JP2003020625A - Method for reinforcing soil structure bank body - Google Patents

Method for reinforcing soil structure bank body

Info

Publication number
JP2003020625A
JP2003020625A JP2001210253A JP2001210253A JP2003020625A JP 2003020625 A JP2003020625 A JP 2003020625A JP 2001210253 A JP2001210253 A JP 2001210253A JP 2001210253 A JP2001210253 A JP 2001210253A JP 2003020625 A JP2003020625 A JP 2003020625A
Authority
JP
Japan
Prior art keywords
soil
embankment
solidified
excavated
earth structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001210253A
Other languages
Japanese (ja)
Other versions
JP3506680B2 (en
Inventor
Shigeru Tani
茂 谷
Shinji Fukushima
伸二 福島
Kazuo Ishiguro
和男 石黒
Isamu Kakegawa
勇 掛川
Mamoru Hamano
衛 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AC REAL ESTATE CORP
Taiheiyo Cement Corp
National Institute for Rural Engineering
Sanwa Kizai Co Ltd
Original Assignee
AC REAL ESTATE CORP
Taiheiyo Cement Corp
National Institute for Rural Engineering
Sanwa Kizai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AC REAL ESTATE CORP, Taiheiyo Cement Corp, National Institute for Rural Engineering, Sanwa Kizai Co Ltd filed Critical AC REAL ESTATE CORP
Priority to JP2001210253A priority Critical patent/JP3506680B2/en
Publication of JP2003020625A publication Critical patent/JP2003020625A/en
Application granted granted Critical
Publication of JP3506680B2 publication Critical patent/JP3506680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bank body reinforcing method suitable for such cases that a site cannot be assured or soil for construction is hard to be procured and capable of increasing a stability and a durability against heavy rain and earthquake. SOLUTION: A present bank body part E corresponding to a reinforcing area R is excavated. As required, filter layers SM and F are provided on the surface of the excavated bank body. Solidifying material such as cement is added to excavated bank body soil, and mixingly agitated with water to produce a large number of solidified soil lumps SS. The large number of solidified soil lumps SS are arranged on a lower flat part 12 close to each other. Packing soil PS formed of the excavated bank body soil is buried between the solidified soil lumps SS to form reinforcement soil layers D of the large number of solidified soil lumps SS and the packing soil PS. Soil covering layers PSa are built to form slopes covering the solidified soil lumps SS at positions mostly apart from a sloped part 14. After the filter layers F are constructed on the sloped part 14, and new reinforcement soil layers D are stacked in the same manner as described above to complete a reinforcement banking part G.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、老朽化して、豪雨
や地震に対して補強が必要な小規模な貯水用ダムや河川
堤防などの土構造堤体を補強する方法に関する。より詳
細には、土構造堤体を掘削して生じた堤体土を原材料
に、その一部をセメント等の固化材により固化した塊
を、土中に埋込みながら残りの堤体土により再盛土する
ことで補強堤体盛土を築造するもので、断面を変更する
ことなく堤体の安定性を向上させる既設の盛土の補強法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reinforcing small-scale water dams and earth structure dams such as river dikes that are deteriorated and need to be strengthened against heavy rain and earthquakes. More specifically, the embankment soil excavated from the earth structure embankment is used as a raw material, and a part of it is solidified with a solidifying material such as cement while the remaining embankment soil is being re-embedded. By doing so, a reinforced embankment embankment is constructed, and relates to a method for reinforcing an existing embankment that improves the stability of the embankment without changing the cross section.

【0002】[0002]

【従来の技術】従来、小規模な貯水用ダムや河川堤防な
どの土構造堤体の安定性を向上させるためには、外部か
ら入手した盛土材により押え盛土あるいは腹付け盛土等
により、法面勾配を緩くするなどの堤体断面変更による
補強を行なっていた。この場合には堤体に接した盛土用
地が新たに必要になること、また新たな堤体補強のため
の良質な盛土材を探し(土取り場の購入)、そこからの
土運搬が必要となる。また、堤体断面を変更しないで補
強するには、現況の堤体を全部あるいは部分的に掘削除
去して、現状堤体土よりも強度あるいは遮水性に優れた
良質な土砂を購入するなどして外部から新たに入手した
盛土材を用いて堤体を再度築造していた。このため、現
況堤体を掘削して発生した土の土捨て場の確保とそこま
での運搬が必要となる。また良質な盛土材を探すことが
必要となる。
2. Description of the Related Art Conventionally, in order to improve the stability of earth structure dams such as small-scale water storage dams and river levees, embankment materials obtained from the outside are used to hold slopes or abdominal embankments. Reinforcement was carried out by changing the cross section of the levee body, such as making the slope gentle. In this case, a new embankment site in contact with the embankment is needed, and a good embankment material for new embankment reinforcement should be sought (purchase of the embankment), and the soil should be transported from there. Become. To reinforce the levee without changing its cross section, excavate and remove the existing levee entirely or partially, and purchase good quality sand that is stronger or more impermeable than the existing levee soil. The embankment was rebuilt using the newly obtained embankment material from the outside. For this reason, it is necessary to secure a dumping site for the soil generated by excavating the existing embankment and to transport it there. It is also necessary to find a good quality embankment material.

【0003】[0003]

【発明が解決しようとする課題】つまり従来は、新設盛
土のための用地や土捨て場・土取り場の確保(新たに用
地購入)、工事現場から土捨て場への土砂搬出と土取り
場から工事現場までの土砂搬入のための土運搬に伴う交
通量増加や排気ガスの発生などの近隣住環境の悪化を招
く等の問題を生じさせる。また、土捨て・土取り場の跡
地利用の問題も生じさせる。小規模な貯水用ダムや河川
堤防などの土構造堤体は、築造年代が古く老朽化して、
漏水が著しく豪雨、地震などに対して安定性や耐久性に
不足するものが多く、早急に補強を必要とされているも
のが多い。特に市街地化が進んだ地域では、地震や豪雨
時のため池決壊による二次災害が懸念されるため、緊急
に補強が必要とされている。
[Problems to be Solved by the Invention] In other words, in the past, securing a site for a new embankment, a dumping site, and a dumping site (purchasing a new site), carrying out sediment from the construction site to the dumping site, and a dumping site From the construction site to the construction site will cause problems such as an increase in traffic volume accompanying the transportation of soil and the generation of exhaust gas, which will worsen the neighboring living environment. It also raises the problem of the use of ruins at the dump site. The earth construction dams such as small-scale water storage dams and river banks are old and old,
Many of them have significant leakage and lack stability and durability against heavy rain, earthquakes, etc., and many require immediate reinforcement. Especially in areas where urbanization has progressed, there is a concern about secondary disasters due to the collapse of ponds due to earthquakes and heavy rainfall, so urgent reinforcement is needed.

【0004】このような地域では、住宅や民地が迫り
事業用地がないか不足する場合が多い、堤体の改修・
補強に必要な盛土材や遮水材をため池周辺で確保しにく
い、工事は騒音・振動等による住環境を損なうことな
く進める必要があるなど、従来からの方法では堤体の補
強をしにくい状況にある。本発明はこのような状況を鑑
みてなされたもので、堤体の裏面の住宅地側には押え盛
土・腹付け盛土が可能な用地が確保できない、近隣から
堤体補強のための工事用土を調達しにくなどの問題を抱
える市街地に近接した地区にある堤体の豪雨や地震に対
する安定性・耐久性を向上させる堤体補強法の提供を目
的とするものである。
[0004] In such areas, there are many cases where housing and private land are approaching and there is no or shortage of business land.
It is difficult to reinforce the embankment by conventional methods, such as it is difficult to secure embankment materials and water-blocking materials required for reinforcement around the reservoir, and it is necessary to proceed with construction without damaging the living environment due to noise, vibration, etc. It is in. The present invention has been made in view of such a situation, and it is not possible to secure a site for holding embankment / belly embankment on the residential area side on the back side of the dam body, and to construct construction soil for embankment reinforcement from the neighborhood. The purpose of the present invention is to provide a levee reinforcement method that improves the stability and durability of levee bodies in areas close to urban areas, which have problems such as difficulty in procurement, against heavy rainfall and earthquakes.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
本発明は、老朽化した小規模な貯水用ダムや河川堤防な
どの土構造堤体を補強する方法であって、前記土構造堤
体の補強すべき部分を掘削し、前記掘削により生じた堤
体土にセメント等の固化材を混合し固化させて多数の固
化土塊を作り、前記掘削された土構造堤体の掘削面上
に、前記多数の固化土塊を平面的に並べると共に、それ
ら固化土塊の相互の隙間に前記掘削により生じた堤体土
を埋め込んで補強土層を作り、前記掘削された土構造堤
体の掘削面上で、前記補強土層を上方に順次積み重ねて
いくことで、前記補強すべき部分に補強盛土部を築造す
るようにしたことを特徴とする。また、本発明の土構造
堤体の補強方法は、老朽化した小規模な貯水用ダムや河
川堤防などの土構造堤体を補強する方法であって、前記
土構造堤体の補強すべき部分を掘削し、前記掘削された
土構造堤体の掘削面上で、前記掘削により生じた堤体土
を敷き均し転圧して作った土層を複数順次上方に積み重
ねて堤体土層を築造し、この堤体土層に相互に間隔をお
いて多数の窪みを掘削し、これらの窪みに、前記掘削に
より生じた堤体土にセメント等の固化材を混合して固化
処理した堤体土を、まだ固化される前の状態でそれぞれ
投入して充填し、固化処理した堤体土を窪み内で固化さ
せて窪みの内部に固化土塊を作って、前記堤体土層と多
数の固化土塊からなる補強土層を作り、前記掘削された
土構造堤体の掘削面上で、前記補強土層を上方に順次積
み重ねていくことで、前記補強すべき部分に補強盛土部
を築造するようにしたことを特徴とする。また、本発明
の土構造堤体の補強方法は、前記土構造堤体の補強すべ
き部分を掘削し、前記掘削された土構造堤体の掘削面上
で、前記掘削により生じた堤体土を敷き均し転圧して作
った土層を複数順次上方に積み重ねて堤体土層を築造
し、この堤体土層の相互に間隔をおいた多数箇所におい
て、それぞれ掘り起こしつつこれら箇所の堤体土にセメ
ント等の固化材を混合し固化させて堤体土層の中で固化
土塊を作って、堤体土層と多数の固化土塊からなる補強
土層を作り、前記掘削された土構造堤体の掘削面上で、
前記補強土層を上方に順次積み重ねていくことで、前記
補強すべき部分に補強盛土部を築造するようにしたこと
を特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention is a method for reinforcing an earth structure dam such as an aging small-scale water storage dam or a river embankment. Excavate the portion to be reinforced, mix a solidifying material such as cement to the embankment soil generated by the excavation and solidify to make a large number of solidified soil blocks, on the excavated surface of the excavated earth structure dike, While arranging the large number of solidified soil blocks in a plane, embedding the embankment soil generated by the excavation in the mutual gap between the solidified soil masses to form a reinforced soil layer, on the excavated surface of the excavated earth structure dike It is characterized in that a reinforcing embankment portion is built in the portion to be reinforced by sequentially stacking the reinforcing soil layers upward. Further, the method for reinforcing an earth structure dam of the present invention is a method for reinforcing an earth structure dam such as an aged small-scale water storage dam or a river embankment, and the portion to be reinforced of the earth structure dam. Excavation of the earth structure, and on the excavated surface of the excavated earth structure dam, the embankment soil generated by the excavation is laid and leveled, and a plurality of soil layers are stacked one above the other to build a dam body soil layer. Then, a large number of pits are excavated at intervals in the levee soil layer, and the levee soil obtained by mixing and solidifying the levee soil produced by the excavation with a solidifying material such as cement in these depressions is solidified. , Respectively, in the state before being solidified, filled and solidified, the solidified levee soil is solidified in the depression to form a solidified clod inside the depression, and the dike soil layer and a large number of solidified clods are formed. On the excavated surface of the excavated earth structure levee, the reinforcement soil layer is formed in the upward direction. By going stacking, characterized by being adapted to construction reinforcement embankment at a portion to be the reinforcement. In addition, the method for reinforcing an earth structure dam of the present invention is to excavate a portion to be reinforced of the earth structure dam, and on the excavated surface of the excavated earth structure dam, the embankment soil generated by the excavation. A plurality of soil layers are laid one on top of the other and piled up one by one in order to build a dam body soil layer, and at these many places spaced apart from each other, excavation of each of these places The excavated earth structure embankment, which is made by mixing solidifying material such as cement into the soil and solidifying it to form a solidified soil mass in the embankment soil layer to form a reinforced soil layer composed of the embankment soil layer and a large number of solidified soil masses. On the excavated surface of the body,
It is characterized in that a reinforcing embankment portion is built in the portion to be reinforced by sequentially stacking the reinforcing soil layers upward.

【0006】本発明によれば、堤体の改修あるいは補強
は、堤体補強のための新たな用地確保が不可能、外部か
らの堤体補強用土が調達しにくいなどの問題を抱える市
街地に近接した地区にあるダムや河川堤防などの堤体
を、既設堤体断面を変えることなく(新たな盛土用地を
必要としない)、既設堤体を掘削して発生した土の一部
をセメント等の固化材により固化した土塊を土中に埋め
ながら旧堤体と同じ断面もしくはそれよりも経済的断面
で再盛土することで、安定性を向上させるものである。
According to the present invention, the renovation or reinforcement of the levee body is difficult to secure new land for levee body reinforcement, and it is close to the urban area which has problems such as difficulty in procuring soil for levee body reinforcement from the outside. For dams such as dams and river levees in existing areas, part of the soil generated by excavating the existing dike without changing the cross section of the existing dike (no need for new embankment) is used as cement. Stability is improved by burying the solidified mass with solidifying material in the soil and re-embanking with the same cross section as the old embankment or an economical cross section.

【0007】図1(イ)に示すように、豪雨や地震に対
して安定性や耐久性が不足し、堤体の補強が必要な小規
模な貯水用ダムや河川堤防を掘削して発生した現状堤体
土を、所定の大きさ・形状になるようにセメント等の固
化材により固化させた固化土塊SSを、旧堤体Eと同じ
断面かあるいはそれよりも経済的な断面になるように土
中に積み上げながら築造するか、あるいは所定の間隔を
おいて土中に埋め込みながら土構造堤体の補強盛土部G
を築造すると、図1(ロ)、(ハ)に示すように、土中
内に積上げられた積層構造にある固化土塊SSのかみ合
わせ効果や、あるいはある間隔で配置された浮き構造に
ある個々の固化土塊SSが擬似的な骨格構造を形成して
堤体の安定性を向上させる効果をもち、また破壊状態で
は固化土塊を含む複合地盤からなる堤体内を通るすべり
面での補強された抵抗力τは、図2に示すように、土
単体の強度とτと固化土塊SSの強度τSSの合成さ
れた強度により大きなものとなり、近似的に
[0007] As shown in Fig. 1 (a), it was generated by excavating a small-scale water storage dam or river embankment that lacks stability and durability against heavy rain and earthquakes and requires reinforcement of the dam body. So that the solidified soil mass SS obtained by solidifying the current dam body soil with a solidifying material such as cement so that it has a predetermined size and shape has the same cross section as the old dam body E or an economical cross section Reinforced embankment G of the earth structure levee while building it while piled up in the soil or embedding it in the soil at a predetermined interval
As shown in Figs. 1 (b) and 1 (c), the effect of interlocking the solidified clods SS in the laminated structure piled up in the soil or the individual floating structures arranged at certain intervals The solidified soil mass SS has the effect of forming a pseudo skeletal structure to improve the stability of the dam body, and in the destroyed state, the reinforced resistance force on the slip surface that passes through the dike body composed of the composite ground including the solidified mass As shown in FIG. 2, τ R becomes large due to the strength of the soil alone and the combined strength of τ O and the strength τ SS of the solidified soil mass SS, and approximately

【0008】[0008]

【数1】 [Equation 1]

【0009】で表わせる。ここでLssは固化土塊SS
を通るすべり面の合計長さ、Lはすべり面の全長であ
る。さらに、この固化土塊SSによる補強盛土部Gは通
常土のみによる堤体に比較すると強度は大きくなり、以
下の理由により地震等により堤体に大きな変形が生じて
も旧堤体や周辺地盤の変形に追従し応力集中やクラック
の発生は生じない。つまり、図1(イ)に示したよう
に、補強すべき領域内のすべての既設堤体部分Eを現状
堤体土をセメント等の固化材により土質改良して置き換
えると、強度的な安定性は容易に確保できるが、地震時
のように通常土からなる既設堤体部が大きな変形をする
場合には、この変形に新設堤体部の剛性が高く追従でき
ずに剛性の相違に起因した応力集中のよる局部的な破壊
が生じる可能性がある。本発明ではこの問題を解決する
ために、補強部全体を改良土で置換するのではなく、所
々を固化土で置き換える方法を採用している。そのた
め、図3に示すように、土中に積み上げられた固化土塊
SSの集合体は個々の固化土塊SSの接触部のすべりや
圧壊、固化土塊の回転等により、また固化土塊SSをあ
る間隔で配置された場合にも隣り合う固化土塊SS間に
ある土のために、変形性は固化土塊単体の場合よりも通
常土に近いものとなる。また、本発明では、上述のよう
に堤体の安定性を向上させる効果をもつことから、固化
土塊SSや土中への配置の仕方を工夫により、補強後の
堤体を既設堤体より新たな用地を生じさせる経済的な断
面とすることも可能である(図4)。
Can be expressed as Where L ss is the solidified clod SS
Is the total length of the slip surface, and L is the total length of the slip surface. Further, the strength of the embankment portion G reinforced by the solidified soil mass SS is higher than that of the embankment body made of only ordinary soil, and even if the embankment body is largely deformed due to an earthquake or the like, the former embankment body and surrounding ground are deformed. Therefore, stress concentration and cracks do not occur. That is, as shown in FIG. 1 (a), if all the existing embankment portions E in the region to be reinforced are replaced by modifying the existing embankment soil with a solidifying material such as cement to replace it, strength stability is improved. Can be easily secured, but when the existing dam body made of normal soil undergoes a large deformation such as during an earthquake, the rigidity of the newly constructed dam body cannot be tracked to this deformation, resulting in a difference in rigidity. Local failure due to stress concentration can occur. In order to solve this problem, the present invention adopts a method of replacing the entire reinforcing portion with the improved soil, but with the solidified soil in places. Therefore, as shown in FIG. 3, the aggregates of the solidified soil masses SS piled up in the soil are slipped or crushed at the contact portions of the individual solidified soil masses SS, the solidified soil masses are rotated, and the solidified soil masses SS are arranged at certain intervals. Even when arranged, the deformability becomes closer to that of normal soil than in the case of the solidified soil mass alone because of the soil between the adjacent solidified soil masses SS. Further, in the present invention, since it has the effect of improving the stability of the dam body as described above, by devising the way of arranging it in the solidified soil mass SS or in the soil, It is also possible to have an economical cross section that creates a large site (Fig. 4).

【0010】[0010]

【発明の実施の形態】第1の実施の形態 図5乃至図10を参照して第1の実施の形態を説明す
る。図5は、本発明による現状堤体を掘削して発生した
土をセメント等の固化材により固化させた多数の固化土
塊により補強した補強盛土部の全体図を示す。図5にお
いて、符号Bは基礎地盤、符号Eは既設の現状堤体部、
符号Gは新たに築造された補強盛土部を示しており、補
強盛土部Gは、多数の固化土塊SSと堤体土による盛土
PSにより築造されている。本実施の形態では、現状堤
体部Eの一部が残されて掘削され、掘削された部分に
は、ほぼ水平面上を延在する平坦な面で形成された上方
を向いた下部平坦部12と、下部平坦部12の一側から
斜めに立ち上る斜面部14と、斜面14の上部にほぼ水
平面上を延在する平坦な面で形成された上方を向いた上
部平坦部16とが形成され、補強盛土部Gは、これら下
部平坦部12と斜面部14と上部平坦部16上にわたっ
て形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment A first embodiment will be described with reference to FIGS. FIG. 5 shows an overall view of a reinforced embankment portion in which soil generated by excavating a current cut-off wall according to the present invention is reinforced with a large number of solidified soil blocks solidified by a solidifying material such as cement. In FIG. 5, reference symbol B is the foundation ground, reference symbol E is the existing levee section,
Reference symbol G indicates a newly built reinforced embankment portion, and the reinforced embankment portion G is constructed by a large number of solidified earth mass SS and embankment PS made of bank body soil. In the present embodiment, a part of the present cut-off wall portion E is excavated, and the excavated portion is formed with a flat surface extending substantially on a horizontal plane. And a slope portion 14 that obliquely rises from one side of the lower flat portion 12, and an upper flat portion 16 that is formed on the upper portion of the slope 14 and that is a flat surface that extends on a substantially horizontal plane and that faces upward. The reinforcement embankment G is formed over the lower flat portion 12, the slope portion 14, and the upper flat portion 16.

【0011】補強盛土部Gの実施手順について図6乃至
図8を参照して説明する。 (1)堤体の安定計算等により最小安全率Fsoを与え
る円弧すべり面SCの位置等から現状堤体部E(既設堤
体)内の補強領域Rを設定する(図6(イ))。 (2)補強領域Rにあたる現状の堤体土を掘削し、前記
下部平坦部12と斜面部14と上部平坦部16を形成す
る(図6(ロ))。 (3)必要に応じて掘削堤体面に、より詳細には下部平
坦部12と斜面部14にフィルター層(サンドマット
層)SMとフィルター層Fを設ける(図7(ハ))。フ
ィルター層SM、Fは、砂利や砂などにより構成されて
いる。こられフィルター層SM、Fは、現状堤体部Eか
ら補強盛土部Gに入り込む浸透水を排水し、補強盛土部
Gをより強固なものにするためのものである。
A procedure for implementing the reinforcement embankment G will be described with reference to FIGS. 6 to 8. (1) The reinforcement area R in the current dam body part E (existing dam body) is set from the position of the circular arc slide surface SC that gives the minimum safety factor F so by stability calculation of the dam body (Fig. 6 (a)). . (2) The existing bank body soil corresponding to the reinforced region R is excavated to form the lower flat portion 12, the slope portion 14 and the upper flat portion 16 (FIG. 6B). (3) If necessary, a filter layer (sand mat layer) SM and a filter layer F are provided on the excavation bank surface, more specifically, on the lower flat portion 12 and the slope portion 14 (FIG. 7C). The filter layers SM and F are made of gravel or sand. These filter layers SM and F are for draining the permeated water that enters the reinforcement embankment portion G from the current bank body portion E to make the reinforcement embankment portion G stronger.

【0012】(4)多数の固化土塊SSを作る。固化土
塊SSは、掘削した堤体土から作ったもので、堤体土に
所定量のセメント等の固化材を添加し、水と共に攪拌混
合して固化処理し、固化させたものである。固化土塊S
Sの大きさは、工事の規模に応じて取り扱い性や効率性
などの観点から適宜決定される。例えば重機を用いる場
合には、重機により固化土塊SSを効率良く運搬でき、
また、固化土塊SSを効率良く並べられる程度の大きさ
に形成され、人力により扱う場合には、人力により運べ
る程度の大きさに形成される。重機を用いて固化土塊S
Sを運搬する規模の工事では、例えば、その直径が50
cmから1m程度、長さが50cmから1.5m程度の
ものが用いられ、人力により固化土塊SSを運搬する規
模の工事では、その直径が50cm程度、長さが50c
mから1m程度のものが用いられる。固化土塊SSを作
る方法は、種々考えられるが、この実施の形態では、ほ
ぼ一定の容積のものを効率良く多数作れることから後述
するように袋を用いている。
(4) A large number of solidified soil blocks SS are prepared. The solidified soil mass SS is made from excavated levee soil, and is obtained by adding a predetermined amount of a solidifying material such as cement to the levee soil, stirring and mixing with water to solidify, and solidify. Solidified soil mass S
The size of S is appropriately determined from the viewpoint of handleability and efficiency according to the scale of construction. For example, when using a heavy machine, the heavy machine can efficiently transport the solidified soil mass SS,
Further, the solidified soil mass SS is formed in a size that can be efficiently arranged, and when handled by human power, it is formed in a size that can be carried by human power. Solidified soil mass S using heavy equipment
In the construction of the scale to transport S, for example, the diameter is 50
cm to 1 m and length of 50 cm to 1.5 m are used, and in the construction of a scale to transport the solidified soil mass SS manually, the diameter is about 50 cm and the length is 50 c.
The thing of about m to 1 m is used. Various methods can be considered for producing the solidified soil mass SS, but in this embodiment, a bag is used as described later because it is possible to efficiently produce a large number of substantially constant volumes.

【0013】(5)多数の固化土塊SSを、新たに構築
する堤体断面になるように、下部平坦部12上に互いに
接しさせて並べてゆき、多数の固化土塊SSを上下に重
ねることなくほぼ水平に平面的に並べて1段階分を築造
する。(図7(ニ))。なお、多数の固化土塊SSを、
互いに接しさせることなく間隔をおいて並べていっても
よいが、上記のように互いに接しさせて並べていくと、
補強盛土部Gの安定性をより高める上で有利となる。 (6)互いに接するように並べた固化土塊SSの隙間が
埋まるように、掘削した堤体土による詰め土PSを固化
土塊SS間に埋め込む。これにより多数の固化土塊SS
とこれら固化土塊SSの隙間を塞ぐ詰め土PSにより補
強土層Dが作られる(図8(ホ))。また、斜面部14
から最も離れた箇所に固化土塊SSを覆う法面が形成さ
れるように覆土層PSaを築造する。
(5) A large number of solidified soil masses SS are arranged in contact with each other on the lower flat portion 12 so as to form a newly constructed dam body cross section, and a large number of solidified soil masses SS are almost vertically stacked. Build horizontally for one stage. (FIG. 7 (d)). In addition, many solidified soil blocks SS,
You may arrange them at intervals without contacting each other, but if you arrange them in contact with each other as described above,
This is advantageous in further enhancing the stability of the reinforced embankment G. (6) The filling soil PS made of the excavated bank body soil is embedded between the solidified soil masses SS so that the gaps between the solidified soil masses SS arranged so as to be in contact with each other are filled. As a result, many solidified soil blocks SS
A reinforced soil layer D is created by the filling soil PS that closes the gaps between these solidified soil masses SS (Fig. 8 (e)). Also, the slope 14
The soil covering layer PSa is built so that the slope that covers the solidified soil mass SS is formed at a position farthest from the.

【0014】(7)斜面部14にフィルターFを築造し
てから、上記と同様に固化土塊SSを互いに接するよう
に並べ、さらにそれらの隙間を詰め土PSで塞ぎ、ま
た、覆土層PSaを築造して、前記の補強土層Dの上に
新たな補強土層Dを積み重ねる(図8(ヘ))。 (8)以下、この作業を繰返して行い、上部平坦部16
上に補強土層Dを積み重ねていき、図5に示すように、
両側の法面を覆土層PSaで覆い、最も上位の補強土層
Dの上面を覆土層PSbで覆い、外気に触れる法面や地
表面が覆土層PSa、PSbで覆われた補強盛土部Gが
完成される。これにより、新設堤体表面の乾・湿繰り返
し等による固化土塊SSの劣化防止が覆土層PSa、P
Sbにより図られた補強盛土部Gが得られる。
(7) After constructing the filter F on the slope portion 14, the solidified soil blocks SS are arranged so as to be in contact with each other in the same manner as described above, and the gaps between them are filled up with the soil PS, and the soil covering layer PSa is constructed. Then, a new reinforced soil layer D is stacked on the reinforced soil layer D (FIG. 8F). (8) Thereafter, this work is repeated to obtain the upper flat portion 16
Stack the reinforcing soil layer D on top, and as shown in FIG.
The slopes on both sides are covered with the soil cover layer PSa, the upper surface of the uppermost reinforced soil layer D is covered with the soil cover layer PSb, and the slope or the ground surface exposed to the outside air is covered with the soil cover layers PSa and PSb. Will be completed. This prevents deterioration of the solidified soil mass SS due to repeated dry / wet on the surface of the new embankment, etc.
A reinforced embankment G made of Sb is obtained.

【0015】なお、本実施の形態では、下記のように袋
を用いて固化土塊SSを作った。 (1)口元(投入口)の大きい型枠フレームFRを設け
る(図9(イ))。この型枠フレームFRは金属板やベ
ニヤなどからなり、例えば、上部が開放された立方体状
の箱体20と、この箱体20の上部に設けられた鍔部2
2とで構成されている。 (2)大型土のう袋のような袋FBを多数用意する。こ
の袋FBは、変形可能で、また、中に物を詰め込んだ状
態で持ち上げた時に破壊されないような強度を有する材
質で形成されたものを用いる。そして、袋FBを箱体2
0に入れ、袋FBの口元を鍔部22の上で広げた状態と
する。(図9(ロ))。 (3)固化処理ピット内などにおいて、掘削した堤体土
に所定量のセメント等の固化材を添加し、トレンチャー
などの攪拌混合機械により水と共に攪拌混合して固化処
理する(図10(ハ))。
In this embodiment, a solidified soil mass SS is made using a bag as described below. (1) A form frame FR having a large mouth (insertion mouth) is provided (FIG. 9A). The form frame FR is made of a metal plate, veneer, or the like, and is, for example, a cubic box body 20 having an open top, and a collar portion 2 provided on the top of the box body 20.
It is composed of 2 and. (2) Prepare a large number of bags FB such as large sandbags. The bag FB is made of a material that is deformable and has a strength so as not to be broken when the object is packed and lifted. Then, the bag FB into the box 2
0, and the mouth of the bag FB is spread over the collar portion 22. (FIG. 9B). (3) Solidification treatment In a pit or the like, a predetermined amount of solidification material such as cement is added to the excavated bank body soil, and the mixture is stirred and mixed with water by a stirring and mixing machine such as a trencher to perform the solidification treatment (Fig. 10 (c)). ).

【0016】(4)型枠フレームFRに入れられた袋F
Bの中に、まだ固まらない状態にある固化処理した堤体
土を入れる(図10(ニ))。そして、袋FBの口元を
ひもで絞り、口元を閉塞する。なお、固化された堤体土
と袋FBとにより本実施の形態では固化土塊SSが作ら
れる。 (5)次に、まだ固まらない状態の固化処理された堤体
土が詰められた袋FBを吊り上げ(図10(ホ))、所
定の場所に仮置きしてから、あるいは直接盛立て箇所に
運び、固まらない状態の堤体土が詰められた袋FBを並
べて上記のように補強土層Dを作る。
(4) Form F Bag F put in the frame FR
In B, put the solidified levee soil that is not yet solidified (Fig. 10 (d)). Then, the mouth of the bag FB is squeezed with a string to close the mouth. In this embodiment, the solidified soil mass SS is formed by the solidified bank body soil and the bag FB. (5) Next, the bag FB filled with the solidified levee soil that has not yet solidified is lifted up (Fig. 10 (e)) and temporarily placed at a predetermined location, or directly on the embankment. The bags FB filled with the levee soil that is transported and not solidified are arranged to form the reinforced soil layer D as described above.

【0017】なお、袋FBの中に詰められた堤体土が固
化したのち、袋FBすなわち固化土塊SSを並べて補強
土層Dを作ってもよいが、上記のように袋FBの中に詰
められた堤体土がまだ固まらないうちに、袋FBすなわ
ち固化土塊SSを並べて補強土層Dを作れば、固化土塊
SSは、下方の補強土層Dの固化土塊SSと、また、横
方向に隣り合う固化土塊SSとの間でそれらの一部が密
接し易く、補強盛土部Gの安定性を高める上で有利とな
る。なお、固化土塊SSを作る方法としては、前記のよ
うに袋FBを用いる方法の他に、例えば、まとまった量
の堤体土にセメント等の固化材を添加し、水と共に攪拌
混合して固化させた大きな塊を、バックホーなどにより
砕いていき、固化土塊SSを作る方法が挙げられる。
After the embankment soil packed in the bag FB is solidified, the bag FB, that is, the solidified soil mass SS may be lined up to form the reinforcing soil layer D, but as described above, it is packed in the bag FB. If the reinforced soil layer D is formed by arranging the bags FB, that is, the solidified soil masses SS, before the embankment soil that has been solidified is still solidified, the solidified soil masses SS are the solidified soil masses SS of the lower reinforced soil layer D, and also in the lateral direction. Some of them are easily brought into close contact with the adjacent solidified soil blocks SS, which is advantageous in increasing the stability of the reinforced embankment portion G. In addition to the method of using the bag FB as described above, for example, a method of making the solidified soil mass SS includes, for example, adding a solidifying material such as cement to a large amount of levee soil and stirring and mixing with water to solidify. A method in which the large lumps thus made are crushed by a backhoe or the like to make solidified soil lumps SS can be mentioned.

【0018】第2の実施の形態 次に、図11を参照して第2の実施の形態について説明
する。なお、第1の実施の形態と同一の箇所には同一の
符号を付して説明する。 (1)下部平坦部12に所定層厚のフィルター層(サン
ドマット層)SMを設ける(図11(イ))。 (2)フィルター層(サンドマット層)SMの上で、斜
面部14にフィルター層Fを設けながら所定厚さΔHま
で所定層厚で堤体土(掘削した堤体土)を播き出し・敷
き均してて、転圧しながら土層を複数積み重ねて堤体土
層E’を築造する(図11(ロ))。 (3)堤体土層E’の相互に間隔をおいた多数の箇所
に、それぞれ所定の形状をした窪み(窪み)RPを掘削
する(図11(ハ))。
Second Embodiment Next, a second embodiment will be described with reference to FIG. The same parts as those in the first embodiment will be described with the same reference numerals. (1) A filter layer (sand mat layer) SM having a predetermined thickness is provided on the lower flat portion 12 (FIG. 11A). (2) On the filter layer (sand mat layer) SM, while arranging the filter layer F on the slope portion 14, sowing and laying the levee soil (excavated levee soil) with a predetermined thickness up to a predetermined thickness ΔH. Then, a plurality of soil layers are piled up while rolling to build a bank body soil layer E ′ (FIG. 11B). (3) Recesses (recesses) RP each having a predetermined shape are excavated at a large number of mutually spaced locations in the embankment soil layer E ′ (FIG. 11C).

【0019】この窪みRPは、堤体強度を確保する観点
から、また、掘削の効率性の点から、例えば、深さが1
m程度、直径が1m程度、窪み相互の間隔が1m程度で
施工される。なお、窪みRPの大きさは、堤体や補強盛
土部Gの規模により、また、用いる重機の種類によって
異なるが、堤体強度を確保する観点から、また、掘削の
効率性の点から、また、掘削した堤体土の強度などのよ
うな性状も考慮されつつ決定される。 (6)窪みRP内に、ピット内などで掘削した堤体土に
所定量のセメント等の固化材を添加し、トレンチャー等
の攪拌混合機械により水と共に攪拌混合して固化処理し
た堤体土を、まだ固化していない状態のうち投入する。
これにより窪みFP内に固化処理した堤体土が隙間なく
充填され、窪みFP内で固化させて固化土塊SSを作る
(図11(ニ))。これにより堤体土層E’と多数の固
化土塊SSにより補強土層Dが作られ、この状態を、図
12(ホ)に平面図で示す。 (7)そして、前記と同様に、この補強土層Dの上に、
堤体土により堤体土層E'を築造し、窪みRPを掘削
し、掘削窪みFP内に固化土塊SSを作って補強土層D
を作り(図12(ヘ))、このように補強土層Dを上方
に順次積み重ねながら補強盛土部Gを築造する。
The recess RP has, for example, a depth of 1 from the viewpoint of ensuring the strength of the bank body and the efficiency of excavation.
m, the diameter is about 1 m, and the intervals between the depressions are about 1 m. The size of the depression RP varies depending on the scale of the bank and the reinforcement embankment G and the type of heavy equipment used, but from the viewpoint of securing the bank strength and the efficiency of excavation, , The strength of the excavated levee soil is also taken into consideration when making the decision. (6) In the depression RP, a predetermined amount of a solidifying material such as cement is added to the levee soil excavated in the pit or the like, and the levee soil that has been solidified by stirring and mixing with water by a stirring and mixing machine such as a trencher is used. , Put it in the state where it has not solidified yet.
As a result, the embankment soil that has been solidified is filled in the depression FP without any gap, and is solidified in the depression FP to form a solidified soil mass SS (FIG. 11D). As a result, a reinforced soil layer D is formed by the bank body soil layer E ′ and a large number of solidified soil blocks SS, and this state is shown in a plan view in FIG. (7) Then, similarly to the above, on the reinforced soil layer D,
The embankment soil layer E ′ is constructed from the embankment soil, the depression RP is excavated, and the solidified soil mass SS is formed in the excavation depression FP to reinforce the soil layer D.
(FIG. 12 (f)), and the reinforcing embankment portion G is constructed by sequentially stacking the reinforcing soil layers D in this manner.

【0020】第3の実施の形態 次に、図13を参照して第3の実施の形態について説明
する。なお、第1の実施の形態と同一の箇所には同一の
符号を付して説明する。 (1)下部平坦部12に所定層厚のフィルター層(サン
ドマット層)SMを設ける(図13(イ))。 (2)フィルター層(サンドマット層)SMの上で、斜
面部14にフィルター層Fを設けながら所定厚さΔHま
で所定層厚で堤体土(掘削した堤体土)を播き出し・敷
き均してて、転圧しながら土層を複数積み重ねて堤体土
層E’を築造する(図13(イ))。
Third Embodiment Next, a third embodiment will be described with reference to FIG. The same parts as those in the first embodiment will be described with the same reference numerals. (1) A filter layer (sand mat layer) SM having a predetermined thickness is provided on the lower flat portion 12 (FIG. 13A). (2) On the filter layer (sand mat layer) SM, while arranging the filter layer F on the slope portion 14, sowing and laying the levee soil (excavated levee soil) with a predetermined thickness up to a predetermined thickness ΔH. Then, a plurality of soil layers are piled up while rolling to build a bank body soil layer E '(Fig. 13 (a)).

【0021】(3)堤体土層E’の相互に間隔をおいた
多数の箇所において、固化処理機械により所定の形状・
容積の範囲内で堤体土層E'を掘り起こし、セメントな
どの固化材料を添加しながら原位置で水と共に攪拌混合
し、堤体土層E'中で固化土塊SSを直接作る(図13
(ロ))。これにより堤体土層E’と多数の固化土塊S
Sにより補強土層Dが作られる。なお、固化土塊SSの
大きさは前記と同様である。 (4)そして、この補強土層Dの上に、堤体土により堤
体土層E'を築造し、この堤体土層E'に固化処理機械に
より多数の固化土塊SSを直接作って補強土層Dを作
り、このように補強土層Dを上方に順次積み重ねながら
補強盛土部Gを築造する。
(3) At a large number of mutually spaced locations in the embankment soil layer E ', a predetermined shape and
The embankment soil layer E ′ is dug up within the volume range, and the mixture is stirred and mixed with water in situ while adding the solidifying material such as cement to directly form the solidified soil mass SS in the embankment soil layer E ′ (FIG. 13).
(B)). As a result, the embankment soil layer E'and a large number of solidified soil blocks S
The S forms a reinforced soil layer D. The size of the solidified soil mass SS is the same as above. (4) Then, on the reinforced soil layer D, a levee soil layer E ′ is built by the levee soil, and a large number of solidified soil blocks SS are directly formed on the levee soil layer E ′ by a solidification treatment machine to reinforce it. The soil layer D is formed, and the reinforcement embankment portion G is constructed by sequentially stacking the reinforcement soil layer D upward in this manner.

【0022】以上の実施の形態によれば、以下に示すよ
うな優れた効果が発生する。 1)市街化が進んだ地域のように堤体の両側あるいは片
側に押え盛土や腹付け盛土等の堤体補強用の追加盛土の
用地が確保できない場合でも堤体補強が可能である。 2)工事計画地の近くで堤体の補強用土が入手できない
場合でも、現状の堤体断面内でかつその堤体土を使用す
るため、堤体補強が可能である。 3)外部から補強用土を調達する場合には土取業者から
購入するかあるいは土取り場用地を購入する必要があ
る。この場合には現状土を除去して新たに入手した良質
土により再度盛土することになるが、掘削土の土捨て場
までの搬出や土捨て場の確保や、外部からの購入した良
質な土の搬入が必要である。この発明では新たな用地買
収(土取り場・土捨て場)や土砂の搬入・出を伴わずに
堤体補強が可能である。
According to the above embodiment, the following excellent effects occur. 1) Reinforcement of the embankment is possible even when it is not possible to secure additional embankment sites for embankment embankment or embankment embankment on both sides or one side of the embankment, such as in urbanized areas. 2) Even if soil for reinforcing the dam is not available near the construction site, it is possible to reinforce the dam because it is within the current cross section of the dam and is used. 3) When procuring reinforcing soil from the outside, it is necessary to purchase it from a soil removal trader or a land acquisition site. In this case, the existing soil will be removed and embankment will be carried out again with the newly obtained good quality soil.However, the excavated soil will be carried out to the soil disposal site, the soil disposal site will be secured, and the high quality soil purchased from outside will be used. Need to be brought in. With this invention, it is possible to reinforce the levee body without the acquisition of new land (removal site, dump site) and the loading and unloading of earth and sand.

【0023】4)外部から土を持ち込まず、持ち出さな
いため、土砂運搬による交通渋滞の惹起や、廃棄ガスの
発生など近隣に及ぼす住環境の悪化がない。 5)既設堤体断面の変更が無いので経済的な補強が可能
である。 6)この固化土塊は堤体土に比較すると強度も大きく剛
性も高いが、土中にある間隔で配置されているので、あ
るいは積層状土塊でも隣り合う土塊間にある空隙のた
め、補強堤体部は地震等により堤体に大きな変形が生じ
ても旧堤体や周辺地盤の変形に追従し応力集中やクラッ
クの発生は生じない。
4) Since the soil is not brought in from outside and is not taken out, there is no deterioration of the living environment that may occur in the neighborhood such as the occurrence of traffic congestion due to the transportation of sediment and the generation of waste gas. 5) Since there is no change in the cross section of the existing dam body, economical reinforcement is possible. 6) This solidified soil mass is stronger and more rigid than the embankment soil, but because it is arranged at a certain interval in the soil, or because it is a void between the adjacent soil masses even in the laminated soil mass, it is a reinforced embankment body. Even if the levee body is greatly deformed due to an earthquake or the like, the area will follow the deformation of the old levee body and surrounding ground, and stress concentration and cracks will not occur.

【0024】[0024]

【発明の効果】以上の説明で明らかなように本発明によ
れば、小規模ダムや河川堤防などの堤体の安定性や耐久
性を、既設の堤体土を用いて向上させることが可能とな
る。また、押え盛土や腹付け盛土のような断面増加によ
る新たな用地が不要となり、外部への掘削発生土の捨土
や外部からの堤体補強用土の調達が不要(外部から土を
持ち込まず・持ち出さない)なため土捨て場や土取り場
が不要となり、これらにより済的にも優れた効果があ
る。また、固化土塊や土中への配置の仕方を工夫により
補強後の堤体を既設堤体より新たな用地を生じさせる経
済的な断面とすることも可能である。さらに、土運搬に
伴う排気ガスや交通渋滞に伴う自然破壊がないなどの周
辺への環境負担が大幅に減少させる効果が生じる。
As is apparent from the above description, according to the present invention, it is possible to improve the stability and durability of a dam body such as a small-scale dam or a river embankment by using an existing dam body soil. Becomes In addition, there is no need for a new site such as a press embankment or a belly embankment due to an increase in cross section, so there is no need to dispose of excavated soil to the outside or procure soil for embankment reinforcement from outside (do not bring in soil from outside. Since it is not taken out), there is no need for a dumping site or a dumping site, which has an excellent effect on economy. In addition, the levee body after reinforcement can be made to have an economical cross-section that creates a new site from the existing levee body by devising the method of arranging it in the solidified mass or in the soil. Furthermore, there is an effect that the environmental burden on the surrounding area is significantly reduced, such as no exhaust gas accompanying soil transportation and no natural destruction due to traffic congestion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により築造される補強盛土部の原理的説
明図である。
FIG. 1 is a principle explanatory view of a reinforced embankment part built according to the present invention.

【図2】補強盛土部の抵抗力の説明図である。FIG. 2 is an explanatory diagram of a resistance force of a reinforced embankment portion.

【図3】補強盛土部の変形性の説明図である。FIG. 3 is an explanatory diagram of the deformability of a reinforced embankment portion.

【図4】既設堤体に補強盛土部を築造した場合の説明図
である。
FIG. 4 is an explanatory diagram of a case where a reinforced embankment portion is built on an existing dam body.

【図5】堤体を補強する補強盛土部の説明図である。FIG. 5 is an explanatory diagram of a reinforced embankment portion that reinforces the bank.

【図6】補強盛土部の築造方法の工程図である。FIG. 6 is a process drawing of a method of constructing a reinforced embankment portion.

【図7】補強盛土部の築造方法の工程図である。FIG. 7 is a process diagram of a method of constructing a reinforced embankment portion.

【図8】補強盛土部の築造方法の工程図である。FIG. 8 is a process diagram of a method for constructing a reinforced embankment portion.

【図9】固化土塊の作り方の説明図である。FIG. 9 is an explanatory diagram of how to make a solidified soil mass.

【図10】固化土塊の作り方の説明図である。FIG. 10 is an explanatory diagram of how to make a solidified soil mass.

【図11】第2の実施の形態による補強盛土部の築造方
法の工程図である。
FIG. 11 is a process diagram of a method for constructing a reinforced embankment portion according to the second embodiment.

【図12】第2の実施の形態による補強盛土部の築造方
法の工程図である。
FIG. 12 is a process drawing of a method of constructing a reinforced embankment portion according to a second embodiment.

【図13】第3の実施の形態による補強盛土部の築造方
法の工程図である。
FIG. 13 is a process drawing of the method for constructing the reinforced embankment portion according to the third embodiment.

【符号の説明】[Explanation of symbols]

D 補強土層 E 現状堤体部 FB 袋 G 補強盛土部 RP 窪み SS 固化土塊 D Reinforced soil layer E Current levee body FB bag G Reinforced embankment RP hollow SS solidified clod

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000177416 三和機材株式会社 東京都中央区日本橋茅場町2丁目4番9号 (72)発明者 谷 茂 茨城県つくば市観音台2丁目1番地6 独 立行政法人農業工学研究所内 (72)発明者 福島 伸二 東京都渋谷区千駄ヶ谷四丁目25番2号 株 式会社フジタ内 (72)発明者 石黒 和男 東京都渋谷区千駄ヶ谷四丁目25番2号 株 式会社フジタ内 (72)発明者 掛川 勇 東京都千代田区西神田3−8−1 太平洋 セメント株式会社内 (72)発明者 濱野 衛 千葉県千葉市花見川区天戸町1293 三和機 材株式会社千葉工場内 Fターム(参考) 2D018 AA04 2D044 DA01    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000177416             Sanwa Equipment Co., Ltd.             2-4-9, Nihonbashi Kayabacho, Chuo-ku, Tokyo (72) Inventor Shigeru Tani             Kannondai 2-chome 6 Tsukuba, Ibaraki Prefecture 6 Germany             National Institute of Agricultural Engineering (72) Inventor Shinji Fukushima             4-25-2 Sendagaya, Shibuya-ku, Tokyo Stock             In ceremony company Fujita (72) Inventor Kazuo Ishiguro             4-25-2 Sendagaya, Shibuya-ku, Tokyo Stock             In ceremony company Fujita (72) Inventor Isamu Kakegawa             3-8-1, Nishikanda, Chiyoda-ku, Tokyo Pacific Ocean             Inside Cement Co., Ltd. (72) Inventor Mamoru Hamano             1293 Amado-cho, Hanamigawa-ku, Chiba-shi, Chiba Sanwaki             Material Chiba Factory F-term (reference) 2D018 AA04                 2D044 DA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 老朽化した小規模な貯水用ダムや河川堤
防などの土構造堤体を補強する方法であって、 前記土構造堤体の補強すべき部分を掘削し、 前記掘削により生じた堤体土にセメント等の固化材を混
合し固化させて多数の固化土塊を作り、 前記掘削された土構造堤体の掘削面上に、前記多数の固
化土塊を平面的に並べると共に、それら固化土塊の相互
の隙間に前記掘削により生じた堤体土を埋め込んで補強
土層を作り、 前記掘削された土構造堤体の掘削面上で、前記補強土層
を上方に順次積み重ねていくことで、前記補強すべき部
分に補強盛土部を築造するようにした、 ことを特徴とする土構造堤体の補強方法。
1. A method for reinforcing an earth structure dam, such as an aged small-scale water storage dam or a river embankment, which comprises excavating a portion of the earth structure dam to be reinforced and resulting from the excavation. Mix a solidifying material such as cement to the embankment soil to solidify to make a large number of solidified soil masses, and arrange the large number of solidified soil masses on the excavated surface of the excavated earth structure embankment in a plane and solidify them. By embedding the embankment soil generated by the excavation in the mutual gap of the soil mass to form a reinforced soil layer, and by sequentially stacking the reinforced soil layers upward on the excavated surface of the excavated earth structure dam body. A reinforcing embankment portion is constructed in the portion to be reinforced, The method for reinforcing an earth structure dam body, which is characterized in that:
【請求項2】 前記多数の固化土塊を、前記掘削により
生じた堤体土にセメント等の固化材を混合し固化処理を
施して多数の変形可能な袋にそれぞれ詰め込んで作り、
このように固化土塊を、固化処理が施された堤体土と袋
とにより構成するようにしたことを特徴とする請求項1
記載の土構造堤体の補強方法。
2. A large number of solidified soil lumps are produced by mixing a solidifying material such as cement with the embankment soil produced by the excavation, subjecting the solidified material to a solidifying treatment, and stuffing each into a large number of deformable bags,
The solidified soil mass is constituted by the embankment soil and the bag which have been solidified in this way.
Reinforcement method for earth structure levee described.
【請求項3】 前記多数の固化土塊を、前記掘削により
生じた堤体土にセメント等の固化材を混合し固化処理を
施して多数の変形可能な袋にそれぞれ詰め込んで作り、
このように固化土塊を、固化処理が施された堤体土と袋
とにより構成し、前記補強土層を、前記掘削された土構
造堤体の掘削面上に、前記袋に詰め込まれた堤体土が固
化される前に、前記多数の固化土塊を互いに接しさせつ
つ平面的に並べると共に、それら固化土塊の相互の隙間
に前記掘削により生じた堤体土を埋め込んで作るように
したことを特徴とする請求項1記載の土構造堤体の補強
方法。
3. A large number of solidified soil lumps are produced by mixing a solidifying material such as cement with the embankment soil produced by the excavation, solidifying the mixture, and stuffing each in a large number of deformable bags.
In this way, the solidified soil mass is constituted by the solidified bank body soil and the bag, and the reinforced soil layer is placed on the excavated surface of the excavated earth structure bank body in the bag. Before the body soil is solidified, the large number of solidified soil masses are arranged in a plane while being in contact with each other, and the embankment soil generated by the excavation is embedded in the mutual gap between the solidified soil masses. The method for reinforcing an earth structure dam according to claim 1, which is characterized in that.
【請求項4】 老朽化した小規模な貯水用ダムや河川堤
防などの土構造堤体を補強する方法であって、 前記土構造堤体の補強すべき部分を掘削し、 前記掘削された土構造堤体の掘削面上で、前記掘削によ
り生じた堤体土を敷き均し転圧して作った土層を複数順
次上方に積み重ねて堤体土層を築造し、 この堤体土層に相互に間隔をおいて多数の窪みを掘削
し、 これらの窪みに、前記掘削により生じた堤体土にセメン
ト等の固化材を混合して固化処理した堤体土を、まだ固
化される前の状態でそれぞれ投入して充填し、固化処理
した堤体土を窪み内で固化させて窪みの内部に固化土塊
を作って、前記堤体土層と多数の固化土塊からなる補強
土層を作り、 前記掘削された土構造堤体の掘削面上で、前記補強土層
を上方に順次積み重ねていくことで、前記補強すべき部
分に補強盛土部を築造するようにした、 ことを特徴とする土構造堤体の補強方法。
4. A method for reinforcing an earth structure dam, such as an aged small-scale water storage dam or river embankment, which comprises excavating a portion of the earth structure dam to be reinforced, and excavating the excavated soil. On the excavated surface of the structural embankment, a plurality of soil layers created by laying and leveling the embankment soil produced by the excavation are sequentially stacked upwards to construct a embankment soil layer. A large number of pits are excavated at intervals, and the levee soil that has been solidified by mixing a solidifying material such as cement into the levee soil produced by the excavation in these depressions is in a state before being solidified. In each of the above, the solidified levee soil is solidified in the dent by solidifying and filling the levee soil that has been solidified to form a solidified clod in the depression, and a reinforced soil layer composed of the levee soil layer and a large number of solidified clods is formed. On the excavated surface of the excavated earth structure dam, by sequentially stacking the above-mentioned reinforcement soil layers upward It was to construction reinforcement embankment at a portion to be the reinforcement, the reinforcement method of soil structure embankment, characterized in that.
【請求項5】 老朽化した小規模な貯水用ダムや河川堤
防などの土構造堤体を補強する方法であって、 前記土構造堤体の補強すべき部分を掘削し、 前記掘削された土構造堤体の掘削面上で、前記掘削によ
り生じた堤体土を敷き均し転圧して作った土層を複数順
次上方に積み重ねて堤体土層を築造し、 この堤体土層の相互に間隔をおいた多数箇所において、
それぞれ掘り起こしつつこれら箇所の堤体土にセメント
等の固化材を混合し固化させて堤体土層の中で固化土塊
を作って、堤体土層と多数の固化土塊からなる補強土層
を作り、 前記掘削された土構造堤体の掘削面上で、前記補強土層
を上方に順次積み重ねていくことで、前記補強すべき部
分に補強盛土部を築造するようにした、 ことを特徴とする土構造堤体の補強方法。
5. A method for reinforcing an earth structure dam, such as an aged small-scale water storage dam or a river dike, which comprises excavating a portion of the earth structure dam to be reinforced, and excavating the excavated soil. On the excavated surface of the structural embankment, the embankment soil generated by the excavation is laid and leveled, and a plurality of soil layers created by rolling are sequentially stacked upward to construct a embankment soil layer. In a number of places spaced at
While excavating each, mixing solidifying material such as cement into the embankment soil at these locations and solidifying it to form a solidified soil mass in the embankment soil layer, creating a reinforced soil layer composed of the embankment soil layer and a large number of solidified soil masses. The reinforcing embankment portion is constructed in the portion to be reinforced by sequentially stacking the reinforcing soil layers upward on the excavated surface of the excavated earth structure dam body. Reinforcement method for earth structure levee.
【請求項6】 前記掘削された土構造堤体の掘削面と、
補強土層との境の部に、砂利や砂などからなり水の排水
を可能としたフィルター層を設けることを特徴とする請
求項1乃至5に何れか1項記載の土構造堤体の補強方
法。
6. An excavated surface of the excavated earth structure dam body,
The reinforcement of the earth structure dam body according to any one of claims 1 to 5, wherein a filter layer made of gravel or sand and capable of draining water is provided at a boundary with the reinforcement soil layer. Method.
【請求項7】 前記補強土層を上方に順次積み重ねてい
き、その表面を、掘削により生じた堤体土で覆うことで
前記補強盛土部を築造するようにしたことを特徴とする
請求項1乃至6に何れか1項記載の土構造堤体の補強方
法。
7. The reinforcing embankment portion is constructed by successively stacking the reinforcing soil layers upward and covering the surface thereof with a bank soil generated by excavation. 7. The method for reinforcing an earth structure levee according to any one of 1 to 6.
JP2001210253A 2001-07-11 2001-07-11 Reinforcement method of earth structure dam body Expired - Lifetime JP3506680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210253A JP3506680B2 (en) 2001-07-11 2001-07-11 Reinforcement method of earth structure dam body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210253A JP3506680B2 (en) 2001-07-11 2001-07-11 Reinforcement method of earth structure dam body

Publications (2)

Publication Number Publication Date
JP2003020625A true JP2003020625A (en) 2003-01-24
JP3506680B2 JP3506680B2 (en) 2004-03-15

Family

ID=19045748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210253A Expired - Lifetime JP3506680B2 (en) 2001-07-11 2001-07-11 Reinforcement method of earth structure dam body

Country Status (1)

Country Link
JP (1) JP3506680B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163283A (en) * 2003-11-28 2005-06-23 Okinawa General Bureau Cabinet Office Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it
KR100520285B1 (en) * 2002-12-04 2005-10-11 최춘식 Method for reinforcing a dam by layer compaction using high intensity public works texture
JP2005325616A (en) * 2004-05-14 2005-11-24 Yamanishigumi:Kk Soil improving method and steel earth for embankment
JP2007009481A (en) * 2005-06-29 2007-01-18 Maeda Kosen Co Ltd Disaster-prevention strengthening method for dam body
KR100770055B1 (en) * 2006-05-04 2007-10-24 최용탁 Pebbles bank reinforcement method for preventing for piping of pebbles bank and outgoing reclaimed material
KR100791264B1 (en) * 2005-12-06 2008-01-04 한국농촌공사 Method for constructing pack filter in a tide embankment, shore protection works
JP2008069553A (en) * 2006-09-14 2008-03-27 Dam Gijutsu Center Counterweight filling structure
CN102605750A (en) * 2012-01-11 2012-07-25 河海大学 Grouting reinforcement and earthquake resisting method for earth and rockfill dam
JP2014066070A (en) * 2012-09-26 2014-04-17 Giken Seisakusho Co Ltd Reinforcing structure of existent bank body and reinforcing method of existent bank body
KR101398915B1 (en) * 2013-08-27 2014-05-27 이종근 Reinforcement method for earthfill dam
JP2015142892A (en) * 2014-01-31 2015-08-06 鹿島建設株式会社 waste disposal facility
JP2017141543A (en) * 2016-02-08 2017-08-17 Jfeスチール株式会社 Artificial shallow ground or tideland
CN107190761A (en) * 2017-07-05 2017-09-22 中交天航环保工程有限公司 A kind of artificial bamboo raft cofferdam and its process for constructing
CN108360321A (en) * 2018-02-01 2018-08-03 中交第二公路勘察设计研究院有限公司 A kind of structure and method of control fine grained soil high-filled subgrade settlement after construction
JP2019039222A (en) * 2017-08-25 2019-03-14 西日本旅客鉄道株式会社 Embankment widening method and embankment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120038A (en) * 1998-10-14 2000-04-25 Nippon Purafuoomu Kk Reinforcing method of bank
JP2001020245A (en) * 1999-07-09 2001-01-23 Pub Works Res Inst Ministry Of Constr Reinforcing method of bank body and reinforcing structure of the bank body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120038A (en) * 1998-10-14 2000-04-25 Nippon Purafuoomu Kk Reinforcing method of bank
JP2001020245A (en) * 1999-07-09 2001-01-23 Pub Works Res Inst Ministry Of Constr Reinforcing method of bank body and reinforcing structure of the bank body

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520285B1 (en) * 2002-12-04 2005-10-11 최춘식 Method for reinforcing a dam by layer compaction using high intensity public works texture
JP2005163283A (en) * 2003-11-28 2005-06-23 Okinawa General Bureau Cabinet Office Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it
JP2005325616A (en) * 2004-05-14 2005-11-24 Yamanishigumi:Kk Soil improving method and steel earth for embankment
JP2007009481A (en) * 2005-06-29 2007-01-18 Maeda Kosen Co Ltd Disaster-prevention strengthening method for dam body
KR100791264B1 (en) * 2005-12-06 2008-01-04 한국농촌공사 Method for constructing pack filter in a tide embankment, shore protection works
KR100770055B1 (en) * 2006-05-04 2007-10-24 최용탁 Pebbles bank reinforcement method for preventing for piping of pebbles bank and outgoing reclaimed material
JP2008069553A (en) * 2006-09-14 2008-03-27 Dam Gijutsu Center Counterweight filling structure
JP4555807B2 (en) * 2006-09-14 2010-10-06 財団法人ダム技術センター Presser foot embankment structure
CN102605750A (en) * 2012-01-11 2012-07-25 河海大学 Grouting reinforcement and earthquake resisting method for earth and rockfill dam
CN102605750B (en) * 2012-01-11 2014-11-19 河海大学 Grouting reinforcement and earthquake resisting method for earth and rockfill dam
JP2014066070A (en) * 2012-09-26 2014-04-17 Giken Seisakusho Co Ltd Reinforcing structure of existent bank body and reinforcing method of existent bank body
KR101398915B1 (en) * 2013-08-27 2014-05-27 이종근 Reinforcement method for earthfill dam
JP2015142892A (en) * 2014-01-31 2015-08-06 鹿島建設株式会社 waste disposal facility
JP2017141543A (en) * 2016-02-08 2017-08-17 Jfeスチール株式会社 Artificial shallow ground or tideland
CN107190761A (en) * 2017-07-05 2017-09-22 中交天航环保工程有限公司 A kind of artificial bamboo raft cofferdam and its process for constructing
JP2019039222A (en) * 2017-08-25 2019-03-14 西日本旅客鉄道株式会社 Embankment widening method and embankment
CN108360321A (en) * 2018-02-01 2018-08-03 中交第二公路勘察设计研究院有限公司 A kind of structure and method of control fine grained soil high-filled subgrade settlement after construction
CN108360321B (en) * 2018-02-01 2023-08-11 中交第二公路勘察设计研究院有限公司 Structure and method for controlling post-construction settlement of fine-grained soil high-fill embankment

Also Published As

Publication number Publication date
JP3506680B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3506680B2 (en) Reinforcement method of earth structure dam body
CN103758113B (en) A kind of grid encloses the anti-liquefied foundation reinforcement means of hoop
Harder Jr et al. Failure of Tapo Canyon tailings dam
CN206902488U (en) A kind of soft soil foundation high-filled embankment of effectively control settlement after construction
JP2021161785A (en) Ground improvement method and improvement ground structure
CN108999142A (en) The construction method of dome rectangular light-duty caisson and pile foundation combined type deep water breakwater
JP2000154553A (en) Construction of tunnel
JP4293435B2 (en) Construction method of managed revetment
JP5099709B2 (en) Construction method of managed revetment
CN108677999B (en) Silt bagged soil retaining wall structure and construction method
JP6308996B2 (en) Seawalls and methods for reinforcing or constructing seawalls
JP6734604B1 (en) Mass treatment method for ton bags containing high and low level radioactive waste.
CN106149624A (en) A kind of gravity type quay being applicable to roadbed of alluvial silt and construction method thereof
JP5896351B2 (en) Foundation structure and foundation construction method
JP6815672B1 (en) How to contain radiation from concrete placement
JP4006643B2 (en) Method of burying underground objects and structure
CN208965494U (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
CN109024470A (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
CN220486172U (en) Reinforcing structure suitable for mountain area highway bank section disaster damage roadbed
CN213897005U (en) A handle structure that is used for asphalt concrete prevention of seepage panel to sink
CN114293421B (en) Carbonaceous shale embankment and filling construction method thereof
Yee et al. Ground Improvement—a green technology towards a sustainable housing, infrastructure and utilities developments in Malaysia
JPH11303060A (en) Method for preventing settlement of dirt floor
JP4606454B2 (en) Construction method of managed revetment
JP2802815B2 (en) Embankment structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031216

R150 Certificate of patent or registration of utility model

Ref document number: 3506680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term