した。測定の結果は、実施例1と同様に良好でノ
イズの少ない高精度度の測定結果が得られた。
The sample was set in a spectrometer and measured in the same manner as in Example 1. As a result of the measurement, as in the case of the first embodiment, a good measurement result having a high degree of accuracy with little noise was obtained.

【0060】実施例4 実施例2において、弗素樹脂として、弗化ビニリデン樹
脂(PVDF)を用いて塗工液を調整し、実施例2と同
様に非直接照射領域(光反射拡散領域)に塗工を行っ
た。一方、実施例2と同様に蛍光塗工液を紫外光の直接
照射領域に塗工を行った。
Example 4 In Example 2, the coating liquid was adjusted using vinylidene fluoride resin (PVDF) as the fluorine resin, and the coating liquid was applied to the non-direct irradiation area (light reflection / diffusion area) as in Example 2. Work was done. On the other hand, in the same manner as in Example 2, a fluorescent coating solution was applied to the region directly irradiated with ultraviolet light.

【0061】分光測定装置にセットし、実施例1と同様
に測定した。測定の結果は、実施例1と同様に良好でノ
イズの少ない高精度度の測定結果が得られた。
The measurement was carried out in the same manner as in Example 1 by setting in a spectrometer. As a result of the measurement, as in the case of the first embodiment, a good measurement result having a high degree of accuracy with little noise was obtained.

【0062】実施例5 実施例1の光学系全体を窒素置換により無酸素雰囲気に
して分光測定を行った。測定の結果は、実施例1と同様
に良好で、200nm以下の波長領域に於てもノイズの
少ない高精度の測定ができた。
Example 5 The entire optical system of Example 1 was subjected to spectrometry in an oxygen-free atmosphere by purging with nitrogen. The measurement results were as good as in Example 1, and high-precision measurement with little noise was possible even in the wavelength region of 200 nm or less.

【0063】[0063]

【発明の効果】以上説明した様に、本発明によれば、特
に紫外領域の光、特に遠紫外、真空紫外領域に於て分光
エネルギー分布、分光透過率、分光反射率などの測定精
度の優れた積分球を得ることができた。また、本発明の
積分球を用いた分光測定装置により、紫外領域の光、特
に遠紫外、真空紫外領域の光の分光エネルギー強度及び
分布の測定を精度よく行なうことができる。
As described above, according to the present invention, the measurement accuracy such as the spectral energy distribution, the spectral transmittance, and the spectral reflectance is excellent particularly in the ultraviolet region, particularly in the deep ultraviolet region and the vacuum ultraviolet region. An integrating sphere was obtained. Further, the spectral energy intensity and distribution of light in the ultraviolet region, particularly, light in the far ultraviolet and vacuum ultraviolet regions can be accurately measured by the spectrometer using the integrating sphere of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分光測定装置の一例を示す説明図であ
る。
FIG. 1 is an explanatory diagram illustrating an example of a spectrometer according to the present invention.

【図2】本発明の積分球を示す概略図である。FIG. 2 is a schematic diagram showing an integrating sphere of the present invention.

【図3】実施例1の積分球を用いて波長140〜200
nmの紫外光を用いた透過率を測定した結果を示す図で
ある。
FIG. 3 shows a wavelength of 140 to 200 using the integrating sphere of Example 1.
It is a figure showing the result of having measured transmittance using ultraviolet light of nm.

【符号の説明】[Explanation of symbols]

1 光源 2 光線 3 分光器 4 単色光 5 セクターミラー 6a、6bは反射ミラー 7 積分球 8 入射窓 9 受光窓 10 蛍光体被膜 11 参照光 12 試料光 13 検知器 14 中空球体 15 光照射領域 16 光反射拡散領域 17 弗素樹脂被膜 22 蛍光光線 s 試料 Reference Signs List 1 light source 2 light beam 3 spectroscope 4 monochromatic light 5 sector mirrors 6a and 6b are reflection mirrors 7 integrating sphere 8 entrance window 9 light receiving window 10 phosphor coating 11 reference light 12 sample light 13 detector 14 hollow sphere 15 light irradiation area 16 light Reflection / diffusion area 17 Fluororesin coating 22 Fluorescent light s Sample

フロントページの続き Fターム(参考) 2G020 AA05 CA02 CB43 CB44 CD23 CD28 2G065 AA04 AB05 BA18 BA29 BB37 BB42 Continued on the front page F term (reference) 2G020 AA05 CA02 CB43 CB44 CD23 CD28 2G065 AA04 AB05 BA18 BA29 BB37 BB42

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 光の分光エネルギー強度及び分布を測定
する分光測定装置に用いられる積分球であって、光を入
射する入射窓及び光を受光する受光窓を各々少なくとも
1つ有する中空球体の内面に蛍光体を含有する蛍光体被
膜および弗素樹脂の粒子を含有する弗素樹脂被膜が設ら
れていることを特徴とする積分球。
1. An inner surface of an integrating sphere used in a spectrometer for measuring the spectral energy intensity and distribution of light, the hollow sphere having at least one entrance window for receiving light and one receiving window for receiving light. A phosphor coating containing a phosphor and a fluororesin coating containing fluororesin particles.
【請求項2】 前記光の波長領域が300nm以下であ
る請求項1記載の積分球。
2. The integrating sphere according to claim 1, wherein the wavelength range of the light is 300 nm or less.
【請求項3】 前記中空球体の内面が金属または金属の
薄膜からなる光反射性基材からなる請求項1記載の積分
球。
3. The integrating sphere according to claim 1, wherein the inner surface of the hollow sphere is made of a light-reflective substrate made of metal or a thin film of metal.
【請求項4】 前記蛍光体が無機蛍光体または有機蛍光
体である請求項1乃至3のいずれかの項に記載の積分
球。
4. The integrating sphere according to claim 1, wherein the phosphor is an inorganic phosphor or an organic phosphor.
【請求項5】 前記無機蛍光体がBaMg2 Al
1627:Eu、(SrCaBa)5 (PO43 Cl:
Eu、BaSi25 :Pb、YPO4 :Ce、Sr2
27 :Eu、ZnS:Cu,Alから選ばれた少な
くとも1種である請求項4記載の積分球。
5. The method according to claim 1, wherein the inorganic phosphor is BaMg 2 Al.
16 O 27 : Eu, (SrCaBa) 5 (PO 4 ) 3 Cl:
Eu, BaSi 2 O 5 : Pb, YPO 4 : Ce, Sr 2
P 2 O 7: Eu, ZnS : Cu, claim 4 integrating sphere, wherein the at least one selected from Al.
【請求項6】 前記蛍光体被膜が蛍光体と蛍光体を懸架
支持するバインダーを、蛍光体100重量部に対してバ
インダー0〜10重量部含有する請求項1乃至5のいず
れかの項に記載の積分球。
6. The phosphor coating according to claim 1, wherein the phosphor coating contains the phosphor and a binder for suspending and supporting the phosphor in an amount of 0 to 10 parts by weight based on 100 parts by weight of the phosphor. Integrating sphere.
【請求項7】 前記バインダーが水溶性樹脂からなる請
求項6記載の積分球。
7. The integrating sphere according to claim 6, wherein said binder comprises a water-soluble resin.
【請求項8】 前記蛍光体被膜が中空球体の内面の入射
する光の直接照射を受ける光照射領域に設けられている
請求項1乃至7のいずれかの項に記載の積分球。
8. The integrating sphere according to claim 1, wherein the phosphor coating is provided in a light irradiation area of the hollow sphere that is directly irradiated with light incident thereon.
【請求項9】 前記弗素樹脂の粒子が四弗化エチレン樹
脂及びその誘導体及びそれらの共重合体樹脂の粒子であ
る請求項1記載の積分球。
9. The integrating sphere according to claim 1, wherein said fluororesin particles are particles of a tetrafluoroethylene resin, a derivative thereof, and a copolymer resin thereof.
【請求項10】 前記弗素樹脂被膜が弗素樹脂の粒子と
該弗素樹脂の粒子を懸架支持するバインダーを、弗素樹
脂の粒子100重量部に対してバインダー0〜10重量
部含有する請求項1または9に記載の積分球。
10. The fluororesin coating comprises from 0 to 10 parts by weight of a binder of the fluororesin particles and a binder for suspending and supporting the fluororesin particles, based on 100 parts by weight of the fluororesin particles. 2. The integrating sphere according to 1.
【請求項11】 前記バインダーが水溶性樹脂からなる
請求項10記載の積分球。
11. The integrating sphere according to claim 10, wherein said binder comprises a water-soluble resin.
【請求項12】 前記弗素樹脂被膜が中空球体の内面の
入射する光の直接照射を受ける光照射領域以外の領域に
設られている請求項1、9乃至11のいずれかの項に記
載の積分球。
12. The integral according to claim 1, wherein the fluororesin coating is provided in a region other than a light irradiation region where the inner surface of the hollow sphere is directly irradiated with light incident thereon. ball.
【請求項13】 請求項1乃至12のいずれかに記載の
積分球を用いた光の分光エネルギー強度及び分布を測定
する分光測定装置。
13. A spectrometer for measuring the spectral energy intensity and distribution of light using the integrating sphere according to claim 1. Description:
JP11134031A 1999-05-14 1999-05-14 Integrating sphere and spectroscopic measuring apparatus employing it Pending JP2000321128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11134031A JP2000321128A (en) 1999-05-14 1999-05-14 Integrating sphere and spectroscopic measuring apparatus employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11134031A JP2000321128A (en) 1999-05-14 1999-05-14 Integrating sphere and spectroscopic measuring apparatus employing it

Publications (1)

Publication Number Publication Date
JP2000321128A true JP2000321128A (en) 2000-11-24

Family

ID=15118766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11134031A Pending JP2000321128A (en) 1999-05-14 1999-05-14 Integrating sphere and spectroscopic measuring apparatus employing it

Country Status (1)

Country Link
JP (1) JP2000321128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754339B2 (en) 2000-10-03 2010-07-13 Corob S.P.A. Reflective paint and a method for its use
CN103296142A (en) * 2013-06-09 2013-09-11 上海理工大学 Ultraviolet detector preparation method based on fluorescence coating integrating sphere

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754339B2 (en) 2000-10-03 2010-07-13 Corob S.P.A. Reflective paint and a method for its use
CN103296142A (en) * 2013-06-09 2013-09-11 上海理工大学 Ultraviolet detector preparation method based on fluorescence coating integrating sphere

Similar Documents

Publication Publication Date Title
JP3287775B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
JP5340920B2 (en) Apparatus and method for measuring chromaticity against angle
AU644518B2 (en) Integrating sphere for diffuse reflectance and transmittance measurements and the like
JPH0468571B2 (en)
Garbuzov et al. Organic films deposited on Si p‐n junctions: accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings
CN103344613B (en) A kind of material reflection characteristic measurement apparatus and method
JP7412802B2 (en) Spectroscopic measurement method
JP2000321126A (en) Integrating sphere and spectroscopic measuring apparatus employing it
US7349103B1 (en) System and method for high intensity small spot optical metrology
Redfield Method for evaluation of antireflection coatings
JP2000321128A (en) Integrating sphere and spectroscopic measuring apparatus employing it
JP2000321127A (en) Integrating sphere and spectrally meaturing apparatus using it
JP2003028716A (en) Spectrometric instrument and method for spectrometric measurement
JP2002310798A (en) Integral sphere, spectral measuring device using the same, spectral measuring method and semiconductor manufacturing exposure printing device
US3512895A (en) Spectroreflectrometric reference standard and method
JP2000321129A (en) Integrating sphere and spectroscopic measuring apparatus employing it
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
JP2023007710A (en) Light emission measuring device and light emission measuring method
JP2002303547A (en) Integrating sphere, and spectrometer and spectrometry using the same
US4995198A (en) Method for making a reflectance calibration plate having a near-Lambertian surface
Witzmann et al. Luminescent light diffuser for diffuse lighting applications
Lv et al. Extension of NIM illuminance scale to very low levels (1× 10− 10 lx to 2 lx)
Mugnier et al. A photometric approach of fluorescent solar concentrators. Role of diffuse reflectors and spectral sensitivity of solar cells
De La Perrelle et al. The measurements of absorptivity and reflectivity
Anderson et al. Bidirectional calibration results for the cleaning of Spectralon reference panels