JPH10293063A - Measuring apparatus for quantum efficiency of phosphor - Google Patents

Measuring apparatus for quantum efficiency of phosphor

Info

Publication number
JPH10293063A
JPH10293063A JP10295897A JP10295897A JPH10293063A JP H10293063 A JPH10293063 A JP H10293063A JP 10295897 A JP10295897 A JP 10295897A JP 10295897 A JP10295897 A JP 10295897A JP H10293063 A JPH10293063 A JP H10293063A
Authority
JP
Japan
Prior art keywords
light
phosphor
measured
quantum efficiency
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10295897A
Other languages
Japanese (ja)
Other versions
JP3266046B2 (en
Inventor
Takeshi Nishiura
毅 西浦
Teruaki Shigeta
照明 重田
Kazuaki Okubo
和明 大久保
Shigeru Horii
堀井  滋
Tomizo Matsuoka
富造 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10295897A priority Critical patent/JP3266046B2/en
Publication of JPH10293063A publication Critical patent/JPH10293063A/en
Application granted granted Critical
Publication of JP3266046B2 publication Critical patent/JP3266046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring apparatus which simplifies a measuring method and its constitution, which reduces the number of times of the formation of a vacuum atmosphere in a measurement and which reduces the number of times of the turning-on-and-off operation of a light source for excitation. SOLUTION: Excitation light from a light source 1 is spectrally diffracted into beams of excitation light in a specific wavelength region (ultraviolet rays at 147 nm and those at 254 nm), a phosphor 9 to be measured is irradiated with the respective beams of excitation light, the measurement of the emission spectrum, the quantity of reflected light and the quantity of fluorescent emitted light of the phosphor 9, to be measured, by the beam of excitation light at 147 nm, the measurement of the emission spectrum, the quantity of reflected light and the quantity of fluorescent emitted light of the phosphor 9, to be measured, by the beam of excitation light at 254 nm and the measurement of the quantity of ultraviolet rays by the beam of excitation light at 254 nm are performed alternately. Measured data by the measurements are computed, and the quantum efficiency by the beam of excitation light at 147 nm of the phosphor 9 to be measured is computed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光ランプやプラ
ズマディスプレイなどに用いられる、蛍光体の量子効率
を測定する量子効率測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum efficiency measuring device for measuring the quantum efficiency of a phosphor used in a fluorescent lamp, a plasma display, or the like.

【0002】[0002]

【従来の技術】蛍光体の量子効率は、例えばランプ用蛍
光体やプラズマディスプレイ用蛍光体が到達し得る効率
の極限を知る尺度として極めて重要で、主として絶対値
測定法と相対値測定法の2種類の量子効率測定法が用い
られている。
2. Description of the Related Art The quantum efficiency of a phosphor is extremely important as a measure for knowing the limit of the efficiency that can be reached by, for example, a phosphor for a lamp or a phosphor for a plasma display. Different types of quantum efficiency measurement methods have been used.

【0003】この内、絶対値測定法は、蛍光体に吸収さ
れる励起光の光量子数(吸収光量子数)と、蛍光発光に
より得られる光量子数(蛍光光量子数)とを個別に測定
し、吸収光量子数と蛍光光量子数との比から量子効率を
求める方法である。
In the absolute value measurement method, the photon number (excitation light number) of the excitation light absorbed by the phosphor and the photon number (fluorescence light number) obtained by fluorescence emission are individually measured, and the absolute value is measured. In this method, the quantum efficiency is obtained from the ratio between the photon number and the fluorescent light number.

【0004】この方法では蛍光体に吸収される励起光の
吸収光量子数を、以下の方法で求める。まず、単一波長
の励起光に対して、サーモパイルなどの熱形放射検出器
や絶対放射計を使って、蛍光体に照射される励起光の光
量子数(励起光量子数)を測定し、絶対反射率が既知
の、例えば硫酸バリウムなどを反射率標準として、蛍光
体から反射される反射光量子数(反射光量子数)を測定
し、先に求めた励起光量子数から反射光量子数を減算す
ることにより、吸収光量子数を求める。
In this method, the absorption photon number of the excitation light absorbed by the phosphor is obtained by the following method. First, the excitation light of a single wavelength is measured using a thermal radiation detector such as a thermopile or an absolute radiometer to measure the photon number (excitation light number) of the excitation light applied to the phosphor, and the absolute reflection is measured. By measuring the number of reflected light quanta reflected from the phosphor (reflected light quantum number) using a known standard, for example, barium sulfate as the reflectance standard, and subtracting the reflected light quantum number from the excitation light quantum number obtained earlier, Find the absorption photon number.

【0005】次に、蛍光体からの蛍光発光スペクトルを
分光器で測定し、その絶対量を前記熱形放射検出器や絶
対放射計の前面に、励起光のみを除去する光学フィルタ
を装着して求め、蛍光発光スペクトルと絶対量とからそ
の蛍光発光の光量子数(蛍光光量子数)を導き、先に求
めた吸収光量子数と、この蛍光光量子数との比から、蛍
光体の量子効率を求める方法である。
Next, a fluorescence emission spectrum from the phosphor is measured by a spectroscope, and an absolute amount thereof is attached to an optical filter for removing only excitation light in front of the thermal emission detector or the absolute radiometer. A method of deriving the photon number of the fluorescence emission (fluorescence light quantum number) from the fluorescence emission spectrum and the absolute amount, and calculating the quantum efficiency of the phosphor from the ratio of the absorption light quantum number obtained above and this fluorescence light quantum number It is.

【0006】この方法では、励起光の吸収光量子数と蛍
光光量子数がいずれも微弱であり、これをすべて取り込
むための積分球が必要となる。この対策として、励起光
用光源の光出力を高めたり、高感度の熱形放射検出器や
絶対放射計、分光器などを用いる必要があった。また、
積分球と反射率標準を使用するため、量子効率測定装置
の構成が複雑で、かつ精度を要した。
In this method, the absorption light quantum number and the fluorescence light quantum number of the excitation light are both weak, and an integrating sphere is required to capture all of them. As a countermeasure, it was necessary to increase the light output of the excitation light source and to use a high-sensitivity thermal radiation detector, absolute radiometer, spectroscope, and the like. Also,
Since an integrating sphere and a reflectance standard are used, the structure of the quantum efficiency measuring device is complicated and requires high accuracy.

【0007】これらの課題を解決する手段として、我々
は先に、光量不足の一要因となる積分球や、吸収光量子
数を求める際に必要となる反射率標準を用いることな
く、蛍光体の量子効率測定ができる簡便な量子効率測定
方法を提案している(特願平8−301478号)。
[0007] As means for solving these problems, we first use the fluorescent quanta without using an integrating sphere, which is a cause of the light quantity shortage, or a reflectance standard, which is necessary for obtaining the number of absorbed light quanta. A simple quantum efficiency measurement method capable of measuring efficiency has been proposed (Japanese Patent Application No. 8-301478).

【0008】図2に、我々が提案した前記蛍光体の量子
効率測定方法、および測定装置の概要を示す。
FIG. 2 shows an outline of a method of measuring the quantum efficiency of the phosphor and a measuring apparatus proposed by the present inventors.

【0009】この方法は、まず、測定(1)として紫外
域から真空紫外域における、特定波長λ1(以下、波長
λ1と呼ぶ)での蛍光体への励起光の光量子数(波長λ
1での励起光量子数)を測定し、次に、測定(2)とし
て特定波長λ2(以下、波長λ2と呼ぶ)での蛍光体へ
の励起光量子数(波長λ2での励起光量子数)を測定す
る。
In this method, first, as a measurement (1), the photon number (excitation wavelength) of excitation light to a phosphor at a specific wavelength λ1 (hereinafter referred to as wavelength λ1) in the ultraviolet region to the vacuum ultraviolet region is measured.
1), and then, as a measurement (2), the excitation light quantum number (the excitation light quantum number at the wavelength λ2) of the phosphor at the specific wavelength λ2 (hereinafter referred to as the wavelength λ2) is measured. I do.

【0010】次に、測定(3)として波長λ1の蛍光体
から反射される反射光量子数(波長λ1での反射光量子
数)を測定し、測定(4)として波長λ2の蛍光体から
反射される反射光量子数(波長λ2での反射光量子数)
を測定する。
Next, as a measurement (3), the number of reflected light quantums reflected from the phosphor of wavelength λ1 (quantity of reflected light at wavelength λ1) is measured, and as measurement (4), the number of reflected light is reflected from the phosphor of wavelength λ2. Reflected light quantum number (reflected light quantum number at wavelength λ2)
Is measured.

【0011】次に、測定(5)として、波長λ1の蛍光
体から蛍光発光される蛍光光量子数(波長λ1での蛍光
光量子数)を測定し、測定(6)として波長λ2の蛍光
体から蛍光発光される蛍光光量子数(波長λ2での蛍光
光量子数)を測定する。
Next, as a measurement (5), the fluorescent light quantum number (the fluorescent light quantum number at the wavelength λ1) emitted from the phosphor having the wavelength λ1 is measured, and as the measurement (6), the fluorescence from the phosphor having the wavelength λ2 is measured. The fluorescent light quantum number (the fluorescent light quantum number at the wavelength λ2) to be emitted is measured.

【0012】以上、測定(1)から測定(6)までの測
定で得られた各々の光量子数を演算し、最終的に、波長
λ1の励起光量子数,反射光量子数,蛍光光量子数か
ら、波長λ2おける蛍光体の量子効率を求める方法であ
る。
As described above, each photon number obtained in the measurement from the measurement (1) to the measurement (6) is calculated, and finally, the excitation light quantum number, the reflected light quantum number, and the fluorescence light quantum number of the wavelength λ1 are used to calculate the wavelength. This is a method for determining the quantum efficiency of the phosphor at λ2.

【0013】[0013]

【発明が解決しようとする課題】しかし、この方法で蛍
光体の量子効率を測定する場合、波長λ1と波長λ2の
切り替え時や、蛍光体と前記蛍光体への入射光量を測定
する受光器の切り替え時などにおいて、その都度、真空
雰囲気を形成するための真空チャンバの蓋を開閉する必
要があった。
However, when the quantum efficiency of the phosphor is measured by this method, when the wavelength .lambda.1 and the wavelength .lambda.2 are switched, or when the light receiving device for measuring the amount of light incident on the phosphor and the phosphor is used. At the time of switching or the like, it is necessary to open and close a lid of a vacuum chamber for forming a vacuum atmosphere each time.

【0014】そのため、前記測定手順および測定項目に
応じて、繰り返して真空チャンバを大気雰囲気にした
り、真空雰囲気にするなど、何度も真空排気することに
なり、量子効率の測定時間がかかるばかりでなく、蛍光
体の励起用光源(紫外線発生用光源)の点滅回数が多く
なり、励起用光源への負担が大きくなるという課題があ
った。
Therefore, the vacuum chamber is repeatedly evacuated to the air atmosphere or the vacuum atmosphere repeatedly according to the measurement procedure and the measurement items, and it takes much time to measure the quantum efficiency. In addition, the number of times the phosphor light source (ultraviolet ray generating light source) is turned on and off is increased, and the load on the excitation light source is increased.

【0015】本発明は、このような蛍光体の量子効率測
定方法および装置において、測定方法を簡略化するとと
もに、測定時における真空雰囲気を形成する回数を低減
させ、かつ励起用光源の点滅回数を低減させることを目
的とする。
The present invention provides a method and an apparatus for measuring the quantum efficiency of a phosphor, which simplifies the measuring method, reduces the number of times of forming a vacuum atmosphere at the time of measurement, and reduces the number of times the excitation light source blinks. The purpose is to reduce it.

【0016】[0016]

【課題を解決するための手段】この課題を解決するため
に、本発明の蛍光体の量子効率測定装置は、紫外域から
真空紫外域までの放射束を発生する光源と、前記光源か
らの放射束を、少なくとも2つ以上の波長域に分光する
ための分光手段と、前記分光手段により複数の波長域に
分光された波長域の1つにおいて、その波長域での放射
束に対する吸収率と量子効率が既知で、複数の波長域の
うち前記とは別の波長域における量子効率を測定する被
測定蛍光体と、前記光源および前記分光手段から照射さ
れる放射束をモニターし、前記被測定蛍光体と同一位置
に交互に設定されたモニター受光器と、前記被測定蛍光
体と前記モニター受光器とを測定条件に応じて、交互に
切り替える蛍光体切り替え手段と、前記被測定蛍光体の
近傍でかつ、前記光源および前記分光手段から前記被測
定蛍光体に対して照射される放射束を遮らない位置に配
置され、前記光源および前記分光手段から前記被測定蛍
光体に照射された放射束のうち、被測定蛍光体で反射さ
れた放射束と、前記被測定蛍光体からの蛍光発光を受光
する反射光受光器と、前記被測定蛍光体の近傍に配置
し、前記光源および前記分光手段から照射された放射束
により、被測定蛍光体が蛍光発光し、その蛍光発光の発
光スペクトルを分光測定する発光スペクトル測定手段
と、前記光源の出射側,分光手段,被測定蛍光体,モニ
ター受光器,蛍光体切り替え手段,反射光受光器,発光
スペクトル測定手段の入射側を同一の容器内に収容し、
真空雰囲気にするための真空容器と、前記真空容器内の
雰囲気を真空雰囲気に保つための真空排気手段と、前記
光源の駆動−停止(点灯−消灯)用制御、前記分光手段
の分光用制御、前記蛍光体切り替え手段の駆動−停止用
制御、前記真空排気手段の駆動−停止用制御など、各種
の機構手段を制御するとともに、前記モニター受光器や
前記反射光受光器からの光電変換信号、前記発光スペク
トル測定手段からの分光データ信号などから、量子効率
を演算する演算制御手段とから構成し、特定の2つの波
長域において、前記モニター受光器から得られる、前記
被測定蛍光体に入射する前記光源および前記分光手段か
らの放射束の測定値と、前記反射光受光器から得られ
る、前記被測定蛍光体からの反射光と蛍光発光の測定値
と、前記発光スペクトル測定手段から得られる、前記被
測定蛍光体からの蛍光発光の発光スペクトル値とから、
前記被測定蛍光体の量子効率を求めるようにしたもので
ある。
In order to solve this problem, a phosphor quantum efficiency measuring apparatus according to the present invention comprises: a light source for generating a radiant flux from an ultraviolet region to a vacuum ultraviolet region; A spectroscopic unit for dispersing the bundle into at least two or more wavelength ranges; and an absorptivity and a quantum for a radiant flux in one of the wavelength ranges divided into a plurality of wavelength ranges by the spectral unit. The efficiency is known, and the fluorescent substance to be measured for measuring the quantum efficiency in a wavelength range different from the wavelength range out of a plurality of wavelength ranges, and the radiant flux emitted from the light source and the spectral unit are monitored, A monitor light receiver that is alternately set at the same position as the body, a phosphor switching unit that alternately switches the phosphor to be measured and the monitor light receiver in accordance with measurement conditions, and a vicinity of the phosphor to be measured. And said A radiation source irradiating the fluorescent substance to be measured from the light source and the spectroscopic means to a position not to block the luminous flux emitted from the light source and the spectral means; A radiant flux reflected by the phosphor, a reflected light receiver for receiving fluorescence emitted from the measured phosphor, and a radiation radiated from the light source and the spectroscopic means disposed near the measured phosphor. The fluorescent substance to be measured emits fluorescent light by the bundle, and an emission spectrum measuring means for spectrally measuring an emission spectrum of the fluorescent light emission, an emission side of the light source, a spectral means, a fluorescent substance to be measured, a monitor receiver, and a fluorescent substance switching means , The incident side of the reflected light receiver and the emission spectrum measuring means are housed in the same container,
A vacuum vessel for creating a vacuum atmosphere, vacuum evacuation means for keeping the atmosphere in the vacuum vessel at a vacuum atmosphere, control for driving / stopping (lighting-off) of the light source, control for spectroscopy of the spectroscopic means, Drive-stop control of the phosphor switching means, drive-stop control of the evacuation means, etc., while controlling various mechanism means, photoelectric conversion signals from the monitor light receiver and the reflected light light receiver, From the spectral data signal from the emission spectrum measuring means, and from the arithmetic control means for calculating the quantum efficiency, in two specific wavelength ranges, obtained from the monitor light receiver, and incident on the phosphor to be measured. A measured value of the radiant flux from the light source and the spectroscopic means, a measured value of the reflected light and the fluorescence emission from the measured phosphor obtained from the reflected light receiver, and the emission spectrum Obtained from Le measuring means, wherein a light emitting spectrum values of the fluorescence emission from the measured phosphor,
The quantum efficiency of the fluorescent substance to be measured is determined.

【0017】また、前記光源を重水素ランプとするとと
もに、前記分光手段を、少なくとも2つ以上の狭帯域透
過フィルタとし、これを相互に選択するようにしたもの
である。さらに、モニター受光器と、反射光受光器をシ
リコンホトダイオードとするとともに、前記反射光受光
器を2つの受光器とし、いずれかの一方の受光器の受光
面に、前記光源および前記分光手段から前記被測定蛍光
体に照射される放射束のうち、被測定蛍光体からの反射
光を遮光し、蛍光発光のみを透過させるバンドパスフィ
ルタとしたものである。
Further, the light source is a deuterium lamp, and the spectroscopic means is at least two or more narrow-band transmission filters, which are mutually selected. Furthermore, the monitor light receiver and the reflected light receiver are silicon photodiodes, the reflected light receiver is two light receivers, and the light receiving surface of one of the light receivers is provided by the light source and the spectroscopic means. This is a band-pass filter that shields the reflected light from the measured phosphor of the radiant flux irradiated on the measured fluorescent body and transmits only the fluorescence emission.

【0018】加えて、発光スペクトル測定手段を、複数
の波長域の発光スペクトルを同時に測定するポリクロメ
ータとしたものである。
In addition, the emission spectrum measuring means is a polychromator for simultaneously measuring emission spectra in a plurality of wavelength ranges.

【0019】また、前記分光手段により選択分光され
る、複数の波長域の中心波長が、147nm,172n
m,185nm,254nmのいずれかの組み合わせと
したものである。
Further, the center wavelengths of a plurality of wavelength ranges selectively spectrally separated by the spectral means are 147 nm and 172n.
m, 185 nm, or 254 nm.

【0020】また、前記光源と前記被測定蛍光体とのな
す光軸上に、前記光源からの放射束を照射または遮光さ
せるシャッタを配置したものである。
Further, a shutter for irradiating or blocking the radiant flux from the light source is arranged on an optical axis formed by the light source and the fluorescent substance to be measured.

【0021】また、本発明の蛍光体の量子効率測定方法
は、被測定蛍光体の周囲雰囲気を真空雰囲気にする工程
と、真空雰囲気としたあとで、前記第2の励起光を前記
被測定蛍光体に照射して、前記第2の励起光における前
記被測定蛍光体の発光スペクトル,反射光量と蛍光発光
量および、前記第2の励起光の紫外線量の測定を行う工
程と、前記第1の励起光における前記被測定蛍光体の発
光スペクトル,反射光量と蛍光発光量および、第1の励
起光の紫外線量の測定を行う工程と、前記各測定を行う
工程で得られたデータを演算して、前記被測定蛍光体の
前記第2の励起光での量子効率を算出する工程とを少な
くとも含み、前記測定を行う工程における測定開始から
終了までの間、1回の真空雰囲気を形成したままの状態
で測定を行うことを特徴とする。
Further, in the method for measuring quantum efficiency of a phosphor according to the present invention, the ambient atmosphere around the phosphor to be measured is set to a vacuum atmosphere, and after the vacuum atmosphere, the second excitation light is converted to the fluorescence to be measured. Irradiating a body to measure an emission spectrum, a reflected light amount and a fluorescent light emission amount of the fluorescent substance to be measured in the second excitation light, and an ultraviolet light amount of the second excitation light; The data obtained in the step of measuring the emission spectrum, the reflected light amount and the fluorescent light emission amount of the measured phosphor in the excitation light, and the ultraviolet light amount of the first excitation light, and the data obtained in the respective measurement steps are calculated. Calculating the quantum efficiency of the phosphor under measurement with the second excitation light, from the start to the end of the measurement in the step of performing the measurement, in which one vacuum atmosphere is formed. Making measurements in a state And it features.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1を用いて説明する。図1は、紫外域から真空紫
外域における蛍光体の量子効率を測定するための、量子
効率測定装置の概要を示す構成図である。
Embodiments of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram showing an outline of a quantum efficiency measuring device for measuring the quantum efficiency of a phosphor in an ultraviolet region to a vacuum ultraviolet region.

【0023】図1において、1は紫外域から真空紫外域
までの放射束(以下励起光と呼ぶ)を発生する光源で、
好ましくは重水素ランプである。2は光源1を点灯する
光源用電源、3は光源1からの励起光を照射または遮断
させるシャッタ、4はシャッタ3を開閉させるシャッタ
駆動手段で、電磁ソレノイドである。5は光源1から照
射される励起光を集光するための集光手段で、サファイ
アレンズである。
In FIG. 1, reference numeral 1 denotes a light source for generating a radiant flux (hereinafter referred to as excitation light) from the ultraviolet region to the vacuum ultraviolet region.
Preferably, it is a deuterium lamp. Reference numeral 2 denotes a light source power source for turning on the light source 1, reference numeral 3 denotes a shutter for irradiating or blocking excitation light from the light source 1, and reference numeral 4 denotes shutter driving means for opening and closing the shutter 3, which is an electromagnetic solenoid. Reference numeral 5 denotes a condensing means for condensing the excitation light emitted from the light source 1, which is a sapphire lens.

【0024】6は光源1からの励起光を任意の波長域に
分光するための分光手段で、複数の狭帯域透過フィルタ
7である。狭帯域透過フィルタ7は好ましくは金属多層
膜からなる干渉フィルタで、中心波長が147nm,1
72nm,185nm,254nmなどが用意されてい
る。8は分光手段6により、特定の波長域を選定するた
めに、狭帯域透過フィルタ7の中から、特定のフィルタ
を切り替えるフィルタ切り替え手段で、モータである。
Reference numeral 6 denotes a spectral unit for dispersing the excitation light from the light source 1 into an arbitrary wavelength range. The narrow band transmission filter 7 is preferably an interference filter made of a metal multilayer film, and has a center wavelength of 147 nm, 1
72 nm, 185 nm, 254 nm and the like are prepared. Reference numeral 8 denotes a filter switching unit that switches a specific filter from the narrow band transmission filters 7 in order to select a specific wavelength range by the spectroscopic unit 6, and is a motor.

【0025】9は分光手段6により複数の波長域に分光
された波長域の1つにおいて、その波長域での励起光に
対する吸収率と量子効率が既知で、複数の波長域のうち
前記既知の波長域とは別の波長域における量子効率を測
定するための被測定蛍光体、10は光源1からの励起光
をモニターするモニター受光器で、受光面の前面に波長
感度の依存性がないサリチル酸ナトリウムの膜を形成
(図示せず)したシリコンホトダイオードである。
Reference numeral 9 denotes one of the wavelength ranges separated into a plurality of wavelength ranges by the spectral means 6, the absorption rate and the quantum efficiency of the excitation light in the wavelength range are known, and the known one of the plurality of wavelength ranges is known. A fluorescent substance to be measured for measuring the quantum efficiency in a wavelength range different from the wavelength range, 10 is a monitor light receiver for monitoring the excitation light from the light source 1, and salicylic acid having no wavelength sensitivity dependence on the front surface of the light receiving surface. This is a silicon photodiode on which a sodium film is formed (not shown).

【0026】11は被測定蛍光体9とモニター受光器1
0とを測定条件に応じて、交互に切り替える蛍光体切り
替え手段で回転機構からなる。被測定蛍光体9とモニタ
ー受光器10のいずれも、同一の蛍光体切り替え手段1
1にそれぞれ配置している。
Reference numeral 11 denotes the fluorescent substance 9 to be measured and the monitor light receiver 1
A phosphor switching means for alternately switching between 0 and 0 in accordance with the measurement conditions is provided by a rotating mechanism. The same phosphor switching means 1 is used for both the phosphor 9 to be measured and the monitor light receiver 10.
1, respectively.

【0027】12は蛍光体切り替え手段11を回転させ
るための回転駆動手段で、モータである。13aと13
bはいずれも被測定蛍光体9の近傍でかつ、光源1およ
び分光手段6から被測定蛍光体9に対して照射される励
起光を遮らない位置に配置され、光源1および分光手段
6から被測定蛍光体9に照射された励起光のうち、被測
定蛍光体9で反射された励起光と、被測定蛍光体9から
の蛍光発光を受光する反射光受光器で、いずれも受光面
の前面に波長感度の依存性がないサリチル酸ナトリウム
の膜を形成(図示せず)したシリコンホトダイオードで
ある。
Reference numeral 12 denotes a rotation driving means for rotating the phosphor switching means 11, which is a motor. 13a and 13
b is disposed near the fluorescent body 9 to be measured and at a position where the excitation light emitted from the light source 1 and the spectroscopic means 6 to the fluorescent body 9 to be measured is not blocked. Of the excitation light applied to the measurement phosphor 9, the excitation light reflected by the measurement target phosphor 9 and the reflected light receiver that receives the fluorescence emission from the measurement target phosphor 9. A silicon photodiode having a film of sodium salicylate (not shown) having no dependency on wavelength sensitivity.

【0028】14は反射光受光器13bの前面に配置さ
れ、被測定蛍光体9からの反射光と蛍光発光のうち、反
射光(光源1からの励起光のうち、被測定蛍光体9によ
り反射される励起光)を遮光し、蛍光発光のみを選択透
過させる励起光カットフィルタで、バンドパスフィルタ
である。15aはモニター受光器10からの光電流を電
圧信号に変換する電圧変換手段、15bは反射光受光器
13aからの光電流を電圧信号に変換する電圧変換手
段、15cは反射光受光器13bからの光電流を電圧信
号に変換する電圧変換手段で、電圧変換手段15a,1
5b,15cはいずれもデジタルボルトメータである。
Numeral 14 is disposed on the front surface of the reflected light receiver 13b, and is a reflection light (reflected by the measured phosphor 9 of the excitation light from the light source 1) out of the reflected light and the fluorescent light emitted from the measured phosphor 9. Excitation light), and a band-pass filter. 15a is a voltage converting means for converting the photocurrent from the monitor light receiver 10 into a voltage signal, 15b is a voltage converting means for converting the photocurrent from the reflected light receiver 13a into a voltage signal, and 15c is a voltage converting means from the reflected light receiver 13b. Voltage converting means for converting a photocurrent into a voltage signal;
5b and 15c are digital voltmeters.

【0029】16は被測定蛍光体9の近傍に配置し、光
源1と集光手段5および分光手段6から照射された励起
光により、被測定蛍光体9が蛍光発光し、その蛍光発光
を後記の発光スペクトル測定手段17に導くための導光
手段で、光学ファイバーである。17は導光手段16を
介して被測定蛍光体9からの蛍光発光を分光測定するた
めの発光スペクトル測定手段で、ポリクロメータ(マル
チチャンネル分光器など)である。
Numeral 16 is arranged near the fluorescent substance 9 to be measured, and the fluorescent substance 9 to be measured emits fluorescent light by the excitation light emitted from the light source 1 and the condensing means 5 and the spectral means 6, and the fluorescent light emission is described later. The light guiding means for guiding the light to the emission spectrum measuring means 17 is an optical fiber. Reference numeral 17 denotes an emission spectrum measuring means for spectroscopically measuring the fluorescence emission from the fluorescent substance 9 to be measured via the light guiding means 16, which is a polychromator (such as a multi-channel spectrometer).

【0030】18は光源1の出射側、シャッタ3、集光
手段5,分光手段6,被測定蛍光体9,モニター受光器
10,蛍光体切り替え手段11,反射光受光器13a,
13b、励起光カットフィルタ14,導光手段16の入
射側を真空雰囲気にするための真空容器で、真空チャン
バである。
Reference numeral 18 denotes an emission side of the light source 1, the shutter 3, the light condensing means 5, the spectroscopic means 6, the phosphor to be measured 9, the monitor light receiver 10, the phosphor switching means 11, the reflected light light receiver 13a,
13b, a vacuum chamber for making the entrance side of the excitation light cut filter 14 and the light guide means 16 into a vacuum atmosphere, which is a vacuum chamber.

【0031】19は真空容器内の雰囲気を、10ー2〜1
0ー6Torr程度の真空に保つための真空排気手段で、
ロータリポンプとオイルディフュージョンポンプの組み
合わせである。
Numeral 19 designates the atmosphere in the vacuum vessel as 10-2 to 1
Evacuation means to maintain a vacuum of about 0-6 Torr,
It is a combination of a rotary pump and an oil diffusion pump.

【0032】20は光源用電源2の駆動−停止用制御信
号、シャッタ駆動手段4の駆動−停止用制御信号、フィ
ルタ切り替え手段8の駆動−停止用制御信号、回転駆動
手段12の駆動−停止用制御信号、光電変換手段15
a,15b,15cからの電気信号、発光スペクトル測
定手段17からの分光データ信号、真空排気手段19の
駆動−停止用制御信号などを後記の演算制御手段21に
伝達するための信号伝達系(GP−IBバスなど)、2
1は前記各種の機構手段を制御し、電気信号や分光デー
タ信号から量子効率を演算させるための演算制御手段
で、コンピュータから構成される。
Reference numeral 20 denotes a control signal for driving / stopping the light source power supply 2, a control signal for driving / stopping the shutter driving means 4, a control signal for driving / stopping the filter switching means 8, and a driving / stopping signal for the rotation driving means 12. Control signal, photoelectric conversion means 15
a signal transmission system (GP) for transmitting an electric signal from a, 15b, 15c, a spectral data signal from the emission spectrum measuring means 17, a control signal for driving / stopping the evacuation means 19, and the like to the arithmetic and control means 21 described later. -IB bus, etc.), 2
Numeral 1 denotes arithmetic control means for controlling the above-mentioned various mechanical means and calculating quantum efficiency from electric signals and spectral data signals, and is constituted by a computer.

【0033】以上のように構成された、蛍光体の量子効
率測定装置について、以下、その動作を述べる。なお、
本実施の形態の説明では、一例として被測定蛍光体9の
波長254nmでの励起光に対する吸収率と量子効率が
既知で、波長147nmにおける蛍光体の量子効率を、
前記の量子効率測定装置を用いて測定する方法について
説明する。
The operation of the phosphor quantum efficiency measuring device configured as described above will be described below. In addition,
In the description of the present embodiment, as an example, the absorptance and quantum efficiency of the measured phosphor 9 for the excitation light at the wavelength of 254 nm are known, and the quantum efficiency of the phosphor at the wavelength of 147 nm is calculated as follows.
A method of measuring using the above quantum efficiency measuring device will be described.

【0034】まず、真空容器18の上蓋(図示せず)を
開け、蛍光体切り替え手段11に、量子効率を測定しよ
うとする被測定蛍光体9を固定する。この被測定蛍光体
9は蛍光体切り替え手段11に着脱可能な蛍光体ホルダ
ー(図示せず)内に一定の圧力で押圧して充填されてお
り、被測定蛍光体9の押圧した蛍光体面と、光源1から
シャッタ3、集光手段5、分光手段6を介して被測定蛍
光体9に照射される励起光の光軸Aとのなす角度αは約
45゜に設定されている。
First, the upper lid (not shown) of the vacuum vessel 18 is opened, and the phosphor 9 to be measured whose quantum efficiency is to be measured is fixed to the phosphor switching means 11. The measured phosphor 9 is filled in a phosphor holder (not shown) detachable from the phosphor switching means 11 by pressing with a certain pressure, and the pressed phosphor surface of the measured phosphor 9 and The angle α between the excitation light emitted from the light source 1 via the shutter 3, the light condensing means 5, and the spectroscopic means 6 to the optical axis A of the excitation light to be measured 9 is set to about 45 °.

【0035】この被測定蛍光体9の固定が完了した後、
真空容器18の上蓋を閉じて、真空容器18が密閉され
た状態で、演算制御手段21であるコンピュータからの
指令により、真空排気手段19であるロータリポンプと
ディフュージョンポンプを稼働させ、真空容器18の雰
囲気(大気)を排気し、真空容器18内を10ー2〜10
ー6Torrの真空に保つように制御する。
After the fixing of the fluorescent substance 9 to be measured is completed,
With the upper lid of the vacuum vessel 18 closed and the vacuum vessel 18 hermetically closed, the rotary pump and the diffusion pump as the vacuum exhausting means 19 are operated by a command from a computer as the arithmetic and control means 21 to operate the vacuum vessel 18. The atmosphere (atmosphere) is exhausted, and the inside of the vacuum vessel 18 is 10-2 to 10
Control to maintain a vacuum of -6 Torr.

【0036】上記の動作と並行して、演算制御手段21
からの指令により、光源用電源2を介して光源1を点灯
させ、約30分程度、励起光が安定するまで待つ。な
お、光源1から照射される励起光が安定するまでの間
は、シャッタ3はシャッタ駆動手段4である電磁ソレノ
イドを制御手段21からの指令により閉じており、集光
手段5側に励起光が照射されないようにしている。
In parallel with the above operation, the operation control means 21
The light source 1 is turned on via the light source power supply 2 in response to a command from the controller, and the apparatus waits for about 30 minutes until the excitation light is stabilized. Until the excitation light emitted from the light source 1 is stabilized, the shutter 3 closes the electromagnetic solenoid, which is the shutter driving means 4, according to a command from the control means 21. It is not irradiated.

【0037】光源1の励起光が安定した後、集光手段5
であるサファイアレンズの出射側に設けた分光手段6で
ある、狭帯域透過フィルタ7のうち、波長147nmの
特定波長域を透過させるフィルタを、演算制御手段21
からの指令により、フィルタ切り替え手段8を介して選
定し、光軸A上に設定する。
After the excitation light of the light source 1 is stabilized, the focusing means 5
Of the narrow band transmission filter 7, which is the spectral unit 6 provided on the emission side of the sapphire lens, and transmits a specific wavelength range of 147 nm to the arithmetic control unit 21
Is selected via the filter switching means 8 and set on the optical axis A.

【0038】このような状態において、まず、147n
mの特定波長域における被測定蛍光体9の発光スペクト
ルを測定する。
In such a state, first, 147n
An emission spectrum of the measured phosphor 9 in a specific wavelength range of m is measured.

【0039】具体的には、演算制御手段21からの指令
により、シャッタ駆動手段4を介して、シャッタ3を開
ける。この時、被測定蛍光体9には、光源1からの励起
光が集光手段5で集光され、分光手段6を介して狭帯域
透過フィルタ7により、147nmの特定波長光(14
7nm紫外光)として照射される。
Specifically, the shutter 3 is opened via the shutter driving means 4 in response to a command from the arithmetic control means 21. At this time, the excitation light from the light source 1 is condensed by the condensing means 5 on the phosphor 9 to be measured, and the light having a specific wavelength of 147 nm (14
7 nm ultraviolet light).

【0040】この147nm紫外光が被測定蛍光体9に
照射されると可視光として蛍光発光し、この蛍光発光を
被測定蛍光体9の近傍に配置した導光手段16である光
学ファイバーに導き、発光スペクトル測定手段17であ
るポリクロメータにより、被測定蛍光体9の発光スペク
トルデータとして信号伝達系20を介して演算制御手段
21であるコンピュータに取り込む。なお、被測定蛍光
体9と導光手段16である光学ファイバーの入射側との
なす光軸Bは、光軸Aに対して角度βに設定しており、
具体的には角度βは約90゜である。
When the 147 nm ultraviolet light is irradiated on the fluorescent substance 9 to be measured, the fluorescent substance 9 emits fluorescent light as visible light, and the fluorescent light is guided to an optical fiber which is a light guiding means 16 disposed near the fluorescent substance 9 to be measured. The polychromator, which is the emission spectrum measuring means 17, takes in the emission spectrum data of the measured phosphor 9 via the signal transmission system 20 into the computer, which is the arithmetic control means 21. Note that an optical axis B between the fluorescent body 9 to be measured and the incident side of the optical fiber as the light guide means 16 is set at an angle β with respect to the optical axis A.
Specifically, the angle β is about 90 °.

【0041】次に、147nmの特定波長域における被
測定蛍光体9の、反射光量と蛍光発光量を測定する。
Next, the amount of reflected light and the amount of fluorescence emitted from the fluorescent substance 9 to be measured in a specific wavelength range of 147 nm are measured.

【0042】具体的には、前記の配置において、演算制
御手段21からの指令により、被測定蛍光体9の近傍に
設けた反射光受光器13aで、被測定蛍光体9からの蛍
光発光(可視光)と147nm紫外光の反射光を受光す
るとともに、反射光受光器13bと励起光カットフィル
タ14で、被測定蛍光体9からの蛍光発光(可視光)の
みを受光する。なお、被測定蛍光体9と反射光受光器1
3a,13b,励起光カットフィルタ14とのなす光軸
Cは、光軸Aに対して角度γに設定しており、具体的に
は角度γは約45゜である。
Specifically, in the above arrangement, the reflected light receiver 13a provided in the vicinity of the fluorescent body 9 to be measured emits a fluorescent light (visible light) from the fluorescent body 9 to be measured in response to a command from the arithmetic and control means 21. And the reflected light of 147 nm ultraviolet light, and receives only the fluorescent light (visible light) from the fluorescent body 9 to be measured by the reflected light receiver 13b and the excitation light cut filter 14. The measured phosphor 9 and the reflected light receiver 1
The optical axis C between the optical axes 3a and 13b and the excitation light cut filter 14 is set at an angle γ with respect to the optical axis A. Specifically, the angle γ is about 45 °.

【0043】反射光受光器13a,13bからの光電流
を、演算制御手段21からの指令により、電圧変換手段
15b,15cであるデジタルボルトメータで電圧信号
に変換し、信号伝達系20を介して反射光データおよび
蛍光発光データとして、演算制御手段21であるコンピ
ュータに取り込む。
The photocurrents from the reflected light receivers 13a and 13b are converted into voltage signals by digital voltmeters as voltage conversion means 15b and 15c according to a command from the arithmetic and control means 21. The reflected light data and the fluorescent light emission data are taken into a computer as the arithmetic and control unit 21.

【0044】次に、147nmの特定波長域における被
測定蛍光体9に照射される、励起光の紫外線量を測定す
る。
Next, the amount of ultraviolet light of the excitation light applied to the fluorescent substance 9 to be measured in a specific wavelength range of 147 nm is measured.

【0045】具体的には、演算制御手段21からの指令
により、蛍光体切り替え手段11である回転機構を、回
転駆動手段12であるモータにより回転駆動させ、蛍光
体切り替え手段11に配置した被測定蛍光体9に代えて
モニター受光器10を、光軸A上において光源1側に対
向させ、狭帯域透過フィルタ7により、147nm紫外
光となった励起光の直射光をモニター受光器10で受光
する。この時、モニター受光器10の受光面(図示せ
ず)は光軸Aに対して、法線(90゜)になるように配
置している。
Specifically, in response to a command from the arithmetic and control unit 21, the rotating mechanism as the phosphor switching unit 11 is driven to rotate by the motor as the rotation driving unit 12, and the measured object disposed in the phosphor switching unit 11 is measured. Instead of the phosphor 9, a monitor light receiver 10 is opposed to the light source 1 side on the optical axis A, and the monitor light receiver 10 receives the direct light of the excitation light converted to 147 nm ultraviolet light by the narrow band transmission filter 7. . At this time, the light receiving surface (not shown) of the monitor light receiver 10 is disposed so as to be normal (90 °) to the optical axis A.

【0046】モニター受光器10からの光電流を、演算
制御手段21からの指令により、電圧変換手段15aで
あるデジタルボルトメータで電圧信号に変換し、信号伝
達系20を介して147nm紫外光の励起光データとし
て演算制御手段21であるコンピュータに取り込む。
The photocurrent from the monitor light receiver 10 is converted into a voltage signal by a digital voltmeter, which is a voltage conversion means 15 a, in accordance with a command from the arithmetic and control means 21, and excitation of 147 nm ultraviolet light is performed via a signal transmission system 20. The data is taken into the computer as the arithmetic control means 21 as optical data.

【0047】以上の動作により、147nmの特定波長
域における被測定蛍光体9の発光スペクトル,反射光量
と蛍光発光量および、147nmの特定波長域における
被測定蛍光体9に照射される励起光の紫外線量の測定を
完了し、演算制御手段21からの指令により、シャッタ
駆動手段4を介して、シャッタ3を閉じる。
With the above operation, the emission spectrum, the reflected light amount and the fluorescent light emission amount of the measured phosphor 9 in the specific wavelength range of 147 nm, and the ultraviolet light of the excitation light applied to the measured phosphor 9 in the specific wavelength range of 147 nm After the measurement of the amount is completed, the shutter 3 is closed via the shutter driving means 4 in response to a command from the arithmetic control means 21.

【0048】次に、254nm特定波長域における被測
定蛍光体9の発光スペクトル,反射光量と蛍光発光量お
よび、254nmの特定波長域における被測定蛍光体9
に照射される励起光の紫外線量の測定を行う。
Next, the emission spectrum of the measured phosphor 9 in the specific wavelength range of 254 nm, the amount of reflected light and the amount of fluorescence emitted, and the measured phosphor 9 in the specific wavelength range of 254 nm.
The amount of ultraviolet light of the excitation light applied to the sample is measured.

【0049】測定方法および手順としては、前記147
nmの特定波長域で行った測定方法および手順とほぼ同
様であり、以下にその概要を説明する。
The measuring method and procedure are as described above for 147.
It is almost the same as the measurement method and procedure performed in the specific wavelength region of nm, and an outline thereof will be described below.

【0050】まず分光手段6である、狭帯域透過フィル
タ7のうち、波長254nmの特定波長域を透過させる
フィルタを、演算制御手段21からの指令により、フィ
ルタ切り替え手段8を介して選定し、光軸A上に設定す
る。
First, among the narrow band transmission filters 7, which are the spectral means 6, filters that transmit a specific wavelength range of 254 nm are selected through the filter switching means 8 in accordance with a command from the arithmetic control means 21, Set on axis A.

【0051】このような状態において、254nmの特
定波長域における被測定蛍光体9の発光スペクトルを測
定する。
In such a state, the emission spectrum of the measured phosphor 9 in the specific wavelength range of 254 nm is measured.

【0052】具体的には、演算制御手段21からの指令
により、シャッタ駆動手段4を介して、蛍光体切り替え
手段11である回転機構を、回転駆動手段12であるモ
ータにより回転駆動させ、蛍光体切り替え手段11に配
置したモニター受光器10に代えて被測定蛍光体9を配
置した後、シャッタ3を開ける。
More specifically, in response to a command from the arithmetic and control unit 21, the rotation mechanism as the phosphor switching unit 11 is rotationally driven by the motor as the rotation driving unit 12 via the shutter driving unit 4, After the phosphor 9 to be measured is arranged in place of the monitor light receiver 10 arranged in the switching means 11, the shutter 3 is opened.

【0053】この時、被測定蛍光体9には、光源1から
の励起光が集光手段5で集光され、分光手段6を介して
狭帯域透過フィルタ7により、254nmの特定波長光
(254nm紫外光)として照射される。この254n
m紫外光が被測定蛍光体9に照射されると可視光として
蛍光発光し、この蛍光発光を被測定蛍光体9の近傍に配
置した導光手段16である光学ファイバーに導き、発光
スペクトル測定手段17であるポリクロメータにより、
被測定蛍光体9の発光スペクトルデータとして信号伝達
系20を介して演算制御手段21であるコンピュータに
取り込む。
At this time, the excitation light from the light source 1 is condensed by the condensing means 5 on the fluorescent substance 9 to be measured, and the light having a specific wavelength of 254 nm (254 nm) is transmitted by the narrow band transmission filter 7 through the spectroscopic means 6. (Ultraviolet light). This 254n
When m-ultraviolet light is applied to the fluorescent substance 9 to be measured, the fluorescent substance 9 emits fluorescent light as visible light, and this fluorescent light emission is guided to an optical fiber, which is a light guiding means 16 disposed in the vicinity of the fluorescent substance 9 to be measured. By the polychromator which is 17,
The emission spectrum data of the measured phosphor 9 is taken into the computer as the arithmetic and control means 21 via the signal transmission system 20.

【0054】次に、254nmの特定波長域における被
測定蛍光体9の、反射光量と蛍光発光量を測定する。
Next, the amount of reflected light and the amount of fluorescence emitted from the fluorescent substance 9 to be measured in a specific wavelength range of 254 nm are measured.

【0055】具体的には、前記の配置において、演算制
御手段21からの指令により、被測定蛍光体9の近傍に
設けた反射光受光器13aで、被測定蛍光体9からの蛍
光発光(可視光)と254nm紫外光の反射光を受光す
るとともに、反射光受光器13bと励起光カットフィル
タ14で、被測定蛍光体9からの蛍光発光(可視光)の
みを受光する。
More specifically, in the above arrangement, the reflected light receiver 13a provided in the vicinity of the fluorescent body 9 to be measured emits fluorescent light (visible light) from the fluorescent body 9 to be measured in accordance with a command from the arithmetic and control means 21. Light) and reflected light of 254 nm ultraviolet light, and the reflected light receiver 13b and the excitation light cut filter 14 receive only fluorescent light (visible light) from the phosphor 9 to be measured.

【0056】反射光受光器13a,13bからの光電流
を、演算制御手段21からの指令により、電圧変換手段
15b,15cであるデジタルボルトメータで電圧信号
に変換し、信号伝達系20を介して反射光データおよび
蛍光発光データとして演算制御手段21であるコンピュ
ータに取り込む。
The photocurrents from the reflected light receivers 13a and 13b are converted into voltage signals by digital voltmeters as voltage conversion means 15b and 15c according to a command from the arithmetic and control means 21. The reflected light data and the fluorescent light emission data are taken into a computer as the arithmetic and control unit 21.

【0057】次に、254nmの特定波長域における被
測定蛍光体9に照射される、励起光の紫外線量を測定す
る。
Next, the amount of ultraviolet light of the excitation light applied to the phosphor 9 to be measured in a specific wavelength range of 254 nm is measured.

【0058】具体的には、演算制御手段21からの指令
により、蛍光体切り替え手段11である回転機構を、回
転駆動手段12であるモータにより回転駆動させ、蛍光
体切り替え手段11に配置した被測定蛍光体9に代えて
モニター受光器10を、光軸A上において光源1側に対
向させ、狭帯域透過フィルタ7により、254nm紫外
光となった励起光の直射光をモニター受光器10で受光
する。
More specifically, in response to a command from the arithmetic and control unit 21, the rotating mechanism as the phosphor switching unit 11 is driven to rotate by the motor as the rotation driving unit 12, and the measured object disposed in the phosphor switching unit 11 is measured. A monitor light receiver 10 is opposed to the light source 1 side on the optical axis A in place of the phosphor 9, and the monitor light receiver 10 receives the direct light of the excitation light converted to 254 nm ultraviolet light by the narrow band transmission filter 7. .

【0059】モニター受光器10からの光電流を、演算
制御手段21からの指令により、電圧変換手段15aで
あるデジタルボルトメータで電圧信号に変換し、信号伝
達系20を介して254nm紫外光の励起光データとし
て演算制御手段21であるコンピュータに取り込む。
The photocurrent from the monitor light receiver 10 is converted into a voltage signal by a digital voltmeter, which is a voltage conversion means 15 a, according to a command from the arithmetic control means 21, and the 254 nm ultraviolet light is excited via the signal transmission system 20. The data is taken into the computer as the arithmetic control means 21 as optical data.

【0060】以上の動作により、254nmの特定波長
域における被測定蛍光体9の発光スペクトル,反射光量
と蛍光発光量および、254nmの特定波長域における
被測定蛍光体9に照射される励起光の紫外線量の測定を
完了し、演算制御手段21からの指令により、シャッタ
駆動手段4を介して、シャッタ3を閉じる。
With the above operation, the emission spectrum, the reflected light amount and the fluorescent light emission amount of the measured phosphor 9 in the specific wavelength region of 254 nm, and the ultraviolet light of the excitation light applied to the measured phosphor 9 in the specific wavelength region of 254 nm After the measurement of the amount is completed, the shutter 3 is closed via the shutter driving means 4 in response to a command from the arithmetic control means 21.

【0061】以上が、本発明である蛍光体の量子効率測
定装置の動作である。これらの動作を行った後、被測定
蛍光体9の147nm励起光における量子効率を求める
ため、演算制御手段21であるコンピュータにより、以
下の演算を行わせる。
The above is the operation of the phosphor quantum efficiency measuring apparatus according to the present invention. After performing these operations, the following operation is performed by the computer which is the operation control means 21 in order to obtain the quantum efficiency of the fluorescent substance 9 to be measured at the 147 nm excitation light.

【0062】すなわち、147nm励起光における被測
定蛍光体9の発光スペクトルから求まる蛍光光量子数を
Rp147、254nm励起光における被測定蛍光体9の
発光スペクトルから求まる蛍光光量子数をRp254、両
者の比から求まる蛍光光量子数をRpとすると、Rpは
(数1)式より求まる。
That is, the fluorescence quantum number obtained from the emission spectrum of the fluorescent substance 9 to be measured with the excitation light of 147 nm is Rp147, the fluorescence quantum number obtained from the emission spectrum of the fluorescent substance 9 to be measured with the excitation light of 254 nm is Rp254, and the ratio between them is obtained. Assuming that the fluorescent light quantum number is Rp, Rp can be obtained from Expression (1).

【0063】[0063]

【数1】 (Equation 1)

【0064】また、147nm励起光における被測定蛍
光体9に照射される励起光の紫外線量から求まる励起光
量子数をRe147、254nm励起光における被測定蛍
光体9に照射される励起光の紫外線量から求まる励起光
量子数をRe254、両者の比から求まる励起光量子数を
Reとすると、Reは(数2)式より求まる。
The excitation light quantum number obtained from the amount of ultraviolet light of the excitation light applied to the fluorescent substance 9 to be measured in the 147 nm excitation light is calculated from the Re147 and the amount of ultraviolet light of the excitation light applied to the fluorescent substance 9 to be measured in the excitation light of 254 nm. Assuming that the excitation light quantum number obtained is Re254 and the excitation light quantum number obtained from the ratio between the two is Re, Re can be obtained from equation (2).

【0065】[0065]

【数2】 (Equation 2)

【0066】次に、147nm励起光における被測定蛍
光体への励起光の紫外線量、および反射光量と蛍光発光
量とから求まる吸収光量子数をε147、254nm励起
光における被測定蛍光体への励起光の紫外線量、および
反射光量と蛍光発光量とから求まる吸収光量子数をε25
4とし、被測定蛍光体9の254nm励起光における量
子効率η254(これは既知である)とすると、最終的に
求めようとする被測定蛍光体9の、147nm励起光に
おける量子効率η147は(数3)式より求めることがで
きる。
Next, the ultraviolet light amount of the excitation light to the fluorescent substance to be measured in the excitation light of 147 nm and the absorption light quantum number obtained from the reflected light amount and the fluorescent light emission amount are ε147, the excitation light to the fluorescent substance to be measured in the excitation light of 254 nm. Is the amount of ultraviolet light, and the absorption photon number obtained from the amount of reflected light and the amount of fluorescence emission is ε25.
Assuming that the quantum efficiency η 254 of the fluorescent substance 9 to be measured at 254 nm excitation light (this is known), the quantum efficiency η 147 of the fluorescent substance 9 to be finally determined at the excitation light of 147 nm is expressed by 3) It can be obtained from the equation.

【0067】[0067]

【数3】 (Equation 3)

【0068】以上の一連の演算は、被測定蛍光体9の2
54nm励起光における量子効率が既知で、一例として
147nm励起光における量子効率を求めるものである
が、特定波長域(147nm)以外の量子効率を求める
場合においても、前記の動作および方法と同様にして求
めることができるものである。
The above-described series of calculations is performed for the two phosphors 9 to be measured.
The quantum efficiency of the 54 nm pump light is known, and the quantum efficiency of the 147 nm pump light is obtained as an example. In the case of obtaining the quantum efficiency other than the specific wavelength range (147 nm), the same operation and method as described above are performed. Can be sought.

【0069】本発明は、前記の蛍光体の量子効率測定方
法および装置において、最小1回の真空雰囲気の形成
で、すべての測定が行えるとともに、励起用光源も点灯
させたままで、量子効率の測定を行うことができるた
め、測定方法が簡略化されるとともに測定時間が短縮さ
れ、かつ励起用光源の点滅による負担が軽減できる。
According to the present invention, in the method and apparatus for measuring quantum efficiency of a phosphor, all the measurements can be performed by forming a vacuum atmosphere at least once, and the quantum efficiency can be measured while the excitation light source is turned on. Can be performed, the measurement method can be simplified, the measurement time can be shortened, and the burden caused by the blinking of the excitation light source can be reduced.

【0070】なお、以上の説明では、光源1を重水素ラ
ンプで構成した例で説明したが、重水素ランプ以外の光
源として、キセノンランプ、水銀ランプ、メタルハライ
ドランプなど紫外域から真空紫外域における励起光を発
生する光源であればよい。
In the above description, the light source 1 is constituted by a deuterium lamp. However, as a light source other than the deuterium lamp, the excitation from the ultraviolet region to the vacuum ultraviolet region such as a xenon lamp, a mercury lamp, and a metal halide lamp. Any light source that generates light may be used.

【0071】また、分光手段6として、複数の狭帯域透
過フィルタ7をフィルタ切り替え手段8で切り替えるこ
とにより、特定の波長域を選定したが、分光光度計(モ
ノクロメータなど)を用いたり、重水素ランプの代わり
に狭帯域発光が可能なエキシマランプなどを、特定の波
長域ごとに複数用いて、これを切り替えて特定の波長域
の放射束(励起光)を照射させてもよい。
Further, a specific wavelength range is selected by switching a plurality of narrow-band transmission filters 7 as the spectroscopic means 6 by the filter switching means 8, but a spectrophotometer (monochromator or the like) may be used, or deuterium may be used. Instead of a lamp, a plurality of excimer lamps capable of narrow-band emission may be used for each specific wavelength range, and these may be switched to emit a radiant flux (excitation light) in a specific wavelength range.

【0072】加えて、シャッタ駆動手段4に電磁ソレノ
イドを、またフィルタ切り替え手段8と回転駆動手段1
2にモータをそれぞれ用いて、切り替えや駆動を行った
が、これらに代えて、カムやレバー、回転軸などを組み
合わせて、真空容器18の外部より、手動により切り替
えや駆動を行ってもよい。
In addition, an electromagnetic solenoid is used for the shutter driving means 4, and the filter switching means 8 and the rotation driving means 1 are used.
Although switching and driving are performed using a motor for each of the components 2, the switching and driving may be performed manually from outside the vacuum vessel 18 by combining a cam, a lever, a rotating shaft, and the like.

【0073】[0073]

【発明の効果】以上のように、本発明によれば、量子効
率の測定開始時から終了までの間、最小1回の真空雰囲
気を形成するのみでよく、何度も真空排気を行うことに
よる時間的なロスを低減することができる。
As described above, according to the present invention, only one vacuum atmosphere needs to be formed at least once from the start to the end of the quantum efficiency measurement, and the vacuum evacuation is performed many times. Time loss can be reduced.

【0074】また、量子効率の測定開始から終了までの
間、励起用光源を点灯させたままの状態で、量子効率の
測定を行うことができるため、励起用光源の数度の点滅
による励起光の光量不安定や、点滅による負担が軽減で
きる。
Since the quantum efficiency can be measured while the excitation light source is kept on from the start to the end of the quantum efficiency measurement, the excitation light is blinked several times by the excitation light source. And the burden caused by blinking can be reduced.

【0075】加えて、測定方法が簡略化されるととも
に、測定時間が短縮されるという顕著な効果が得られ
る。
In addition, a remarkable effect is obtained that the measuring method is simplified and the measuring time is shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】蛍光体の量子効率測定方法の測定過程を示す測
定流れ図
FIG. 2 is a measurement flowchart showing a measurement process of a quantum efficiency measurement method of a phosphor.

【符号の説明】[Explanation of symbols]

1 光源 2 光源用電源 3 シャッタ 4 シャッタ駆動手段 5 集光手段 6 分光手段 7 狭帯域透過フィルタ 8 フィルタ切り替え手段 9 被測定蛍光体 10 モニター受光器 11 蛍光体切り替え手段 12 回転駆動手段 13a,13b 反射光受光器 14 励起光カットフィルタ 15a,15b,15c 電圧変換手段 16 導光手段 17 発光スペクトル測定手段 18 真空容器 19 真空排気手段 20 信号伝達系 21 演算制御手段 REFERENCE SIGNS LIST 1 light source 2 power supply for light source 3 shutter 4 shutter driving means 5 focusing means 6 spectral means 7 narrow band transmission filter 8 filter switching means 9 fluorescent substance to be measured 10 monitor light receiver 11 fluorescent substance switching means 12 rotation driving means 13a, 13b reflection Optical receiver 14 Excitation light cut filter 15a, 15b, 15c Voltage conversion means 16 Light guide means 17 Emission spectrum measurement means 18 Vacuum container 19 Vacuum exhaust means 20 Signal transmission system 21 Operation control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀井 滋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松岡 富造 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shigeru Horii 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】紫外域から真空紫外域までの放射束を発生
する光源と、 前記光源からの放射束を、少なくとも2つ以上の波長域
に分光するための分光手段と、 前記分光手段により複数の波長域に分光された波長域の
1つにおいて、その波長域での放射束に対する吸収率と
量子効率が既知で、複数の波長域のうち前記既知の波長
域とは別の波長域における量子効率を測定する被測定蛍
光体と、 前記光源および前記分光手段から照射される放射束をモ
ニターし、前記被測定蛍光体と同一位置に交互に設定さ
れたモニター受光器と、 前記被測定蛍光体と前記モニター受光器とを測定条件に
応じて、交互に切り替える蛍光体切り替え手段と、 前記被測定蛍光体の近傍でかつ、前記光源および前記分
光手段から前記被測定蛍光体に対して照射される放射束
を遮らない位置に配置され、前記光源および前記分光手
段から前記被測定蛍光体に照射された放射束の内、被測
定蛍光体で反射された放射束と前記被測定蛍光体からの
蛍光発光とを受光する反射光受光器と、 前記被測定蛍光体の近傍に配置し、前記光源および前記
分光手段から照射された放射束により、被測定蛍光体が
蛍光発光し、その蛍光発光の発光スペクトルを分光測定
する発光スペクトル測定手段と、 前記光源の出射側,分光手段,被測定蛍光体,モニター
受光器,蛍光体切り替え手段,反射光受光器,発光スペ
クトル測定手段の入射側を同一の容器内に収容し、真空
雰囲気にするための真空容器と、 前記真空容器内の雰囲気を真空雰囲気に保つための真空
排気手段と、 前記光源の駆動−停止(点灯−消灯)用制御、前記分光
手段の分光用制御、前記蛍光体切り替え手段の駆動−停
止用制御、前記真空排気手段の駆動−停止用制御など、
各種の機構手段を制御するとともに、前記モニター受光
器や前記反射光受光器からの光電変換信号、前記発光ス
ペクトル測定手段からの分光データ信号などから、量子
効率を演算する演算制御手段とから構成し、 特定の2つの波長域において、前記モニター受光器から
得られる、前記被測定蛍光体に入射する前記光源および
前記分光手段からの放射束の測定値と、前記反射光受光
器から得られる、前記被測定蛍光体からの反射光と蛍光
発光の測定値と、前記発光スペクトル測定手段から得ら
れる、前記被測定蛍光体からの蛍光発光の発光スペクト
ル値とから、前記被測定蛍光体の量子効率を求めること
を特徴とする蛍光体の量子効率測定装置。
A light source for generating a radiant flux from an ultraviolet region to a vacuum ultraviolet region; a spectral unit for spectrally dividing the radiant beam from the light source into at least two wavelength ranges; In one of the wavelength ranges separated into the wavelength range, the absorptance and the quantum efficiency for the radiant flux in the wavelength range are known, and the quantum efficiency in a wavelength range different from the known wavelength range among a plurality of wavelength ranges is known. A phosphor to be measured for measuring the efficiency; a radiant flux emitted from the light source and the spectroscopic means; a monitor light receiver alternately set at the same position as the phosphor to be measured; and the phosphor to be measured. A phosphor switching unit for alternately switching the phosphor and the monitor light receiver according to measurement conditions; and irradiating the phosphor to be measured from the light source and the spectral unit near the phosphor to be measured. Release Of the radiant flux that is arranged at a position that does not block the flux and that is radiated from the light source and the spectroscopic means to the fluorescent body to be measured, the radiant flux reflected by the fluorescent body to be measured and the fluorescent light emission from the fluorescent body to be measured And a reflected light receiver that receives light, a fluorescent light emitted from the light source and the radiant flux emitted from the spectral unit, the fluorescent light to be measured emits light, and an emission spectrum of the fluorescent light emission. The emission side of the light source, the emission side of the light source, the spectral unit, the phosphor to be measured, the monitor receiver, the phosphor switching unit, the reflected light receiver, and the entrance side of the emission spectrum measurement unit in the same container. A vacuum container for holding the vacuum container in a vacuum atmosphere, vacuum evacuation means for maintaining the atmosphere in the vacuum container in a vacuum atmosphere, control for driving / stopping (lighting-off) of the light source, the spectroscope. Control of spectral, the driving of the phosphor switching means - for controlling stop, driving the evacuating means - such as a control for stopping,
A control unit for controlling various mechanism units, a photoelectric conversion signal from the monitor light receiver and the reflected light receiver, a spectral data signal from the emission spectrum measurement unit, and the like, for calculating quantum efficiency. In two specific wavelength ranges, the measured value of the radiant flux from the light source and the spectroscopic unit incident on the phosphor to be measured, obtained from the monitor light receiver, and the radiant flux obtained from the reflected light receiver, From the measured values of the reflected light and the fluorescence emission from the measured phosphor and the emission spectrum value of the fluorescence emission from the measured phosphor obtained from the emission spectrum measuring means, the quantum efficiency of the measured phosphor is determined. An apparatus for measuring the quantum efficiency of a phosphor, which is characterized in that:
【請求項2】光源が重水素ランプであることを特徴とす
る請求項1記載の蛍光体の量子効率測定装置。
2. The apparatus according to claim 1, wherein the light source is a deuterium lamp.
【請求項3】分光手段が、少なくとも2つ以上の狭帯域
透過フィルタであり、前記狭帯域透過フィルタを相互に
選択するように構成したことを特徴とする請求項1記載
の蛍光体の量子効率測定装置。
3. The quantum efficiency of a phosphor according to claim 1, wherein the spectral means is at least two or more narrow-band transmission filters, and the narrow-band transmission filters are selected from each other. measuring device.
【請求項4】モニター受光器と、反射光受光器がシリコ
ンホトダイオードであることを特徴とする請求項1記載
の蛍光体の量子効率測定装置。
4. The apparatus according to claim 1, wherein the monitor light receiver and the reflected light receiver are silicon photodiodes.
【請求項5】反射光受光器が2つの受光器からなり、い
ずれかの一方の受光器の受光面に、前記光源および前記
分光手段から前記被測定蛍光体に照射される放射束のう
ち、被測定蛍光体からの反射光を遮光し、蛍光発光のみ
を透過させるバンドパスフィルタ装着したことを特徴と
する請求項1記載の蛍光体の量子効率測定装置。
5. A reflected light receiver comprising two light receivers, wherein a light receiving surface of one of the light receivers is selected from among a radiant flux irradiated from the light source and the spectroscopic means to the fluorescent substance to be measured. 2. The phosphor quantum efficiency measuring apparatus according to claim 1, further comprising a band-pass filter that shields reflected light from the phosphor to be measured and transmits only fluorescent light.
【請求項6】発光スペクトル測定手段が、複数の波長域
の発光スペクトルを同時に測定するポリクロメータであ
ることを特徴とする請求項1記載の蛍光体の量子効率測
定装置。
6. An apparatus according to claim 1, wherein said emission spectrum measuring means is a polychromator for simultaneously measuring emission spectra in a plurality of wavelength ranges.
【請求項7】分光手段により選択分光される、複数の波
長域の中心波長が、147nm,172nm,185n
m,254nmのいずれかの組み合わせであることを特
徴とする請求項1または3記載の蛍光体の量子効率測定
装置。
7. The center wavelengths of a plurality of wavelength ranges selectively spectrally separated by the spectral means are 147 nm, 172 nm, and 185 nm.
4. The phosphor quantum efficiency measuring apparatus according to claim 1, wherein the combination is any combination of m and 254 nm.
【請求項8】光源と被測定蛍光体とのなす光軸上に、前
記光源からの放射束を照射または遮光させるシャッタを
配置したことを特徴とする請求項1記載の蛍光体の量子
効率測定装置。
8. The phosphor quantum efficiency measurement according to claim 1, wherein a shutter for irradiating or shielding a radiant flux from said light source is arranged on an optical axis formed between the light source and the phosphor to be measured. apparatus.
【請求項9】第1の励起光と、前記第1の励起光とは異
なる第2の励起光とを用い、前記第2の励起光における
蛍光体の量子効率を測定する方法であって、 被測定蛍光体の周囲雰囲気を真空雰囲気にする工程と、 真空雰囲気としたあとで、前記第2の励起光を前記被測
定蛍光体に照射して、前記第2の励起光における被測定
蛍光体の発光スペクトル,反射光量と蛍光発光量およ
び、前記第2の励起光の紫外線量の測定を行う工程と、 前記第1の励起光における前記被測定蛍光体の発光スペ
クトル,反射光量と蛍光発光量および、第1の励起光の
紫外線量の測定を行う工程と、 前記各測定を行う工程で得られたデータを演算して、前
記被測定蛍光体の前記第2の励起光での量子効率を算出
する工程とを少なくとも含み、 前記測定を行う工程における測定開始から終了までの
間、1回の真空雰囲気を形成したままの状態で測定を行
うことを特徴とする蛍光体の量子効率測定方法。
9. A method for measuring a quantum efficiency of a phosphor in the second excitation light using a first excitation light and a second excitation light different from the first excitation light, Setting the surrounding atmosphere of the measured phosphor to a vacuum atmosphere, and irradiating the second excited light to the measured phosphor after setting the vacuum atmosphere, thereby obtaining the measured phosphor in the second excitation light. Measuring the light emission spectrum, reflected light amount and fluorescent light emission amount, and the ultraviolet light amount of the second excitation light; and light emission spectrum, reflected light amount and fluorescent light emission amount of the measured phosphor in the first excitation light. And a step of measuring the amount of ultraviolet light of the first excitation light; and calculating data obtained in the step of performing each measurement to calculate a quantum efficiency of the measured phosphor with the second excitation light. Calculating at least the step of performing the measurement. Until completion of definitive measurement start, the phosphor quantum efficiency measurement method which is characterized in that the measurement in one state that the formation of the vacuum atmosphere.
JP10295897A 1997-04-21 1997-04-21 Phosphor quantum efficiency measurement device Expired - Lifetime JP3266046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10295897A JP3266046B2 (en) 1997-04-21 1997-04-21 Phosphor quantum efficiency measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10295897A JP3266046B2 (en) 1997-04-21 1997-04-21 Phosphor quantum efficiency measurement device

Publications (2)

Publication Number Publication Date
JPH10293063A true JPH10293063A (en) 1998-11-04
JP3266046B2 JP3266046B2 (en) 2002-03-18

Family

ID=14341316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10295897A Expired - Lifetime JP3266046B2 (en) 1997-04-21 1997-04-21 Phosphor quantum efficiency measurement device

Country Status (1)

Country Link
JP (1) JP3266046B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420144B1 (en) * 1998-06-30 2004-04-17 삼성에스디아이 주식회사 Fluorescent material optical property measuring device
JP2009031176A (en) * 2007-07-30 2009-02-12 Hitachi High-Technologies Corp Spectrofluorophotometer
WO2010103807A1 (en) * 2009-03-11 2010-09-16 コニカミノルタセンシング株式会社 Optical characteristic measuring device, optical characteristic measuring method, and dual spectral emissivity factor measuring method
US8119996B2 (en) 2009-01-20 2012-02-21 Otsuka Electronics Co., Ltd. Quantum efficiency measurement apparatus and quantum efficiency measurement method
CN102359817A (en) * 2011-03-08 2012-02-22 中国科学院福建物质结构研究所 System for testing yield of up-conversion luminescence absolute quantum
US8415639B2 (en) 2010-03-18 2013-04-09 Otsuka Electronics Co., Ltd. Quantum efficiency measurement method, quantum efficiency measurement apparatus, and integrator
US8422018B2 (en) 2010-02-24 2013-04-16 Otsuka Electronics Co., Ltd. Optical measurement apparatus including hemispherical optical integrator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420144B1 (en) * 1998-06-30 2004-04-17 삼성에스디아이 주식회사 Fluorescent material optical property measuring device
JP2009031176A (en) * 2007-07-30 2009-02-12 Hitachi High-Technologies Corp Spectrofluorophotometer
US8119996B2 (en) 2009-01-20 2012-02-21 Otsuka Electronics Co., Ltd. Quantum efficiency measurement apparatus and quantum efficiency measurement method
WO2010103807A1 (en) * 2009-03-11 2010-09-16 コニカミノルタセンシング株式会社 Optical characteristic measuring device, optical characteristic measuring method, and dual spectral emissivity factor measuring method
JPWO2010103807A1 (en) * 2009-03-11 2012-09-13 コニカミノルタオプティクス株式会社 Optical characteristic measuring apparatus, optical characteristic measuring method, and dual spectral emissivity coefficient measuring method
US8422018B2 (en) 2010-02-24 2013-04-16 Otsuka Electronics Co., Ltd. Optical measurement apparatus including hemispherical optical integrator
US8415639B2 (en) 2010-03-18 2013-04-09 Otsuka Electronics Co., Ltd. Quantum efficiency measurement method, quantum efficiency measurement apparatus, and integrator
CN102359817A (en) * 2011-03-08 2012-02-22 中国科学院福建物质结构研究所 System for testing yield of up-conversion luminescence absolute quantum

Also Published As

Publication number Publication date
JP3266046B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
CN111257229B (en) Optical measuring device
Jüstel et al. VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps
JPH09292281A (en) Method for measuring quantum efficiency of phosphor, and measuring device thereof
JP3682528B2 (en) Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample
EP0866961B1 (en) Improved spectrophotometer
JPH10300671A (en) Equipment for measuring micro particle
JP2007218787A (en) Wavelength calibration method and device
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
JP3266046B2 (en) Phosphor quantum efficiency measurement device
US3886363A (en) Spectro fluorescence and absorption measuring instrument
US6597439B1 (en) Method and apparatus for measurement of light from illuminated specimen eliminating influence of background light
WO2011102377A1 (en) Spectrophotometer and method for measuring performance thereof
JP3611015B2 (en) Method and apparatus for measuring optical properties of phosphor sample
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
Seliger [44] Excited states and absolute calibrations in bioluminescence
CN108007906A (en) A kind of long-afterglow material phosphorescence excitation spectrum measuring system and method
Nakamura et al. Effects of heat treatment on X-ray induced absorption and luminescence in synthetic silica glass
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
US3503686A (en) Atomic absorption spectrophotometer
JPH04118531A (en) Inverse photoelectric spectoscope
Bonanno et al. Catania Astrophysical Observatory facility for UV CCD characterization
JP2003121116A (en) Vacuum ultraviolet optical film thickness monitor and vacuum film forming apparatus provided therewith
Vest et al. Dual grating monochromator for detector calibrations using synchrotron radiation as an absolute source at NIST
Burns et al. Measurement of fluorescent radiation from opaque surfaces
JPH0748063B2 (en) Fluorescent substance mixing ratio measuring method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term