JP2000050689A - Drive control equipment of ac motor - Google Patents

Drive control equipment of ac motor

Info

Publication number
JP2000050689A
JP2000050689A JP10209849A JP20984998A JP2000050689A JP 2000050689 A JP2000050689 A JP 2000050689A JP 10209849 A JP10209849 A JP 10209849A JP 20984998 A JP20984998 A JP 20984998A JP 2000050689 A JP2000050689 A JP 2000050689A
Authority
JP
Japan
Prior art keywords
motor
torque
voltage
phase
drive control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10209849A
Other languages
Japanese (ja)
Other versions
JP3746377B2 (en
Inventor
Eiji Sato
栄次 佐藤
Yukio Inaguma
幸雄 稲熊
Hiroki Otani
裕樹 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP20984998A priority Critical patent/JP3746377B2/en
Publication of JP2000050689A publication Critical patent/JP2000050689A/en
Application granted granted Critical
Publication of JP3746377B2 publication Critical patent/JP3746377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce difference between a torque command value and actual output torque in a drive control of an AC motor. SOLUTION: A torque detecting means 14 is constituted by using a torque sensor or the like, and torque feedback control is performed. A voltage phase ψis set so as to reduce a torque deviation ΔT, and the range of ψ is restricted in a specified phase range. As a result, actual output torque can be made to approach a torque command value, without breaking control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は交流電動機の駆動制
御装置に関する。
The present invention relates to a drive control device for an AC motor.

【0002】[0002]

【従来の技術】交流電動機を直流電源を用いて駆動する
際にはインバータを用い、パルス幅変調(PWM)波形
電圧を印加することが広く行われている。しかしなが
ら、PWM波形電圧を交流電動機に加えるのでは電圧利
用率に限界がある。したがって、例えば高回転域で十分
な高出力を得ることができないという問題がある。
2. Description of the Related Art When an AC motor is driven using a DC power supply, it is widely used to apply a pulse width modulation (PWM) waveform voltage using an inverter. However, applying a PWM waveform voltage to an AC motor has a limitation in voltage utilization. Therefore, for example, there is a problem that a sufficiently high output cannot be obtained in a high rotation range.

【0003】この点、矩形波電圧を交流電動機に印加
し、該交流電動機を回転駆動する技術がある。かかる技
術によれば、高回転域の出力を向上させることができる
とともに、その際に弱め界磁電流を多く流す必要がなく
なり、銅損を低減させることができる。また、インバー
タでのスイッチング回数を減少させることができるた
め、スイッチング損失を抑えることができる。
In this regard, there is a technique in which a rectangular wave voltage is applied to an AC motor to rotate the AC motor. According to this technique, the output in the high rotation range can be improved, and at this time, it is not necessary to flow a large field weakening current, and the copper loss can be reduced. Further, since the number of times of switching in the inverter can be reduced, switching loss can be suppressed.

【0004】こうした矩形波電圧を交流電動機に印加す
る制御技術は、例えば平成9年度のJEVA電気自動車
フォーラムにて「表面磁石構造PMモータを用いた駆動
システムの高性能制御方式」と題して開示されている。
図6は、同技術を採用するモータ駆動制御システムの一
例を示す図である。
A control technique for applying such a rectangular wave voltage to an AC motor has been disclosed, for example, in the 1997 JEVA Electric Vehicle Forum entitled "High-performance control system of drive system using surface magnet structure PM motor". ing.
FIG. 6 is a diagram illustrating an example of a motor drive control system employing the same technology.

【0005】同図においては、永久磁石同期型交流電動
機であるモータ108にはインバータ106が接続され
ている。インバータ106には矩形波発生部104が接
続されており、該矩形波発生部104では位相計算部1
02から供給される電圧位相ψとモータ108に隣接し
て設けられたレゾルバ110からの出力であるロータ角
度θとに基づき、電圧位相ψを有する矩形波電圧がモー
タ108に印加されるようインバータ106をスイッチ
ング制御する。
In FIG. 1, an inverter 106 is connected to a motor 108 which is a permanent magnet synchronous AC motor. A rectangular wave generator 104 is connected to the inverter 106.
02 based on the voltage phase ψ supplied from the motor 102 and the rotor angle θ output from the resolver 110 provided adjacent to the motor 108 so that a rectangular wave voltage having the voltage phase ψ is applied to the motor 108. For switching control.

【0006】位相計算部102は図示しない電子制御装
置(ECU)にて生成されたトルク指令値Tが入力され
るようになっており、またインバータ106に接続され
ている図示しないバッテリの電圧Vdcも入力されてい
る。位相計算部102ではこれら入力値を用いてトルク
指令値Tに応じた電圧位相ψを演算出力する。
The phase calculation unit 102 receives a torque command value T generated by an electronic control unit (ECU) (not shown), and also outputs a voltage Vdc of a battery (not shown) connected to the inverter 106. Has been entered. The phase calculator 102 calculates and outputs a voltage phase ψ corresponding to the torque command value T using these input values.

【0007】すなわち、同システムの定常状態での電圧
方程式は次式のように表せる。
That is, a voltage equation in a steady state of the system can be expressed by the following equation.

【0008】[0008]

【数1】 Vd=R*Id−ω*Lq*Iq (1) Vq=R*Iq+ω*Ld*Id+ω*Φ (2) ここで、Vd,Vqは夫々d軸及びq軸の電圧値であ
る。また、Id,Iqはそれぞれd軸及びq軸の電流値
である。さらに、Ld,Lqはd軸及びq軸のインダク
タンスであり、ωはモータ108の角速度である。ま
た、Φは磁束鎖交数である。
Vd = R * Id−ω * Lq * Iq (1) Vq = R * Iq + ω * Ld * Id + ω * Φ (2) where Vd and Vq are the d-axis and q-axis voltage values, respectively. . Further, Id and Iq are current values of the d-axis and the q-axis, respectively. Furthermore, Ld and Lq are d-axis and q-axis inductances, and ω is the angular velocity of the motor 108. Φ is the number of magnetic flux linkages.

【0009】ここで、Vd,Vqを電圧ベクトルの大き
さ|V|とq軸を基準とした位相ψを用いて表すと、次
式のようになる。
Here, when Vd and Vq are represented using the magnitude | V | of the voltage vector and the phase ψ with respect to the q axis, the following equation is obtained.

【0010】[0010]

【数2】 Vd=−|V|*sinψ (3) Vq= |V|*cosψ (4) 以下では、説明の簡単のためモータ108が非突極モー
タ(Ld=Lq=L)であると仮定する。しかしなが
ら、原理的には突極モータも同様にして適用可能であ
る。
Vd = − | V | * sinψ (3) Vq = | V | * cosψ (4) In the following, for simplicity of description, it is assumed that the motor 108 is a non-salient motor (Ld = Lq = L). Assume. However, in principle, salient pole motors can be applied in a similar manner.

【0011】まず、モータ108のトルクは次式のよう
に表すことができる。
First, the torque of the motor 108 can be expressed by the following equation.

【0012】[0012]

【数3】 T=p*Φ*Iq+p*(Ld−Lq)*Id*Iq (5) ここで、Tはトルクを表し、pは極対数を表す。上式に
おいて、右辺第1項は永久磁石によるトルクを表し、右
辺第2項はリラクタンストルクを表す。しかしながら、
ここでは非突極モータについて説明するため第2項は0
である。
T = p * Φ * Iq + p * (Ld−Lq) * Id * Iq (5) where T represents torque, and p represents the number of pole pairs. In the above equation, the first term on the right side represents the torque by the permanent magnet, and the second term on the right side represents the reluctance torque. However,
Here, the second term is 0 to explain the non-salient pole motor.
It is.

【0013】以上の式からトルクと電圧ベクトルとの関
係式を導くと次式のようになる。
When the relational expression between the torque and the voltage vector is derived from the above expression, the following expression is obtained.

【0014】[0014]

【数4】 T=p*Φ*|V|*sinψ/(ω*L) (6) ここで、電圧ベクトルの大きさ|V|はバッテリ電圧V
dcを用いて次のように表すことができる。
T = p * Φ * | V | * sinψ / (ω * L) (6) where the magnitude | V | of the voltage vector is the battery voltage V
It can be expressed as follows using dc.

【0015】[0015]

【数5】 |V|=(√6/π)*Vdc (7) すなわち、図6に示す位相計算部102は、上記(6)
(7)式を用いて、バッテリ電圧Vdcとトルク指令値
Tとに基づき、電圧位相ψを算出することができる。
| V | = (√6 / π) * Vdc (7) That is, the phase calculation unit 102 shown in FIG.
Using the equation (7), the voltage phase ψ can be calculated based on the battery voltage Vdc and the torque command value T.

【0016】以上のようにして、図6に示す従来のモー
タ駆動システムによれば、モータ108を所望のトルク
にて駆動している。
As described above, according to the conventional motor drive system shown in FIG. 6, the motor 108 is driven at a desired torque.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、バッテ
リ電圧Vdcはモータ108による電力消費とともに低
下するものであり、また、インダクタンスLについても
高負荷時の磁気飽和により低下する。さらに、磁束鎖交
数Φは磁石温度変化により変化する。したがって、上記
(6)式を位相計算部102が計算したとしても、要求
通りのトルクをモータ108から出力させることは困難
である。
However, the battery voltage Vdc decreases with the power consumption of the motor 108, and the inductance L also decreases due to magnetic saturation at a high load. Further, the number of magnetic flux linkages Φ changes with a change in magnet temperature. Therefore, even if the phase calculation unit 102 calculates the equation (6), it is difficult to output the required torque from the motor 108.

【0018】なお、以上説明した事情は、矩形波電圧を
用いた交流電動機の駆動制御に限らず、電圧振幅可変の
PWM正弦波電圧を用いた交流電動機の駆動制御にも、
同様に妥当する。
The situation described above is not limited to the drive control of an AC motor using a rectangular wave voltage, but also to the drive control of an AC motor using a PWM sine wave voltage having a variable voltage amplitude.
Equally valid.

【0019】本発明は上記課題に鑑みてなされたもので
あって、その目的は、交流電動機の駆動に際してトルク
指令値と実出力トルクとの誤差を少なくすることのでき
る駆動制御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a drive control device capable of reducing an error between a torque command value and an actual output torque when driving an AC motor. It is in.

【0020】[0020]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、交流電動機に矩形波電圧によって回転駆
動する駆動制御装置において、前記交流電動機の出力ト
ルク値を検出するトルク検出手段と、検出したトルク値
と所与のトルク指令値との差を表すトルク偏差を生成す
る手段と、該トルク偏差を無くすよう前記矩形波電圧の
位相を設定する位相設定手段と、を含むことを特徴とす
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a drive control device for rotating an AC motor by a rectangular wave voltage, wherein a torque detecting means for detecting an output torque value of the AC motor is provided. Means for generating a torque deviation representing a difference between a detected torque value and a given torque command value, and phase setting means for setting a phase of the rectangular wave voltage so as to eliminate the torque deviation. And

【0021】また、本発明は、交流電動機に交流電圧を
印加して回転駆動する駆動制御装置において、前記交流
電動機の出力トルク値を検出するトルク検出手段と、検
出したトルク値と所与のトルク指令値との差を表すトル
ク偏差を生成する手段と、該トルク偏差を無くすよう前
記交流電圧の位相を設定する位相設定手段と、を含むこ
とを特徴とする。
According to another aspect of the present invention, there is provided a drive control device for rotating an AC motor by applying an AC voltage to the AC motor, wherein a torque detecting means for detecting an output torque value of the AC motor is provided. It is characterized by including means for generating a torque deviation representing a difference from a command value, and phase setting means for setting a phase of the AC voltage so as to eliminate the torque deviation.

【0022】すなわち、本発明では、従来技術に係る電
圧位相制御とは異なり、交流電動機の出力トルク値をフ
ィードバックさせ、トルク偏差がなくなるよう矩形波電
圧や交流電圧の位相を設定している。こうすれば、トル
ク指令値に応じたトルクを出力できるよう、モータ定数
に基づいて電圧位相を算出する従来方法に比し、モータ
定数の変動による影響を受けることなく、実出力トルク
とトルク指令値とを近づけることができる。
That is, in the present invention, unlike the voltage phase control according to the prior art, the output torque value of the AC motor is fed back, and the phases of the rectangular wave voltage and the AC voltage are set so as to eliminate the torque deviation. By doing so, the actual output torque and the torque command value can be output without being affected by the fluctuation of the motor constant, as compared with the conventional method of calculating the voltage phase based on the motor constant so that a torque corresponding to the torque command value can be output. Can be approached.

【0023】また、本発明の一態様では、前記位相設定
手段は、所定位相範囲内に前記矩形波電圧の位相を設定
することを特徴とする。交流電動機の電圧位相−トルク
曲線には極値があり、例えば非突極型の交流電動機は電
圧位相が±90°の点に電圧位相−トルク曲線の極値が
ある。このため、前記位相設定手段が設定する位相を無
制限に行うと、トルクフィードバック制御が破綻してし
まう。本態様によれば、前記位相設定手段が設定する位
相を所定位相範囲内に制限しているため、制御破綻を防
止することができる。
In one embodiment of the present invention, the phase setting means sets the phase of the rectangular wave voltage within a predetermined phase range. The voltage phase-torque curve of the AC motor has an extreme value. For example, a non-salient pole type AC motor has an extreme value of the voltage phase-torque curve at a point where the voltage phase is ± 90 °. For this reason, if the phase set by the phase setting means is performed without limitation, the torque feedback control is broken. According to this aspect, since the phase set by the phase setting means is restricted within the predetermined phase range, control failure can be prevented.

【0024】[0024]

【発明の実施の形態】以下、本発明の好適な実施の形態
について図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1は、本発明の実施の形態にかかる交流
電動機の駆動制御装置の全体構成を示す図である。同図
において、加算器13には図示しない電子制御装置(E
CU)で生成されたトルク指令値が入力されており、一
方、該加算器13にはトルク検出手段14から出力され
るトルク値もまた入力されている。このトルク検出手段
14はトルクセンサを用いて構成することも可能である
が、その他、次式に基づいて算出することもできる。
FIG. 1 is a diagram showing an overall configuration of a drive control device for an AC motor according to an embodiment of the present invention. In the figure, an adder 13 has an electronic control unit (E
CU), the torque command value generated by the torque detector 14 is also input to the adder 13. The torque detecting means 14 can be configured using a torque sensor, but can also be calculated based on the following equation.

【0026】[0026]

【数6】 T=Pin/ω =(iu×vu+Iv×vv+iw×vw)/ω (8) ここで、Pinはモータ24に供給される電力を表す。
またωはモータ24の角速度を表す。さらに、iu,i
v,iwはモータ24に供給される三相交流電流の各相
の値を表し、vu,vv,vwは各相の電圧を表す。
T = Pin / ω = (iu × vu + Iv × vv + iw × vw) / ω (8) Here, Pin represents electric power supplied to the motor 24.
Ω represents the angular velocity of the motor 24. Furthermore, iu, i
v and iw represent values of each phase of the three-phase alternating current supplied to the motor 24, and vu, vv and vw represent voltages of each phase.

【0027】なお、vu,vv,vwはインバータ22
に設定される電圧指令値を用いてもよいし、インバータ
22からモータ24に供給される実際の値をセンサによ
り検出して用いてもよい。
Note that vu, vv, and vw are inverters 22
May be used, or an actual value supplied from the inverter 22 to the motor 24 may be detected by a sensor and used.

【0028】或いは、トルク検出手段14は次式に示す
ように、直流電流と直流電圧から演算することもでき
る。
Alternatively, the torque detecting means 14 can calculate from the DC current and DC voltage as shown in the following equation.

【0029】[0029]

【数7】 T=Pin/ω =(IB×VB)/ω (9) ここでIB,VBはインバータ22に接続された図示し
ないバッテリの直流電流及び直流電圧を表している。
T = Pin / ω = (IB × VB) / ω (9) Here, IB and VB represent DC current and DC voltage of a battery (not shown) connected to the inverter 22.

【0030】加算器13ではECUから供給されるトル
ク指令値からトルク検出手段14から供給されるトルク
値を減算してトルク偏差ΔTを生成する。そして、この
トルク偏差ΔTは補償器12に供給される。補償器12
ではトルク偏差ΔTに基づいて補償後のトルク偏差Δ
T’を生成する。
The adder 13 subtracts the torque value supplied from the torque detecting means 14 from the torque command value supplied from the ECU to generate a torque deviation ΔT. Then, the torque deviation ΔT is supplied to the compensator 12. Compensator 12
Now, the torque deviation Δ after compensation based on the torque deviation ΔT
Generate T '.

【0031】すなわち、上記(6)式の両辺を電圧位相
ψで微分し、さらに(7)式を用いて電圧振幅|V|を
消去すると次式(10)が得られる。
That is, when both sides of the above equation (6) are differentiated by the voltage phase ψ, and the voltage amplitude | V | is erased using the equation (7), the following equation (10) is obtained.

【0032】[0032]

【数8】 dT/dψ=p*Φ*(√6/π)*Vdc*cosψ/(ω*L) (10) 同(10)式から分かるように、電圧位相−トルク曲線
の傾きは、バッテリ電圧Vdcとcosψに比例し、モ
ータ24の角速度ωに反比例する。図2は電圧位相−ト
ルク曲線がバッテリ電圧Vdcの変化によってどのよう
な変化を受けるかを表している。同図に示すように、バ
ッテリ電圧Vdcが高くなると、電圧位相ψが小さくて
も大きなトルクTを発揮できるようになる。そこで、補
償器12では次式(11)に従ってトルク偏差ΔTを用
いて補償済みのトルク偏差ΔT’を生成している。
DT / dψ = p * Φ * (√6 / π) * Vdc * cosψ / (ω * L) (10) As can be seen from equation (10), the slope of the voltage phase-torque curve is It is proportional to the battery voltage Vdc and cosψ, and inversely proportional to the angular velocity ω of the motor 24. FIG. 2 shows how the voltage phase-torque curve changes due to the change in the battery voltage Vdc. As shown in the figure, when the battery voltage Vdc increases, a large torque T can be exerted even when the voltage phase 小 さ く is small. Therefore, the compensator 12 generates a compensated torque deviation ΔT ′ using the torque deviation ΔT according to the following equation (11).

【0033】[0033]

【数9】 ΔT’=ω/(Vdc*cosψ)*ΔT (11) こうすれば(10)式は次式(12)のようになり、ト
ルク偏差ΔT’と電圧位相差Δψとを比例関係を有する
ようにできる。この結果、良好な制御特性を得ることが
できる。
ΔT ′ = ω / (Vdc * cosψ) * ΔT (11) In this case, the expression (10) becomes the following expression (12), and the torque deviation ΔT ′ and the voltage phase difference Δψ are proportional to each other. Can be provided. As a result, good control characteristics can be obtained.

【0034】[0034]

【数10】 dT’/dψ=p*Φ*(√6/π)/L (12) 補償器12で生成されたトルク偏差ΔT’はPI演算器
16に供給され、ここでトルク偏差ΔT’を0とするよ
う電圧位相ψが出力される。この電圧位相ψは次に位相
リミッタ18に入力される。位相リミッタ18はPI演
算器16から供給される電圧位相ψの値を−90°〜+
90°の範囲に制限するための手段である。たとえば、
PI演算器16から出力される電圧位相ψが90°を超
えている場合にはその値をクリッピングして90°に補
正した後、その値を後段の矩形波発生部20に供給す
る。
DT ′ / dψ = p * Φ * (√6 / π) / L (12) The torque deviation ΔT ′ generated by the compensator 12 is supplied to the PI calculator 16 where the torque deviation ΔT ′ is obtained. Is set to 0, and the voltage phase ψ is output. This voltage phase ψ is then input to a phase limiter 18. The phase limiter 18 changes the value of the voltage phase ψ supplied from the PI calculator 16 from -90 ° to +
This is a means for limiting the range to 90 °. For example,
When the voltage phase ψ output from the PI calculator 16 exceeds 90 °, the value is clipped and corrected to 90 °, and then the value is supplied to the subsequent rectangular wave generator 20.

【0035】図3は、電圧位相ψとモータ24のトルク
との関係を表す図である。同図に示すように、電圧位相
ψが−90°〜+90°の範囲にある場合には電圧位相
ψが増加するにつれてトルクTも増加するが、その範囲
を超えると、電圧位相ψが増加するにつれてトルクTは
減少する。したがって、位相リミッタ18ではPI演算
器16から出力される電圧位相ψを矢印28に示す位相
制御範囲内に制限している。このため、図4に示すよう
に、電圧ベクトルの終点はdq平面にて軌跡30にのみ
位置するよう制限される。こうすれば、トルクフィード
バックを行う駆動制御装置10において制御が破綻する
ことを効果的に防止することができる。
FIG. 3 is a diagram showing the relationship between the voltage phase ψ and the torque of the motor 24. As shown in the figure, when the voltage phase ψ is in the range of −90 ° to + 90 °, the torque T increases as the voltage phase 増 加 increases, but when the voltage phase 超 え る exceeds the range, the voltage phase 増 加 increases. Accordingly, the torque T decreases. Therefore, the phase limiter 18 limits the voltage phase ψ output from the PI calculator 16 within the phase control range indicated by the arrow 28. For this reason, as shown in FIG. 4, the end point of the voltage vector is limited to be located only on the locus 30 on the dq plane. In this way, it is possible to effectively prevent the control failure in the drive control device 10 that performs the torque feedback.

【0036】そして、矩形波発生部20では位相リミッ
タ18から出力された電圧位相ψとレゾルバ26から供
給されるロータ角度θに基づき矩形波電圧を発生させる
ためのスイッチング信号をインバータ22に供給する。
こうして、モータ24を電圧位相ψを有する矩形波電圧
にて駆動することができる。
The rectangular wave generator 20 supplies a switching signal for generating a rectangular wave voltage to the inverter 22 based on the voltage phase ψ output from the phase limiter 18 and the rotor angle θ supplied from the resolver 26.
Thus, the motor 24 can be driven by the rectangular wave voltage having the voltage phase ψ.

【0037】図5は、モータ24に供給される矩形波電
圧を表す図である。同図には、モータ24に印加される
三相交流電圧のうち、U相にかかる電圧波形が一例とし
て表されている。モータ24の巻線はスター結線されて
おり、矩形波において最大値と最小値との差がバッテリ
電圧Vdcに一致するようになっている。また、電圧位
相ψは、同図において、ロータ角度θが0°であるタイ
ミングと矩形波の立ち下がりタイミングとの差に対応し
ている。
FIG. 5 is a diagram showing a rectangular wave voltage supplied to the motor 24. FIG. 3 shows, as an example, a voltage waveform applied to the U-phase among the three-phase AC voltages applied to the motor 24. The winding of the motor 24 is star-connected, so that the difference between the maximum value and the minimum value in the rectangular wave matches the battery voltage Vdc. The voltage phase ψ corresponds to the difference between the timing when the rotor angle θ is 0 ° and the falling timing of the rectangular wave in FIG.

【0038】以上説明した交流電動機の駆動制御装置1
0によれば、トルク検出手段14を設けて、実出力トル
クとトルク指令値との差であるトルク偏差ΔTが0とな
るよう電圧位相ψを設定し、その電圧位相ψを有する矩
形波電圧をモータ24に印加するようにしたので、モー
タ定数が変動することによるトルク精度の悪化を防止す
ることができる。
Drive control device 1 for AC motor described above
According to 0, the torque detection means 14 is provided to set the voltage phase ψ such that the torque deviation ΔT, which is the difference between the actual output torque and the torque command value, becomes 0, and the rectangular wave voltage having the voltage phase ψ is set. Since the voltage is applied to the motor 24, it is possible to prevent the torque accuracy from deteriorating due to the fluctuation of the motor constant.

【0039】なお、以上説明した交流電動機の駆動制御
装置10は種々の変形実施が可能である。例えば、以上
の説明ではモータ24に対して矩形波電圧を印加するよ
う構成したが、その他、電圧振幅が可変のPWM正弦波
電圧をモータ24に印加する場合においても同様に適用
することができる。すなわち、トルク検出手段14を設
けてトルクフィードバック制御をすれば、モータ定数が
変動した場合であっても、トルク指令値と実出力トルク
との差を縮めることが可能となる。
The AC motor drive control device 10 described above can be modified in various ways. For example, in the above description, a rectangular wave voltage is applied to the motor 24. However, the present invention can be similarly applied to a case where a PWM sine wave voltage having a variable voltage amplitude is applied to the motor 24. That is, if the torque feedback control is performed by providing the torque detecting means 14, the difference between the torque command value and the actual output torque can be reduced even when the motor constant fluctuates.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態にかかる交流電動機の駆
動制御装置の全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a drive control device for an AC motor according to an embodiment of the present invention.

【図2】 バッテリ電圧の変化により電圧位相−トルク
特性が変化する様子を示す図である。
FIG. 2 is a diagram showing how a voltage phase-torque characteristic changes according to a change in battery voltage.

【図3】 電圧位相−トルク特性と電圧位相の制限範囲
を示す図である。
FIG. 3 is a diagram showing a voltage phase-torque characteristic and a limit range of a voltage phase.

【図4】 電圧ベクトルの軌跡を表す図である。FIG. 4 is a diagram illustrating a locus of a voltage vector.

【図5】 モータに供給される電圧波形、バッテリ電
圧、電圧位相の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a voltage waveform supplied to a motor, a battery voltage, and a voltage phase.

【図6】 従来技術にかかる交流電動機の駆動制御装置
の全体構成を示す図である。
FIG. 6 is a diagram showing an overall configuration of a drive control device for an AC motor according to the related art.

【符号の説明】[Explanation of symbols]

10 駆動制御装置、12 補償器、13 加算器、1
4 トルク検出手段、16 PI演算器、18 位相リ
ミッタ、20 矩形波発生部、22 インバータ、24
モータ、26 レゾルバ。
10 drive control device, 12 compensator, 13 adder, 1
4 Torque detecting means, 16 PI calculator, 18 phase limiter, 20 rectangular wave generator, 22 inverter, 24
Motor, 26 resolver.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲熊 幸雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 大谷 裕樹 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5H115 BA06 BB04 BC07 CA16 CB09 FA04 FA22 FA23 FA27 FB22 JC11 JC12 JC13 JC16 JC30 5H576 BB10 DD02 DD07 EE11 GG10 HB01 JJ24 JJ25 JJ28 LL01 LL22 LL24 LL28 LL38 LL41 LL58  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukio Inakuma 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. No. 41 at Yokomichi 1 Toyota Central Research Laboratory Co., Ltd. F-term (reference) LL58

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 交流電動機に矩形波電圧を印加して回転
駆動する駆動制御装置において、 前記交流電動機の出力トルク値を検出するトルク検出手
段と、 検出したトルク値と所与のトルク指令値との差を表すト
ルク偏差を生成する手段と、 該トルク偏差を無くすよう前記矩形波電圧の位相を設定
する位相設定手段と、 を含むことを特徴とする交流電動機の駆動制御装置。
1. A drive control device for applying a rectangular wave voltage to an AC motor to rotate and drive the AC motor, comprising: a torque detecting means for detecting an output torque value of the AC motor; And a phase setting means for setting a phase of the rectangular wave voltage so as to eliminate the torque deviation.
【請求項2】 請求項1に記載の交流電動機の駆動制御
装置において、 前記位相設定手段は、所定位相範囲内に前記矩形波電圧
の位相を設定することを特徴とする交流電動機の駆動制
御装置。
2. The drive control device for an AC motor according to claim 1, wherein the phase setting means sets the phase of the rectangular wave voltage within a predetermined phase range. .
【請求項3】 交流電動機に交流電圧を印加して回転駆
動する駆動制御装置において、 前記交流電動機の出力トルク値を検出するトルク検出手
段と、 検出したトルク値と所与のトルク指令値との差を表すト
ルク偏差を生成する手段と、 該トルク偏差を無くすよう前記交流電圧の位相を設定す
る位相設定手段と、 を含むことを特徴とする交流電動機の駆動制御装置。
3. A drive control device for rotating an AC motor by applying an AC voltage to drive the AC motor, comprising: a torque detector for detecting an output torque value of the AC motor; A drive control device for an AC motor, comprising: means for generating a torque deviation representing a difference; and phase setting means for setting a phase of the AC voltage so as to eliminate the torque deviation.
JP20984998A 1998-07-24 1998-07-24 AC motor drive control device Expired - Lifetime JP3746377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20984998A JP3746377B2 (en) 1998-07-24 1998-07-24 AC motor drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20984998A JP3746377B2 (en) 1998-07-24 1998-07-24 AC motor drive control device

Publications (2)

Publication Number Publication Date
JP2000050689A true JP2000050689A (en) 2000-02-18
JP3746377B2 JP3746377B2 (en) 2006-02-15

Family

ID=16579649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20984998A Expired - Lifetime JP3746377B2 (en) 1998-07-24 1998-07-24 AC motor drive control device

Country Status (1)

Country Link
JP (1) JP3746377B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050686A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp Drive control equipment of ac motor
JP2002233199A (en) * 2001-02-05 2002-08-16 Railway Technical Res Inst Control device for permanent magnet synchronous motor
JP2002359996A (en) * 2001-05-31 2002-12-13 Toyota Motor Corp Driving controller for alternating-current motor
JP2003102153A (en) * 2001-09-21 2003-04-04 Denso Corp Alternating current generator-motor for vehicle
JP2004208370A (en) * 2002-12-24 2004-07-22 Nissan Motor Co Ltd Current controller for motor
EP1460758A2 (en) 2003-03-20 2004-09-22 Nissan Motor Co., Ltd. Vector control method and apparatus
EP1617552A3 (en) * 2004-07-12 2006-09-13 Toyota Jidosha Kabushiki Kaisha Drive control apparatus and method of alternating current motor
JP2007143351A (en) * 2005-11-22 2007-06-07 Mitsubishi Electric Corp Ac electric motor control device
JP2007159368A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Control unit of motor drive system
JP2009232531A (en) * 2008-03-21 2009-10-08 Denso Corp Controller for rotating machine, and control system for rotating machine
JP2010011709A (en) * 2008-06-30 2010-01-14 Jtekt Corp Motor control device and vehicle-steering device comprising the same
JP2010017020A (en) * 2008-07-04 2010-01-21 Toyota Motor Corp Motor drive control apparatus and method
JP2010098808A (en) * 2008-10-15 2010-04-30 Jtekt Corp Motor control device
US7723945B2 (en) 2005-05-10 2010-05-25 Toyota Jidosha Kabushiki Kaisha Control device for motor drive system and electric vehicle including the same
JP2010119268A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Apparatus and method for detecting fault of inverter
JP2010148331A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Control system for ac motor
JP2011109733A (en) * 2009-11-12 2011-06-02 Jtekt Corp Motor control apparatus and vehicular steering device
US7986116B2 (en) 2007-12-21 2011-07-26 Denso Corporation Apparatus for controlling torque of electric rotating machine
JP2011259657A (en) * 2010-06-11 2011-12-22 Denso Corp Control device of rotary machine
JP2012085485A (en) * 2010-10-14 2012-04-26 Denso Corp Control device of rotary machine and control system of rotary machine
JP2012100410A (en) * 2010-11-01 2012-05-24 Denso Corp Inverter control device and inverter control system
CN102498659A (en) * 2009-09-18 2012-06-13 丰田自动车株式会社 Three-phase ac motor drive control device
JP2012120360A (en) * 2010-12-02 2012-06-21 Denso Corp Control device for rotating machine
WO2012137300A1 (en) 2011-04-05 2012-10-11 トヨタ自動車株式会社 Control apparatus for electric motor, electric vehicle provided with same, and method for controlling electric motor
JP2013106514A (en) * 2011-11-10 2013-05-30 General Electric Co <Ge> Method and system for controlling motor
JP2014060922A (en) * 2014-01-06 2014-04-03 Jtekt Corp Motor control device
JP2014072920A (en) * 2012-09-27 2014-04-21 Mitsubishi Heavy Ind Ltd Motor system, motor controller, motor control program, and motor control method
US8855857B2 (en) 2009-01-30 2014-10-07 Jtekt Corporation Electric motor controller and electric motor controller for vehicle steering apparatus
US8862322B2 (en) 2009-07-06 2014-10-14 Jtekt Corporation Motor control unit and vehicle steering apparatus
US8874318B2 (en) 2009-03-12 2014-10-28 Jtekt Corporation Motor control unit and motor control unit for vehicle steering apparatus
US8874316B2 (en) 2010-08-23 2014-10-28 Jtekt Corporation Vehicle steering system
US8874315B2 (en) 2009-11-16 2014-10-28 Jtekt Corporation Motor control unit and vehicle steering system
US8892306B2 (en) 2009-11-17 2014-11-18 Jtekt Corporation Motor control unit and vehicle steering system
US9065379B2 (en) 2013-04-01 2015-06-23 Mitsubishi Electric Corporation Control device for vehicle generator-motor and control method therefor
JP2015530059A (en) * 2012-05-29 2015-10-08 ルノー エス.ア.エス. Method for controlling the electromagnetic torque of high speed synchronous equipment
JP2017093270A (en) * 2015-11-17 2017-05-25 株式会社デンソー Motor control device
US9847744B2 (en) 2014-10-21 2017-12-19 Denso Corporation Controller and control method for rotary electric machine
JP2018023183A (en) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 Automobile
JP2018057077A (en) * 2016-09-26 2018-04-05 株式会社東芝 Motor control device and drive system
DE112022003003T5 (en) 2021-09-10 2024-03-28 Hitachi Astemo, Ltd. SYNCHRONOUS MOTOR CONTROL DEVICE AND ELECTRIC VEHICLE

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050686A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp Drive control equipment of ac motor
JP2002233199A (en) * 2001-02-05 2002-08-16 Railway Technical Res Inst Control device for permanent magnet synchronous motor
EP1263125A3 (en) * 2001-05-31 2008-03-26 Toyota Jidosha Kabushiki Kaisha Drive control apparatus and method of alternating current motor
JP2002359996A (en) * 2001-05-31 2002-12-13 Toyota Motor Corp Driving controller for alternating-current motor
US6781333B2 (en) 2001-05-31 2004-08-24 Toyota Jidosha Kabushiki Kaisha Drive control apparatus and method of alternating current motor
JP2003102153A (en) * 2001-09-21 2003-04-04 Denso Corp Alternating current generator-motor for vehicle
JP2004208370A (en) * 2002-12-24 2004-07-22 Nissan Motor Co Ltd Current controller for motor
EP1460758A2 (en) 2003-03-20 2004-09-22 Nissan Motor Co., Ltd. Vector control method and apparatus
JP2004289926A (en) * 2003-03-20 2004-10-14 Nissan Motor Co Ltd Motor controller
US6927551B2 (en) 2003-03-20 2005-08-09 Nissan Motor Co., Ltd. Motor control apparatus and motor control method
EP1617552A3 (en) * 2004-07-12 2006-09-13 Toyota Jidosha Kabushiki Kaisha Drive control apparatus and method of alternating current motor
US7199548B2 (en) 2004-07-12 2007-04-03 Toyota Jidosha Kabushiki Kaisha Drive control apparatus and method of alternating current motor
US7723945B2 (en) 2005-05-10 2010-05-25 Toyota Jidosha Kabushiki Kaisha Control device for motor drive system and electric vehicle including the same
JP2007143351A (en) * 2005-11-22 2007-06-07 Mitsubishi Electric Corp Ac electric motor control device
JP2007159368A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Control unit of motor drive system
US7960930B2 (en) 2005-12-08 2011-06-14 Toyata Jidosha Kabushiki Kaisha Control apparatus and method for motor drive system
US7986116B2 (en) 2007-12-21 2011-07-26 Denso Corporation Apparatus for controlling torque of electric rotating machine
JP2009232531A (en) * 2008-03-21 2009-10-08 Denso Corp Controller for rotating machine, and control system for rotating machine
CN102751932A (en) * 2008-03-21 2012-10-24 株式会社电装 Apparatus for carrying out improved control of rotary machine
US8288980B2 (en) 2008-03-21 2012-10-16 Denso Corporation Apparatus for carrying out improved control of rotary machine
JP4582168B2 (en) * 2008-03-21 2010-11-17 株式会社デンソー Rotating machine control device and rotating machine control system
US8018185B2 (en) 2008-03-21 2011-09-13 Denso Corporation Apparatus for carrying out improved control of rotary machine
JP2010011709A (en) * 2008-06-30 2010-01-14 Jtekt Corp Motor control device and vehicle-steering device comprising the same
US8862323B2 (en) 2008-06-30 2014-10-14 Jtekt Corporation Motor control device and vehicle-steering device comprising same
US8164287B2 (en) 2008-07-04 2012-04-24 Toyota Jidosha Kabushiki Kaisha Motor drive control apparatus and method
JP2010017020A (en) * 2008-07-04 2010-01-21 Toyota Motor Corp Motor drive control apparatus and method
JP2010098808A (en) * 2008-10-15 2010-04-30 Jtekt Corp Motor control device
JP2010119268A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Apparatus and method for detecting fault of inverter
JP2010148331A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Control system for ac motor
US8855857B2 (en) 2009-01-30 2014-10-07 Jtekt Corporation Electric motor controller and electric motor controller for vehicle steering apparatus
US8874318B2 (en) 2009-03-12 2014-10-28 Jtekt Corporation Motor control unit and motor control unit for vehicle steering apparatus
US8862322B2 (en) 2009-07-06 2014-10-14 Jtekt Corporation Motor control unit and vehicle steering apparatus
CN102498659A (en) * 2009-09-18 2012-06-13 丰田自动车株式会社 Three-phase ac motor drive control device
US8855858B2 (en) 2009-11-12 2014-10-07 Jtekt Corporation Motor control unit and vehicle steering system
JP2011109733A (en) * 2009-11-12 2011-06-02 Jtekt Corp Motor control apparatus and vehicular steering device
US8874315B2 (en) 2009-11-16 2014-10-28 Jtekt Corporation Motor control unit and vehicle steering system
US8892306B2 (en) 2009-11-17 2014-11-18 Jtekt Corporation Motor control unit and vehicle steering system
JP2011259657A (en) * 2010-06-11 2011-12-22 Denso Corp Control device of rotary machine
US8874316B2 (en) 2010-08-23 2014-10-28 Jtekt Corporation Vehicle steering system
JP2012085485A (en) * 2010-10-14 2012-04-26 Denso Corp Control device of rotary machine and control system of rotary machine
JP2012100410A (en) * 2010-11-01 2012-05-24 Denso Corp Inverter control device and inverter control system
US8884567B2 (en) 2010-12-02 2014-11-11 Denso Corporation Apparatus for carrying out improved control of rotary machine
JP2012120360A (en) * 2010-12-02 2012-06-21 Denso Corp Control device for rotating machine
WO2012137300A1 (en) 2011-04-05 2012-10-11 トヨタ自動車株式会社 Control apparatus for electric motor, electric vehicle provided with same, and method for controlling electric motor
US9020731B2 (en) 2011-04-05 2015-04-28 Toyota Jidosha Kabushiki Kaisha Control apparatus for electric motor, electrically-powered vehicle including the control apparatus, and method for controlling electric motor
JP2013106514A (en) * 2011-11-10 2013-05-30 General Electric Co <Ge> Method and system for controlling motor
JP2015530059A (en) * 2012-05-29 2015-10-08 ルノー エス.ア.エス. Method for controlling the electromagnetic torque of high speed synchronous equipment
JP2014072920A (en) * 2012-09-27 2014-04-21 Mitsubishi Heavy Ind Ltd Motor system, motor controller, motor control program, and motor control method
US9065379B2 (en) 2013-04-01 2015-06-23 Mitsubishi Electric Corporation Control device for vehicle generator-motor and control method therefor
JP2014060922A (en) * 2014-01-06 2014-04-03 Jtekt Corp Motor control device
US9847744B2 (en) 2014-10-21 2017-12-19 Denso Corporation Controller and control method for rotary electric machine
JP2017093270A (en) * 2015-11-17 2017-05-25 株式会社デンソー Motor control device
JP2018023183A (en) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 Automobile
JP2018057077A (en) * 2016-09-26 2018-04-05 株式会社東芝 Motor control device and drive system
DE112022003003T5 (en) 2021-09-10 2024-03-28 Hitachi Astemo, Ltd. SYNCHRONOUS MOTOR CONTROL DEVICE AND ELECTRIC VEHICLE

Also Published As

Publication number Publication date
JP3746377B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP3746377B2 (en) AC motor drive control device
JP3755424B2 (en) AC motor drive control device
JP5155344B2 (en) Electric motor magnetic pole position estimation device
US6690137B2 (en) Sensorless control system for synchronous motor
US6188196B1 (en) Electrical angle detecting apparatus and method, and motor control apparatus
CN100583621C (en) Field weakening vector controller for permanent magnet synchronous motor and module
EP0748038B1 (en) System and method for controlling brushless permanent magnet motors
JP4205157B1 (en) Electric motor control device
US9112436B2 (en) System for controlling controlled variable of rotary machine
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
JP4715576B2 (en) Electric drive control device and electric drive control method
WO2008004316A1 (en) Vector control apparatus for induction motor, vector control method for induction motor, and drive control apparatus for induction motor
EP1460758B1 (en) Vector control method and apparatus
JP2004112898A (en) Control method and device for motor in position sensorless
JP2008086129A (en) Ac motor controller and constant measurement apparatus
JPWO2008047438A1 (en) Vector controller for permanent magnet synchronous motor
JP2004343963A (en) Control device for brushless dc motor
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP2003309993A (en) Motor control apparatus
JP4010195B2 (en) Control device for permanent magnet synchronous motor
EP1681762B1 (en) Synchronous motor driving system and method
JP2003274699A (en) Motor controller
JPH08275599A (en) Control method for permanent magnet synchronous motor
Kumar et al. Sliding mode observer based rotor position estimation with field oriented control of PMBLDC motor drive

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term