JP2003018887A - Device and method of controlling motor - Google Patents

Device and method of controlling motor

Info

Publication number
JP2003018887A
JP2003018887A JP2001200019A JP2001200019A JP2003018887A JP 2003018887 A JP2003018887 A JP 2003018887A JP 2001200019 A JP2001200019 A JP 2001200019A JP 2001200019 A JP2001200019 A JP 2001200019A JP 2003018887 A JP2003018887 A JP 2003018887A
Authority
JP
Japan
Prior art keywords
phase
motor
motors
permanent magnet
rotor position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001200019A
Other languages
Japanese (ja)
Other versions
JP3961791B2 (en
Inventor
Yosuke Nakazawa
洋介 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001200019A priority Critical patent/JP3961791B2/en
Publication of JP2003018887A publication Critical patent/JP2003018887A/en
Application granted granted Critical
Publication of JP3961791B2 publication Critical patent/JP3961791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method of controlling a motor such as a permanent magnet synchronous motor capable of driving motors in parallel without causing a cost increase. SOLUTION: In this device of controlling the motor for driving the first and the second permanent magnet motors 13A, 13B with an inverter 11, respective stator windings of the first and the second permanent magnet motors 13A, 13B are connected in series at every phase, and one end of the series connection is connected to the inverter 11 and the other end is short-connected between the respective phases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両駆動制御装置
に適用されて好適な電動機制御装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device and method suitable for being applied to a vehicle drive control device.

【0002】[0002]

【従来の技術】従来、この種の車両駆動に用いられる電
動機としては誘導電動機が一般的に用いられている。誘
導電動機は電動機間を並列接続した上で1台のインバー
タ装置で駆動する、いわゆる並列駆動を安定に行うこと
ができるため、インバータ装置の低コスト化が可能にな
るためである。近年さらなる高効率化を目的として永久
磁石電動機を車両駆動用電動機に適用しようとする試み
がある。
2. Description of the Related Art Conventionally, an induction motor is generally used as an electric motor used for driving a vehicle of this type. This is because the induction motor can stably perform so-called parallel driving in which the motors are connected in parallel and then driven by one inverter device, so that the cost of the inverter device can be reduced. In recent years, there has been an attempt to apply a permanent magnet electric motor to a vehicle driving electric motor for the purpose of further increasing the efficiency.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、永久磁
石同期電動機は、以下の理由により並列駆動が容易でな
く、1つの電動機に1台のインバータ装置を用意するい
わゆる個別駆動方式にならざるを得ないため、高コスト
なシステムとなってしまっていた。
However, the permanent magnet synchronous motor cannot be easily driven in parallel because of the following reasons, and it must be a so-called individual drive system in which one inverter device is prepared for one motor. Therefore, it was a high-cost system.

【0004】永久磁石電動機の並列駆動が容易でないの
は、それが同期電動機の一種であるからである。直径の
異なる車輪と直結又はギヤで接続された複数の同期電動
機は、それぞれが異なる回転数で回転するのが一般的で
ある。
Parallel drive of permanent magnet motors is not easy because it is a type of synchronous motor. A plurality of synchronous motors, which are directly connected to wheels having different diameters or connected by gears, generally rotate at different rotational speeds.

【0005】従って、回転数の異なる同期電動機を並列
に接続すると、インバータ動作のいかんにかかわらず、
互いの逆起電圧の位相差により過大な横流が発生し、そ
の電流によって振動トルクが発生し、本来の目的である
安定な駆動力の確保ができなくなってしまう。
Therefore, if synchronous motors having different rotational speeds are connected in parallel, regardless of the inverter operation,
An excessive cross current is generated due to the phase difference between the counter electromotive voltages, and the current causes an oscillating torque, which makes it impossible to secure a stable driving force, which is the original purpose.

【0006】さらに、永久磁石電動機を車両駆動システ
ムに適用した場合を想定すると、万一インバータ装置を
構成するIGBT(Insulated Gate B
ipolar Transistor)などの半導体素
子が短絡故障を起こした場合には永久磁石電動機の回転
によって発生する逆起電圧によって多大な短絡電流が流
れつづけ車両を移動させることができなくなってしま
う。
Further, assuming that the permanent magnet electric motor is applied to a vehicle drive system, an IGBT (Insulated Gate B) that constitutes an inverter device should be assumed.
When a semiconductor element such as an i-polar transistor causes a short circuit failure, a large short circuit current continues to flow due to a back electromotive voltage generated by the rotation of the permanent magnet motor, which makes it impossible to move the vehicle.

【0007】この解決策として、インバータ装置と電動
機の間に電気的接続を切り離す開放スイッチを設け、イ
ンバータ装置故障時にはこの開放スイッチを切り離す方
式が提案されている。
As a solution to this problem, a system has been proposed in which an open switch for disconnecting electrical connection is provided between the inverter device and the electric motor, and the open switch is disconnected when the inverter device fails.

【0008】図6は、このような開放スイッチを設けた
車両駆動システムの構成を示しており、架線、パンタグ
ラフ等からなる給電系10と、第1,第2のインバータ
装置11A,11Bと、第1,第2の開放スイッチ12
A,12Bと、第1,第2の永久磁石電動機13A,1
3Bと、第1,第2の回転子位置センサ14A,14B
と、第1,第2のギヤ15A,15Bと、第1,第2の
車輪16A,16Bとからなる。符号17は台車であ
る。
FIG. 6 shows the structure of a vehicle drive system provided with such an open switch, which includes a power feed system 10 including an overhead wire, a pantograph, etc., first and second inverter devices 11A and 11B, and a first inverter device 11B. 1, the second opening switch 12
A, 12B and the first and second permanent magnet electric motors 13A, 1
3B and the first and second rotor position sensors 14A, 14B
And first and second gears 15A and 15B, and first and second wheels 16A and 16B. Reference numeral 17 is a dolly.

【0009】しかしながらこの開放スイッチ12A,1
2Bは車両用の比較的高い電圧に耐えられる設計とする
ため一般的に高価で体積が大きく、システムコストの低
減に悪影響を及ぼす。
However, the open switches 12A, 1
Since 2B is designed to withstand a relatively high voltage for vehicles, it is generally expensive and has a large volume, which adversely affects system cost reduction.

【0010】本発明の目的は、コスト上昇を招くことな
く、永久磁石同期電動機の如き電動機を並列駆動するこ
とが可能な電動機制御装置及び方法を提供することにあ
る。
It is an object of the present invention to provide an electric motor control device and method capable of driving an electric motor such as a permanent magnet synchronous electric motor in parallel without increasing the cost.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に請求項1に係る発明は、複数の多相同期電動機をイン
バータ装置により駆動する電動機制御装置において、前
記電動機夫々の固定子巻線を各相毎に直列に接続すると
共に当該直列接続の一端をインバータ装置に接続し且つ
他端を各相間で短絡接続したことを特徴とする電動機制
御装置、である。
In order to solve the above-mentioned problems, the invention according to claim 1 is a motor control device for driving a plurality of multi-phase synchronous motors by an inverter device. A motor controller, wherein each phase is connected in series, one end of the series connection is connected to an inverter device, and the other end is short-circuited between the phases.

【0012】また、上記課題を解決するために請求項2
に係る発明は、固定子巻線が各相毎に直列に接続される
共に当該直列接続の一端はインバータ装置に接続され且
つ他端は各相間で短絡接続されてなる複数の多相同期電
動機と、前記電動機夫々の回転子位置を検出する複数の
回転子位置センサと、前記回転子位置センサ夫々からの
回転子位置情報に基づいて最も位相の遅れた電動機の位
置情報を基準位相として前記電動機夫々をベクトル制御
する制御手段とを具備することを特徴とする電動機制御
装置、である。
Further, in order to solve the above problems, a second aspect is provided.
The invention according to claim 2, wherein a plurality of multi-phase synchronous motors in which the stator windings are connected in series for each phase and one end of the series connection is connected to the inverter device and the other end is short-circuited between the phases A plurality of rotor position sensors that detect the rotor position of each of the electric motors, and position information of the electric motor that is the most delayed in phase based on the rotor position information from each of the rotor position sensors as the reference phase. And a control means for vector control of the electric motor.

【0013】また、上記課題を解決するために請求項3
に係る発明は、固定子巻線が各相毎に直列に接続される
共に当該直列接続の一端はインバータ装置に接続され且
つ他端は各相間で短絡接続されてなる複数の多相同期電
動機をベクトル制御する電動機制御方法において、前記
電動機夫々の回転子位置を検出し、該回転子位置情報に
基づいて最も位相の遅れた電動機の回転子位置情報を基
準位相として前記電動機夫々をベクトル制御することを
特徴とする電動機制御方法、である。
Further, in order to solve the above problems, a third aspect
The invention according to claim 1 provides a plurality of multi-phase synchronous motors in which stator windings are connected in series for each phase and one end of the series connection is connected to an inverter device and the other end is short-circuited between the phases. In a motor control method for vector control, detecting the rotor position of each of the motors, and vector-controlling each of the motors with the rotor position information of the motor having the most delayed phase based on the rotor position information as a reference phase. A method for controlling an electric motor, comprising:

【0014】請求項1の発明では、複数の電動機を直列
接続することにより、横流の発生を防ぐことができる。
According to the first aspect of the present invention, the cross current can be prevented from occurring by connecting a plurality of electric motors in series.

【0015】請求項2の発明では、複数の電動機を直列
接続し、各電動機の回転子位置情報に基づいて最も位相
の遅れた電動機の位置情報を基準位相として前記電動機
夫々をベクトル制御することにより、たとえ、半導体素
子が短絡故障した場合、電動機の逆起電圧の合成によっ
て短絡電流が流れるが、短絡電流によりそれぞれの電動
機でトルクが発生し、車輪レール間に空転により回転速
度が変化し、その結果、互いの逆起電圧を打ち消し合う
位相差に収束するので、定常時の短絡電流を小さくする
ことができる。
According to a second aspect of the present invention, a plurality of electric motors are connected in series, and each electric motor is vector-controlled by using position information of the electric motor having the most delayed phase as a reference phase based on rotor position information of each electric motor. , If, for example, a semiconductor element has a short-circuit fault, a short-circuit current flows due to the combination of the back electromotive forces of the motors, but torque is generated in each motor due to the short-circuit current, and the rotation speed changes due to idling between the wheel rails. As a result, the counter electromotive voltages converge to a phase difference that cancels each other out, so that the short-circuit current in a steady state can be reduced.

【0016】請求項3の発明では、各電動機の回転子位
置情報に基づいて最も位相の遅れた電動機の位置情報を
基準位相として前記電動機夫々をベクトル制御すること
により、たとえ、半導体素子が短絡故障した場合、電動
機の逆起電圧の合成によって短絡電流が流れるが、短絡
電流によりそれぞれの電動機でトルクが発生し、車輪レ
ール間に空転により回転速度が変化し、その結果、互い
の逆起電圧を打ち消し合う位相差に収束するので、定常
時の短絡電流を小さくすることができる。
According to the third aspect of the invention, the semiconductor elements are vector-controlled by using the position information of the motors having the most delayed phase as the reference phase on the basis of the rotor position information of each motor. In this case, a short circuit current flows due to the combination of the back electromotive forces of the motors, but torque is generated in each motor by the short circuit current, and the rotation speed changes due to idling between the wheel rails. Since they converge to the phase difference that cancels each other out, it is possible to reduce the short-circuit current in a steady state.

【0017】[0017]

【発明の実施の形態】以下、本発明を車両駆動制御装置
に適用した一実施形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to a vehicle drive control device will be described below.

【0018】図1は、従来例である図6と同一部分には
同一符号を付した、本実施形態の装置の構成図である。
FIG. 1 is a block diagram of the apparatus of this embodiment in which the same parts as those in FIG. 6 which is a conventional example are designated by the same reference numerals.

【0019】本実施形態における車両駆動制御装置は、
3相インバータ装置11と、第1,第2の永久磁石電動
機13A,13Bと、第1,第2の回転子位置センサ1
6A,16Bとで構成される。
The vehicle drive control device in this embodiment is
Three-phase inverter device 11, first and second permanent magnet motors 13A and 13B, and first and second rotor position sensors 1
It is composed of 6A and 16B.

【0020】3相インバータ装置11は、IGBTなど
の半導体スイッチング素子からなる主回路部100と、
制御部200とからなり、従来から鉄道車両で用いられ
ている一般的なインバータ装置と同一であり、直流15
00Vなどの電圧を、給電系10のパンタグラフを介し
て給電し、制御部100の演算結果により主回路部20
0の各半導体スイッチング素子のオンオフパターンによ
り所望の電圧・周波数の3相交流電圧を出力する。
The three-phase inverter device 11 includes a main circuit portion 100 composed of a semiconductor switching element such as an IGBT,
It is composed of the control unit 200, and is the same as a general inverter device that has been conventionally used in railway vehicles.
A voltage such as 00V is supplied through the pantograph of the power supply system 10, and the main circuit unit 20 is calculated according to the calculation result of the control unit 100.
A three-phase AC voltage having a desired voltage and frequency is output according to the ON / OFF pattern of each semiconductor switching element of 0.

【0021】第1の永久磁石電動機13Aは、第1のギ
ヤ15Aを介して第1の車輪16Aに回転トルクを伝達
する。第2の永久磁石電動機13Bは同様に、第2のギ
ヤ15Bを介して第2の車輪16Bに回転トルクを伝達
する。
The first permanent magnet electric motor 13A transmits the rotational torque to the first wheel 16A via the first gear 15A. Similarly, the second permanent magnet electric motor 13B transmits the rotational torque to the second wheel 16B via the second gear 15B.

【0022】第1,第2の永久磁石電動機13A,13
Bの回転子は、一般的な3相永久磁石電動機と同一の構
成でよい。第1,第2の永久磁石電動機13A,13B
の固定子巻線は、従来の3相永久磁石電動機の固定子
が、一方端が電動機外部に出力され、インバータ装置な
どの3相交流電源に接続され、他方端は電動機内部で3
相短絡されていたのに対して、両方の端が、電動機外部
に出力され、外部で電気的に接続することが可能な構成
となっている。
First and second permanent magnet motors 13A, 13
The rotor of B may have the same structure as a general three-phase permanent magnet motor. First and second permanent magnet motors 13A, 13B
The stator winding of the conventional three-phase permanent magnet motor has one end output to the outside of the motor and connected to a three-phase AC power source such as an inverter device, and the other end inside the motor.
Although the phases are short-circuited, both ends are output to the outside of the electric motor and can be electrically connected to the outside.

【0023】3相巻線の一方の端をそれぞれU、V、
W、他方の端をX、Y、Zとそれぞれ名づける。第1の
永久磁石電動機13AのUは、3相インバータ装置11
のU相に接続し、第1の永久磁石電動機13AのV、W
も同様に3相インバータ装置11のV相、W相にそれぞ
れ接続する。
One end of the three-phase winding is connected to U, V, and
W and the other end are named X, Y, and Z, respectively. U of the first permanent magnet motor 13A is a three-phase inverter device 11
Of the first permanent magnet motor 13A connected to the U phase of
Is similarly connected to the V phase and the W phase of the three-phase inverter device 11, respectively.

【0024】第2の永久磁石電動機13BのUは、第1
の永久磁石電動機13AのXに接続し、第2の永久磁石
電動機13BのV、Wも同様に第1の永久磁石電動機1
3AのY、Zに接続する。
U of the second permanent magnet motor 13B is the first
Connected to X of the permanent magnet motor 13A, and V and W of the second permanent magnet motor 13B are similarly connected to the first permanent magnet motor 1
Connect to Y and Z of 3A.

【0025】第2の永久磁石電動機13BのX、Y、Z
は、互いに短絡接続する。
X, Y, Z of the second permanent magnet motor 13B
Short-circuit each other.

【0026】以上の構成による車両駆動制御装置におい
ては、第1の永久磁石電動機13Aと第2の永久磁石電
動機13Bとの回転状態が異なって逆起電圧位相が異な
っていても、3相インバータ装置11を動作させない状
態、つまり全ての半導体スイッチング素子をオフの状態
では、意図しない過大な電流が流れない。
In the vehicle drive control device having the above structure, even if the first permanent magnet motor 13A and the second permanent magnet motor 13B have different rotation states and different back electromotive force phases, the three-phase inverter device is provided. When 11 is not operated, that is, when all the semiconductor switching elements are off, an unintended excessive current does not flow.

【0027】また、万一3相インバータ装置11の主回
路部を構成する半導体スイッチング素子のうちいずれか
一つが短絡故障を起こした場合にも、図3の波形が示す
とおり、第1の永久磁石電動機13Aと第2の永久磁石
電動機13Bとの逆起電圧の和が短絡されることによっ
て流れる短絡電流により電動機トルクが発生し、それに
よって車輪とレールの間に空転が発生することで、上記
2台の電動機の回転子位相θ1とθ2とが180°の位
相差を結果として持ち、短絡電流はほとんど流れなくな
る。
Even if any one of the semiconductor switching elements constituting the main circuit portion of the three-phase inverter device 11 causes a short-circuit fault, as shown by the waveforms in FIG. The short circuit current flowing due to the short-circuiting of the sum of the counter electromotive voltages of the electric motor 13A and the second permanent magnet electric motor 13B generates electric motor torque, which causes idling between the wheels and the rail. As a result, the rotor phases θ1 and θ2 of the single motor have a phase difference of 180 ° and almost no short-circuit current flows.

【0028】したがって、短絡電流が流れつづけること
によってインバータ装置や配線ケーブルが焼損すること
を防ぐための電流遮断スイッチを設ける必要がなくな
り、システムコストの低減を図ることができる。
Therefore, it is not necessary to provide a current cut-off switch for preventing the inverter device or the wiring cable from being burnt out due to the continuous short-circuit current, and the system cost can be reduced.

【0029】次に本発明の第2の実施形態を、図4〜図
5を用いて説明する。第2の実施形態における車両駆動
制御装置におけるシステム構成は第1の実施形態と同一
であり、3相インバータ装置11の制御部に特徴があ
る。
Next, a second embodiment of the present invention will be described with reference to FIGS. The system configuration of the vehicle drive control device according to the second embodiment is the same as that of the first embodiment, and is characterized by the control unit of the three-phase inverter device 11.

【0030】第2の車両駆動制御装置における3相イン
バータ装置11の制御部100は、設定部101、電流
指令演算部102と、d軸電流制御部103と、q軸電
流制御部104と、dq3相変換部105と、3相dq
変換部106と、基準位相選択部107とで構成され
る。
The control unit 100 of the three-phase inverter device 11 in the second vehicle drive control device includes a setting unit 101, a current command calculation unit 102, a d-axis current control unit 103, a q-axis current control unit 104, and dq3. Phase conversion unit 105 and three-phase dq
The conversion unit 106 and the reference phase selection unit 107 are included.

【0031】本実施形態におけるd軸は、永久磁石磁束
方向と定義し、q軸はそれと直角方向と定義する。
In the present embodiment, the d-axis is defined as the magnetic flux direction of the permanent magnet, and the q-axis is defined as the direction perpendicular thereto.

【0032】電流指令演算部102と、d軸電流制御部
103と、q軸電流制御部104と、dq3相変換部1
05と、3相dq変換部106との構成動作は、一般的
な文献に記載された永久磁石電動機のベクトル制御方式
をそのまま使うことができる。本実施形態において特に
特徴的なのは、基準位相選択部107である。
The current command calculator 102, the d-axis current controller 103, the q-axis current controller 104, and the dq three-phase converter 1
05 and the three-phase dq converter 106 can use the vector control method of the permanent magnet motor described in general literature as they are. The reference phase selecting unit 107 is particularly characteristic in this embodiment.

【0033】基準位相選択部107においては、第1の
永久磁石電動機13Aに取り付けられたレゾルバなどの
回転子位置センサ14Aから出力される回転子位相θ1
と、第2の永久磁石電動機13Bに取り付けられた回転
子位置センサ14Bから出力される回転子位相θ2とを
入力として、次の演算により遅れ位相の信号を選択して
ベクトル制御基準位相θrとして出力する。
In the reference phase selector 107, the rotor phase θ1 output from the rotor position sensor 14A such as a resolver attached to the first permanent magnet motor 13A.
And the rotor phase θ2 output from the rotor position sensor 14B attached to the second permanent magnet electric motor 13B, the delay phase signal is selected by the following calculation and output as the vector control reference phase θr. To do.

【0034】 (1)0<θ1−θ2<180°のとき、θr=θ2 (2)180°<θ1−θ2<360°のとき、θr=
θ1 このようにベクトル制御基準位相を取った上で、後述す
るトルク最大の動作点に電流を制御することにより、2
台のうち位相の遅れた電動機のトルクが他方の電動機よ
りも常に大きなトルクを出力するようになり、結果とし
て2台の電動機の速度、位相が安定にバランスするよう
にできる。
(1) When 0 <θ1−θ2 <180 °, θr = θ2 (2) When 180 ° <θ1−θ2 <360 °, θr =
θ1 By taking the vector control reference phase in this way, the current is controlled to the operating point with the maximum torque, which will be described later.
The torque of the motor whose phase is delayed among the units always outputs a larger torque than the other motor, and as a result, the speed and phase of the two motors can be stably balanced.

【0035】図5は、2台の電動機が接続された車輪の
直径が1%異なる場合において、初期位相差45°であ
った状態から図4に示す制御ブロックによりベクトル制
御を行った場合の動作波形を示す図である。
FIG. 5 shows the operation when vector control is performed by the control block shown in FIG. 4 from the state where the initial phase difference is 45 ° when the diameters of the wheels to which the two electric motors are connected differ by 1%. It is a figure which shows a waveform.

【0036】車輪の直径が異なるため、車輪が同一の回
転数で回転すると、車輪とレールの間の微小空転速度
(一般的にクリープと呼ばれる)が異なるため、定常状
態での2台の電動機の出力トルクは異なり、位相差も完
全にはゼロにはならないが、2台の電動機間での振動ト
ルクなど不安定動作が発生しないことがわかる。
Since the wheels have different diameters, when the wheels rotate at the same number of revolutions, the minute idling speed (generally called creep) between the wheels and the rail differs, so that the two electric motors in the steady state are operated. It can be seen that the output torque is different and the phase difference is not completely zero, but unstable operation such as vibration torque between the two electric motors does not occur.

【0037】電流指令演算部102においては、トルク
指令TorqRefを入力として次の演算によりd軸電
流指令IdRef、IqRefを求めて出力する。
In the current command calculation unit 102, the torque command TorqRef is input and the d-axis current commands IdRef and IqRef are obtained and output by the following calculation.

【0038】(1)制御対象電動機が表面磁石式永久磁
石電動機であった場合は、次の式による。
(1) When the motor to be controlled is a surface magnet type permanent magnet motor, the following formula is used.

【0039】[0039]

【数1】 ΦPMは永久磁石磁束である。[Equation 1] ΦPM is a permanent magnet magnetic flux.

【0040】表面磁石式永久磁石電動機は回転子磁気的
突極性がないためリラクタンストルクは発生しない。し
たがってd軸電流を流し込んでもその電流がトルクには
寄与しない。よって上記設定により、同一電流で最大の
トルクを出力することができて、高効率な駆動が可能に
なると共に、基準位相選択部107の動作との兼ね合い
で、2台の直列電動機が位相同期する方向にバランスす
る効果も併せ持つ。
The surface magnet type permanent magnet motor does not generate reluctance torque because it has no rotor magnetic saliency. Therefore, even if a d-axis current is supplied, the current does not contribute to the torque. Therefore, with the above setting, the maximum torque can be output with the same current, high-efficiency driving is possible, and the two series electric motors are phase-synchronized in consideration of the operation of the reference phase selection unit 107. Also has the effect of balancing in the direction.

【0041】(2)制御対象電動機が永久磁石リラクタ
ンス電動機及び埋め込み磁石式永久磁石電動機のように
リラクタンストルクと永久磁石トルクを併用する原理に
基づく電動機であった場合は、次の式を満たすようなゼ
ロでないd軸電流指令IdRefを設定することで、上
記と同様に、同一電流で最大トルクを出力することが可
能になる。
(2) If the motor to be controlled is a motor based on the principle of using reluctance torque and permanent magnet torque in combination, such as a permanent magnet reluctance motor and an embedded magnet type permanent magnet motor, the following equation is satisfied. By setting the non-zero d-axis current command IdRef, it becomes possible to output the maximum torque with the same current, as in the above.

【0042】[0042]

【数2】 ΦPMは永久磁石磁束である。[Equation 2] ΦPM is a permanent magnet magnetic flux.

【0043】ΔL=Ld−Lqであって、Ldはd軸イ
ンダクタンスであり、Lqはq軸インダクタンスであ
る。
ΔL = Ld-Lq, where Ld is the d-axis inductance and Lq is the q-axis inductance.

【0044】[0044]

【数3】 は電流振幅である。[Equation 3] Is the current amplitude.

【0045】d軸電流制御部103においては、d軸電
流指令IdRefとd軸電流フィードバック値Idとの
偏差を入力として、偏差がゼロとなるようにPI(比例
・積分)制御の結果をd軸電圧指令Vdとして出力す
る。
In the d-axis current control unit 103, the deviation between the d-axis current command IdRef and the d-axis current feedback value Id is input, and the result of PI (proportional / integral) control is set so that the deviation becomes zero. The voltage command Vd is output.

【0046】[0046]

【数4】 ここに、KpACRは電流制御比例ゲインであり、Ki
ACRは電流制御積分ゲインであり、sは微分演算子で
ある。
[Equation 4] Where KpACR is the current control proportional gain, and Ki
ACR is a current control integral gain, and s is a differential operator.

【0047】q軸電流制御部104においては、q軸電
流指令IqRefとq軸電流フィードバック値Iqとの
偏差を入力として、偏差がゼロとなるようにPI(比例
・積分)制御の結果をq軸電圧指令Vqとして出力す
る。
In the q-axis current controller 104, the deviation between the q-axis current command IqRef and the q-axis current feedback value Iq is input, and the result of PI (proportional / integral) control is set so that the deviation becomes zero. Output as voltage command Vq.

【0048】dq3相変換部105においては、d軸電
圧指令Vdと、q軸電圧指令Vqと、
In the dq three-phase converter 105, the d-axis voltage command Vd, the q-axis voltage command Vq,

【数5】 [Equation 5]

【0049】ベクトル制御基準位相θrとを入力として
次の演算により3相電圧指令Vu、Vv、Vwを求めて
出力する。
Three-phase voltage commands Vu, Vv, Vw are obtained and output by the following calculation using the vector control reference phase θr as an input.

【0050】[0050]

【数6】 [Equation 6]

【0051】3相dq変換部106においては、U相電
流フィードバック値Iuと、W相電流フィードバック値
Iwと、ベクトル制御基準位相θrとを入力として次の
演算によりdq軸電流フィードバック値Id、Iqを求
めて出力する。
In the three-phase dq converter 106, the U-phase current feedback value Iu, the W-phase current feedback value Iw, and the vector control reference phase θr are input, and the dq-axis current feedback values Id and Iq are calculated by the following calculation. Ask and output.

【0052】[0052]

【数7】 [Equation 7]

【0053】上記実施形態では、制御対象電動機とし
て、表面磁石式永久磁石電動機、永久磁石リラクタンス
電動機又は埋め込み磁石式永久磁石電動機を例示した
が、この他の永久磁石同期電動機にも本発明は適用でき
る。
In the above embodiment, the surface magnet type permanent magnet electric motor, the permanent magnet reluctance electric motor or the embedded magnet type permanent magnet electric motor is exemplified as the controlled electric motor, but the present invention can be applied to other permanent magnet synchronous electric motors. .

【0054】[0054]

【発明の効果】以上のように本発明によれば、最も遅れ
た電動機の位相をベクトル制御基準位相に取った上でト
ルク最大の動作点に電流を制御することにより、位相の
遅れた電動機のトルクが他の電動機よりも常に大きなト
ルクを出力するようになり、結果として複数の電動機の
速度及び位相を安定にバランスすることが可能な電動機
制御装置及び方法を提供できるものである。
As described above, according to the present invention, by taking the phase of the motor with the longest delay as the vector control reference phase and controlling the current to the operating point with the maximum torque, the motor with the delayed phase can be controlled. It is possible to provide a motor control device and method capable of constantly outputting a torque larger than that of other motors, and as a result capable of stably balancing the speeds and phases of a plurality of motors.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態のシステム構成を示す図。FIG. 1 is a diagram showing a system configuration of a first embodiment.

【図2】第1の実施形態における電動機と車輪の接続を
説明する図。
FIG. 2 is a diagram illustrating a connection between an electric motor and wheels according to the first embodiment.

【図3】第1の実施形態の構成において、インバータ装
置半導体スイッチング素子が短絡した時の波形を示す
図。
FIG. 3 is a diagram showing waveforms when the inverter device semiconductor switching element is short-circuited in the configuration of the first embodiment.

【図4】第2の実施形態における制御ブロック図。FIG. 4 is a control block diagram according to a second embodiment.

【図5】第2の実施形態の制御構成において、制御を行
った時の波形を示す図。
FIG. 5 is a diagram showing waveforms when control is performed in the control configuration of the second embodiment.

【図6】従来の実施形態のシステム構成を示す図。FIG. 6 is a diagram showing a system configuration of a conventional embodiment.

【符号の説明】[Explanation of symbols]

10…給電系 11…インバータ装置 100…制御部 101…設定部 102…電流指令演算部 103…d軸電流制御部 104…q軸電流制御部 105…dq3相変換部 106…3相dq変換部 107…基準位相選択部 200…主回路部 13A,13B…第1,第2の永久磁石電動機 14A,14B…第1,第2の回転子位置センサ 15A,15B…第1,第2のギヤ 16A,16B…第1,第2の車輪 17…台車 10 ... Power supply system 11 ... Inverter device 100 ... Control unit 101 ... Setting unit 102 ... Current command calculation unit 103 ... d-axis current controller 104 ... q-axis current controller 105 ... dq three-phase converter 106 ... Three-phase dq converter 107 ... Reference phase selection unit 200 ... Main circuit section 13A, 13B ... First and second permanent magnet motors 14A, 14B ... First and second rotor position sensors 15A, 15B ... First and second gears 16A, 16B ... first and second wheels 17 ... trolley

フロントページの続き Fターム(参考) 5H115 PA08 PC02 PG01 PI03 PI29 PU11 PV09 PV23 QN09 QN22 QN23 RB11 RB15 RB22 RB26 SE03 SE10 TO12 TO30 5H572 AA01 BB02 CC01 DD05 EE06 GG04 HA10 HB08 HB09 HC02 JJ24 LL22 LL32 5H576 AA01 CC01 DD02 DD05 EE01 GG04 HA04 HB02 JJ24 LL22 LL41 Continued front page    F-term (reference) 5H115 PA08 PC02 PG01 PI03 PI29                       PU11 PV09 PV23 QN09 QN22                       QN23 RB11 RB15 RB22 RB26                       SE03 SE10 TO12 TO30                 5H572 AA01 BB02 CC01 DD05 EE06                       GG04 HA10 HB08 HB09 HC02                       JJ24 LL22 LL32                 5H576 AA01 CC01 DD02 DD05 EE01                       GG04 HA04 HB02 JJ24 LL22                       LL41

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の多相同期電動機をインバータ装置
により駆動する電動機制御装置において、 前記電動機夫々の固定子巻線を各相毎に直列に接続する
と共に当該直列接続の一端をインバータ装置に接続し且
つ他端を各相間で短絡接続したことを特徴とする電動機
制御装置。
1. A motor control device for driving a plurality of multi-phase synchronous motors by an inverter device, wherein stator windings of each of the motors are connected in series for each phase, and one end of the series connection is connected to the inverter device. In addition, the motor control device is characterized in that the other end is short-circuited between the phases.
【請求項2】 固定子巻線が各相毎に直列に接続される
共に当該直列接続の一端はインバータ装置に接続され且
つ他端は各相間で短絡接続されてなる複数の多相同期電
動機と、 前記電動機夫々の回転子位置を検出する複数の回転子位
置センサと、 前記回転子位置センサ夫々からの回転子位置情報に基づ
いて最も位相の遅れた電動機の回転子位置情報を基準位
相として前記電動機夫々をベクトル制御する制御手段と
を具備することを特徴とする電動機制御装置。
2. A plurality of multi-phase synchronous motors in which stator windings are connected in series for each phase and one end of the series connection is connected to an inverter device and the other end is short-circuited between the phases. A plurality of rotor position sensors for detecting the rotor position of each of the electric motors, and the rotor position information of the electric motor having the most delayed phase based on the rotor position information from each of the rotor position sensors as the reference phase. An electric motor control device, comprising: a control unit that vector-controls each electric motor.
【請求項3】 固定子巻線が各相毎に直列に接続される
共に当該直列接続の一端はインバータ装置に接続され且
つ他端は各相間で短絡接続されてなる複数の多相同期電
動機をベクトル制御する電動機制御方法において、 前記電動機夫々の回転子位置を検出し、該回転子位置情
報に基づいて最も位相の遅れた電動機の回転子位置情報
を基準位相として前記電動機夫々をベクトル制御するこ
とを特徴とする電動機制御方法。
3. A plurality of multi-phase synchronous motors in which stator windings are connected in series for each phase, one end of the series connection is connected to an inverter device, and the other end is short-circuited between the phases. In a motor control method for vector control, detecting the rotor position of each of the motors, and vector-controlling each of the motors with the rotor position information of the motor having the most delayed phase based on the rotor position information as a reference phase. A method for controlling an electric motor.
【請求項4】 前記最も位相の遅れた電動機の回転子位
置情報を基準位相としてトルク最大の動作点に電流を制
御することにより、位相の遅れた電動機のトルクが他の
電動機よりも大きなトルクを出力するように制御するこ
とを特徴とする請求項3記載の電動機制御方法。
4. The torque of the motor with the delayed phase is set to be larger than that of the other motor by controlling the current to the operating point with the maximum torque by using the rotor position information of the motor with the delayed most phase as a reference phase. The electric motor control method according to claim 3, wherein the electric motor is controlled to output.
JP2001200019A 2001-06-29 2001-06-29 Electric motor control apparatus and method Expired - Fee Related JP3961791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200019A JP3961791B2 (en) 2001-06-29 2001-06-29 Electric motor control apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200019A JP3961791B2 (en) 2001-06-29 2001-06-29 Electric motor control apparatus and method

Publications (2)

Publication Number Publication Date
JP2003018887A true JP2003018887A (en) 2003-01-17
JP3961791B2 JP3961791B2 (en) 2007-08-22

Family

ID=19037215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200019A Expired - Fee Related JP3961791B2 (en) 2001-06-29 2001-06-29 Electric motor control apparatus and method

Country Status (1)

Country Link
JP (1) JP3961791B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087155A (en) * 2004-09-14 2006-03-30 Toshiba Corp Inverter driven blower controller
JP2006101580A (en) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd Inverter device
JP2006238601A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Ipm motor and control method for the same
JP2009130990A (en) * 2007-11-21 2009-06-11 Aida Eng Ltd Drive unit for plural motors and control method for the unit
JP2010022870A (en) * 2009-11-05 2010-02-04 Panasonic Corp Washing/drying machine
JP2011147258A (en) * 2010-01-14 2011-07-28 Fuji Electric Co Ltd Motor drive system
CN112350619A (en) * 2019-08-08 2021-02-09 Lg电子株式会社 Device for driving a plurality of electric motors and electric apparatus comprising such a device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087155A (en) * 2004-09-14 2006-03-30 Toshiba Corp Inverter driven blower controller
JP4625664B2 (en) * 2004-09-14 2011-02-02 株式会社東芝 Inverter drive blower controller
JP2006101580A (en) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd Inverter device
JP2006238601A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Ipm motor and control method for the same
JP2009130990A (en) * 2007-11-21 2009-06-11 Aida Eng Ltd Drive unit for plural motors and control method for the unit
JP2010022870A (en) * 2009-11-05 2010-02-04 Panasonic Corp Washing/drying machine
JP2011147258A (en) * 2010-01-14 2011-07-28 Fuji Electric Co Ltd Motor drive system
CN112350619A (en) * 2019-08-08 2021-02-09 Lg电子株式会社 Device for driving a plurality of electric motors and electric apparatus comprising such a device
CN112350620A (en) * 2019-08-08 2021-02-09 Lg电子株式会社 Device for driving a plurality of motors and electrical apparatus comprising such a device
WO2021025522A1 (en) * 2019-08-08 2021-02-11 Lg Electronics Inc. Device for driving a plurality of motors and electric apparatus including the same
US11329578B2 (en) 2019-08-08 2022-05-10 Lg Electronics Inc. Device for driving a plurality of motors and electric apparatus including the same
US11362601B2 (en) 2019-08-08 2022-06-14 Lg Electronics Inc. Device for driving a plurality of motors and electric apparatus including the same
CN112350620B (en) * 2019-08-08 2023-05-26 Lg电子株式会社 Device for driving a plurality of motors and electric apparatus comprising the same
US11705832B2 (en) 2019-08-08 2023-07-18 Lg Electronics Inc. Device for driving a plurality of motors and electric apparatus including the same
CN112350619B (en) * 2019-08-08 2023-10-20 Lg电子株式会社 Device for driving a plurality of motors and electrical apparatus comprising the same

Also Published As

Publication number Publication date
JP3961791B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
EP2642658B1 (en) Controller for electric motor
US8278855B2 (en) Controller of motor preventing an increase in inverter loss
JP2004015892A (en) Inverter controlling device and electric vehicle
EP3989435A1 (en) Rotating electric machine control system
US9935568B2 (en) Control apparatus of rotary electric machine
JP2000050689A (en) Drive control equipment of ac motor
WO2013035382A1 (en) Control system for synchronous motor
JP3961791B2 (en) Electric motor control apparatus and method
WO2020196719A1 (en) Rotating electric machine control system
JP4559665B2 (en) Electric motor drive control device
JP3939481B2 (en) AC motor control device
JP2005033932A (en) Motor controller
JP7211242B2 (en) Modulation method switching device
JP4115785B2 (en) Inverter control device
JP5325806B2 (en) Railway vehicle drive control device
JP2013158091A (en) Dynamo-electric machine control system
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same
JPH07236295A (en) Method for driving and controlling internal-magnet type brushless dc motor
JP4526628B2 (en) AC motor control device
JP7393763B2 (en) Rotating electrical machine control system
JP2004274806A (en) Motor controller
RU2419954C1 (en) Electric motor control device
JP2022110721A (en) Control device for electric motor
CN118077137A (en) Control device for rotating electric machine and electric power steering device
CN116472666A (en) Control device for rotating electric machine and electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees