JP2003018756A - Output-deterioration calculation device for secondary battery and its method - Google Patents

Output-deterioration calculation device for secondary battery and its method

Info

Publication number
JP2003018756A
JP2003018756A JP2001194254A JP2001194254A JP2003018756A JP 2003018756 A JP2003018756 A JP 2003018756A JP 2001194254 A JP2001194254 A JP 2001194254A JP 2001194254 A JP2001194254 A JP 2001194254A JP 2003018756 A JP2003018756 A JP 2003018756A
Authority
JP
Japan
Prior art keywords
secondary battery
output
battery
deterioration
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001194254A
Other languages
Japanese (ja)
Other versions
JP3750567B2 (en
Inventor
Kohei Suzuki
康平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001194254A priority Critical patent/JP3750567B2/en
Publication of JP2003018756A publication Critical patent/JP2003018756A/en
Application granted granted Critical
Publication of JP3750567B2 publication Critical patent/JP3750567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve calculation accuracy in an output-deterioration calculation for a secondary battery. SOLUTION: An output-deterioration calculation device for the secondary battery calculates internal resistance Ri0 and Rc1 corresponding to the respective voltages, by detecting an open-circuit voltage V0 and a voltage Vi, when, with which, charging the secondary battery 15 at a constant power. The output deterioration of the secondary battery 15 is calculated by calculating the ratio between the internal resistance Ri0 of the secondary battery 15 at the initial state and the internal resistance Rc1 at the deterioration calculation. With such an arrangement, the calculation accuracy of the output-deterioration calculation for the secondary battery 15 can be improved, unaffected by an error at the current detection, a calculation error at the heavy load, an error at the calculation for a straight line of regression, and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、充放電を行うこと
ができる二次電池の出力劣化演算装置と出力劣化演算方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery output deterioration calculating apparatus and an output deterioration calculating method capable of charging and discharging.

【0002】[0002]

【従来の技術】従来、ハイブリッド電気自動車を含む電
気自動車に搭載された二次電池の出力劣化演算方法とし
て、特開2000−261901号公報に記載されてい
るものがある。この従来の方法では、二次電池に蓄えら
れた電力を用いてモータを駆動する時、すなわち、二次
電池の放電時における電流および電圧を検知し、電圧値
と電流値を複数点サンプリングして電池の放電特性を示
す回帰直線を求める。求めた回帰直線から、電池劣化演
算時の二次電池の内部抵抗を算出して初期状態の内部抵
抗との比を算出することにより、二次電池の劣化係数を
求めている。
2. Description of the Related Art Conventionally, there is a method described in Japanese Patent Application Laid-Open No. 2000-261901 as an output deterioration calculation method for a secondary battery mounted on an electric vehicle including a hybrid electric vehicle. In this conventional method, when the motor is driven by using the electric power stored in the secondary battery, that is, the current and the voltage at the time of discharging the secondary battery are detected, and the voltage value and the current value are sampled at a plurality of points. A regression line showing the discharge characteristics of the battery is obtained. The deterioration coefficient of the secondary battery is calculated by calculating the internal resistance of the secondary battery at the time of battery deterioration calculation and calculating the ratio with the internal resistance in the initial state from the obtained regression line.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
二次電池の劣化演算方法では、電流を検知する際の電流
センサによる誤差と、電圧を検知する際の電圧センサに
よる誤差とが重畳されたものをサンプリング点として検
出してしまう可能性がある。この場合、回帰直線から算
出した内部抵抗は、実際の内部抵抗と異なる値になるの
で、正確な劣化係数を求めることができないという問題
があった。
However, in the conventional secondary battery deterioration calculation method, the error due to the current sensor at the time of detecting the current and the error due to the voltage sensor at the time of detecting the voltage are superposed. May be detected as a sampling point. In this case, since the internal resistance calculated from the regression line has a value different from the actual internal resistance, there is a problem that an accurate deterioration coefficient cannot be obtained.

【0004】本発明の目的は、二次電池の劣化演算を精
度良く行うことができる二次電池の出力劣化演算装置お
よび出力劣化演算方法を提供することにある。
An object of the present invention is to provide a secondary battery output deterioration calculation device and an output deterioration calculation method which can accurately perform a secondary battery deterioration calculation.

【0005】[0005]

【課題を解決するための手段】一実施の形態を示す図1
を参照して本発明を説明する。 (1)本発明は、二次電池15の劣化時電池出力と初期
電池出力との出力比から電池出力劣化を算出する二次電
池の出力劣化演算方法において、二次電池15の電圧の
みを検出して出力比を演算することを特徴とする。 (2)請求項2の発明は、二次電池15の劣化時電池出
力と初期電池出力との出力比から電池出力を算出する二
次電池の出力劣化演算装置において、二次電池15の開
放電圧と、一定電力にて二次電池15を充電する時の電
圧とに基づいて、出力劣化を演算することを特徴とす
る。 (3)請求項3の発明は、請求項2の二次電池の出力劣
化演算装置において、出力劣化の演算を、二次電池15
の開放電圧と、一定電力にて二次電池15を充電する時
の電圧とに基づいて算出される二次電池15の内部抵抗
に基づいて行うことを特徴とする。 (4)請求項2または3の二次電池の出力劣化演算装置
において、二次電池15は、ハイブリッド電気自動車に
搭載されている電動機に電力を供給する二次電池15で
あることを特徴とする。
FIG. 1 showing an embodiment.
The present invention will be described with reference to FIG. (1) The present invention detects only the voltage of the secondary battery 15 in the secondary battery output deterioration calculation method for calculating the battery output deterioration from the output ratio of the battery output at the time of deterioration of the secondary battery 15 and the initial battery output. It is characterized in that the output ratio is calculated. (2) The invention according to claim 2 is an output deterioration calculation device for a secondary battery, which calculates a battery output from an output ratio between a battery output when the secondary battery 15 is deteriorated and an initial battery output, and an open circuit voltage of the secondary battery 15. And the output deterioration is calculated based on the voltage when the secondary battery 15 is charged with constant power. (3) The invention of claim 3 is the output deterioration calculating device for a secondary battery according to claim 2, wherein the calculation of the output deterioration is performed by the secondary battery 15
Is performed based on the internal resistance of the secondary battery 15 calculated based on the open circuit voltage and the voltage when the secondary battery 15 is charged with constant power. (4) In the secondary battery output deterioration computing device according to claim 2 or 3, the secondary battery 15 is the secondary battery 15 that supplies electric power to an electric motor mounted in a hybrid electric vehicle. .

【0006】なお、上記課題を解決するための手段の項
では、本発明をわかりやすく説明するために実施の形態
の図1と対応づけたが、これにより本発明が実施の形態
に限定されるものではない。
In the section of means for solving the above problems, the present invention is associated with FIG. 1 of the embodiment for the sake of easy understanding, but the present invention is limited to the embodiment. Not a thing.

【0007】[0007]

【発明の効果】本発明によれば、次のような効果を奏す
る。 (1)請求項1の発明によれば、二次電池の電圧のみを
検出して出力劣化演算を行うので、電流センサを設ける
必要がない。従って、電流センサによって電流を検出す
る際の検出誤差の影響を受けることがないので、電流を
検出して出力劣化演算を行う方法と比べて劣化演算の精
度を向上させることができる。 (2)請求項2の発明によれば、二次電池の開放電圧
と、一定電力にて二次電池を充電する時の電圧とに基づ
いて出力劣化演算を行うので、放電時の電圧値と電流値
とをサンプリングして回帰直線を求める方法よりも、演
算精度を向上させることができる。また、高負荷時の演
算誤差の影響を考慮する必要もない。
The present invention has the following effects. (1) According to the invention of claim 1, since the output deterioration calculation is performed by detecting only the voltage of the secondary battery, it is not necessary to provide a current sensor. Therefore, since there is no influence of a detection error when the current is detected by the current sensor, the accuracy of the deterioration calculation can be improved as compared with the method of detecting the current and performing the output deterioration calculation. (2) According to the second aspect of the invention, the output deterioration calculation is performed based on the open circuit voltage of the secondary battery and the voltage when the secondary battery is charged with constant power. The calculation accuracy can be improved as compared with the method of obtaining the regression line by sampling the current value. Further, it is not necessary to consider the influence of the calculation error when the load is high.

【0008】[0008]

【発明の実施の形態】図1は、本発明による二次電池の
出力劣化演算装置をハイブリッド電気自動車に適用した
一実施の形態の構成を示す図である。図中、太い実線は
機械力の伝達経路を示し、太い破線は電力線を示してい
る。また、細い実線は制御線を示し、二重線は油圧系統
を示す。この車両のパワートレインは、モータ1、エン
ジン2、クラッチ3、モータ4、無段変速機5、減速装
置6、差動装置7および駆動輪8を備える。モータ1の
出力軸、エンジン2の出力軸およびクラッチ3の入力軸
は互いに連結されている。また、クラッチ3の出力軸、
モータ4の出力軸および無段変速機5の入力軸は互いに
連結されている。
FIG. 1 is a diagram showing the configuration of an embodiment in which an output deterioration computing device for a secondary battery according to the present invention is applied to a hybrid electric vehicle. In the figure, a thick solid line indicates a mechanical force transmission path, and a thick broken line indicates a power line. Also, a thin solid line indicates a control line, and a double line indicates a hydraulic system. The power train of this vehicle includes a motor 1, an engine 2, a clutch 3, a motor 4, a continuously variable transmission 5, a reduction gear 6, a differential gear 7, and drive wheels 8. The output shaft of the motor 1, the output shaft of the engine 2, and the input shaft of the clutch 3 are connected to each other. Also, the output shaft of the clutch 3,
The output shaft of the motor 4 and the input shaft of the continuously variable transmission 5 are connected to each other.

【0009】クラッチ3締結時はエンジン2とモータ4
の両方、またはエンジン2のみが車両の推進源となり、
クラッチ3解放時はモータ4のみが車両の推進源とな
る。エンジン2および/またはモータ4の駆動力は、無
段変速機5、減速装置6および差動装置7を介して駆動
輪8へ伝達される。油圧装置9のオイルポンプ(不図
示)は、モータ10により駆動され、圧油を無段変速機
5に供給する。
When the clutch 3 is engaged, the engine 2 and the motor 4
Both, or only engine 2 becomes the propulsion source of the vehicle,
When the clutch 3 is released, only the motor 4 serves as a propulsion source for the vehicle. The driving force of the engine 2 and / or the motor 4 is transmitted to the drive wheels 8 via the continuously variable transmission 5, the reduction gear 6 and the differential gear 7. An oil pump (not shown) of the hydraulic device 9 is driven by the motor 10 and supplies pressure oil to the continuously variable transmission 5.

【0010】モータ1,4,10は三相同期電動機また
は三相誘導電動機などの交流機である。モータ1は主と
してエンジン始動と発電に用いられ、モータ4は主とし
て車両の推進と制動に用いられる。モータ10は油圧装
置9のオイルポンプを駆動するためのものである。な
お、モータ1,4,10には交流機に限らず直流電動機
を用いることもできる。また、クラッチ3締結時に、モ
ータ1を車両の推進と制動に用いることもでき、モータ
4をエンジン始動や発電に用いることもできる。
The motors 1, 4, 10 are AC machines such as a three-phase synchronous motor or a three-phase induction motor. The motor 1 is mainly used for engine starting and power generation, and the motor 4 is mainly used for propulsion and braking of the vehicle. The motor 10 is for driving the oil pump of the hydraulic device 9. The motors 1, 4 and 10 are not limited to AC machines, but DC motors can be used. Further, when the clutch 3 is engaged, the motor 1 can be used for propulsion and braking of the vehicle, and the motor 4 can be used for engine starting and power generation.

【0011】クラッチ3はパウダークラッチであり、伝
達トルクを調節することができる。なお、このクラッチ
3に乾式単板クラッチや湿式多板クラッチを用いること
もできる。無段変速機5はベルト式やトロイダル式など
の無段変速機であり、変速比を無段階に調節することが
できる。
The clutch 3 is a powder clutch and can adjust the transmission torque. The clutch 3 may be a dry single plate clutch or a wet multi-plate clutch. The continuously variable transmission 5 is a continuously variable transmission such as a belt type or toroidal type, and can continuously adjust the gear ratio.

【0012】インバータ11,12,13は、それぞれ
モータ1,4,10を駆動制御する。なお、モータ1,
4,10に直流電動機を用いる場合には、インバータの
代わりにDC/DCコンバータを用いる。インバータ1
1〜13は共通のDCリンク14を介してメインバッテ
リ15に接続されており、メインバッテリ15の直流充
電電力を交流電力に変換してモータ1,4,10へ供給
する。また、モータ1,4の交流発電電力を直流電力に
変換してメインバッテリ15を充電する。なお、インバ
ータ11〜13は互いにDCリンク14を介して接続さ
れているので、回生運転中のモータにより発電された電
力を、メインバッテリ15を介さずに直接力行運転中の
モータへ供給することができる。メインバッテリ15に
は、リチウム・イオン電池、ニッケル・水素電池、鉛電
池などの各種電池や、電気二重層キャパシタなどのいわ
ゆるパワーキャパシタを用いることができる。
Inverters 11, 12, 13 drive and control motors 1, 4, 10 respectively. In addition, the motor 1,
When a DC motor is used for 4, 10, a DC / DC converter is used instead of the inverter. Inverter 1
1 to 13 are connected to a main battery 15 via a common DC link 14, and convert DC charging power of the main battery 15 into AC power and supply it to the motors 1, 4, 10. Also, the AC power generated by the motors 1 and 4 is converted into DC power to charge the main battery 15. Since the inverters 11 to 13 are connected to each other via the DC link 14, the electric power generated by the motor in the regenerative operation can be directly supplied to the motor in the power running operation without the main battery 15. it can. As the main battery 15, various batteries such as lithium-ion batteries, nickel-hydrogen batteries, lead batteries, and so-called power capacitors such as electric double layer capacitors can be used.

【0013】電流センサ18は、メインバッテリ15の
充放電時の電流を検出し、電圧センサ19は、メインバ
ッテリ15の端子電圧を検出する。なお、後述するよう
に、電流センサ18は設けなくても良い。車速センサ2
0は、車両の車速を検出する。それぞれのセンサの検出
値は、コントローラ16に入力される。コントローラ1
6は、マイクロコンピュータとその周辺部品や各種アク
チュエータなどを備え、エンジン2の回転速度や出力ト
ルク、クラッチ3の伝達トルク、モータ1,4,10の
回転速度や出力トルク、無段変速機5の変速比などを制
御する。
The current sensor 18 detects the current when the main battery 15 is charged and discharged, and the voltage sensor 19 detects the terminal voltage of the main battery 15. The current sensor 18 may not be provided, as described later. Vehicle speed sensor 2
0 detects the vehicle speed of the vehicle. The detection value of each sensor is input to the controller 16. Controller 1
Reference numeral 6 includes a microcomputer and its peripheral parts, various actuators, etc., and is used for the rotational speed and output torque of the engine 2, the transmission torque of the clutch 3, the rotational speed and output torque of the motors 1, 4, 10 and the continuously variable transmission 5. Controls the gear ratio, etc.

【0014】図2,図3は、本発明による二次電池の出
力劣化演算装置の一実施の形態の制御手順を示すフロー
チャートである。ステップS1から始まる制御は、車両
起動時にコントローラ16により行われる。以下、ステ
ップS1から順に説明する。ステップS1では、図示し
ないイグニッションスイッチ(IGN−SW)がオンに
なっているか否かを判定する。オンになっていると判定
するとステップS2に進む。オンになっていないと判定
すると、オンになるまでステップS1で待機する。
2 and 3 are flow charts showing the control procedure of an embodiment of the output deterioration calculating apparatus for a secondary battery according to the present invention. The control starting from step S1 is performed by the controller 16 when the vehicle is started. Hereinafter, description will be made in order from step S1. In step S1, it is determined whether or not an ignition switch (IGN-SW) not shown is turned on. If it is determined that it is turned on, the process proceeds to step S2. If it is determined that it is not turned on, the process waits in step S1 until it is turned on.

【0015】ステップS2では、車速センサ20により
車速を検出する。検出した車速はコントローラ16に入
力される。次のステップS3では、車両が停止している
か否かを判定する。この判定は、ステップS2で検出し
た車速に基づいて行われる。車両が停止していないと
き、すなわち車両走行中はバッテリ15の充放電を行っ
ている可能性が高く、バッテリ15の開放電圧を検知す
ることができない。従って、車両が停止していない(走
行中である)と判定すると本制御を終了し、車両が停止
していると判定するとステップS4に進む。
In step S2, the vehicle speed sensor 20 detects the vehicle speed. The detected vehicle speed is input to the controller 16. In the next step S3, it is determined whether or not the vehicle is stopped. This determination is made based on the vehicle speed detected in step S2. When the vehicle is not stopped, that is, while the vehicle is traveling, there is a high possibility that the battery 15 is being charged and discharged, and the open circuit voltage of the battery 15 cannot be detected. Therefore, when it is determined that the vehicle is not stopped (running), this control is ended, and when it is determined that the vehicle is stopped, the process proceeds to step S4.

【0016】ステップS4では、発電を行うモータ1
(以下、発電モータ1と呼ぶ)が作動しているか否かを
判定する。コントローラ16は、インバータ11に発電
モータ1の制御指令信号を送信して発電モータ1の制御
を行っている。すなわち、コントローラ16が送信する
発電モータ1の制御指令信号に基づいて、発電モータ1
が作動しているか否かを判定する。発電モータ1が作動
していれば、バッテリ15の充電を行っているので、発
電モータ1の発電動作を停止させてまで電池の劣化演算
を行う必要はない。仮に、発電モータ1の作動を停止さ
せて電池の劣化演算を行う場合でも、バッテリ15の電
圧を検出するためには電圧が安定するまで待つ必要があ
る。これらの事を考慮して、発電モータ1が作動してい
ると判定すると、電池の劣化演算を行うことなく本制御
を終了する。発電モータ1が作動していないと判定する
と、ステップS5に進む。
In step S4, the motor 1 for generating electric power
It is determined whether or not (hereinafter, referred to as the generator motor 1) is operating. The controller 16 sends a control command signal for the generator motor 1 to the inverter 11 to control the generator motor 1. That is, based on the control command signal of the generator motor 1 transmitted by the controller 16, the generator motor 1
Determine whether or not is operating. If the generator motor 1 is operating, the battery 15 is being charged, and therefore it is not necessary to perform the battery deterioration calculation until the power generation operation of the generator motor 1 is stopped. Even if the operation of the generator motor 1 is stopped and the battery deterioration calculation is performed, in order to detect the voltage of the battery 15, it is necessary to wait until the voltage stabilizes. In consideration of these matters, when it is determined that the generator motor 1 is operating, this control is ended without performing battery deterioration calculation. If it is determined that the generator motor 1 is not operating, the process proceeds to step S5.

【0017】ステップS5では、電圧センサ19によっ
てバッテリ15の開放電圧V0を検出する。開放電圧V
0を検出するとステップS6に進む。ステップS6で
は、ステップS5で検出した開放電圧V0に基づいて、
バッテリ15の内部抵抗Riを検出する。この方法を、
図4に示す二次電池の電圧−内部抵抗特性曲線を用いて
説明する。図4に示す二次電池の電圧−内部抵抗特性曲
線のうち、実線は電池が新品の状態、すなわち二次電池
の初期特性を示すグラフであり、点線は電池が劣化した
時のグラフを表している。この実線で表された初期特性
を示すグラフを用いて、ステップS5で検出した開放電
圧V0に対応する内部抵抗Riを検出する。内部抵抗R
iを検出すると、ステップS7に進む。
In step S5, the voltage sensor 19 detects the open circuit voltage V0 of the battery 15. Open voltage V
When 0 is detected, the process proceeds to step S6. In step S6, based on the open circuit voltage V0 detected in step S5,
The internal resistance Ri of the battery 15 is detected. This method
This will be described using the voltage-internal resistance characteristic curve of the secondary battery shown in FIG. In the voltage-internal resistance characteristic curve of the secondary battery shown in FIG. 4, a solid line is a graph showing a state where the battery is new, that is, an initial characteristic of the secondary battery, and a dotted line is a graph when the battery is deteriorated. There is. The internal resistance Ri corresponding to the open circuit voltage V0 detected in step S5 is detected by using the graph showing the initial characteristic represented by the solid line. Internal resistance R
When i is detected, the process proceeds to step S7.

【0018】ステップS7では、ステップS6で検出し
た内部抵抗Riに対して温度補正を行う。すなわち、不
図示の温度センサによって検出した電池の温度に基づい
た温度係数αを用いて次式(1)により、温度補正後の
内部抵抗Ri0を算出して記憶する。 Ri0=Ri×α/100 …(1) 温度補正後の内部抵抗Ri0を算出するとステップS8
に進む。ステップS8では、エンジンを始動してステッ
プS9に進む。ステップS9では、インバータ11に発
電モータ1の駆動指令信号を送信して、発電モータ1を
駆動させる。ここでは、発電モータ1による出力値(電
力)をP0に保つように駆動させる。発電モータ1によ
り発電される一定電力P0は、バッテリ15に蓄電され
る。
In step S7, temperature correction is performed on the internal resistance Ri detected in step S6. That is, the temperature-corrected internal resistance Ri0 is calculated and stored by the following equation (1) using the temperature coefficient α based on the battery temperature detected by a temperature sensor (not shown). Ri0 = Ri × α / 100 (1) When the internal resistance Ri0 after temperature correction is calculated, step S8
Proceed to. In step S8, the engine is started and the process proceeds to step S9. In step S9, a drive command signal for the generator motor 1 is transmitted to the inverter 11 to drive the generator motor 1. Here, the generator motor 1 is driven so as to maintain the output value (electric power) at P0. The constant power P0 generated by the generator motor 1 is stored in the battery 15.

【0019】ステップS10では、電圧センサ19によ
って、充電中のバッテリ15の電圧値V1を検出する。
検出した電圧値V1は、コントローラ16に入力され
る。次のステップS11では、ステップS10で検出し
た充電中のバッテリ15の電圧値V1から、内部抵抗R
c1を演算して記憶する。
In step S10, the voltage sensor 19 detects the voltage value V1 of the battery 15 being charged.
The detected voltage value V1 is input to the controller 16. In the next step S11, the internal resistance R is calculated from the voltage value V1 of the battery 15 being charged detected in step S10.
Calculate and store c1.

【0020】図5は、発電モータ1による出力値がP0
であるときの、バッテリ15から流れる電流Iと電圧V
との関係を示すグラフである。二次電池の出力劣化演算
時の内部抵抗Rc1は、次式(2)により算出すること
ができる。 Rc1=V1・(V1−V0)/P0 …(2) 上式(2)から分かるように、内部抵抗Rc1は、図5
において点(I,V1)と点(0,V0)とを結ぶ直線
の傾きを示している。電池の劣化が進行した時の電圧値
をV1'とすると、出力劣化進行時の内部抵抗Rc1'は
次式(3)により算出することができる。 Rc1'=V1'・(V1'−V0)/P0 …(3) この場合も、内部抵抗Rc1'は、点(I',V1')と
点(0,V0)とを結ぶ直線の傾きを示している。図5
から分かるように、電池の劣化が進行すると内部抵抗は
大きくなる。
In FIG. 5, the output value from the generator motor 1 is P0.
Current I and voltage V flowing from the battery 15 when
It is a graph which shows the relationship with. The internal resistance Rc1 during the output deterioration calculation of the secondary battery can be calculated by the following equation (2). Rc1 = V1. (V1-V0) / P0 (2) As can be seen from the above equation (2), the internal resistance Rc1 is as shown in FIG.
In, the inclination of the straight line connecting the point (I, V1) and the point (0, V0) is shown. When the voltage value when the deterioration of the battery progresses is V1 ′, the internal resistance Rc1 ′ when the output deterioration progresses can be calculated by the following equation (3). Rc1 ′ = V1 ′ · (V1′−V0) / P0 (3) Also in this case, the internal resistance Rc1 ′ has the slope of the straight line connecting the point (I ′, V1 ′) and the point (0, V0). Shows. Figure 5
As can be seen from the above, as the deterioration of the battery progresses, the internal resistance increases.

【0021】内部抵抗Rc1を算出すると、ステップS
12に進む。ステップS12では、電池の初期状態時の
内部抵抗Ri0と出力劣化演算時の内部抵抗Rc1とを
用いて、出力劣化係数γを算出する。電池の出力劣化状
態を示す出力劣化係数γは、次式(4)により算出する
ことができる。 γ=Pc/Pint=Ri0/Rc1×100 …(4) ただし、Pintは電池の初期状態における放電可能出
力、Pcは電池劣化時の放電可能出力である。式(4)
から分かるように、二次電池の出力劣化が進行すると内
部抵抗Rc1は大きくなるので、出力劣化係数γは小さ
くなる。出力劣化係数γを算出すると、ステップS13
に進む。ステップS13では、ステップS12で算出し
た出力劣化係数γをコントローラ16内のメモリ21に
記憶する。この出力劣化係数γは、次に車両が停止する
まで用いる。出力劣化係数γをメモリ21に記憶する
と、ステップS14に進む。ステップS14では、発電
モータ1の作動を停止させる指令信号をインバータ11
に送る。発電モータ11の作動が停止すると、本制御を
終了する。
When the internal resistance Rc1 is calculated, step S
Proceed to 12. In step S12, the output deterioration coefficient γ is calculated using the internal resistance Ri0 in the initial state of the battery and the internal resistance Rc1 in the output deterioration calculation. The output deterioration coefficient γ indicating the output deterioration state of the battery can be calculated by the following equation (4). γ = Pc / Pint = Ri0 / Rc1 × 100 (4) where Pint is the dischargeable output in the initial state of the battery and Pc is the dischargeable output when the battery is deteriorated. Formula (4)
As can be seen from the above, as the output deterioration of the secondary battery progresses, the internal resistance Rc1 increases, so that the output deterioration coefficient γ decreases. When the output deterioration coefficient γ is calculated, step S13
Proceed to. In step S13, the output deterioration coefficient γ calculated in step S12 is stored in the memory 21 in the controller 16. This output deterioration coefficient γ is used until the vehicle next stops. When the output deterioration coefficient γ is stored in the memory 21, the process proceeds to step S14. In step S14, the inverter 11 outputs a command signal for stopping the operation of the generator motor 1.
Send to. When the operation of the generator motor 11 is stopped, this control is ended.

【0022】本発明による二次電池の出力劣化演算装置
によれば、車両起動時に電池の劣化演算制御を開始する
(ステップS1)。車両が停止しており、かつ、発電モ
ータ1が作動していない状態におけるバッテリ15の開
放電圧V0を検出する(ステップS2〜ステップS
5)。開放電圧V0に基づいてバッテリ15の内部抵抗
Riを算出した後、温度補正後の内部抵抗Ri0を算出
する(ステップS6〜ステップS7)。その後、エンジ
ンを作動させてバッテリ15を一定電力P0にて充電し
ている時の電圧値Viを検出する(ステップS8〜ステ
ップS10)。検出した電圧値Viを用いて内部抵抗R
c1を演算した後、内部抵抗Ri0と内部抵抗Rc1を
用いて出力劣化係数γを算出する(ステップS11〜ス
テップS12)。算出した出力劣化係数γをメモリ21
に記憶して、発電モータ1の作動を停止させると本制御
を終了する。
According to the output deterioration calculation device for a secondary battery of the present invention, the battery deterioration calculation control is started when the vehicle is started (step S1). The open circuit voltage V0 of the battery 15 in the state where the vehicle is stopped and the generator motor 1 is not operating is detected (steps S2 to S).
5). After calculating the internal resistance Ri of the battery 15 based on the open circuit voltage V0, the internal resistance Ri0 after temperature correction is calculated (steps S6 to S7). Then, the engine is operated to detect the voltage value Vi when the battery 15 is being charged with the constant power P0 (steps S8 to S10). Using the detected voltage value Vi, the internal resistance R
After calculating c1, the output deterioration coefficient γ is calculated using the internal resistance Ri0 and the internal resistance Rc1 (steps S11 to S12). The calculated output deterioration coefficient γ is stored in the memory 21.
Then, when the operation of the generator motor 1 is stopped, the present control ends.

【0023】従来の二次電池の出力劣化演算制御では、
車両が急加速をする時や急勾配の坂を登る時などの高負
荷走行時には、演算誤差が生じていた。これは、高負荷
走行時にはバッテリ15からの放電電流が大きくなるの
で、複数の電流値、電圧値のサンプリング点を用いて得
られる回帰直線に誤差が生じることに起因する。従っ
て、高負荷時に電池の出力劣化演算を行うと、実際の電
池の劣化状態と異なる演算結果が算出される。しかし、
本発明による二次電池の出力劣化演算制御においては、
発電モータ1による出力が一定値(P0)である時の電
流−電圧特性曲線から内部抵抗を演算して電池の劣化演
算を行っているので、車両の高負荷走行による影響を受
けることはない。
In the conventional output deterioration calculation control of the secondary battery,
There was a calculation error when the vehicle was running under high load, such as when it accelerated suddenly or climbed a steep slope. This is because the discharge current from the battery 15 becomes large during traveling under a high load, and thus an error occurs in the regression line obtained by using the sampling points of a plurality of current values and voltage values. Therefore, when the battery output deterioration calculation is performed under a high load, a calculation result different from the actual battery deterioration state is calculated. But,
In the output deterioration calculation control of the secondary battery according to the present invention,
Since the internal resistance is calculated from the current-voltage characteristic curve when the output from the generator motor 1 has a constant value (P0) to calculate the deterioration of the battery, it is not affected by the high load running of the vehicle.

【0024】また、従来の劣化演算制御のように回帰演
算を行わないので、回帰演算を行うことによる演算誤差
を生じることもない。すなわち、回帰演算を行う場合、
電圧値と電流値をサンプリングする複数の点がばらつい
ていれば、回帰演算により得られる回帰直線は実際の電
流−電圧特性を示す直線とは異なるものとなる。本発明
による二次電池の出力劣化演算制御では、回帰演算を行
わないので、従来の劣化演算制御に比べて演算精度は高
い。
Further, unlike the conventional deterioration calculation control, since the regression calculation is not performed, the calculation error due to the regression calculation does not occur. That is, when performing regression calculation,
If a plurality of points for sampling the voltage value and the current value vary, the regression line obtained by the regression calculation will be different from the straight line showing the actual current-voltage characteristic. Since the regression calculation is not performed in the output deterioration calculation control of the secondary battery according to the present invention, the calculation accuracy is higher than that of the conventional deterioration calculation control.

【0025】さらに、開放電圧V0、発電モータ1によ
る一定出力値P0、そのときの電圧値V1とを用いて電
池の内部抵抗を演算するので、電池の内部抵抗を求める
際に電流値を検出する必要がない。従って、電流センサ
を設ける必要がなく、仮に電流センサを設ける場合でも
電流検出精度を高くする必要がない。これにより、電流
センサのコストを削減することができる。また、電流を
検出して劣化演算を行う方法では、電流検出時の検出誤
差が生じることがあるが、本発明による二次電池の出力
劣化演算制御では、そのような検出誤差が生じることも
ないので、演算精度を向上させることができる。
Further, since the internal resistance of the battery is calculated using the open circuit voltage V0, the constant output value P0 from the generator motor 1, and the voltage value V1 at that time, the current value is detected when the internal resistance of the battery is obtained. No need. Therefore, there is no need to provide a current sensor, and even if a current sensor is provided, there is no need to increase the current detection accuracy. Thereby, the cost of the current sensor can be reduced. Further, in the method of detecting the current and performing the deterioration calculation, a detection error at the time of detecting the current may occur, but in the output deterioration calculation control of the secondary battery according to the present invention, such a detection error does not occur. Therefore, the calculation accuracy can be improved.

【0026】本発明は、上述した実施の形態に何ら限定
されることはない。上述した実施の形態では、二次電池
の出力劣化演算装置をハイブリッド電気自動車に適用し
た例について説明したが、電気自動車に適用することも
できる。すなわち、車両外部に設置されている充電器で
バッテリ15(二次電池)の充電を行う際に、電池の劣
化演算を同じように行うことができる。また、充放電で
きる電池を搭載するものであれば、車両に限定されるこ
とはない。
The present invention is not limited to the above embodiment. In the above-described embodiment, an example in which the output deterioration calculation device for a secondary battery is applied to a hybrid electric vehicle has been described, but it can also be applied to an electric vehicle. That is, when the battery 15 (secondary battery) is charged by the charger installed outside the vehicle, the battery deterioration calculation can be similarly performed. The vehicle is not limited to the vehicle as long as the battery can be charged and discharged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による二次電池の出力劣化演算装置を適
用したハイブリッド電気自動車の一実施の形態の構成を
示す図
FIG. 1 is a diagram showing a configuration of an embodiment of a hybrid electric vehicle to which a secondary battery output deterioration calculating device according to the present invention is applied.

【図2】本発明による二次電池の出力劣化演算装置の一
実施の形態の制御手順を示すフローチャート
FIG. 2 is a flowchart showing a control procedure of an embodiment of a secondary battery output deterioration computing device according to the present invention.

【図3】図2に続く制御手順を示すフローチャートFIG. 3 is a flowchart showing a control procedure following FIG.

【図4】二次電池の初期状態と劣化時の電圧−内部抵抗
特性を示すグラフ
FIG. 4 is a graph showing the voltage-internal resistance characteristics in the initial state and deterioration of the secondary battery.

【図5】二次電池の電流−電圧特性を示すグラフFIG. 5 is a graph showing current-voltage characteristics of a secondary battery.

【符号の説明】[Explanation of symbols]

1…発電モータ、2…エンジン、3…クラッチ、4…モ
ータ、5…無断変速機、6…減速装置、7…差動装置、
8…駆動輪、9…油圧装置、10…モータ、11…イン
バータ、12…インバータ、13…インバータ、14…
DCリンク、15…バッテリ、16…コントローラ、1
7…コンプレッサ、18…電流センサ、19…電圧セン
サ、20…車速センサ、21…メモリ
DESCRIPTION OF SYMBOLS 1 ... Generator motor, 2 ... Engine, 3 ... Clutch, 4 ... Motor, 5 ... Continuous transmission, 6 ... Reduction gear device, 7 ... Differential device,
8 ... Drive wheel, 9 ... Hydraulic device, 10 ... Motor, 11 ... Inverter, 12 ... Inverter, 13 ... Inverter, 14 ...
DC link, 15 ... Battery, 16 ... Controller, 1
7 ... Compressor, 18 ... Current sensor, 19 ... Voltage sensor, 20 ... Vehicle speed sensor, 21 ... Memory

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/10 H02J 7/10 F Fターム(参考) 2G016 CA03 CB02 CB03 CD00 5G003 AA07 CA11 CA16 EA08 FA06 GC05 5H030 AA03 AA04 AS20 FF43 FF44 5H115 PA08 PA14 PG04 PI16 PO02 PU01 PU21 PV09 QN03 SE06 TI05 TI10 TR19 TU04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H02J 7/10 H02J 7/10 FF term (reference) 2G016 CA03 CB02 CB03 CD00 5G003 AA07 CA11 CA16 EA08 FA06 GC05 5H030 AA03 AA04 AS20 FF43 FF44 5H115 PA08 PA14 PG04 PI16 PO02 PU01 PU21 PV09 QN03 SE06 TI05 TI10 TR19 TU04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】二次電池の劣化時電池出力と初期電池出力
との出力比から電池出力劣化を算出する二次電池の出力
劣化演算方法において、 前記二次電池の電圧のみを検出して前記出力比を演算す
ることを特徴とする二次電池の出力劣化演算方法。
1. A secondary battery output deterioration calculation method for calculating battery output deterioration from an output ratio of a battery output at the time of deterioration of a secondary battery and an initial battery output, wherein only the voltage of the secondary battery is detected, and A method for calculating output deterioration of a secondary battery, which comprises calculating an output ratio.
【請求項2】二次電池の劣化時電池出力と初期電池出力
との出力比から電池出力劣化を算出する二次電池の出力
劣化演算装置において、 前記二次電池の開放電圧と、一定電力にて前記二次電池
を充電する時の電圧とに基づいて、前記出力比を演算す
ることを特徴とする二次電池の出力劣化演算装置。
2. An output deterioration calculation device for a secondary battery, which calculates battery output deterioration from an output ratio between a battery output when the secondary battery is deteriorated and an initial battery output, wherein an open circuit voltage of the secondary battery and a constant power are used. The output deterioration calculation device for a secondary battery, wherein the output ratio is calculated based on a voltage when the secondary battery is charged.
【請求項3】請求項2に記載の二次電池の出力劣化演算
装置において、 前記出力比の演算を、前記二次電池の開放電圧と、一定
電力にて前記二次電池を充電する時の電圧とに基づいて
算出される前記二次電池の内部抵抗に基づいて行うこと
を特徴とする二次電池の出力劣化演算装置。
3. The secondary battery output deterioration calculating device according to claim 2, wherein the output ratio is calculated by charging the secondary battery with an open circuit voltage of the secondary battery and a constant power. An output deterioration calculation device for a secondary battery, which is performed based on an internal resistance of the secondary battery calculated based on a voltage.
【請求項4】請求項2または3に記載の二次電池の出力
劣化演算装置において、 前記二次電池は、ハイブリッド電気自動車に搭載されて
いる電動機に電力を供給する二次電池であることを特徴
とする二次電池の出力劣化演算装置。
4. The output deterioration calculation device for a secondary battery according to claim 2, wherein the secondary battery is a secondary battery that supplies electric power to an electric motor mounted in a hybrid electric vehicle. Characteristic secondary battery output deterioration calculating device.
JP2001194254A 2001-06-27 2001-06-27 Apparatus and method for calculating output deterioration of secondary battery Expired - Fee Related JP3750567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194254A JP3750567B2 (en) 2001-06-27 2001-06-27 Apparatus and method for calculating output deterioration of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194254A JP3750567B2 (en) 2001-06-27 2001-06-27 Apparatus and method for calculating output deterioration of secondary battery

Publications (2)

Publication Number Publication Date
JP2003018756A true JP2003018756A (en) 2003-01-17
JP3750567B2 JP3750567B2 (en) 2006-03-01

Family

ID=19032422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194254A Expired - Fee Related JP3750567B2 (en) 2001-06-27 2001-06-27 Apparatus and method for calculating output deterioration of secondary battery

Country Status (1)

Country Link
JP (1) JP3750567B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028908A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Power supply device for vehicle
JP2008083022A (en) * 2006-08-30 2008-04-10 Toyota Motor Corp Deterioration evaluating system for charge accumulating device, vehicle, deterioration evaluating method for charge accumulating device, and computer-readable recording medium recorded with program for making computer execute deterioration evaluating method
WO2009017120A1 (en) * 2007-08-01 2009-02-05 Isuzu Motors Limited Secondary battery deterioration deciding device
WO2009017094A1 (en) * 2007-08-01 2009-02-05 Isuzu Motors Limited Device for determining deterioration of secondary battery
JP2011015522A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Battery control system and vehicle
CN105556323A (en) * 2013-10-29 2016-05-04 松下知识产权经营株式会社 Battery-state estimation device
EP2048763A4 (en) * 2006-08-01 2018-02-21 Toyota Jidosha Kabushiki Kaisha Secondary battery charge/discharge control device and hybrid vehicle using the same
JP2021092403A (en) * 2019-12-06 2021-06-17 東芝インフラシステムズ株式会社 Storage battery device, method, and program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028908A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Power supply device for vehicle
EP2048763A4 (en) * 2006-08-01 2018-02-21 Toyota Jidosha Kabushiki Kaisha Secondary battery charge/discharge control device and hybrid vehicle using the same
JP2008083022A (en) * 2006-08-30 2008-04-10 Toyota Motor Corp Deterioration evaluating system for charge accumulating device, vehicle, deterioration evaluating method for charge accumulating device, and computer-readable recording medium recorded with program for making computer execute deterioration evaluating method
WO2009017120A1 (en) * 2007-08-01 2009-02-05 Isuzu Motors Limited Secondary battery deterioration deciding device
WO2009017094A1 (en) * 2007-08-01 2009-02-05 Isuzu Motors Limited Device for determining deterioration of secondary battery
JP2011015522A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Battery control system and vehicle
JP2011250688A (en) * 2009-07-01 2011-12-08 Toyota Motor Corp Battery control system and vehicle
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US8629655B2 (en) 2009-07-01 2014-01-14 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
EP2806282A1 (en) 2009-07-01 2014-11-26 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
CN105556323A (en) * 2013-10-29 2016-05-04 松下知识产权经营株式会社 Battery-state estimation device
JP2021092403A (en) * 2019-12-06 2021-06-17 東芝インフラシステムズ株式会社 Storage battery device, method, and program

Also Published As

Publication number Publication date
JP3750567B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP3716619B2 (en) Battery remaining capacity meter
US8442727B2 (en) Electric vehicle and method for setting total allowable discharge electric energy in the electric vehicle
JP3915258B2 (en) Control device for battery for hybrid vehicle
US7982435B2 (en) Battery charging and discharging control apparatus
JP4835733B2 (en) VEHICLE CHARGE CONTROL DEVICE AND ELECTRIC VEHICLE HAVING THE SAME
JP3780979B2 (en) Charge / discharge control apparatus and method
EP1151892A2 (en) Vehicle with a high voltage power source system and method of controlling the start of such vehicle
JP6694156B2 (en) Control device for hybrid vehicle
JP5510283B2 (en) Power storage unit protection system for vehicles
JP5482056B2 (en) Battery pack capacity adjustment device
JP3185674B2 (en) Power generation control device for hybrid vehicle
JP2003032805A (en) Controlling device and power outputting device, hybrid vehicle provided therewith, controlling device controlling method, and power outputting device controlling method
US20190210588A1 (en) Control apparatus and control method for hybrid system of vehicle
JP5463810B2 (en) Battery pack capacity adjustment device
JP2009303306A (en) Fault detection device, vehicle mounted with the same, and fault detection method
JP4496696B2 (en) Secondary battery temperature rise control device
JP2000324615A (en) Power generator, hybrid vehicle and controller for the power generator
JP3750567B2 (en) Apparatus and method for calculating output deterioration of secondary battery
US20210036645A1 (en) Inverter control method, and inverter control apparatus
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
JP2014110728A (en) Battery system and vehicle equipped with the same
JP3141779B2 (en) Battery remaining capacity measurement device
JP2001211507A (en) Control apparatus of hybrid vehicle
JP3661599B2 (en) Power generation control device for hybrid vehicle
JP2000030748A (en) Input - output power arithmetic unit of battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees