JP2003024784A - Catalyst for decomposing ammonia and its production method - Google Patents

Catalyst for decomposing ammonia and its production method

Info

Publication number
JP2003024784A
JP2003024784A JP2001216743A JP2001216743A JP2003024784A JP 2003024784 A JP2003024784 A JP 2003024784A JP 2001216743 A JP2001216743 A JP 2001216743A JP 2001216743 A JP2001216743 A JP 2001216743A JP 2003024784 A JP2003024784 A JP 2003024784A
Authority
JP
Japan
Prior art keywords
component
catalyst
carrier
water
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001216743A
Other languages
Japanese (ja)
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001216743A priority Critical patent/JP2003024784A/en
Publication of JP2003024784A publication Critical patent/JP2003024784A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PROBLEM TO BE SOLVED: To provide a compact catalyst for decomposing ammonia which is high in activity and does not generate NOx and N2 O and a method for producing the catalyst. SOLUTION: The catalyst comprises the first component of silica or zeolite supporting at least one noble metal selected from platinum (Pt), palladium (Pd), iridium (Ir), and rhodium (Rh) and the second component of a composition comprising an oxide of at least, one metal selected from titanium (Ti), tungsten (W), and vanadium (V). The quantity of a carried noble metal per area of the first component carrier is 0.1-11 g/m<2> , and the quantity of a metal per area of the second component carrier is 50-300 g/m<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア分解触
媒およびその製造方法に関し、特に工場や発電所から排
出される排水および排ガス中に含まれるアンモニア(N
3 )を効率よく除去するアンモニア分解触媒およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia decomposition catalyst and a method for producing the same, and particularly to ammonia (N) contained in wastewater and exhaust gas discharged from factories and power plants.
The present invention relates to an ammonia decomposition catalyst for efficiently removing H 3 ) and a method for producing the same.

【0002】[0002]

【従来の技術】平成5年から窒素および燐に係る環境基
準および排水基準が設定されたことに伴い、コークス炉
や半導体工場など各種工場、および火力発電所などから
排出されるNH3 (アンモニア)を含有する排水を効率
よく処理する必要性が高まりつつある。NH3 含有排水
の処理方法の中では、排水中のNH3 をストリッピング
などの手段によりガス中に移行後、NH3 分解触媒上
で、窒素に無害化する方法(環境創造、8、(9)、6
7(1978)など)は、コンパクトで制御性が高いた
め、従来主流であった生物学的処理法(水処理工学、P
206など)に代わって普及し始めている。
2. Description of the Related Art NH 3 (ammonia) emitted from various factories such as coke ovens and semiconductor factories, and thermal power plants due to the establishment of environmental standards and wastewater standards for nitrogen and phosphorus from 1993. There is a growing need to efficiently treat wastewater containing water. NH 3 in the method of processing waste water containing, after migration the NH 3 in the waste water in the gas by means such as stripping, on NH 3 decomposing catalyst, the method (environmental creation to detoxify nitrogen, 8, (9 ), 6
7 (1978)) is compact and has high controllability, so biological treatment methods (water treatment engineering, P
No. 206, etc.) is becoming popular.

【0003】また、上記各種工場などでは、NH3 含有
排水のみならずNH3 含有排ガスも発生するため、これ
を処理するために上記NH3 分解触媒を排ガス煙道に設
置して窒素に無害化する方法が用いられている。
Further, in the above various factories, not only NH 3 -containing wastewater but also NH 3 -containing exhaust gas is generated. Therefore, in order to treat this, the NH 3 decomposition catalyst is installed in the exhaust gas flue to make it harmless to nitrogen. Method is used.

【0004】このNH3 分解触媒には、従来白金(P
t)、パラジウム(Pd)などの貴金属をアルミナ、シ
リカ、チタニアなどの担体に担持して得られる貴金属系
触媒(特公昭57−58213号公報など)などが用い
られていた。ところがこれらNH3 分解触媒は、アンモ
ニアの酸化に伴って有害な窒素酸化物(NO、NO2
2 O)を多量に発生する。そこで、NOxの副生を防
止するために脱硝触媒成分(Ti、Mo、V、Wなど)
と酸化触媒成分(Pt、Pd、Fe、Ni、Mn、Co
など)とを組合わせた触媒(特開平05−146634
号公報、特開平08−24651号公報など)が提案さ
れ、従来の触媒に代わって使用されるようになってき
た。これら触媒の製造法には、活性成分と担体とをペー
スト状に混練した後、板状やハニカム状に成形する方法
がある。
This NH 3 decomposition catalyst is conventionally platinum (P
t), a noble metal catalyst obtained by supporting a noble metal such as palladium (Pd) on a carrier such as alumina, silica, and titania (Japanese Patent Publication No. 57-58213) and the like have been used. However, these NH 3 decomposition catalysts produce harmful nitrogen oxides (NO, NO 2 ,
A large amount of N 2 O) is generated. Therefore, in order to prevent NOx by-products, denitration catalyst components (Ti, Mo, V, W, etc.)
And oxidation catalyst components (Pt, Pd, Fe, Ni, Mn, Co
And the like) (see Japanese Patent Laid-Open No. 05-146634)
Japanese Patent Laid-Open No. 08-24651 and the like) have been proposed and have been used in place of conventional catalysts. As a method for producing these catalysts, there is a method in which an active ingredient and a carrier are kneaded in a paste form and then formed into a plate shape or a honeycomb shape.

【0005】[0005]

【発明が解決しようとする課題】NH3 分解触媒は半導
体工場などの小型排ガス装置に適用される場合が多いた
め、できる限りコンパクトであることが要求される。と
ころが、これまでにNH 3 分解触媒には従来から、触媒
成分をペースト状に混練し、これをハニカムまたは板状
に成形する方法がとられており、ハニカム状に成形する
製造法では、リブ厚を一定以下にすると強度が保てない
ために、また板状成形法では触媒の厚みを基材よりも薄
くすることができないために、いずれも狭ピッチ化に限
界があり、一定以上触媒体積を小さくすることが難しい
という問題が生じていた。
[Problems to be Solved by the Invention] NH3Decomposition catalyst is semi-conductive
It is often applied to small exhaust systems such as body factories.
Therefore, it is required to be as compact as possible. When
By the time, NH 3Conventional decomposition catalysts
The ingredients are kneaded into a paste, which is then used as a honeycomb or plate
The method of forming into a honeycomb shape is used.
In the manufacturing method, strength cannot be maintained if the rib thickness is below a certain level.
In addition, in the plate molding method, the thickness of the catalyst is thinner than the base material.
Both of them are limited to narrow pitches
Boundaries, it is difficult to reduce the catalyst volume above a certain level
There was a problem.

【0006】これに対し、触媒成分粉末をスラリ化した
ものを金属やセラミック基材にコーティングするスラリ
コーティング法は、あらかじめ狭ピッチなハニカム状、
コルゲート状の担体に触媒をコーティングすることがで
きるため、従来のハニカム押出し成形法や板状成形法に
比べてコンパクト化が容易であるという利点がある。
On the other hand, a slurry coating method for coating a metal or ceramic substrate with a slurry of a catalyst component powder is a narrow pitch honeycomb shape,
Since the corrugated carrier can be coated with the catalyst, there is an advantage that it can be easily made compact as compared with the conventional honeycomb extrusion molding method or plate molding method.

【0007】ところがNH3 の分解は、NH3 の酸化と
NOxの還元という相反する機能をバランスよく行わ
せ、NH3 の酸化に伴い副生するNOx量をいかに押さ
えることができるかが重要であり、このようなNH3
解触媒の性能に及ぼす調整方法や調整条件の影響は大き
い。特に白金などの貴金属成分の塩類を数ppm添加し
ただけで脱硝触媒の性能を著しく低下させることが知ら
れている。NH3 分解触媒は、NH3 の酸化成分である
貴金属成分と、副生するNOxを還元させる成分である
脱硝触媒成分、すなわち、チタン、モリブデン、タング
ステン、バナジウムから選ばれる酸化物で構成される
が、これらをコーティングする方法としては、 これら成
分を水に懸濁させたスラリを用いることが考えられる。
しかし、脱硝触媒成分に貴金属成分の塩類を添加する方
法では貴金属成分により脱硝成分の活性が失活するた
め、コーティングはできても高い性能は得られなかっ
た。
[0007] However the decomposition of NH 3, the balance was good performed conflicting functions of oxidation and NOx reduction of NH 3, or is important can be suppressed how the amount of NOx by-product with the oxidation of NH 3 However, the influence of the adjusting method and adjusting conditions on the performance of such an NH 3 decomposition catalyst is large. In particular, it is known that the performance of the denitration catalyst is remarkably reduced only by adding a few ppm of a noble metal component such as platinum. The NH 3 decomposition catalyst is composed of a noble metal component that is an oxidizing component of NH 3 and a denitration catalyst component that is a component that reduces NOx produced as a by-product, that is, an oxide selected from titanium, molybdenum, tungsten, and vanadium. As a method for coating these, it is conceivable to use a slurry prepared by suspending these components in water.
However, in the method of adding a salt of a noble metal component to the denitration catalyst component, the activity of the denitration component is deactivated by the noble metal component, so that high performance was not obtained even if coating was possible.

【0008】本発明の課題は、高活性でかつNOx、N
2 Oの副生といった問題を生じない、よりコンパクトで
高活性のNH3 分解触媒およびその製造方法を提供する
ことにある。
The object of the present invention is to have high activity and NOx, N
An object of the present invention is to provide a more compact and highly active NH 3 decomposition catalyst that does not cause a problem such as a by-product of 2 O, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記課題は、白金(P
t)、パラジウム(Pd)、イリジウム(Ir)および
ロジウム(Rh)から選ばれた1種以上の貴金属を担持
したシリカおよびまたはゼオライトである第1成分と、
チタン(Ti)、タングステン(W)およびバナジウム
(V)から選ばれた1種以上の元素の酸化物からなる組
成物である第2成分とからなり、第1成分の担体面積当
たりの担持量が0.1〜11g/m2 、第2成分の担体
面積当たりの担持量が50〜300g/m2 であること
を特徴とするアンモニア分解触媒により達成される。
[Means for Solving the Problems]
t), a first component which is silica and / or zeolite carrying one or more noble metals selected from palladium (Pd), iridium (Ir) and rhodium (Rh);
The second component, which is a composition composed of an oxide of one or more elements selected from titanium (Ti), tungsten (W), and vanadium (V), has a loading amount of the first component per carrier area. 0.1 to 11 g / m 2 , and the amount of the second component carried per carrier area is 50 to 300 g / m 2, which is achieved by the ammonia decomposition catalyst.

【0010】本発明者らは、NOxなどを副生しないで
高いNH3 分解性能を有するコーティング法について鋭
意検討し、本発明に至った。すなわち、コーティング用
の触媒スラリの調整法として、貴金属をあらかじめシリ
カやゼオライトに担持した貴金属担持触媒(第1成分)
と、脱硝触媒(第2成分)とを別々に調整し、これらを
物理的に混合した後、水と混合してスラリ化する。この
際、各成分の担体当りの担持量が本発明の範囲内となる
ように両成分の比率、およびスラリ濃度を調整しコーテ
ィング用スラリとする。
The inventors of the present invention have earnestly studied a coating method having a high NH 3 decomposition performance without producing by-products such as NOx, and arrived at the present invention. That is, as a method for adjusting the catalyst slurry for coating, a noble metal-supported catalyst (first component) in which a noble metal is previously supported on silica or zeolite.
And the denitration catalyst (second component) are separately prepared, and these are physically mixed and then mixed with water to form a slurry. At this time, the ratio of both components and the slurry concentration are adjusted so that the amount of each component supported on the carrier is within the range of the present invention to obtain a coating slurry.

【0011】第1成分と第2成分とを別々に調整した後
両者を物理混合する方法を取ることにより、貴金属成分
の脱硝活性へ悪影響を防止することができ、高いNH3
分解率を維持しつつNOx、N2 Oの副生を抑制するこ
とが可能になる。
By preparing the first component and the second component separately and then physically mixing the two, it is possible to prevent the denitrification activity of the noble metal component from being adversely affected, and to obtain a high NH 3 content.
It becomes possible to suppress NOx and N 2 O by-products while maintaining the decomposition rate.

【0012】さらに重要なことは触媒成分の担持量であ
る。本触媒によるNH3 の分解は、第1成分によるNH
3 の酸化反応(1)、(2)や、第2成分による副生N
Oxの除去反応(3)とが複雑に進行して生じるため、
各々の成分が多過ぎても少な過ぎてもNOxの副生やN
3 の酸化率の低下に繋がり、第1成分と第2成分の比
率や担持量が性能に大きく影響する。すなわち、本発明
の範囲内であってはじめてNOxをほとんど副生するこ
となく高いNH3 分解率を得ることができる。
What is more important is the amount of catalyst component supported. The decomposition of NH 3 by this catalyst is
3 of the oxidation reaction (1), (2) and by-product N of the second component
Since the Ox removal reaction (3) occurs in a complicated manner,
If too much or too little of each component, NOx by-product and N
This leads to a decrease in the H 3 oxidation rate, and the performance and the ratio of the first component and the second component and the supported amount greatly affect the performance. That is, a high NH 3 decomposition rate can be obtained with almost no NOx by-product for the first time within the range of the present invention.

【0013】[0013]

【化1】 NH3 +3/4O2 →1/2N2 +3/2H2 O …(1) NH3 +5/4O2 →NO+3/2H2 O …(2) NH3 +NO+1/4O2 →N2 +3/2H2 O …(3) 本発明の触媒は、前記第1成分と前記第2成分とを水、
または水とシリカゾルの混合液に懸濁して得たスラリ状
物を、触媒担体に含浸後、乾燥焼成するか、またはあら
かじめ前記第1成分を水またはシリカゾルと水の混合液
に懸濁して得たスラリ状物を触媒担体に含浸後、乾燥焼
成したのち、前記第2成分を含浸後、乾燥焼成すること
によって調製される。ここで用いられる触媒担体は、通
常触媒担体として用いられるものであればいずれも使用
することができるが、無機繊維間に担体物質をすきこ
み、平板状またはペーパ状にしたものを積層して得たペ
ーパ状担体、これをコルゲート状に巻くか、またはハニ
カム状に積層したもの、エキスパンドメタルなどの金属
基板、これをコルゲート状に巻くか、または階段状、ハ
ニカム状に積層したものなどが好ましく用いられる。
Embedded image NH 3 +3/4/4 O 2 → 1 / 2N 2 + 3 / 2H 2 O (1) NH 3 + 5 / 4O 2 → NO + 3 / 2H 2 O (2) NH 3 + NO + 1 / 4O 2 → N 2 +3 / 2H 2 O (3) In the catalyst of the present invention, the first component and the second component are water,
Alternatively, a slurry obtained by suspending in a mixed solution of water and silica sol is impregnated into a catalyst carrier and then dried and calcined, or obtained by suspending the first component in water or a mixed solution of silica sol and water in advance. It is prepared by impregnating the catalyst carrier with the slurry, followed by drying and firing, and then impregnating the second component and then drying and firing. The catalyst carrier used here can be any as long as it is usually used as a catalyst carrier, but it is obtained by laminating a carrier substance squeezed between inorganic fibers, flattened or paper-shaped. A paper-like carrier, a corrugate-shaped carrier or a honeycomb-shaped carrier, an expanded metal or other metal substrate, a corrugated-shaped carrier, a staircase-shaped or a honeycomb-shaped carrier, and the like are preferably used. To be

【0014】本発明の触媒で重要なのは、第1成分およ
び第2成分の担持量である。第1成分の担持量は担体面
積当たり0.1〜11g/m2 、好ましくは0.25〜
5g/m2 、第2成分の担体面積当たりの担持量は50
〜300g/m2 、好ましくは75〜250g/m2
範囲であることが重要である。第1成分担持量がこれよ
り少ない場合はNH3 除去率の低下を招き、これより多
い場合はNOx、N2Oの副生を招く。また第2成分担
持量がこれより少ない場合はNOx、N2 Oの副生量が
増加する。第2成分担持量がこれより多い場合、NH3
分解率およびNOx、N2 O副生量には大きく影響はし
ないが、担持量が多すぎると担体が目詰まりを起こした
り、触媒成分が担体から剥離し易くなる等の問題や、触
媒の厚みが増して反応装置内での圧力損失が大きくなる
などの問題を招くことがある。
What is important in the catalyst of the present invention is the loading amount of the first component and the second component. The loading amount of the first component is 0.1 to 11 g / m 2 per carrier area, preferably 0.25 to
5 g / m 2 , the loading amount of the second component per carrier area is 50
It is important that the range is ˜300 g / m 2 , preferably 75 to 250 g / m 2 . When the amount of the first component carried is less than this, the NH 3 removal rate is lowered, and when it is more than this, NOx and N 2 O are by-produced. When the amount of the second component carried is less than this, the amount of by-products of NOx and N 2 O increases. If the second component loading is greater than this, NH 3
Although it does not significantly affect the decomposition rate and the amount of NOx and N 2 O by-products, if the loading amount is too large, problems such as clogging of the carrier and easy separation of catalyst components from the carrier, and catalyst thickness May increase, resulting in a problem such as an increase in pressure loss in the reactor.

【0015】本発明に用いられる触媒の第1成分は、白
金(Pt)、パラジウム(Pd)、イリジウム(Ir)
またはロジウム(Rh)の塩化物、硝酸塩などの塩類、
もしくはそれらの金属のオキソ酸塩の水溶液を、シリカ
またはゼオライトの粉末と加熱混練する方法、またゼオ
ライトの場合は当該液中にゼオライトを浸漬し、イオン
交換する方法などによって0.1〜0.001wt%担
持して得られる。得られた第1成分は、必要に応じて水
洗、乾燥、焼成されて用いられる。
The first component of the catalyst used in the present invention is platinum (Pt), palladium (Pd), iridium (Ir).
Or salts of rhodium (Rh) chloride, nitrate, etc.,
Alternatively, a method of heating and kneading an aqueous solution of an oxo acid salt of such a metal with silica or zeolite powder, or in the case of zeolite, immersing the zeolite in the solution and performing ion exchange, etc., is added to 0.1 to 0.001 wt. % Supported. The obtained first component is used after being washed with water, dried, and fired if necessary.

【0016】本発明に用いられる触媒の第2成分は、脱
硝触媒、すなわち酸化チタン系触媒粉末、好ましくは酸
化チタン粉末にバナジウム(V)またはおよびタングス
テンの酸化物を複合させた触媒組成物が用いられる。こ
のような触媒組成物は、例えばバナジウム(V)、タン
グステン(W)のオキソ酸塩、酸化物、塩化物などを酸
化チタン粉末、メタチタン酸やオルトチタン酸などと混
練する方法、またはV、Wなどの可溶性塩とチタンの可
溶性塩の混合溶液から共沈法によって得ることができ
る。これらの組成物は400〜700℃で焼成した後、
1μm以下が50%以上になるように粉砕して使用する
ことが望ましい。
The second component of the catalyst used in the present invention is a denitration catalyst, that is, a titanium oxide-based catalyst powder, preferably a catalyst composition in which vanadium (V) or tungsten oxide is mixed with titanium oxide powder is used. To be Such a catalyst composition can be obtained by, for example, kneading vanadium (V), tungsten (W) oxoacid salt, oxide, chloride or the like with titanium oxide powder, metatitanic acid, orthotitanic acid, or V, W. It can be obtained by a coprecipitation method from a mixed solution of a soluble salt of titanium and a soluble salt of titanium. After firing these compositions at 400-700 ° C,
It is desirable to grind the powder so that 1 μm or less becomes 50% or more before use.

【0017】上記第1成分と第2成分を担体に担持する
には、これら両成分が物理的に混合された状態で、水も
しくはシリカゾルと水の混合液に懸濁させてスラリ化す
るか、または第1成分を水もしくはシリカゾルと水との
混合液に懸濁させて得られたスラリを担体にあらかじめ
担持して乾燥し、場合によっては焼成した後、第2成分
を水またはシリカゾルと水との混合液とに懸濁させて得
られたスラリを担持して乾燥、焼成する。スラリ濃度は
担体の構造および性状によって異なるが、液に対する粉
末の重量が10〜60wt%、好ましくは20〜50%
が好結果を与える。スラリ濃度がこれよりも小さい場合
は、担持量が少なく、充分な活性が得られないため、必
要量を担持するために数回の担持操作が必要となるな
ど、操作が煩雑化する。また、濃度がこれよりも大きい
場合は、液の粘性が増してスラリ状態となりにくく、担
体内部に成分を担持することが困難になる。
In order to support the first component and the second component on the carrier, the two components are physically mixed and suspended in water or a mixed solution of silica sol and water to form a slurry, or Alternatively, the slurry obtained by suspending the first component in water or a mixed solution of silica sol and water is previously supported on a carrier, dried, and optionally baked, and then the second component is mixed with water or silica sol and water. The slurry obtained by suspending with the mixed solution of (1) is carried, dried and calcined. The slurry concentration varies depending on the structure and properties of the carrier, but the weight of the powder with respect to the liquid is 10 to 60% by weight, preferably 20 to 50%.
Gives good results. If the slurry concentration is lower than this, the amount supported is small and sufficient activity cannot be obtained, so the operation becomes complicated, for example, several loading operations are required to support the required amount. On the other hand, if the concentration is higher than this, the viscosity of the liquid increases and it is difficult to form a slurry state, and it becomes difficult to support the components inside the carrier.

【0018】本発明による触媒は、貴金属をあらかじめ
シリカやゼオライトに担持した貴金属担持触媒(第1成
分)と、脱硝触媒(第2成分)とを別々に調製し、これ
を物理的に混合したものをスラリ化してから担体に担持
することにより、脱硝触媒上に少量の貴金属触媒が均一
に存在する状態を維持することができ、少量の貴金属量
でも充分なNH3 の酸化性能を得ることができるのみな
らず、貴金属担持による脱硝還元能の低下を生じること
がない。また、貴金属触媒上で(2)式の反応によって
生成するNOは、貴金属触媒の周辺に存在する脱硝触媒
上で直ちにNH 3 と反応して(4)式に従って窒素とな
り、無害化される。
The catalyst according to the present invention contains noble metal in advance.
Noble metal-supported catalyst supported on silica or zeolite (1st generation
Minute) and a denitration catalyst (second component) are separately prepared, and
Supported on a carrier after making a physically mixed mixture into slurry
As a result, a small amount of precious metal catalyst is evenly distributed on the denitration catalyst.
The amount of precious metal that can be maintained in the existing
But enough NH3Who can get the oxidation performance of
Without reducing the NOx reduction ability due to the noble metal loading
There is no. In addition, by the reaction of the formula (2) on the noble metal catalyst
NO generated is the denitration catalyst existing around the noble metal catalyst.
NH immediately above 3And reacts with nitrogen according to formula (4).
It is rendered harmless.

【0019】また、本発明者らは、酸化触媒上でのN2
O生成はNH3 が(5)式のごとく酸化されて生じるN
2 から(6)式のごとく生成すると推定している。本
願の触媒では、脱硝触媒上に少量の貴金属触媒が均一に
存在しているため、貴金属触媒上で生成したNO2
(2)式で生成したNOとともに直ちに脱硝触媒上で
(7)式のごとく反応してN2 となる確率が高く、その
ためにN2 Oの副生を低減できる。
The present inventors have also found that N 2 on the oxidation catalyst
O is generated by the oxidation of NH 3 as shown in formula (5)
It is estimated that it is generated from O 2 as shown in equation (6). In the catalyst of the present application, since a small amount of the noble metal catalyst is evenly present on the denitration catalyst, NO 2 produced on the noble metal catalyst is immediately produced on the denitration catalyst by the equation (7) together with NO produced by the equation (2). It is highly probable that they react with each other to become N 2 and, as a result, the by-product of N 2 O can be reduced.

【0020】[0020]

【化2】 NH3 +7/4O2 →NO2 +3/2H2 O …(5) NH3 +NO2 +1/4O2 →N2 O+3/2H2 O …(6) NO+NO2 +2NH3 →2N2 +3H2 O …(7) なお、本発明においては、貴金属担持触媒(第1成分)
をあらかじめ担体に担持後、脱硝触媒(第2成分)を担
持する方法でも、上記したと同じ効果を得ることが可能
である。
Embedded image NH 3 + 7 / 4O 2 → NO 2 + 3 / 2H 2 O (5) NH 3 + NO 2 + 1 / 4O 2 → N 2 O + 3 / 2H 2 O (6) NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (7) In the present invention, a noble metal-supported catalyst (first component)
It is possible to obtain the same effect as described above by a method in which the denitration catalyst (second component) is supported after the catalyst is previously supported on the carrier.

【0021】[0021]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【実施例】以下に本発明の実施例を示す。 実施例1 1.33×10-2wt%の塩化白金酸(H2 〔PtCl
6 〕・6H2 O)1lに、微粒シリカ粉末(富田製薬社
製、商品名、マイコンF)100gを加えて砂浴上で蒸
発乾固し、空気中500℃で2時間焼成して0.05w
t%Pt・SiO2 を調製して第1成分の触媒組成物粉
末を得た。
EXAMPLES Examples of the present invention will be shown below. Example 1 1.33 × 10 -2 wt% chloroplatinic acid (H 2 [PtCl
6 ] · 6H 2 O) 1l, 100 g of fine silica powder (trade name, Microcomputer F, manufactured by Tomita Pharmaceutical Co., Ltd.) was added, and the mixture was evaporated to dryness in a sand bath and calcined in air at 500 ° C. for 2 hours to give 0.1. 05w
t% Pt.SiO 2 was prepared to obtain a catalyst composition powder of the first component.

【0022】一方、酸化チタン粉末(石原産業社製、商
品名、MCH、SO4 含有量:3wt%)46.7kgに
パラタングステン酸アンモニウム((NH4 )10H10
・W 1246・6H2 O)7.43kg、メタバナジン酸ア
ンモニウム3.0kgとを加えてニーダを用いて混練し、
得られたペーストを造粒後乾燥、550℃で2時間焼成
した。得られた顆粒を粉砕して、第2成分である触媒組
成物粉末を得た。組成はTi/W/V=91/5/4
(原子比)である。
On the other hand, titanium oxide powder (commercially available from Ishihara Sangyo Co., Ltd.
Product name, MCH, SOFourContent: 3wt%) 46.7kg
Ammonium paratungstate ((NHFour) 10HTen
・ W 12O46・ 6H2O) 7.43 kg, metavanadate
Add 3.0 kg of ammonium and knead using a kneader,
The obtained paste is dried after granulation and baked at 550 ° C for 2 hours.
did. The obtained granules are crushed to obtain a catalyst component which is the second component.
A product powder was obtained. The composition is Ti / W / V = 91/5/4
(Atomic ratio).

【0023】第1成分20gと第2成分2.02kgとを
水3.06kgに懸濁させて得たスラリにペーパハニカム
担体(ニチアス社製、商品名、ハニクル3722、15
0mm×150mm角、長さ50mm)に浸漬して担体にスラ
リを含浸した後、エアブローで液切りし、本発明の触媒
を得た。これを12時間大気中で風乾後、500℃で2
時間焼成した。本触媒中の第1成分と第2成分の第1成
分/第2成分比は1/99(重量比、以下同じ)であ
り、触媒成分中のPt含有量は5ppm に相当し、触媒の
担持量は第1成分と第2成分を合わせて担体表面積当た
り150g/m2であった。得られたハニカム触媒から
5段×8セル(11×14mm)、50mm長さを切り出し
てテストピースを得た。
20 g of the first component and 2.02 kg of the second component were suspended in 3.06 kg of water and added to a slurry to obtain a paper honeycomb carrier (manufactured by Nichias Co., trade name, Hanicle 3722, 15).
The support was impregnated with the slurry by immersing it in a 0 mm × 150 mm square, 50 mm long) and then drained by air blow to obtain the catalyst of the present invention. After air-drying this for 12 hours in the air,
Burned for hours. The first component / second component ratio of the first component and the second component in this catalyst was 1/99 (weight ratio, the same below), and the Pt content in the catalyst component corresponded to 5 ppm, and the catalyst loading The amount of the first component and the second component combined was 150 g / m 2 per carrier surface area. A test piece was obtained by cutting a length of 5 mm × 8 cells (11 × 14 mm) and a length of 50 mm from the obtained honeycomb catalyst.

【0024】実施例2 実施例1の第1成分を10g、第2成分を2.02kg、
水を3.04kgに変えた以外は実施例1と同様にして本
発明の触媒を得た。本触媒中の第1成分と第2成分の第
1成分/第2成分比は0.5/99.5であり、触媒成
分中のPt含有量は2.5ppm に相当し、触媒の担持量
は第1成分と第2成分を合わせて担体表面積当たり15
0g/m2 であった。
Example 2 The first component of Example 1 was 10 g, the second component was 2.02 kg,
A catalyst of the present invention was obtained in the same manner as in Example 1 except that the amount of water was changed to 3.04 kg. The first component / second component ratio of the first component and the second component in this catalyst was 0.5 / 99.5, and the Pt content in the catalyst component corresponded to 2.5 ppm. Is 15 per surface area of the carrier including the first and second components.
It was 0 g / m 2 .

【0025】実施例3〜4 実施例1で得られた第1成分および第2成分を用い、ス
ラリ調製時の水添加量を476および816kgに変え、
得られたスラリをペーパハニカム担体(ニチアス社製、
商品名、ハニクル3319、150mm×150mm角、長
さ50mm)に実施例1と同様にして担持し本発明の触媒
を得た。本触媒中の第1成分と第2成分の第1成分/第
2成分比は1/99であり、触媒成分中のPt含有量は
5ppm に相当する。触媒の担持量は第1成分と第2成分
を合わせて担体表面積当たりそれぞれ80、50g/m
2 であった。
Examples 3 to 4 Using the first and second components obtained in Example 1, the amount of water added during slurry preparation was changed to 476 and 816 kg,
The resulting slurry was used as a paper honeycomb carrier (Nichias,
A catalyst of the present invention was obtained by carrying the same on Example 1 (trade name: HANicle 3319, 150 mm × 150 mm square, length 50 mm) in the same manner as in Example 1. The first component / second component ratio of the first component and the second component in this catalyst was 1/99, and the Pt content in the catalyst component corresponded to 5 ppm. The supported amounts of the catalyst are 80 and 50 g / m 2 per surface area of the carrier including the first and second components, respectively.
Was 2 .

【0026】実施例6 実施例1のペーパハニカム担体をメタルラス(SUS3
04、板厚0.2mmt、150mm×150mm角)に変え
た以外は実施例と同様にして本発明の触媒を得た。本触
媒中の第1成分と第2成分の第1成分/第2成分比は1
/99であり、触媒成分中のPt含有量は5ppm に相当
する。触媒の担持量は第1成分と第2成分を合わせて担
体表面積当たり200g/m2 であった。 実施例7 実施例1のスラリ調製用の水を、コロイダルシリカ(日
産化学社製、商品名、OSゾル、SiO2 分20%)/
水=3/7に変える以外は同様にして本発明の触媒を調
製した。 実施例8 実施例1で調製した第1成分20gを、コロイダルシリ
カ/水=3/7の液1000gに懸濁させ、これにペー
パハニカム担体を浸漬して担体にスラリを含浸した後、
エアブローで液切り、12時間大気中で風乾、さらに5
00℃で2時間焼成した。得られた触媒を、実施例1の
第2成分2.02kgを水3.06kgに懸濁して得たスラ
リに浸漬後、液切り、風乾後、500℃で2時間焼成し
て本発明の触媒を調製した。
Example 6 The paper honeycomb carrier of Example 1 was replaced with a metal lath (SUS3).
No. 04, plate thickness 0.2 mmt, 150 mm × 150 mm square), except that the catalyst of the present invention was obtained in the same manner as in the example. The first component / second component ratio of the first component and the second component in the catalyst is 1
/ 99, and the Pt content in the catalyst component corresponds to 5 ppm. The supported amount of the catalyst was 200 g / m 2 per surface area of the carrier in total of the first component and the second component. Example 7 The water for slurry preparation of Example 1 was mixed with colloidal silica (Nissan Chemical Co., Ltd., trade name, OS sol, SiO 2 content 20%) /
A catalyst of the present invention was prepared in the same manner except that water was changed to 3/7. Example 8 20 g of the first component prepared in Example 1 was suspended in 1000 g of a liquid of colloidal silica / water = 3/7, and a paper honeycomb carrier was immersed in this to impregnate the carrier with a slurry,
Drain by air blow, air dry in air for 12 hours, and then 5
It was baked at 00 ° C. for 2 hours. The obtained catalyst was immersed in a slurry obtained by suspending 2.02 kg of the second component of Example 1 in 3.06 kg of water, drained, air-dried, and then calcined at 500 ° C. for 2 hours to obtain the catalyst of the present invention. Was prepared.

【0027】比較例1 酸化チタン粉末(石原産業社製、商品名、MCH、SO
4 含有量:3wt%)46.7kgにパラタングステン酸
アンモニウム((NH4 )10H10・W1246・6H2
O)7.43kg、メタバナジン酸アンモニウム3.0k
g、1.33×10-2wt%の塩化白金酸(H2 〔Pt
Cl6 〕・6H2 O)2.14mlとを加えてニーダを用
いて混練し、得られたペーストを造粒後乾燥、550℃
で2時間焼成した。得られた顆粒を粉砕し、触媒粉末を
得た。組成はTi/W/V=91/5/4(原子比)
で、Pt含有量は5ppm に相当する。得られた触媒粉末
2.02kgを水3.06kgに懸濁させて得たスラリを用
い、実施例1と同様にペーパーハニカムに触媒を担持さ
せた。担持量は151g/m2 であった。
Comparative Example 1 Titanium oxide powder (manufactured by Ishihara Sangyo Co., Ltd., trade name, MCH, SO
4 content: 3wt%) 46.7kg ammonium paratungstate ((NH 4) 10H 10 · W 12 O 46 · 6H 2
O) 7.43 kg, ammonium metavanadate 3.0 k
g, 1.33 × 10 -2 wt% chloroplatinic acid (H 2 [Pt
Cl 6 ] · 6H 2 O) 2.14 ml was added and kneaded using a kneader, and the obtained paste was dried after granulation, 550 ° C.
It was baked for 2 hours. The obtained granules were crushed to obtain a catalyst powder. The composition is Ti / W / V = 91/5/4 (atomic ratio)
Therefore, the Pt content corresponds to 5 ppm. Using a slurry obtained by suspending 2.02 kg of the obtained catalyst powder in 3.06 kg of water, a catalyst was supported on a paper honeycomb in the same manner as in Example 1. The supported amount was 151 g / m 2 .

【0028】比較例2 実施例1で得られた第1成分および第2成分を用い、ス
ラリ調製時の水添加量を10kgに変え、得られたスラ
リを実施例1と同様にして担持し、触媒を得た。本触媒
中の第1成分と第2成分の第1成分/第2成分比は1/
99であり、触媒成分中のPt含有量は5ppm に相当す
る。触媒の担持量は第1成分と第2成分を合わせて担体
表面積当たりそれぞれ30g/m2 であった。
Comparative Example 2 Using the first component and the second component obtained in Example 1, the amount of water added during the preparation of the slurry was changed to 10 kg, and the obtained slurry was loaded in the same manner as in Example 1, A catalyst was obtained. The first component / second component ratio of the first component and the second component in the catalyst is 1 /
99, and the Pt content in the catalyst component corresponds to 5 ppm. The supported amount of the catalyst was 30 g / m 2 per surface area of the carrier including both the first component and the second component.

【0029】実施例1〜8および比較例1〜2の酸化触
媒を用い、流通式反応器に模擬ガスを流して表1の条件
でそれぞれの触媒のNH3 分解率およびNO、N2 O生
成率を測定した。
Using the oxidation catalysts of Examples 1 to 8 and Comparative Examples 1 and 2, a simulated gas was flown through the flow reactor and the NH 3 decomposition rate and NO and N 2 O production of each catalyst under the conditions shown in Table 1. The rate was measured.

【数1】NH3 除去率=(入口NH3 ppm −出口NH3 ppm
)/入口NH3 ppm ×100(%) NO、N2 O発生率=(出口NO、N2 Oppm )/入口
NH3 ppm ×100(%)
[Equation 1] NH 3 removal rate = (Inlet NH 3 ppm-Outlet NH 3 ppm
) / Inlet NH 3 ppm × 100 (%) NO, N 2 O generation rate = (Outlet NO, N 2 Oppm) / Inlet NH 3 ppm × 100 (%)

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】結果を表2に示す。400℃におけるNH
3 除去率は、実施例1〜8ではいずれも高く99%以上
である。しかし、比較例1の触媒はNH3 分解率は99
%と高いが、NOおよびN2 O発生率が非常に多い。こ
れは酸化成分であるPtを脱硝成分と同時に担持したた
めに、酸化能は維持しているが、脱硝性能が著しく低下
したためである。また、比較例2の触媒は、触媒担持量
が少ないためにNH3除去率が低くなっている。本発明
の範囲よりも少ない担持量では高い活性が得られないこ
とがわかる。
The results are shown in Table 2. NH at 400 ° C
3 The removal rate is high in all of Examples 1 to 8 and is 99% or more. However, the catalyst of Comparative Example 1 has an NH 3 decomposition rate of 99.
%, But NO and N 2 O generation rates are very high. This is because Pt, which is an oxidizing component, was loaded at the same time as the denitration component, so that the oxidizing ability was maintained, but the denitration performance was significantly reduced. In addition, the catalyst of Comparative Example 2 has a low NH 3 removal rate because the amount of the catalyst supported is small. It can be seen that high activity cannot be obtained with a loading amount smaller than the range of the present invention.

【0033】また、実施例1および比較例1の触媒を用
いて、表1の条件の温度を300〜450℃に変えてN
3 除去活性およびNO、N2 O生成率を調べた。得ら
れた結果を図1に示す。図1からわかるように、NH3
除去率の温度特性は実施例1および比較例1ともほぼ等
しく、300℃以上で除去率はいずれの触媒もほぼ10
0%である。しかし、比較例1の触媒は各温度でのNO
およびN2 O発生率が高い。これに対し、実施例1の触
媒では300〜450℃の温度域でもNOおよびN2
の発生率が低く、NH3 の1%以下である。このように
本発明に用いる触媒は300〜450℃の広い範囲でN
3 を完全分解することができることがわかる。
Further, using the catalysts of Example 1 and Comparative Example 1, the temperature under the conditions of Table 1 was changed to 300 to 450 ° C.
The H 3 removal activity and the NO and N 2 O production rates were examined. The obtained results are shown in FIG. As can be seen from FIG. 1, NH 3
The temperature characteristics of the removal rate were almost the same as those of Example 1 and Comparative Example 1, and the removal rate of all catalysts was about 10 at 300 ° C. or higher.
It is 0%. However, the catalyst of Comparative Example 1 has NO at each temperature.
And the N 2 O generation rate is high. On the other hand, the catalyst of Example 1 has NO and N 2 O even in the temperature range of 300 to 450 ° C.
Is low and is less than 1% of NH 3 . As described above, the catalyst used in the present invention has a wide N range from 300 to 450 ° C.
It can be seen that H 3 can be completely decomposed.

【0034】[0034]

【発明の効果】請求項1記載の発明によれば、特定の第
1成分および第2成分からなる触媒を用いることによ
り、NH3 含有排ガスやNH3 含有排水のストリッピン
グ後のガス中のNH3 をNOx、N2 Oを副生すること
なく、効率よく分解除去することができる。
According to the invention described in claim 1, by using the catalyst composed of the specific first component and the specific second component, NH in the gas after stripping the NH 3 -containing exhaust gas or NH 3 -containing wastewater 3 can be efficiently decomposed and removed without producing NOx and N 2 O as by-products.

【0035】請求項2ないし4記載の発明によれば、請
求項1記載の触媒の好適な製造方法を提供することがで
きる。
According to the invention described in claims 2 to 4, it is possible to provide a preferable method for producing the catalyst described in claim 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の触媒の効果を説明する図。FIG. 1 is a diagram for explaining the effect of the catalyst of the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/06 B01J 37/02 101E 37/02 101 37/08 23/64 103A 37/08 B01D 53/36 ZABE Fターム(参考) 4D048 AA08 AB03 BA06X BA07X BA11Y BA23X BA27X BA30X BA31Y BA33Y BA41X BB02 BB03 BB08 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA07A BB04A BB04B BC54A BC54B BC60A BC60B BC71A BC72A BC74A BC75A BC75B DA06 EA10 EA12 EA13 EA20 FA01 FA02 FA03 FB14 FB15 FB18 FB20 FB30 FC08 ZA01A Front page continued (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 35/06 B01J 37/02 101E 37/02 101 37/08 23/64 103A 37/08 B01D 53/36 ZABE F term (Reference) 4D048 AA08 AB03 BA06X BA07X BA11Y BA23X BA27X BA30X BA31Y BA33Y BA41X BB02 BB03 BB08 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA07A FB18 FA EA18 FB04 FA20 EA18 FB04 FA20 EA20 FA20 FA20 EA04 BB04A BB04A BB04A BB04A BB04A BB04A BB04A BC14A BC20B07A02 FC08 ZA01A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 白金(Pt)、パラジウム(Pd)、イ
リジウム(Ir)およびロジウム(Rh)から選ばれた
1種以上の貴金属を担持したシリカおよびまたはゼオラ
イトである第1成分と、チタン(Ti)、タングステン
(W)およびバナジウム(V)から選ばれた1種以上の
元素の酸化物からなる組成物である第2成分とからな
り、第1成分の担体面積当たりの担持量が0.1〜11
g/m2、第2成分の担体面積当たりの担持量が50〜
300g/m2 であることを特徴とするアンモニア分解
触媒。
1. A first component which is silica and / or zeolite carrying one or more noble metals selected from platinum (Pt), palladium (Pd), iridium (Ir) and rhodium (Rh), and titanium (Ti). ), Tungsten (W) and vanadium (V), and a second component which is a composition consisting of an oxide of one or more elements selected from the group consisting of oxides of tungsten (W) and vanadium (V). ~ 11
g / m 2 , the loading amount of the second component per carrier area is 50 to
An ammonia decomposition catalyst, which is 300 g / m 2 .
【請求項2】 白金(Pt)、パラジウム(Pd)、イ
リジウム(Ir)およびロジウム(Rh)から選ばれた
1種以上の貴金属を担持したシリカおよびまたはゼオラ
イトである第1成分と、チタン(Ti)、タングステン
(W)およびバナジウム(V)から選ばれた1種以上の
元素の酸化物からなる組成物である第2成分とを水、も
しくは水とシリカゾルの混合液に懸濁して得たスラリ状
物に、触媒担体を含浸後、乾燥焼成することを特徴とす
るアンモニア分解触媒の製造方法。
2. A first component which is silica and / or zeolite carrying one or more noble metals selected from platinum (Pt), palladium (Pd), iridium (Ir) and rhodium (Rh), and titanium (Ti). ), Tungsten (W) and vanadium (V) and a second component which is a composition consisting of an oxide of one or more elements selected from the above, and a slurry obtained by suspending it in water or a mixed solution of water and silica sol. A method for producing an ammonia decomposition catalyst, comprising impregnating a particulate matter with a catalyst carrier, followed by drying and firing.
【請求項3】 あらかじめ白金(Pt)、パラジウム
(Pd)、イリジウム(Ir)およびロジウム(Rh)
から選ばれた1種以上の貴金属を担持したシリカおよび
またはゼオライトである第1成分を水またはシリカゾル
と水の混合液に懸濁して得たスラリ状物に、触媒担体を
含浸後、乾燥焼成したのち、チタン(Ti)、タングス
テン(W)およびバナジウム(V)から選ばれた1種以
上の元素の酸化物からなる組成物である第2成分を含浸
後、乾燥焼成することを特徴とするアンモニア分解触媒
の製造方法。
3. Platinum (Pt), palladium (Pd), iridium (Ir) and rhodium (Rh) in advance.
A slurry obtained by suspending the first component, which is silica and / or zeolite supporting one or more noble metals selected from the above, in water or a mixed solution of silica sol and water, is impregnated with a catalyst carrier, and then dried and calcined. Ammonia characterized by being impregnated with a second component, which is a composition consisting of an oxide of one or more elements selected from titanium (Ti), tungsten (W) and vanadium (V), and then dried and fired. Method for producing decomposition catalyst.
【請求項4】 前記触媒担体が、無機繊維間に担体物質
をすきこみ、平板状/ペーパ状にしたものを積層して得
たペーパ状担体、これをコルゲート状に巻くか、もしく
はハニカム状に積層したもの、エキスパンドメタルなど
の金属基板、これをコルゲート状に巻くか、もしくは階
段状、ハニカム状に積層したものであることを特徴とす
る請求項2または3記載のアンモニア分解触媒の製造方
法。
4. A paper-shaped carrier obtained by laminating a carrier material, in which a carrier material is laid between inorganic fibers and formed into a flat plate / paper form, which is wound in a corrugated form or in a honeycomb form. The method for producing an ammonia decomposing catalyst according to claim 2 or 3, wherein the laminated body, a metal substrate such as expanded metal, or the like, which is wound in a corrugated shape or laminated in a step shape or a honeycomb shape.
JP2001216743A 2001-07-17 2001-07-17 Catalyst for decomposing ammonia and its production method Pending JP2003024784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001216743A JP2003024784A (en) 2001-07-17 2001-07-17 Catalyst for decomposing ammonia and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216743A JP2003024784A (en) 2001-07-17 2001-07-17 Catalyst for decomposing ammonia and its production method

Publications (1)

Publication Number Publication Date
JP2003024784A true JP2003024784A (en) 2003-01-28

Family

ID=19051181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216743A Pending JP2003024784A (en) 2001-07-17 2001-07-17 Catalyst for decomposing ammonia and its production method

Country Status (1)

Country Link
JP (1) JP2003024784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592085B1 (en) * 2004-08-20 2006-06-21 한국화학연구원 Nitrogen oxide purification catalyst for diesel vehicle and nitrogen oxide purification method using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592085B1 (en) * 2004-08-20 2006-06-21 한국화학연구원 Nitrogen oxide purification catalyst for diesel vehicle and nitrogen oxide purification method using same

Similar Documents

Publication Publication Date Title
JP5192754B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment system
JP2008119651A (en) Catalyst for nitrogen oxide removal, and exhaust gas treating method
JP3321190B2 (en) Ammonia decomposition catalyst with denitration function and exhaust gas purification method
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP4499513B2 (en) Method for treating exhaust gas containing nitrogen oxides and odor components
JP3321423B2 (en) Exhaust gas purification method
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP2003024784A (en) Catalyst for decomposing ammonia and its production method
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP3337498B2 (en) Method for producing catalyst for purifying exhaust gas and method for purifying exhaust gas
JP2009226238A (en) Method of treating exhaust gas and catalyst
JP2000300958A (en) Method for cleaning of waste gas
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP4719003B2 (en) Method and apparatus for treating ammonia-containing gas
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JP2004267969A (en) Exhaust gas purification equipment, catalyst for purifying exhaust gas as well as its manufacturing method
JP2691750B2 (en) Nitrogen oxide decomposition catalyst
JP2014046299A (en) Manufacturing method of denitration catalyst
JP3924418B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3739032B2 (en) Catalyst for removing organic halogen compound, method for producing the same, and method for removing organic halogen compound
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519