JP2003025474A - Antistatic gas barrier material - Google Patents

Antistatic gas barrier material

Info

Publication number
JP2003025474A
JP2003025474A JP2001217955A JP2001217955A JP2003025474A JP 2003025474 A JP2003025474 A JP 2003025474A JP 2001217955 A JP2001217955 A JP 2001217955A JP 2001217955 A JP2001217955 A JP 2001217955A JP 2003025474 A JP2003025474 A JP 2003025474A
Authority
JP
Japan
Prior art keywords
gas barrier
antistatic
layer
barrier material
antistatic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001217955A
Other languages
Japanese (ja)
Other versions
JP4604412B2 (en
Inventor
Tetsuya Niijima
哲也 新島
Takashi Miyamoto
隆司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2001217955A priority Critical patent/JP4604412B2/en
Publication of JP2003025474A publication Critical patent/JP2003025474A/en
Application granted granted Critical
Publication of JP4604412B2 publication Critical patent/JP4604412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas barrier material having high gas barrier properties without influence due to charging at the time of postworking such as printing, laminating or the like using a laminate at the time of laminating a gas barrier layer on a base. SOLUTION: The gas barrier material comprises a first antistatic layer 2 made of an electron beam radiation curable film of a mixture of a crosslinkable compound having at least two acryloyl groups in a molecule and a quaternary ammonium salt compound having at least one acryloyl group in a molecule, the gas barrier layer 3 of a metal oxide, and a second antistatic layer 4 made of an electron beam radiation curable film of a mixture of a crosslinkable compound having at least two acryloyl groups in a molecule and a conductive filler, sequentially laminated on a polymer resin base 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品、医薬品、電
子機器部品等の包装に適した酸素および水蒸気の透過に
対して高いガスバリア性を有するガスバリア材に関する
ものである。
TECHNICAL FIELD The present invention relates to a gas barrier material having a high gas barrier property against permeation of oxygen and water vapor, which is suitable for packaging foods, pharmaceuticals, electronic device parts and the like.

【0002】[0002]

【従来の技術】従来、包装材料としては内容物の保存の
ためにガスバリア性が重要であり、酸素や水蒸気に対す
るガスバリア性を備えた包装材料として、最近では金属
酸化物等の無機化合物をガスバリア層として高分子樹脂
基材上に設けたガスバリア材が開発されている。無機化
合物からなるガスバリア層を高分子樹脂基材へ成膜する
際、ガスバリア性能、生産性などを考慮すると、電子線
加熱方式の巻き取り式真空蒸着による成膜が適してい
る。電子線加熱方式は蒸着物のみを加熱し不純物の混入
を最小限に抑えることが可能な上に、蒸発速度も速く高
速巻き取りが可能で生産性に優れているためである。し
かし高分子樹脂は一般に表面固有抵抗が10 14Ω/□以
上の絶縁体に分類されるものであり、表面が帯電しやす
い性質がある。この為、成膜装置内の塵埃や蒸発物の塊
を引きつけ、フィルム表面に付着しガスバリア層形成の
妨げとなる。さらに電子線加熱方式によるガスバリア層
の成膜では二次電子の影響で帯電しやすい。その結果、
ガスバリア材がさらに帯電し、ガスバリア層上にも塵埃
や蒸発物の塊が付着し、巻き取り搬送系でガスバリア材
と多数の搬送ロールとの間で擦られることによって重大
な損傷がガスバリア材に生じる。さらに、巻き取り搬送
中にガスバリア材と搬送ロールが離れる際に放電し、ガ
スバリア層から樹脂基材まで貫通する損傷が生じるなど
の問題がある。この後の印刷、ラミネーション等の後工
程においても同様の損傷が与えられる。従来は特開平8
−325397に示されるように導電性フィラーを基材
に練り込むことにより、表面固有抵抗を下げる方法が取
られていた。
2. Description of the Related Art Conventionally, packaging materials have been used for storing contents.
Gas barrier property is important for
Recently, metal has been used as a packaging material with gas barrier properties.
Polymer resin with inorganic compound such as oxide as gas barrier layer
A gas barrier material provided on a base material has been developed. Mineralization
Gas barrier layer composed of compound is formed on polymer resin substrate
In consideration of gas barrier performance and productivity, electron beam
Suitable for film formation by heating type vacuum evaporation
It The electron beam heating method heats only the deposit and mixes impurities
The evaporation rate is fast and high.
This is because quick winding is possible and productivity is excellent. Shi
Generally, a polymer resin has a surface resistivity of 10 14Ω / □ or less
It is classified as the upper insulator, and the surface is easily charged.
It has a certain property. As a result, dust and evaporative masses in the film deposition system
Of the gas barrier layer
It becomes an obstacle. Gas barrier layer by electron beam heating method
The film is easily charged due to the effect of secondary electrons. as a result,
The gas barrier material is further charged, and dust on the gas barrier layer
And lumps of evaporate adhere to the gas barrier material in the winding and conveying system.
Between the roller and a large number of transport rolls
Serious damage occurs to the gas barrier material. Furthermore, take-up transport
When the gas barrier material and the transfer roll separate,
Damage such as penetration from the barrier layer to the resin base material may occur
I have a problem. Post-processing such as printing and lamination after this
In the same way, similar damage is given. Conventionally, JP-A-8
As a base material, a conductive filler is used as shown in 325397.
The method of lowering the surface resistivity by kneading
It was being done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記導
電性フィラーを用いる場合は帯電除去能力に優れるが、
導電性フィラーによって表面平滑性が低下し、ガスバリ
ア層の性能低下や、導電性フィラー自身の欠落によって
積層されたガスバリア層に欠陥が生じるといった問題が
生じていた。さらに、前記導電性フィラーの代わりに界
面活性剤を基材に添加する方法も知られているが、この
場合は表面平滑性は優れるが、帯電防止効果が小さい上
に、その効果が湿度に影響されるなどの欠点があった。
However, when the conductive filler is used, the charge removing ability is excellent.
The conductive filler deteriorates the surface smoothness, and there is a problem that the performance of the gas barrier layer is deteriorated and a defect occurs in the laminated gas barrier layer due to the lack of the conductive filler itself. Furthermore, a method of adding a surfactant to the base material instead of the conductive filler is also known. In this case, the surface smoothness is excellent, but the antistatic effect is small, and the effect affects humidity. There were drawbacks such as being done.

【0004】本発明の課題は、基材へのガスバリア層の
積層時や積層体を使用した印刷、ラミネーションなどの
後加工時に、帯電による影響が無く、かつ、高いガスバ
リア性を有するガスバリア材を提供することにある。
An object of the present invention is to provide a gas barrier material having a high gas barrier property without being affected by electrification at the time of laminating a gas barrier layer on a base material, printing using the laminate, and post-processing such as lamination. To do.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
発明は、高分子樹脂基材上に、第1帯電防止層、ガスバ
リア層、第2帯電防止層を順次積層した積層体からなる
ことを特徴とする帯電防止性ガスバリア材である。
The invention according to claim 1 of the present invention comprises a laminate in which a first antistatic layer, a gas barrier layer, and a second antistatic layer are sequentially laminated on a polymer resin substrate. It is an antistatic gas barrier material characterized by the above.

【0006】次に、請求項2に係る発明は、上記請求項
1に係る発明において、前記第1帯電防止層が分子中に
少なくとも二個のアクリロイル基を有する架橋性化合物
と、分子中に少なくとも一個のアクリロイル基を有する
第四級アンモニウム塩化合物の混合物との電子線照射硬
化被膜からなることを特徴とする帯電防止性ガスバリア
材である。
Next, the invention according to claim 2 is the invention according to claim 1, wherein the first antistatic layer comprises at least a crosslinkable compound having at least two acryloyl groups in the molecule, and at least in the molecule. An antistatic gas barrier material comprising an electron beam irradiation-cured coating with a mixture of a quaternary ammonium salt compound having one acryloyl group.

【0007】次に、請求項3に係る発明は、上記請求項
1又は請求項2に係る発明において、前記第2帯電防止
層が分子中に少なくとも二個のアクリロイル基を有する
架橋性化合物と、導電性フィラーとの混合物の電子線照
射硬化被膜からなることを特徴とする帯電防止性ガスバ
リア材である。
Next, the invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the second antistatic layer has a crosslinkable compound having at least two acryloyl groups in the molecule, An antistatic gas barrier material comprising an electron beam irradiation cured coating of a mixture with a conductive filler.

【0008】[0008]

【発明の実施の形態】本発明の帯電防止性ガスバリア材
を、実施の形態に沿って以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The antistatic gas barrier material of the present invention will be described below with reference to embodiments.

【0009】図1は本発明の一実施の形態を示す帯電防
止性ガスバリア材の側断面図であり、厚み方向に順に、
高分子樹脂基材1、第1帯電防止層2、ガスバリア層
3、第2帯電防止層4が積層されている。
FIG. 1 is a side sectional view of an antistatic gas barrier material showing an embodiment of the present invention.
A polymer resin substrate 1, a first antistatic layer 2, a gas barrier layer 3, and a second antistatic layer 4 are laminated.

【0010】前記高分子樹脂基材1としては、たとえば
ポリエチレンテレフタレート樹脂、ポリプロピレン樹
脂、ナイロン樹脂、ポリメチルメタクリレート樹脂、ポ
リカーボネート樹脂、ポリスチレン樹脂、ポリエチレン
樹脂等が挙げられる。高分子樹脂基材1の厚さは利用す
る製品に応じて適宜選択することができるが、巻取適性
等を考慮すると5μm〜300μmの範囲とすることが
好ましい。
Examples of the polymer resin substrate 1 include polyethylene terephthalate resin, polypropylene resin, nylon resin, polymethylmethacrylate resin, polycarbonate resin, polystyrene resin and polyethylene resin. The thickness of the polymer resin substrate 1 can be appropriately selected according to the product to be used, but it is preferably in the range of 5 μm to 300 μm in consideration of winding suitability and the like.

【0011】前記第1帯電防止層2は、架橋性化合物で
ある電子線硬化樹脂と界面活性剤との混合物である必要
がある。架橋性化合物としてはアクリル系又はメタクリ
ル系等の物が用いられる。特に、分子中に少なくとも二
個、好ましくは二個から六個のアクリロイル基を有する
架橋性化合物を用いることが望ましい。また、界面活性
剤としてはカチオン系の物、例えば四級アンモニウム塩
や、アニオン系の物、例えばアルキルサルフェートが用
いられる。特に分子中に少なくとも一個、好ましくは一
個又は二個のアクリロイル基を有する四級アンモニウム
塩化合物を用いることが望ましい。前記界面活性剤は導
電性を与えて帯電を防止する役目を有する。
The first antistatic layer 2 must be a mixture of an electron beam curing resin which is a crosslinkable compound and a surfactant. As the crosslinkable compound, an acrylic or methacrylic compound is used. In particular, it is desirable to use a crosslinkable compound having at least 2, preferably 2 to 6 acryloyl groups in the molecule. As the surfactant, a cation-based substance such as a quaternary ammonium salt or an anion-based substance such as an alkyl sulfate is used. In particular, it is desirable to use a quaternary ammonium salt compound having at least one, preferably one or two acryloyl groups in the molecule. The surfactant has a role of giving conductivity and preventing charging.

【0012】前記混合物の混合比率は、硬化後の硬度、
膜厚、透明性、帯電防止性能等によって任意に変えるこ
とができるが、架橋性化合物95.5〜60重量%に対
し、界面活性剤0.5〜40重量%の範囲が好ましい。
The mixing ratio of the mixture is such that the hardness after curing,
Although it can be arbitrarily changed depending on the film thickness, transparency, antistatic performance, etc., the range of 0.5 to 40% by weight of the surfactant is preferable with respect to 95.5 to 60% by weight of the crosslinkable compound.

【0013】前記第1帯電防止層2の積層方法は、前記
架橋性化合物と界面活性剤の混合物のコーティング剤を
ダイレクトグラビア法、リバースグラビア法やマイクロ
グラビア法等のロールコーティング法、ドクターナイフ
法、ダイコート法、ディップコート法、バーコーティン
グ法やこれらを組み合わせたコーティング法などの方法
が挙げられる。コーティング剤は混合物自体が流動性に
優れているために平滑な表面を得ることができる。前記
コーティング後の混合物に電子線を照射し、硬化させた
被膜を形成する。この時の電子線の照射線量は10kG
yから150kGyとすることが望ましい。これにより
十分な帯電防止効果を付与することができる。
The method for laminating the first antistatic layer 2 is as follows: a coating agent of a mixture of the crosslinkable compound and a surfactant, a roll coating method such as a direct gravure method, a reverse gravure method or a microgravure method, a doctor knife method, Examples thereof include a die coating method, a dip coating method, a bar coating method, and a coating method combining these methods. Since the mixture itself of the coating agent has excellent fluidity, a smooth surface can be obtained. The mixture after coating is irradiated with an electron beam to form a cured coating. The irradiation dose of the electron beam at this time is 10 kG
It is desirable to set y to 150 kGy. Thereby, a sufficient antistatic effect can be given.

【0014】前記第1帯電防止層2の厚さは、表面の耐
久性および透明性の点から硬化後の状態で0.1μmか
ら50μmとすることが好ましい。
The thickness of the first antistatic layer 2 is preferably 0.1 μm to 50 μm in the cured state from the viewpoint of surface durability and transparency.

【0015】図2は前記ガスバリア層3を形成させる真
空蒸着装置を説明した図であり、以下にこの装置でガス
バリア層3を形成する方法を説明する。
FIG. 2 is a diagram for explaining a vacuum vapor deposition apparatus for forming the gas barrier layer 3, and a method for forming the gas barrier layer 3 with this apparatus will be described below.

【0016】巻出しロール軸11に第1帯電防止層2を
積層した高分子樹脂基材1の巻取を装着し、真空蒸着装
置10内を真空ポンプ20にて排気して、真空度を1P
a以上とする。次に、前記高分子樹脂基材1を巻き出
し、巻取りロール軸12の方向に搬送させながら、電子
銃15から電子線をるつぼ16内の蒸着原材料17に照
射して、原材料を蒸発させ、その原材料の蒸気雰囲気中
に酸素供給装置19から酸素ガス供給パイプ18を経由
して酸素ガスを導入して反応させ、高分子樹脂基材1に
積層した第1帯電防止層2の表面に金属酸化物の蒸着薄
膜のガスバリア層3を形成させる。
The winding of the polymer resin substrate 1 having the first antistatic layer 2 laminated thereon is mounted on the unwinding roll shaft 11, the inside of the vacuum vapor deposition apparatus 10 is evacuated by the vacuum pump 20, and the degree of vacuum is set to 1P.
It is a or more. Next, while unwinding the polymer resin substrate 1 and transporting it in the direction of the winding roll shaft 12, the electron beam is irradiated from the electron gun 15 onto the vapor deposition raw material 17 in the crucible 16 to evaporate the raw material. Oxygen gas is introduced into the vapor atmosphere of the raw material from the oxygen supply device 19 through the oxygen gas supply pipe 18 to cause reaction, and metal oxidation is performed on the surface of the first antistatic layer 2 laminated on the polymer resin base material 1. A gas barrier layer 3 of a vapor-deposited thin film is formed.

【0017】前記ガスバリア層3は、酸化珪素、酸化ア
ルミニウム、酸化マグネシウムなどが使用できるが、透
明性とガスバリア性の点で酸化珪素又は酸化アルミニウ
ムが好ましく、さらに、酸化アルミニウムが成膜速度が
速く生産性に優れるためより好ましい。
As the gas barrier layer 3, silicon oxide, aluminum oxide, magnesium oxide or the like can be used, but silicon oxide or aluminum oxide is preferable in terms of transparency and gas barrier property, and further, aluminum oxide is produced at a high film formation rate. It is more preferable because it has excellent properties.

【0018】前記ガスバリア層3を酸化アルミニウムの
蒸着薄膜で形成させる場合、蒸着原材料として金属アル
ミニウムを使用する方法、あるいは酸化アルミニウムを
使用する方法があるが、いずれの方法を用いても良い。
金属アルミニウムを蒸着原材料とした場合には、酸素ガ
ス供給パイプ18から酸素ガスを導入する反応性蒸着法
によって酸化アルミニウム薄膜を形成する。この場合、
供給する酸素の量は酸化アルミニウムの厚さ、酸化度、
巻き取り速度、真空蒸着装置の大きさ等によって異なる
が、金属アルミニウムの単位時間当たりの蒸発量に対し
酸素ガス供給量が、酸素/アルミニウム=0.15〜
0.75(モル換算比)であることが望ましい。酸素の
比が0.15より小さいと金属アルミニウムの酸化度が
低く着色が顕著となり、反対に酸素比が0.75より多
いと酸化アルミニウム層内に空隙が多くなりガスバリア
性が発揮されないためである。
When the gas barrier layer 3 is formed of a vapor-deposited thin film of aluminum oxide, there is a method of using metal aluminum as a vapor deposition raw material or a method of using aluminum oxide, but any method may be used.
When metallic aluminum is used as the vapor deposition raw material, the aluminum oxide thin film is formed by the reactive vapor deposition method in which oxygen gas is introduced from the oxygen gas supply pipe 18. in this case,
The amount of oxygen supplied is the thickness of aluminum oxide, the degree of oxidation,
Although it depends on the winding speed, the size of the vacuum deposition apparatus, etc., the oxygen gas supply amount is oxygen / aluminum = 0.15 to the evaporation amount of metallic aluminum per unit time.
It is preferably 0.75 (molar conversion ratio). This is because if the oxygen ratio is less than 0.15, the degree of oxidation of the metallic aluminum is low and the coloring is remarkable, whereas if the oxygen ratio is more than 0.75, the voids increase in the aluminum oxide layer and the gas barrier property is not exhibited. .

【0019】前記第2帯電防止層4は、架橋性化合物か
らなる電子線硬化樹脂と導電性フィラーとの混合物であ
る必要がある。架橋性化合物としては、アクリル系又は
メタクリル系等の物が用いられる。特に分子中に少なく
とも二個、好ましくは二個から六個のアクリロイル基を
有する架橋性化合物を用いることが望ましい。また、導
電性フィラーとしては、例えばインジウム錫酸化物、カ
ーボンブラック等を用いるが、膜の透明性の点からイン
ジウム錫酸化物を用いることが好ましい。その混合比率
は、硬化後の硬度、膜厚、透明性、帯電防止性能等によ
って任意に変えることができるが、架橋性化合物95.
5〜30重量%に対し、導電性フィラー0.5〜70重
量%の範囲である。なお、前記第2帯電防止層4は前記
第1帯電防止層2と同じ混合物を使用して形成しても良
い。
The second antistatic layer 4 must be a mixture of an electron beam curable resin composed of a crosslinkable compound and a conductive filler. As the crosslinkable compound, an acrylic or methacrylic compound is used. In particular, it is desirable to use a crosslinkable compound having at least 2, preferably 2 to 6 acryloyl groups in the molecule. Further, as the conductive filler, for example, indium tin oxide, carbon black or the like is used, but it is preferable to use indium tin oxide from the viewpoint of the transparency of the film. The mixing ratio can be arbitrarily changed depending on the hardness after curing, the film thickness, the transparency, the antistatic performance, and the like.
The amount of the conductive filler is 0.5 to 70% by weight with respect to 5 to 30% by weight. The second antistatic layer 4 may be formed using the same mixture as the first antistatic layer 2.

【0020】前記第2帯電防止層4の積層方法は、前記
第1帯電層2と同様な方法で塗布することができる。前
記第1帯電層2の形成時と同様にコーティング後の混合
物に電子線を照射し、硬化させ被膜を形成する。この時
の電子線の照射線量は10kGyから150kGyとす
ることが望ましい。これにより十分な帯電防止効果を付
与することができる。
The method of laminating the second antistatic layer 4 can be applied in the same manner as that of the first charging layer 2. Similar to the formation of the first charging layer 2, the mixture after coating is irradiated with an electron beam to be cured to form a coating film. The irradiation dose of the electron beam at this time is preferably 10 kGy to 150 kGy. Thereby, a sufficient antistatic effect can be given.

【0021】前記第2帯電防止層4の厚さは、表面の耐
久性および透明性の点から0.1μm〜50μmとする
ことが好ましい。
The thickness of the second antistatic layer 4 is preferably 0.1 μm to 50 μm from the viewpoint of surface durability and transparency.

【0022】[0022]

【実施例】本発明の帯電防止性ガスバリア材を具体的な
実施例に従って、さらに詳細に説明する。
EXAMPLES The antistatic gas barrier material of the present invention will be described in more detail with reference to specific examples.

【0023】〈実施例1〉高分子樹脂基材1として、厚
さ100μmのポリエチレンテレフタレートフィルムを
用いた。このフィルムの表面に第1帯電防止層2とし
て、ペンタエリスリトールトリアクリレート中にジメチ
ルアミノエチルアクリレート四級塩を固形分比で5重量
%になるように混合した混合物を、グラビアコーター機
でコーティングし、厚さ1μmの塗膜を形成させた。そ
の後、電子線照射装置の加速電圧を120kVに設定
し、前記塗膜に電子線を100kGyの線量で照射し硬
化させた。次に、前記第1帯電防止層2を積層した高分
子樹脂基材1を真空蒸着装置10内の巻出しロール軸1
1に装着し、真空蒸着装置10内を1×10-1Paまで
減圧した。前記高分子樹脂基材1を速度10m/分で巻
取りロール軸12方向に搬送しながら、電子銃15から
電子線を発生させ、蒸着原材料17として使用した金属
アルミニウムに照射して蒸発させた。同時に酸素ガス供
給パイプ18から酸素ガスを導入して反応させ、膜厚2
0nmの酸化アルミニウムのガスバリア層3を形成し
た。引き続いて、前記高分子樹脂基材1に第1帯電防止
層2、ガスバリア層3を積層した積層フィルムをグラビ
アコーター機に装着し、第2帯電防止層4として、ペン
タエリスリトールトリアクリレートに対し、固形分比で
50重量%となる様にインジウム錫酸化物を混合した混
合物を前記ガスバリア層3の上に、厚さ1μmになるよ
うにコーティングした。その後、電子線照射装置の加速
電圧を120kVに設定し、前記コーティング塗膜に電
子線を100kGyの線量で照射し硬化させ、本発明の
帯電防止性ガスバリア材を作成した。
Example 1 As the polymer resin substrate 1, a polyethylene terephthalate film having a thickness of 100 μm was used. As a first antistatic layer 2 on the surface of this film, a mixture of pentaerythritol triacrylate and quaternary salt of dimethylaminoethyl acrylate mixed at a solid content ratio of 5% by weight was coated with a gravure coater machine, A coating film having a thickness of 1 μm was formed. Then, the accelerating voltage of the electron beam irradiation device was set to 120 kV, and the coating film was irradiated with an electron beam at a dose of 100 kGy to be cured. Next, the polymer resin substrate 1 having the first antistatic layer 2 laminated thereon is unrolled in the vacuum vapor deposition apparatus 10 and the roll shaft 1 is unrolled.
1 was installed, and the inside of the vacuum vapor deposition apparatus 10 was depressurized to 1 × 10 −1 Pa. While the polymer resin substrate 1 was being conveyed in the direction of the winding roll shaft 12 at a speed of 10 m / min, an electron beam was generated from an electron gun 15 and irradiated to the metal aluminum used as the vapor deposition raw material 17 to evaporate it. At the same time, oxygen gas is introduced from the oxygen gas supply pipe 18 to cause a reaction, and a film thickness of 2
A 0 nm aluminum oxide gas barrier layer 3 was formed. Subsequently, a laminated film obtained by laminating the first antistatic layer 2 and the gas barrier layer 3 on the polymer resin base material 1 was mounted on a gravure coater machine, and the second antistatic layer 4 was solid with respect to pentaerythritol triacrylate. The gas barrier layer 3 was coated with a mixture of indium tin oxide in a proportion of 50% by weight so as to have a thickness of 1 μm. Then, the accelerating voltage of the electron beam irradiation device was set to 120 kV, and the coating film was irradiated with an electron beam at a dose of 100 kGy and cured to prepare the antistatic gas barrier material of the present invention.

【0024】〈比較例1〉実施例1において、第1帯電
防止層2を設けなかったこと以外は、同様にして比較用
のガスバリア材を作成した。
Comparative Example 1 A gas barrier material for comparison was prepared in the same manner as in Example 1 except that the first antistatic layer 2 was not provided.

【0025】〈比較例2〉実施例1において、第2帯電
防止層4を設けなかったこと以外は、同様にして比較用
のガスバリア材を作成した。
Comparative Example 2 A gas barrier material for comparison was prepared in the same manner as in Example 1 except that the second antistatic layer 4 was not provided.

【0026】〈比較例3〉実施例1において、第1帯電
防止層2及び第2帯電防止層4を設けなかったこと以外
は、同様にして比較用のガスバリア材を作成した。
Comparative Example 3 A gas barrier material for comparison was prepared in the same manner as in Example 1 except that the first antistatic layer 2 and the second antistatic layer 4 were not provided.

【0027】〈評価〉実施例1及び比較例1〜3のガス
バリア材を用いて、そのガスバリア材のガスバリア層の
薄膜の損傷数、酸素透過度、水蒸気透過度及び表面固有
抵抗を以下の測定方法で測定し、評価した。その結果を
表1に示す。 (1)ガスバリア層の薄膜の損傷数 光学顕微鏡を用いて、ガスバリア材の2cm×2cmの
中に含まれるガスバリア層の薄膜の欠陥数を数え、試作
工程中に塵埃などによって擦られたことに起因する損傷
数を調べた。 (2)表面固有抵抗 三菱化学製のHiresta HT210装置を用い
て、各々のガスバリア材の基材1に積層した最外側の層
の表面固有抵抗を25℃、60%RHの雰囲気下で測定
した。 (3)酸素透過度 モダンコントロール社製の酸素透過度測定装置(Moc
on Oxtran10/50A)を用いて、30℃、
70%RHの雰囲気下で測定した。 (4)水蒸気透過度 モダンコントロール社製の水蒸気透過度測定装置(Mo
con Permatran W6)を用いて、40
℃、90%RHの雰囲気下で測定した。
<Evaluation> Using the gas barrier materials of Example 1 and Comparative Examples 1 to 3, the number of damages to the thin film of the gas barrier layer of the gas barrier material, the oxygen permeability, the water vapor permeability and the surface resistivity were measured by the following measuring methods. Was measured and evaluated. The results are shown in Table 1. (1) Number of damages to the thin film of the gas barrier layer Due to the fact that the number of defects of the thin film of the gas barrier layer contained in 2 cm × 2 cm of the gas barrier material was counted using an optical microscope, and was rubbed by dust or the like during the trial production process The number of damages was investigated. (2) Surface resistivity Using a Hiresta HT210 apparatus manufactured by Mitsubishi Chemical, the surface resistivity of the outermost layer laminated on the substrate 1 of each gas barrier material was measured in an atmosphere of 25 ° C. and 60% RH. (3) Oxygen permeability Oxygen permeability measuring device (Moc
on Oxtran10 / 50A) at 30 ° C.,
It was measured in an atmosphere of 70% RH. (4) Water vapor transmission rate Water vapor transmission rate measuring device (Mo
con Permantran W6), 40
The measurement was performed in an atmosphere of 90 ° C. and 90% RH.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、実施例1は第1帯電防止
層2及び第2帯電防止層4を設けているので、ガスバリ
ア層3の薄膜の損傷は全く確認されなかった。従って酸
素透過度及び水蒸気透過度も非常に小さかった。最外側
の第2帯電防止層4の表面固有抵抗も108 Ω/□で小
さかった。比較例1は第1帯電防止層2を設けていない
ので、試作工程でのガスバリア層3の薄膜の損傷数が多
く、従って酸素透過度及び水蒸気透過度も非常に大きか
った。比較例2は第2帯電防止層4を設けていないだけ
なので、ガスバリア層3の薄膜の損傷数は僅かであった
が、酸素透過度及び水蒸気透過度も大きくなっていた。
最外側がガスバリア層3になっているので、表面固有抵
抗は1012 Ω/□以上であった。比較例3は第1帯電
防止層2及び第2帯電防止層4の両方を設けていないの
で、ガスバリア層3の薄膜の損傷数も多く、従って酸素
透過度及び水蒸気透過度も大きく、ガスバリア層3が最
外側になっているので表面固有抵抗も1012Ω/□以上
であった。
From the results shown in Table 1, since Example 1 was provided with the first antistatic layer 2 and the second antistatic layer 4, no damage to the thin film of the gas barrier layer 3 was confirmed. Therefore, the oxygen permeability and the water vapor permeability were also very small. The surface resistivity of the outermost second antistatic layer 4 was also as small as 10 8 Ω / □. Since the first antistatic layer 2 was not provided in Comparative Example 1, the number of damages to the thin film of the gas barrier layer 3 in the trial production process was large, and therefore the oxygen permeability and the water vapor permeability were also very large. In Comparative Example 2, only the second antistatic layer 4 was not provided, so the number of damages to the thin film of the gas barrier layer 3 was small, but the oxygen permeability and water vapor permeability were also large.
Since the outermost layer is the gas barrier layer 3, the surface specific resistance was 10 12 Ω / □ or more. In Comparative Example 3, since neither the first antistatic layer 2 nor the second antistatic layer 4 was provided, the number of damages to the thin film of the gas barrier layer 3 was large, and therefore the oxygen permeability and the water vapor permeability were also large, and the gas barrier layer 3 Since it is the outermost part, the surface specific resistance was 10 12 Ω / □ or more.

【0030】[0030]

【発明の効果】本発明の帯電防止性ガスバリアは、高分
子樹脂基材上に第1帯電防止層を設けているので、その
上に積層したガスバリア層の形成時の塵埃などの付着を
防ぎ、基材の搬送中での擦れによる損傷を削減すること
ができる。従って酸素透過度及び水蒸気透過度も非常に
小さく、さらにガスバリア層の上に第2帯電防止層を設
けているので、表面固有抵抗が小さく、このガスバリア
材を用いた印刷、ラミネート工程などの各種生産工程で
も帯電することによる種々の弊害をうけることがなく、
安定した品質の積層体を効率よく製造できる特徴があ
り、広く包装分野で利用できる。
Since the antistatic gas barrier of the present invention has the first antistatic layer provided on the polymer resin substrate, it prevents dust and the like from adhering when forming the gas barrier layer laminated thereon. It is possible to reduce damage due to rubbing during the transportation of the base material. Therefore, oxygen permeability and water vapor permeability are also very small, and since the second antistatic layer is provided on the gas barrier layer, the surface resistivity is small, and various productions such as printing and laminating processes using this gas barrier material. Even in the process, it does not suffer various negative effects due to charging,
It has a feature that a laminated product of stable quality can be efficiently produced, and can be widely used in the packaging field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の帯電防止性ガスバリア材の側断面図で
ある。
FIG. 1 is a side sectional view of an antistatic gas barrier material of the present invention.

【図2】本発明の帯電防止性ガスバリア材のガスバリア
層を形成する真空蒸着装置の概略図である。
FIG. 2 is a schematic view of a vacuum vapor deposition apparatus for forming a gas barrier layer of the antistatic gas barrier material of the present invention.

【符号の説明】[Explanation of symbols]

1…高分子樹脂基材 2…第1帯電防止層 3…ガスバリア層 4…第2帯電防止層 10…真空蒸着装置 11…巻出しロール軸 12…巻取りロール軸 13…冷却ロール 14a,14b…遮蔽板 15…電子銃 16…るつぼ 17…蒸着原材料 18…酸素ガス供給パイプ 19…酸素供給装置 20…真空ポンプ 1 ... Polymer resin base material 2 ... First antistatic layer 3 ... Gas barrier layer 4 ... Second antistatic layer 10 ... Vacuum deposition apparatus 11 ... Unwinding roll shaft 12 ... Winding roll shaft 13 ... Cooling roll 14a, 14b ... Shielding plate 15 ... electron gun 16 ... crucible 17 ... Vapor deposition raw material 18 ... Oxygen gas supply pipe 19 ... Oxygen supply device 20 ... Vacuum pump

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA33 AK01A AK01B AK01D AK25 AK42 AR00B AR00C AR00D BA04 BA07 BA10A BA10D CA21D EH46 EH66 EJ53 EJ59 GB15 GB23 GB41 GB66 JB14B JB14D JB14K JD02 JD02C JD04 JG03B JG03D JG04    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F100 AA33 AK01A AK01B AK01D                       AK25 AK42 AR00B AR00C                       AR00D BA04 BA07 BA10A                       BA10D CA21D EH46 EH66                       EJ53 EJ59 GB15 GB23 GB41                       GB66 JB14B JB14D JB14K                       JD02 JD02C JD04 JG03B                       JG03D JG04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高分子樹脂基材上に、第1帯電防止層、ガ
スバリア層、第2帯電防止層を順次積層した積層体から
なることを特徴とする帯電防止性ガスバリア材。
1. An antistatic gas barrier material comprising a laminated body in which a first antistatic layer, a gas barrier layer and a second antistatic layer are sequentially laminated on a polymer resin substrate.
【請求項2】前記第1帯電防止層が、分子中に少なくと
も二個のアクリロイル基を有する架橋性化合物と、分子
中に少なくとも一個のアクリロイル基を有する第四級ア
ンモニウム塩化合物との混合物の電子線照射硬化被膜か
らなることを特徴とする請求項1記載の帯電防止性ガス
バリア材。
2. The electron of a mixture of a crosslinkable compound having at least two acryloyl groups in the molecule and a quaternary ammonium salt compound having at least one acryloyl group in the molecule, in the first antistatic layer. The antistatic gas barrier material according to claim 1, wherein the antistatic gas barrier material comprises a radiation-cured coating.
【請求項3】前記第2帯電防止層が、分子中に少なくと
も二個のアクリロイル基を有する架橋性化合物と、導電
性フィラーとの混合物の電子線照射硬化被膜からなるこ
とを特徴とする請求項1又は請求項2記載の帯電防止性
ガスバリア材。
3. The second antistatic layer comprises an electron beam irradiation cured coating of a mixture of a crosslinkable compound having at least two acryloyl groups in the molecule and a conductive filler. The antistatic gas barrier material according to claim 1 or claim 2.
JP2001217955A 2001-07-18 2001-07-18 Antistatic gas barrier material Expired - Fee Related JP4604412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217955A JP4604412B2 (en) 2001-07-18 2001-07-18 Antistatic gas barrier material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217955A JP4604412B2 (en) 2001-07-18 2001-07-18 Antistatic gas barrier material

Publications (2)

Publication Number Publication Date
JP2003025474A true JP2003025474A (en) 2003-01-29
JP4604412B2 JP4604412B2 (en) 2011-01-05

Family

ID=19052201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217955A Expired - Fee Related JP4604412B2 (en) 2001-07-18 2001-07-18 Antistatic gas barrier material

Country Status (1)

Country Link
JP (1) JP4604412B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175901A (en) * 2007-01-16 2008-07-31 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
JP2010084054A (en) * 2008-10-01 2010-04-15 Dainippon Printing Co Ltd Coating liquid for forming heat-resistant layer, method for producing gas-barrier sheet, the resultant gas-barrier sheet, and product using the sheet
JP2010221716A (en) * 2010-05-28 2010-10-07 Fujifilm Corp Steam barrier film
JP2017071133A (en) * 2015-10-08 2017-04-13 コニカミノルタ株式会社 Gas barrier film laminate and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641929U (en) * 1987-06-22 1989-01-09
JPS6490743A (en) * 1987-10-02 1989-04-07 Fujitsu Ltd Packaging material for electronic parts custody bags
JPH08325396A (en) * 1995-05-31 1996-12-10 Iwasaki Electric Co Ltd Antistatic material having antimicrobial and antifungal property imparted thereto and its production
JPH08325397A (en) * 1995-05-30 1996-12-10 Iwasaki Electric Co Ltd Electrostatic electricity dissipator film and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641929U (en) * 1987-06-22 1989-01-09
JPS6490743A (en) * 1987-10-02 1989-04-07 Fujitsu Ltd Packaging material for electronic parts custody bags
JPH08325397A (en) * 1995-05-30 1996-12-10 Iwasaki Electric Co Ltd Electrostatic electricity dissipator film and its production
JPH08325396A (en) * 1995-05-31 1996-12-10 Iwasaki Electric Co Ltd Antistatic material having antimicrobial and antifungal property imparted thereto and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175901A (en) * 2007-01-16 2008-07-31 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
JP2010084054A (en) * 2008-10-01 2010-04-15 Dainippon Printing Co Ltd Coating liquid for forming heat-resistant layer, method for producing gas-barrier sheet, the resultant gas-barrier sheet, and product using the sheet
JP2010221716A (en) * 2010-05-28 2010-10-07 Fujifilm Corp Steam barrier film
JP2017071133A (en) * 2015-10-08 2017-04-13 コニカミノルタ株式会社 Gas barrier film laminate and electronic device

Also Published As

Publication number Publication date
JP4604412B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4677692B2 (en) Transparent gas barrier material and method for producing the same
CN102326233B (en) Method of producing a component of a device, and the resulting components and devices
TW448236B (en) Thin film, method and apparatus for forming the same, and electronic component incorporating the same
TWI621537B (en) Functional film manufacturing method and functional film
JP6411707B2 (en) Gas barrier laminate
CN117087288A (en) Release film for molding resin sheet
CN106893134A (en) Method for processing flexible base board
JP4604412B2 (en) Antistatic gas barrier material
JP7031772B2 (en) Barrier film, laminate using the barrier film, packaging product using the laminate
JP2007004146A (en) Optical functional film, composite film and method for producing them
JP7115501B2 (en) Laminated barrier film.
JP2003341003A (en) Laminate and manufacturing method therefor
JP7338153B2 (en) Gas barrier vapor deposited film, gas barrier laminate, gas barrier packaging material, gas barrier packaging material, and method for producing gas barrier vapor deposited film
JP2010184409A (en) Method of forming gas barrier laminated film
JP4701570B2 (en) Transparent gas barrier material and method for producing the same
JP4992252B2 (en) Method of forming laminate and laminate
JP2016097500A (en) Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method
JP2019161156A (en) Release film roll for manufacturing ceramic green sheet
WO1993012941A1 (en) Base material of sheet for metallic transfer printing film and sheet itself
JP2022149218A (en) Chemical-resistant and glossy shading film
JP5332403B2 (en) Gas barrier laminated film
JP2001246688A (en) Gas barrier material and its manufacturing method
JP2008272968A (en) Method for producing laminate and its gas gas-barrier film
JP6938913B2 (en) Manufacturing method of transparent barrier film
JP2000062096A (en) Thermoplastic resin film having good printability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees