JP3287775B2 - Method and apparatus for measuring quantum efficiency of phosphor - Google Patents
Method and apparatus for measuring quantum efficiency of phosphorInfo
- Publication number
- JP3287775B2 JP3287775B2 JP31433596A JP31433596A JP3287775B2 JP 3287775 B2 JP3287775 B2 JP 3287775B2 JP 31433596 A JP31433596 A JP 31433596A JP 31433596 A JP31433596 A JP 31433596A JP 3287775 B2 JP3287775 B2 JP 3287775B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- radiation
- measured
- spectral
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Spectrometry And Color Measurement (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、蛍光体の量子効率
を測定する方法及び蛍光体の量子効率測定装置に関する
ものである。The present invention relates to a method for measuring the quantum efficiency of a phosphor and an apparatus for measuring the quantum efficiency of the phosphor.
【0002】[0002]
【従来の技術】蛍光体の量子効率は、たとえばランプ用
蛍光体が到達し得る効率の極限を知る尺度として極めて
重要で、主として絶対値法と相対値法の二種類の方法が
行われてきた。2. Description of the Related Art The quantum efficiency of a fluorescent material is extremely important as a measure for determining the limit of the efficiency that a fluorescent material for a lamp can attain, for example, and two methods, an absolute value method and a relative value method, have been mainly used. .
【0003】絶対値法は、蛍光体に吸収される励起光の
フォトン数と蛍光フォトン数とを独立に測定し、その比
を得る。蛍光体に吸収される励起光のフォトンの数は、
単一波長の励起放射に対して、サーモパイルなどの熱形
放射検出器や絶対放射計を使って、蛍光体面での放射照
度を測定し、絶対反射率の値付けされた硫酸バリウムな
どを反射率標準として、蛍光体面の反射率を測定して1
−反射率から吸収率を求め、両者の値から吸収エネルギ
ーの光量子を求めた。次に、蛍光体からの相対蛍光スペ
クトルを分光測光器で測定し、その絶対量を、先の熱形
放射検出器や絶対放射計の前面に、励起光を除去する光
学フィルタを装着して、求め、その蛍光フォトン数を導
き、蛍光体の量子効率を求める方法である。In the absolute value method, the number of photons and the number of fluorescent photons of excitation light absorbed by a phosphor are measured independently, and the ratio is obtained. The number of photons of the excitation light absorbed by the phosphor is
For a single wavelength of excitation radiation, measure the irradiance on the phosphor surface using a thermal radiation detector such as a thermopile or an absolute radiometer, and reflect the absolute reflectance of barium sulfate etc. As a standard, the reflectance of the phosphor surface was
-The absorptance was determined from the reflectance, and the photon of the absorbed energy was determined from both values. Then, by measuring the relative fluorescence spectrum from the phosphor minute optical photometer, the absolute amount, the front of the previous thermal type radiation detector or an absolute radiometer, by mounting an optical filter for removing an excitation light , And derive the number of fluorescent photons to determine the quantum efficiency of the phosphor.
【0004】また相対値法は、ある蛍光体の量子効率を
標準とした比較測定により、量子効率の相対値を求める
方法である。[0004] The relative value method is a method of obtaining a relative value of the quantum efficiency by comparative measurement using the quantum efficiency of a certain phosphor as a standard.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、絶対値
法では、励起光のフォトン数と蛍光フォトン数を定量的
に測定する熱形放射検出器や絶対放射計の感度が低いた
め、十分な測定精度が得られない問題があった。However, in the absolute value method, since the sensitivity of a thermal radiation detector or an absolute radiometer for quantitatively measuring the number of photons of excitation light and the number of fluorescent photons is low, sufficient measurement accuracy is obtained. There was a problem that could not be obtained.
【0006】また、相対値法では、精度が得られるもの
の、標準蛍光体の量子効率は、絶対値法で求めざるを得
ないという問題があった(照明学会誌 第69巻 第2号
(1985)種々のランプ用蛍光体の量子効率)。In the relative value method, although accuracy can be obtained, there is a problem that the quantum efficiency of the standard phosphor must be obtained by the absolute value method (Journal of the Illuminating Engineering Institute, Vol. 69, No. 2 (1985). ) Quantum efficiency of various lamp phosphors).
【0007】本発明は、このような従来の蛍光体の量子
効率測定方法の課題を考慮し、蛍光体の量子効率を精度
く測定できる蛍光体の量子効率測定方法を提供すること
を目的とするものである。An object of the present invention is to provide a method for measuring the quantum efficiency of a phosphor, which can accurately measure the quantum efficiency of the phosphor in consideration of the problems of the conventional method for measuring the quantum efficiency of the phosphor. Things.
【0008】[0008]
【課題を解決するための手段】測定しようとする蛍光体
に、その蛍光体面が積分球の第一の窓に位置するように
積分球を装着し、積分球の第二の窓から、蛍光体を励起
する放射を入射させ、蛍光体面を前記励起放射で照明
し、その蛍光体面から発する反射スペクトルと蛍光スペ
クトルを、前記積分球で積分し、積分球の第三の窓に装
着した分光測定器で測定する。このときの分光測光器の
出力をそれぞれR(λ)、P(λ)とする。このとき、
積分球の積分効率と分光測光器の効率の補正係数をそれ
ぞれをη、K・f(λ)とすれば、蛍光体面での励起放
射の反射スペクトルは、η・K・f(λ)・R(λ)、蛍
光スペクトルは、η・K・f(λ)・P(λ)となる。次
に、蛍光体の代わりに、反射率が機知の反射率標準を積
分球の第一の窓に装着して同様の測定を行うことにより
励起放射の蛍光体面に入射した分光放射照度η・K・f
(λ)・1/α(λ)・E(λ)が得られる。このときα
(λ)は、反射率標準の分光反射率、E(λ)は、この
ときの分光測光器の読みである。この結果から、蛍光体
に吸収される励起放射の分光エネルギー分布は、SUMMARY OF THE INVENTION An integrating sphere is mounted on a phosphor to be measured such that the phosphor surface is located at a first window of the integrating sphere. Irradiates the excitation surface, illuminates the phosphor surface with the excitation radiation, integrates the reflection spectrum and the fluorescence spectrum emitted from the phosphor surface with the integrating sphere, and mounts the spectrometer mounted on the third window of the integrating sphere. Measure with The outputs of the spectrophotometer at this time are R (λ) and P (λ), respectively. At this time,
If the correction coefficients for the integration efficiency of the integrating sphere and the efficiency of the spectrophotometer are η and K · f (λ), respectively, the reflection spectrum of the excitation radiation on the phosphor surface is η · K · f (λ) · R (Λ), the fluorescence spectrum is η · K · f (λ) · P (λ). Next, instead of the phosphor, a reflectance standard with a known reflectance is attached to the first window of the integrating sphere and the same measurement is performed to obtain the spectral irradiance η · K incident on the phosphor surface of the excitation radiation.・ F
(Λ) · 1 / α (λ) · E (λ) is obtained. Then α
(Λ) is the spectral reflectance of the reflectance standard, and E (λ) is the reading of the spectrophotometer at this time. From this result, the spectral energy distribution of the excitation radiation absorbed by the phosphor is:
【0009】[0009]
【数1】 η・K・f(λ)・(1/α(λ))・E(λ)−η・K・f(λ)・R(λ) =η・K{f(λ)・(1/α(λ))・E(λ)−f(λ)・R(λ)} =η・K・A(λ) であるため、量子効率εは、Η · K · f (λ) · (1 / α (λ)) · E (λ) −η · K · f (λ) · R (λ) = η · K {f (λ) · Since (1 / α (λ)) · E (λ) −f (λ) · R (λ)} = η · K · A (λ), the quantum efficiency ε is
【0010】[0010]
【数2】 (Equation 2)
【0011】 λ1,λ2:蛍光スペクトルが存在する波長範囲 λ3,λ4:励起スペクトルの波長範囲 で与えられ、η、Kを絶対放射計などで求める必要な
く、相対分光分布から高精度に蛍光体の量子効率を導け
る。Λ1, λ2: wavelength range in which the fluorescence spectrum exists λ3, λ4: wavelength range of the excitation spectrum, η and K need not be obtained by an absolute radiometer, etc. Can guide quantum efficiency.
【0012】このようにして、ηの絶対量を絶対放射計
などで測定する必要がなく、それによる、測定誤差が解
消され、蛍光体の精度良い量子効率の絶対量の測定が実
現する。In this way, there is no need to measure the absolute amount of η with an absolute radiometer or the like, thereby eliminating measurement errors and realizing accurate measurement of the absolute amount of quantum efficiency of the phosphor.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0014】図1に、請求項1の本発明の一実施の形態
の構成図を示す。図において、積分球1の第一の窓2
に、測定しようとする蛍光体3を装着する。前記蛍光体
3を励起する放射源として、光源4からの放射を、光学
系5で、前記積分球1の第二の窓6を通して前記蛍光体
面3に集光する。その際、その放射を光学フィルタ7
で、測定しようとする励起波長帯域に規制する。FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, a first window 2 of an integrating sphere 1
Then, the phosphor 3 to be measured is attached. Radiation from a light source 4 as a radiation source for exciting the phosphor 3 is focused on the phosphor surface 3 by an optical system 5 through a second window 6 of the integrating sphere 1. At that time, the radiation is transmitted to the optical filter 7.
Thus, the excitation wavelength band to be measured is restricted.
【0015】この励起放射の蛍光体3面から発する反射
スペクトルと蛍光スペクトルを、前記積分球1で積分
し、前記積分球1の第三の窓8に装着した分光測定器9
で測定する。このときの分光測光器の出力をそれぞれR
(λ)、P(λ)とする。The reflection spectrum and the fluorescence spectrum of the excitation radiation emitted from the phosphor 3 are integrated by the integrating sphere 1 and the spectrometer 9 mounted on the third window 8 of the integrating sphere 1
Measure with The output of the spectrophotometer at this time is R
(Λ) and P (λ).
【0016】次に、蛍光体3を反射率標準10に置き換
えて、同様の測定を行い、励起放射の蛍光体3面に入射
した分光放射照度を測定する。このときの分光測光器9
の出力をE(λ)とする。積分球1の積分効率と分光測
光器9の効率に対する補正係数を、それぞれηとK・f
(λ)とすれば、蛍光体3面での励起放射の反射スペク
トルはη・K・f(λ)・R(λ)、蛍光スペクトルはη
・K・f(λ)P(λ)となる。また、α(λ)を、反射
率標準の分光反射率とすれば、励起放射の蛍光体3面に
入射した分光放射照度η・K・f(λ)・(1/α(λ))・
E(λ)が得られる。前記積分球1の第二の窓6に、反
射率標準10を装着し、分光放射照度標準電球の光で、
前記反射率標準を照明し、前記積分球1の第三の窓8に
装着した分光測定器9で測定することにより、波長に対
する測定系の相対分光エネルギー分布が校正される。分
光放射照度標準電球に値づけられた相対分光分布をS
(λ)、このときの分光測光器の出力をSr(λ)とす
れば、Next, the same measurement is performed by replacing the phosphor 3 with the reflectance standard 10, and the spectral irradiance of the excitation radiation incident on the phosphor 3 surface is measured. At this time, the spectrophotometer 9
Is E (λ). The correction coefficients for the integration efficiency of the integrating sphere 1 and the efficiency of the spectrophotometer 9 are η and K · f, respectively.
(Λ), the reflection spectrum of the excitation radiation on the phosphor 3 surface is η · K · f (λ) · R (λ), and the fluorescence spectrum is η
K · f (λ) P (λ) Further, if α (λ) is the spectral reflectance of the reflectance standard, the spectral irradiance η · K · f (λ) · (1 / α (λ)) ·
E (λ) is obtained. A reflectance standard 10 is attached to the second window 6 of the integrating sphere 1, and the light of the standard irradiance standard bulb is
By illuminating the reflectance standard and measuring with a spectrometer 9 mounted on the third window 8 of the integrating sphere 1, the relative spectral energy distribution of the measurement system with respect to wavelength is calibrated. The relative spectral distribution valued to the standard spectral irradiance light bulb is
(Λ), if the output of the spectrophotometer at this time is Sr (λ),
【0017】[0017]
【数3】f(λ)=S(λ)/Sr(λ) から得られ、従ってf(λ)・R(λ)、f(λ)・P
(λ)、f(λ)・E(λ)が、相対値として得られ
る。この結果から、蛍光体に吸収される励起放射の分光
エネルギー分布は、次式で与えられる。F (λ) = S (λ) / Sr (λ), so that f (λ) · R (λ) and f (λ) · P
(Λ), f (λ) · E (λ) are obtained as relative values. From this result, the spectral energy distribution of the excitation radiation absorbed by the phosphor is given by the following equation.
【0018】[0018]
【数4】 η・K・f(λ)・(1/α(λ))・E(λ)−η・K・f(λ)・R(λ) =η・K{f(λ)・(1/α(λ))・E(λ)−f(λ)・R(λ)} =η・K・A(λ) 蛍光体の量子効率εは、励起光のフォトン数で蛍光フォ
トン数を割った値ゆえ、Η · K · f (λ) · (1 / α (λ)) · E (λ) −η · K · f (λ) · R (λ) = η · K {f (λ) · (1 / α (λ)) · E (λ) −f (λ) · R (λ)} = η · K · A (λ) The quantum efficiency ε of the phosphor is represented by the number of photons of the excitation light and the number of fluorescent photons. Divided by
【0019】[0019]
【数5】 (Equation 5)
【0020】 λ1,λ2:蛍光スペクトルが存在する波長範囲 λ3,λ4:励起スペクトルの波長範囲 したがって、Λ1, λ2: wavelength range where the fluorescence spectrum exists λ3, λ4: wavelength range of the excitation spectrum
【0021】[0021]
【数6】 (Equation 6)
【0022】で与えられ、ηを絶対放射計などで求める
必要なく、一つの測定光学系を使用して測定した相対分
光分布から高精度に蛍光体の量子効率を導ける。The quantum efficiency of the phosphor can be derived with high accuracy from the relative spectral distribution measured using one measuring optical system without having to determine η with an absolute radiometer or the like.
【0023】なお、積分球の積分効率に対する補正係数
ηは、積分球内壁の反射率で、波長の関数であるが、硫
酸バリウムや、PTFE粉体を圧着した面を使用した場
合、波長250nmから800nmの範囲で、反射率9
0%以上であり、波長に対して一定とみなせる。The correction coefficient η with respect to the integration efficiency of the integrating sphere is a reflectance of the inner wall of the integrating sphere and is a function of the wavelength. When a barium sulfate or PTFE powder is pressed, a wavelength of 250 nm is used. In the range of 800 nm, the reflectance is 9
0% or more, and can be regarded as constant with respect to the wavelength.
【0024】光源4に低圧水銀放電ランプ、光学フィル
タ7に波長254nm付近の放射を透過する干渉フィル
タを使用して、蛍光体3に青色蛍光体を使用した場合の
f(λ)・R(λ)、f(λ)・P(λ)、f(λ)・E
(λ)の測定結果の例を図2に示す。When a low-pressure mercury discharge lamp is used as the light source 4, an interference filter that transmits radiation near a wavelength of 254 nm is used as the optical filter 7, and f (λ) · R (λ) when a blue phosphor is used as the phosphor 3 is used. ), F (λ) · P (λ), f (λ) · E
FIG. 2 shows an example of the measurement result of (λ).
【0025】次に、請求項3の実施の形態について、図
3を使って説明する。請求項3は、請求項1の実施の形
態において、励起放射の蛍光体3面から発する反射スペ
クトルと蛍光スペクトルを、前記蛍光体3面の法線に対
して45゜の放射成分を、平面ミラー11および、分光
測光器9の入射スリット前面に装着したフィールドレン
ズ12によって、前記分光測光器9に導入し測定する。Next, a third embodiment will be described with reference to FIG. According to a third aspect of the present invention, in the first embodiment, the reflection spectrum and the fluorescence spectrum of the excitation radiation emitted from the phosphor 3 surface, the radiation component of 45 ° with respect to the normal to the phosphor 3 surface, The light is introduced into the spectrophotometer 9 and measured by a field lens 12 mounted on the front surface of the entrance slit of the spectrophotometer 9.
【0026】次に、前記蛍光体3の代わりに、分光反射
率標準10に、前記励起放射を入射させ、その反射面の
法線に対して45゜の反射成分を前記平面ミラー11及
びフィールドレンズ12を用いて前記分光測光器9に導
入し測定し、蛍光面3での反射のゴニオ特性(入出射角
度に対する強度の空間的な分布、配光特性)と、蛍光発
光のゴニオ特性が相似であるとして、反射スペクトル、
蛍光スペクトル測定時の分光測光器の出力をそれぞれR
(λ)、P(λ)、反射率標準の反射スペクトル測定時
の分光測光器の出力をE(λ)として、上記の量子効率
の算出を行う。Next, instead of the phosphor 3, the excitation radiation is made incident on a spectral reflectance standard 10, and a reflection component of 45 ° with respect to the normal of the reflection surface is reflected by the plane mirror 11 and the field lens. The spectrophotometer 9 is introduced into the spectrophotometer 9 and measured, and the gonio characteristic of reflection on the phosphor screen 3 (spatial distribution of intensity with respect to the incidence / emission angle, light distribution characteristic) and the gonio characteristic of fluorescence emission are similar. As is the reflection spectrum,
The output of the spectrophotometer when measuring the fluorescence spectrum is R
(Λ), P (λ), when measuring the reflectance spectrum of the reflectance standard
The quantum efficiency is calculated assuming that the output of the spectrophotometer is E (λ) .
【0027】次に請求項5の実施の形態について図4を
使って説明する。請求項1の構成において、積分球1が
小さい場合、前記光学系5で、前記積分球1の第二の窓
6を通して前記蛍光体面3に集光した励起放射のうち、
前記蛍光体面3で反射した成分が前記積分球1の内壁で
反射を繰り返した後、再び前記蛍光体面3に入射し、蛍
光体3を励起する。そこで、この再励起による蛍光成分
を求めるため図4に示すように、前記積分球1の第二の
窓6を通して一端、前記積分球1の内壁に入射させ、そ
の反射成分によって励起された蛍光発光を測定する。図
5に再励起放射による蛍光発光スペクトルを、励起放射
を直接蛍光体に入射したときの蛍光発光成分と比較して
示す。両者は、励起発光スペクトルのピーク強度で規格
化している。直径6cmの積分球で、15mm径の蛍光
体面を測定した場合、反射率10%量子効率85%の青
色蛍光体において、量子効率換算で1.5%が再励起に
よる蛍光発光成分である。再励起放射スペクトルとそれ
による蛍光発光スペクトルの分光測光器の出力をそれぞ
れRr(λ)、Pr(λ)とすると、再励起を除いた蛍光
発光成分P'(λ)は次式で与えられる。Next, a fifth embodiment will be described with reference to FIG. In the configuration of claim 1, when the integrating sphere 1 is small, of the excitation radiation focused on the phosphor surface 3 through the second window 6 of the integrating sphere 1 by the optical system 5,
After the component reflected on the phosphor surface 3 is repeatedly reflected on the inner wall of the integrating sphere 1, the component is again incident on the phosphor surface 3 to excite the phosphor 3. Then, as shown in FIG. 4, in order to obtain a fluorescence component by this re-excitation, one end is made incident on the inner wall of the integrating sphere 1 through the second window 6 of the integrating sphere 1, and the fluorescence emitted by the reflected component is emitted. Is measured. FIG. 5 shows the fluorescence emission spectrum by the re-excitation radiation in comparison with the fluorescence emission component when the excitation radiation is directly incident on the phosphor. Both are normalized by the peak intensity of the excitation emission spectrum. When a phosphor surface having a diameter of 15 mm is measured with an integrating sphere having a diameter of 6 cm, in a blue phosphor having a reflectance of 10% and a quantum efficiency of 85%, 1.5% in terms of quantum efficiency is a fluorescence emission component by re-excitation. Assuming that the output of the spectrophotometer of the re-excitation emission spectrum and the fluorescence emission spectrum thereby is Rr (λ) and Pr (λ), the fluorescence emission component P ′ (λ) excluding the re-excitation is given by the following equation.
【0028】[0028]
【数7】P'(λ)=P(λ)−Pr(λ)・{Rr(λ
p)/R(λp)} ただし、λpは、励起放射スペクトル及び再励起放射ス
ペクトルのピーク波長である。なお、このピーク波長の
比の代わりに、Rr(λ)とR(λ)をその放射スペク
トルが存在する波長範囲で波長に対して積分した値の比
を(数7)に適用することができる。このP'(λ)を
(数6)のP(λ)とすれば、再励起の影響を除いた量
子効率をもとめることができる。P ′ (λ) = P (λ) −Pr (λ) · {Rr (λ
p) / R (λp)} where λp is the peak wavelength of the excitation emission spectrum and the re-excitation emission spectrum. Instead of this peak wavelength ratio, a ratio of values obtained by integrating Rr (λ) and R (λ) with respect to wavelength in a wavelength range where the emission spectrum exists can be applied to (Equation 7). . If this P ′ (λ) is P (λ) in (Equation 6), the quantum efficiency excluding the influence of re-excitation can be obtained.
【0029】なお、請求項2および請求項4、請求項6
の発明は、それぞれ請求項1及び請求項3、請求項5に
おいて、励起放射が単一波長であるのに対して、波長的
な広がりをもつ励起放射を使用する場合である。It should be noted that claims 2 and 4, and claim 6
The invention of claim 1 is a case where the excitation radiation having a single wavelength is used, while the excitation radiation having a wavelength spread is used in each of claims 1, 3 and 5.
【0030】[0030]
【発明の効果】以上述べたところから明らかなように、
本発明によって、ηの絶対量を絶対放射計などで測定す
る必要がなく、それによる、測定誤差が解消され、蛍光
体の精度良い量子効率の絶対量の測定が実現する。As is apparent from the above description,
According to the present invention, there is no need to measure the absolute amount of η with an absolute radiometer or the like, thereby eliminating measurement errors and realizing accurate measurement of the absolute amount of the quantum efficiency of the phosphor.
【図1】本発明の請求項1の実施の形態の測定系の構成
図である。FIG. 1 is a configuration diagram of a measurement system according to an embodiment of the present invention.
【図2】図1の実施の形態における青色蛍光体の分光分
布特性の測定値の例を示すグラフである。FIG. 2 is a graph showing an example of measured values of spectral distribution characteristics of a blue phosphor in the embodiment of FIG.
【図3】本発明の請求項3の実施の形態の測定系の構成
図である。FIG. 3 is a configuration diagram of a measurement system according to a third embodiment of the present invention.
【図4】本発明の請求項5の実施の形態の測定系の構成
図である。FIG. 4 is a configuration diagram of a measurement system according to a fifth embodiment of the present invention.
【図5】本発明の実施の形態における青色蛍光体の分光
分布特性の測定値の例を示すグラフである。FIG. 5 is a graph showing an example of measured values of spectral distribution characteristics of a blue phosphor according to the embodiment of the present invention.
1 積分球 2 積分球の第一の窓 3 蛍光体 4 光源 5 光学系 6 積分球の第二の窓 7 光学フィルタ 8 積分球の第三の窓 9 分光測定器 10 分光反射率標準 11 平面ミラー 12 フィールドレンズ REFERENCE SIGNS LIST 1 integrating sphere 2 first window of integrating sphere 3 phosphor 4 light source 5 optical system 6 second window of integrating sphere 7 optical filter 8 third window of integrating sphere 9 spectrometer 10 spectral reflectance standard 11 plane mirror 12 Field lens
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−138539(JP,A) 特開 平3−138538(JP,A) 特開 平10−73486(JP,A) ADV.MATER.,9[3 ](1997),p230−232 MOL.CRYST.LIQ.CRY ST.,VOL.283(1996),p51− 56 (58)調査した分野(Int.Cl.7,DB名) G01J 3/00 - 3/52 G01N 21/62 - 21/74 G01J 1/00 - 1/60 JICSTファイル(JOIS) 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-138539 (JP, A) JP-A-3-138538 (JP, A) JP-A-10-73486 (JP, A) ADV. MATER. , 9 [3] (1997), p230-232 MOL. CRYST. LIQ. CRY ST. , VOL. 283 (1996), pp. 51-56 (58) Fields investigated (Int. Cl. 7 , DB name) G01J 3/00-3/52 G01N 21/62-21/74 G01J 1/00-1/60 JICST file (JOIS) Practical file (PATOLIS) Patent file (PATOLIS)
Claims (8)
光体に入射させ、前記単一波長の放射の前記蛍光体面の
反射成分と、前記単一放射によって励起された蛍光発光
の全放射成分を、積分球によって積分し、その分光エネ
ルギー分布を前記積分球の窓に装着した分光測光器で測
定し、次に、前記蛍光体の代わりに、分光反射率標準
に、前記単一波長の放射を入射させ、その全反射成分を
前記積分球によって積分し、前記分光測光器でその分光
分布を測定し、前記蛍光体面に入射させた放射の波長に
おける、前記蛍光体面での反射測定値と前記分光反射率
標準での反射測定値と前記分光反射標準の前記波長に対
する絶対反射率から、前記蛍光体の吸収エネルギーと吸
収した光量子量を算出し、次に前記蛍光体面で測定した
蛍光発光スペクトルから、その光量子量を算出し、前記
蛍光体が吸収した光量子量と、前記蛍光発光の光量子量
の比から、前記蛍光体の量子効率を算出することを特徴
とする蛍光体の量子効率測定方法。1. A single wavelength radiation is incident on a phosphor to be measured, the reflected component of the phosphor surface of the single wavelength radiation and the total radiation of the fluorescent light excited by the single radiation. The components are integrated by an integrating sphere and the spectral energy distribution is measured with a spectrophotometer mounted on the window of the integrating sphere, and then, instead of the phosphor, a spectral reflectance standard is applied to the single wavelength radiation is incident, the integrated by the total reflection component the integrating sphere, the spectral distribution in said spectral photometric unit measures, the at wavelengths is incident radiation in phosphor surface reflection measurements at the phosphor surface From the measured reflectance at the spectral reflectance standard and the absolute reflectance of the spectral reflectance standard for the wavelength, calculate the absorption energy and the amount of photons absorbed by the phosphor, and then measure the fluorescence emission measured at the phosphor surface Spectrum Calculating the quantum efficiency of the phosphor from the ratio of the quantum of light absorbed by the phosphor and the quantum of light emitted by the fluorescent light, wherein the quantum efficiency of the phosphor is calculated. .
入射させ、前記放射の前記蛍光体面での反射成分と、放
射によって励起された蛍光発光の全放射成分を、積分球
によって積分し、その分光エネルギー分布を前記積分球
の窓に装着した分光測光器で測定し、次に、前記蛍光体
の代わりに、分光反射率標準に、前記励起放射を入射さ
せ、その全反射成分を前記積分球によって積分し、前記
分光測光器でその分光分布を測定し、前記蛍光体面に入
射させた放射の蛍光体面での反射測定値と、前記分光反
射率標準での反射測定値と前記分光反射標準の前記波長
に対する絶対反射率から、前記蛍光体の吸収エネルギー
と吸収した光量子量を算出し、次に前記蛍光体面で測定
した分光スペクトルから、励起放射の分光スペクトルを
分離除去し、残りの蛍光発光スペクトルから、その光量
子量を算出し、前記蛍光体が吸収した光量子量と、前記
蛍光発光の光量子量の比から、前記蛍光体の量子効率を
算出することを特徴とする蛍光体の量子効率測定方法。2. Exciting radiation is incident on a phosphor to be measured, and a reflection component of the radiation on the phosphor surface and a total emission component of fluorescence emission excited by the radiation are integrated by an integrating sphere, The spectral energy distribution is measured by a spectrophotometer attached to the window of the integrating sphere, and then, instead of the phosphor, the excitation radiation is incident on a spectral reflectance standard, and the total reflection component is integrated by the integration. Integrate with a sphere, measure its spectral distribution with the spectrophotometer, measure the reflectance of the radiation incident on the phosphor surface at the phosphor surface, the reflectance measurement value at the spectral reflectance standard, and the spectral reflectance standard. From the absolute reflectance for the wavelength, the absorption energy of the phosphor and the amount of absorbed photons are calculated, and then, from the spectrum measured on the phosphor surface, the spectrum of the excitation radiation is separated and removed, and the remaining spectrum is removed. Calculating the photon quantity from the fluorescence emission spectrum, and calculating the quantum efficiency of the phosphor from the ratio of the photon quantity absorbed by the phosphor and the photon quantity of the fluorescence emission, wherein the quantum efficiency of the phosphor is calculated. Efficiency measurement method.
光体に入射させ、前記単一波長の放射の前記蛍光体面の
法線に対して実質上45゜反射成分と、前記単一放射に
よって励起された蛍光発光の、前記蛍光体面の法線に対
して実質上45゜の放射成分を、光学系によって分光測
光器に導き、その両者の分光エネルギー分布を同時に測
定し、次に、前記蛍光体の代わりに、分光反射率標準
に、前記単一波長の放射を入射させ、その反射面の法線
に対して実質上45゜の反射成分を前記光学系によっ
て、前記分光測光器に導き、その分光分布を測定し、前
記蛍光体面に入射させた放射の波長における、前記蛍光
体面での反射測定値と、前記分光反射率標準での反射測
定値と前記分光反射標準の前記波長に対する絶対反射率
から、前記蛍光体の吸収エネルギーと吸収した光量子量
を算出し、次に前記蛍光体面で測定した蛍光発光スペク
トルから、その光量子量を算出し、前記蛍光体が吸収し
た光量子量と、前記蛍光発光の光量子量の比から、前記
蛍光体の量子効率を算出することを特徴とする蛍光体の
量子効率測定方法。3. A single-wavelength radiation impinging on the phosphor to be measured, wherein the single-wavelength radiation has a reflection component substantially 45 ° with respect to a normal of the phosphor surface, and the single-wavelength radiation. A radiant component of substantially 45 ° with respect to a normal to the phosphor surface of the fluorescent light excited by is guided to a spectrophotometer by an optical system, and the spectral energy distributions of both components are measured simultaneously. instead of phosphor, the spectral reflectance standard, said to be incident radiation of a single wavelength, by the optical system substantially 45 ° reflection component with respect to the normal of the reflecting surface, in the spectroscopic measurement light controller Guide, measure the spectral distribution thereof, at the wavelength of the radiation incident on the phosphor surface, the reflection measurement value on the phosphor surface, the reflection measurement value on the spectral reflectance standard and the wavelength of the spectral reflection standard on the wavelength. From the absolute reflectance, the absorption of the phosphor Calculate the energy and the amount of absorbed light quantum, and then calculate the amount of light quantum from the fluorescence emission spectrum measured on the phosphor surface, from the ratio of the amount of light quantum absorbed by the phosphor and the amount of light quantum of the fluorescence emission, A method for measuring the quantum efficiency of a phosphor, comprising calculating the quantum efficiency of the phosphor.
入射させ、前記励起放射の前記蛍光体面の法線に対して
実質上45゜反射成分と、前記励起放射によって励起さ
れた蛍光発光の、前記蛍光体面の法線に対して実質上4
5゜の放射成分を、光学系によって分光測光器に導き、
その両者の分光エネルギー分布を同時に測定し、次に、
前記蛍光体の代わりに、分光反射率標準に、前記励起放
射を入射させ、その反射面の法線に対して実質上45゜
の反射成分を前記光学系によって、前記分光器に導き、
その分光分布を測定し、前記蛍光体面に入射させた放射
の波長における、前記蛍光体面での反射測定値と、前記
分光反射率標準での反射測定値と前記分光反射標準の前
記波長に対する絶対反射率から、前記蛍光体の吸収エネ
ルギーと吸収した光量子量を算出し、次に前記蛍光体面
で測定した蛍光発光スペクトルから、その光量子量を算
出し、前記蛍光体が吸収した光量子量と、前記蛍光発光
の光量子量の比から、前記蛍光体の量子効率を算出する
ことを特緒とする蛍光体の量子効率測定方法。4. The excitation radiation is incident on the phosphor to be measured, the reflection component of the excitation radiation being substantially 45 ° with respect to the normal to the phosphor surface, and the fluorescence emission excited by the excitation radiation. , Substantially 4 with respect to the normal to the phosphor surface.
5% radiation component is guided to the spectrophotometer by the optical system,
The spectral energy distributions of both were measured simultaneously, and then
Instead of the phosphor, the excitation radiation is incident on a spectral reflectance standard, and a reflection component of substantially 45 ° with respect to a normal of the reflection surface is guided by the optical system to the spectroscope.
The spectral distribution is measured, and at the wavelength of the radiation incident on the phosphor surface, the reflection measurement value at the phosphor surface, the reflection measurement value at the spectral reflectance standard, and the absolute reflection at the wavelength of the spectral reflection standard. From the rate, the absorption energy of the phosphor and the amount of light quantum absorbed are calculated, and then from the fluorescence emission spectrum measured on the phosphor surface, the amount of light quantum is calculated, and the amount of light quantum absorbed by the phosphor and the fluorescence A method for measuring the quantum efficiency of a phosphor, characterized in that the quantum efficiency of the phosphor is calculated from a ratio of light quantum amounts of light emission.
光体に入射させ、前記単一波長の放射の前記蛍光体面の
反射成分と、前記単一放射によって励起された蛍光発光
の全放射成分を、積分球によって積分し、その分光エネ
ルギー分布を前記積分球の窓に装着した分光測光器で測
定し、次に、前記単一波長の放射を前記積分球内壁に入
射させ、積分球内で積分させ蛍光体に入射させ、その蛍
光発光成分を、前記分光測光器で測定し、先に測定した
蛍光発光の全放射成分から差し引き、前記蛍光体面で反
射し前記積分球内壁により反射して再び蛍光体に入射し
て発生した蛍光発光成分を除去し、前記単一放射の最初
の入力放射による蛍光発光の全放射成分のみを分離し、
次に、前記蛍光体の代わりに、分光反射率標準に、前記
単一波長の放射を入射させ、その全反射成分を前記積分
球によって積分し、前記分光測光器でその分光分布を測
定し、前記蛍光体面に入射させた放射の波長における、
前記蛍光体面での反射測定値と、前記分光反射率標準で
の反射測定値と前記分光反射標準の前記波長に対する絶
対反射率から、前記蛍光体の吸収エネルギーと吸収した
光量子量を算出し、次に前記蛍光体面で測定した蛍光発
光スペクトルから、その光量子量を算出し、前記蛍光体
が吸収した光量子量と、前記蛍光発光の光量子量の比か
ら、前記蛍光体の量子効率を算出することを特徴とする
蛍光体の量子効率測定方法。5. A single wavelength radiation is incident on the phosphor to be measured, the reflected component of the phosphor surface of the single wavelength radiation and the total emission of the fluorescent emission excited by the single radiation. The components are integrated by an integrating sphere, and the spectral energy distribution is measured by a spectrophotometer attached to the window of the integrating sphere, and then the single wavelength radiation is incident on the inner wall of the integrating sphere, Is integrated into the phosphor, and the fluorescence emission component is measured by the spectrophotometer, subtracted from the total emission component of the fluorescence emission measured earlier, reflected on the phosphor surface and reflected by the inner wall of the integrating sphere. The fluorescence emission component generated by being incident on the phosphor again is removed, and only the entire emission component of the fluorescence emission by the first input emission of the single emission is separated,
Then, instead of the phosphor, the spectral reflectance standard, the radiation of a single wavelength is incident, and integrating the total reflection component by said integrating sphere, to measure the spectral distribution in the spectroscopic measurement light controller At the wavelength of the radiation incident on the phosphor surface,
From the reflectance measurement value on the phosphor surface, the reflectance measurement value on the spectral reflectance standard and the absolute reflectance for the wavelength of the spectral reflectance standard, calculate the absorption energy and the absorbed photon quantity of the phosphor, Calculating the quantum of light from the fluorescence emission spectrum measured on the phosphor surface, and calculating the quantum efficiency of the phosphor from the ratio of the quantum of light absorbed by the phosphor and the quantum of the fluorescence. Characteristic method for measuring quantum efficiency of phosphor.
入射させ、前記放射の前記蛍光体面での反射成分と、放
射によって励起された蛍光発光の全放射成分を、積分球
によって積分し、その分光エネルギー分布を前記積分球
の窓に装着した分光測光器で測定し、次に、前記励起放
射を前記積分球内壁に入射させ、積分球内で積分させ蛍
光体に入射させ、その蛍光発光成分を、前記分光測光器
で測定し、先に測定した蛍光発光の全放射成分から差し
引き、前記蛍光体面で反射し、前記積分球内壁により反
射して再び前記蛍光体に入射して発生した蛍光発光成分
を除去し、前記励起放射の最初の入力放射による蛍光発
光の全放射成分のみを分離し、次に、前記蛍光体の代わ
りに、分光反射率標準に、前記励起放射を入射させ、そ
の全反射成分を前記積分球によって積分し、前記分光測
光器でその分光分布を測定し、前記蛍光体面に入射させ
た放射の蛍光体面での反射測定値と、前記分光反射率標
準での反射測定値と前記分光反射標準の前記波長に対す
る絶対反射率から、蛍光体の吸収エネルギーと吸収した
光量子量を算出し、次に前記蛍光体面で測定した分光ス
ペクトルから、励起放射の分光スペクトルを分離除去
し、残りの蛍光発光スペクトルから、その光量子量を算
出し、前記蛍光体が吸収した光量子量と、前記蛍光発光
の光量子量の比から、前記蛍光体の量子効率を算出する
ことを特徴とする蛍光体の量子効率測定方法。6. The excitation radiation is incident on the phosphor to be measured, and the reflected component of the radiation on the phosphor surface and the total emission component of the fluorescent emission excited by the radiation are integrated by an integrating sphere, The spectral energy distribution is measured by a spectrophotometer attached to the window of the integrating sphere, and then the excitation radiation is made incident on the inner wall of the integrating sphere, integrated in the integrating sphere, made incident on the phosphor, and the fluorescence emission is obtained. The component is measured by the spectrophotometer, subtracted from the total emission component of the fluorescence emission measured earlier, reflected on the phosphor surface, reflected by the inner wall of the integrating sphere, and again incident on the phosphor to generate the generated fluorescence. Removing the luminescent component, separating only the total radiant component of the fluorescence emission by the first input radiation of the excitation radiation, and then injecting the excitation radiation into a spectral reflectance standard instead of the phosphor, Total reflection component Integrating with an integrating sphere, measuring the spectral distribution with the spectrophotometer, measuring the reflection on the phosphor surface of the radiation incident on the phosphor surface, measuring the reflection with the spectral reflectance standard, and measuring the spectral reflection. From the standard absolute reflectance for the wavelength, the absorption energy of the phosphor and the amount of absorbed photons are calculated, and then the spectrum of excitation radiation is separated and removed from the spectrum measured on the surface of the phosphor, and the remaining fluorescence emission Calculating the quantum efficiency of the phosphor from the spectrum, calculating the quantum efficiency of the phosphor from the ratio of the optical quantum absorbed by the phosphor and the photoquantity of the fluorescence emission. Method.
3の窓を有する積分球と、光学系と、分光測定器とを備
え、前記第1の窓には測定対象の蛍光体と反射率標準が
配置され得、前記第2の窓には前記光学系が配置され、
前記第3の窓には前記分光測定器が配置され、請求項
1、2、5、または6記載の蛍光体の量子効率測定方法
を実行できることを特徴とする蛍光体の量子効率測定装
置。7. An integrating sphere having first, second, and third windows opened at a predetermined position, an optical system, and a spectrometer, and the first window has fluorescence to be measured. A body and a reflectance standard may be disposed, wherein said second window is disposed with said optical system;
7. The phosphor quantum efficiency measuring apparatus, wherein the spectrometer is arranged in the third window, and the phosphor quantum efficiency measuring method according to claim 1, 2, 5, or 6 can be executed.
ンズと、分光測定器とを備え、前記光学系から発射され
た単一波長の放射または励起放射を蛍光体または分光反
射率標準へ入射させ、前記分光測定器で測定する事によ
って、請求項3、または4記載の蛍光体の量子効率測定
方法を実行できることを特徴とする蛍光体の量子効率測
定装置。8. An optical system, a plane mirror, a field lens, and a spectrometer, wherein a single-wavelength radiation or excitation radiation emitted from the optical system is incident on a phosphor or a spectral reflectance standard. 5. The phosphor quantum efficiency measuring apparatus according to claim 3, wherein said method is capable of executing the phosphor quantum efficiency measuring method according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31433596A JP3287775B2 (en) | 1996-02-29 | 1996-11-26 | Method and apparatus for measuring quantum efficiency of phosphor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4257396 | 1996-02-29 | ||
JP8-42573 | 1996-02-29 | ||
JP31433596A JP3287775B2 (en) | 1996-02-29 | 1996-11-26 | Method and apparatus for measuring quantum efficiency of phosphor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09292281A JPH09292281A (en) | 1997-11-11 |
JP3287775B2 true JP3287775B2 (en) | 2002-06-04 |
Family
ID=26382281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31433596A Expired - Lifetime JP3287775B2 (en) | 1996-02-29 | 1996-11-26 | Method and apparatus for measuring quantum efficiency of phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3287775B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010073778A1 (en) | 2008-12-25 | 2010-07-01 | 浜松ホトニクス株式会社 | Spectrometer, spectrometry, and spectrometry program |
CN102539406A (en) * | 2012-01-18 | 2012-07-04 | 照能科技股份有限公司 | System for detecting light color and spectrum of LED fluorescent material and method thereof |
EP3392630A1 (en) * | 2017-04-19 | 2018-10-24 | Shimadzu Corporation | Quantum yield calculation method, spectrophotofluorometer and quantum yield calculation program |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19815109A1 (en) * | 1998-04-03 | 1999-10-07 | Bodenseewerk Perkin Elmer Co | Device for detecting a fluorescent dye |
JP2008070172A (en) * | 2006-09-13 | 2008-03-27 | Hitachi High-Technologies Corp | Spectrophotofluorometer and its correction method |
JP2009008509A (en) * | 2007-06-27 | 2009-01-15 | Shinshu Univ | Light emission quantum efficiency measuring device |
JP5033531B2 (en) * | 2007-07-30 | 2012-09-26 | 株式会社日立ハイテクノロジーズ | Spectrofluorometer |
JP5090837B2 (en) * | 2007-09-19 | 2012-12-05 | 浜松ホトニクス株式会社 | Spectrometer, spectroscopic method, and spectroscopic program |
US8119996B2 (en) | 2009-01-20 | 2012-02-21 | Otsuka Electronics Co., Ltd. | Quantum efficiency measurement apparatus and quantum efficiency measurement method |
FR2956208B1 (en) * | 2010-02-05 | 2012-04-27 | Centre Nat Rech Scient | METHOD FOR NON-CONTACT DETERMINATION OF CHARACTERISTICS OF A PHOTOCONVERTER |
JP5640257B2 (en) * | 2010-03-18 | 2014-12-17 | 大塚電子株式会社 | Quantum efficiency measurement method and quantum efficiency measurement device |
CN103105380A (en) * | 2011-11-10 | 2013-05-15 | 李建国 | Time resolution fluorescence system |
KR101365995B1 (en) * | 2012-08-31 | 2014-02-25 | 한국광기술원 | Apparatus and method for measuring absorption of led chip |
JP5588485B2 (en) * | 2012-09-13 | 2014-09-10 | 浜松ホトニクス株式会社 | Spectrometer, spectroscopic method, and spectroscopic program |
JP5944843B2 (en) | 2013-02-04 | 2016-07-05 | 浜松ホトニクス株式会社 | Spectrometer and spectroscopic method |
CN103308499B (en) * | 2013-05-24 | 2016-07-06 | 厦门大学 | A kind of blue-ray LED excitated fluorescent powder performance testing device and method of testing |
CN104089757B (en) * | 2014-03-14 | 2016-10-26 | 王明文 | Road transport hazardous cargo mark lamp of vehicle Detecting data and detection method |
JP6279399B2 (en) | 2014-05-23 | 2018-02-14 | 浜松ホトニクス株式会社 | Optical measuring device and optical measuring method |
JP6693694B2 (en) | 2014-12-02 | 2020-05-13 | 浜松ホトニクス株式会社 | Spectrometer and spectroscopic measurement method |
JP6613063B2 (en) * | 2015-07-07 | 2019-11-27 | 大塚電子株式会社 | Optical property measurement system |
CN105403548B (en) * | 2015-12-08 | 2018-11-13 | 厦门稀土材料研究所 | A kind of alternating temperature spectral measurement device |
JP6760494B2 (en) * | 2017-04-28 | 2020-09-23 | 株式会社島津製作所 | Control software for spectrofluorometers, spectroscopic measurement methods, and spectrofluorometers |
CN107228849B (en) * | 2017-06-23 | 2019-04-26 | 厦门大学 | The transmission-type test device and method of white light LED fluorescent powder alternating temperature spectral characteristic |
CN109507153A (en) * | 2018-12-26 | 2019-03-22 | 深圳市太赫兹科技创新研究院有限公司 | A kind of test method of quantum yield |
JP6681632B2 (en) * | 2019-05-22 | 2020-04-15 | 大塚電子株式会社 | Calibration method for optical property measurement system |
KR102368035B1 (en) * | 2020-07-14 | 2022-02-25 | 전북대학교산학협력단 | Quantum efficiency measurement device of solar cell with phosphor |
-
1996
- 1996-11-26 JP JP31433596A patent/JP3287775B2/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
ADV.MATER.,9[3](1997),p230−232 |
MOL.CRYST.LIQ.CRYST.,VOL.283(1996),p51−56 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010073778A1 (en) | 2008-12-25 | 2010-07-01 | 浜松ホトニクス株式会社 | Spectrometer, spectrometry, and spectrometry program |
KR20110102866A (en) | 2008-12-25 | 2011-09-19 | 하마마츠 포토닉스 가부시키가이샤 | Spectrometer, spectrometry, and spectrometry program |
US8462337B2 (en) | 2008-12-25 | 2013-06-11 | Hamamatsu Photonics K.K. | Spectrometer, spectrometry, and spectrometry program |
CN102539406A (en) * | 2012-01-18 | 2012-07-04 | 照能科技股份有限公司 | System for detecting light color and spectrum of LED fluorescent material and method thereof |
CN102539406B (en) * | 2012-01-18 | 2013-10-02 | 照能科技股份有限公司 | System for detecting light color and spectrum of LED fluorescent material and method thereof |
EP3392630A1 (en) * | 2017-04-19 | 2018-10-24 | Shimadzu Corporation | Quantum yield calculation method, spectrophotofluorometer and quantum yield calculation program |
US10267681B2 (en) | 2017-04-19 | 2019-04-23 | Shimadzu Corporation | Quantum yield calculation method, spectrophotofluorometer, and quantum yield calculation program |
Also Published As
Publication number | Publication date |
---|---|
JPH09292281A (en) | 1997-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3287775B2 (en) | Method and apparatus for measuring quantum efficiency of phosphor | |
Alkemade et al. | A double-beam method of spectral selection with flames | |
JP3682528B2 (en) | Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample | |
McCreery | Photometric standards for Raman spectroscopy | |
JP4418731B2 (en) | Photoluminescence quantum yield measurement method and apparatus used therefor | |
JP7412802B2 (en) | Spectroscopic measurement method | |
Zwinkels et al. | Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements | |
Cundall et al. | A fully compensated versatile spectrofluorimeter | |
JP3247845B2 (en) | Method and apparatus for measuring quantum efficiency of phosphor | |
JP2019113568A (en) | Spectrometric measurement device and spectrometric measurement method | |
JP3102485B2 (en) | Spectrophotometer | |
JP4141985B2 (en) | Spectrofluorometer and sample cell | |
Veillon et al. | High resolution atomic absorption spectrometry with a scanning Fabry-Perot interferometer | |
JP2003028716A (en) | Spectrometric instrument and method for spectrometric measurement | |
JPS62278436A (en) | Fluorescence light measuring method and apparatus | |
JP2000321126A (en) | Integrating sphere and spectroscopic measuring apparatus employing it | |
Prakash et al. | Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer | |
US20230258566A1 (en) | Fluorimeter cell and its calibration | |
JPH02259533A (en) | Method for correcting fluorescent stimulating spectrum and fluorescent emission spectrum of fluorescence spectrophotometer | |
Shaw et al. | Measurement of the ultraviolet-induced fluorescence yield from integrating spheres | |
JP2761215B2 (en) | Fluorescent color measurement device | |
von Elbe et al. | Ultraviolet and visible spectrophotometry | |
Bare et al. | Monochromator wavelength calibration standards extending into the near-infrared using second-and third-order emission lines from mercury vapor lamps | |
Suzuki | Absolute Photoluminescence Quantum Yield of Phosphors | |
US3986769A (en) | Vapor density dependent optical filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080315 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090315 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100315 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110315 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110315 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110315 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110315 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120315 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130315 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140315 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |