JP2001211507A - Control apparatus of hybrid vehicle - Google Patents

Control apparatus of hybrid vehicle

Info

Publication number
JP2001211507A
JP2001211507A JP2000014416A JP2000014416A JP2001211507A JP 2001211507 A JP2001211507 A JP 2001211507A JP 2000014416 A JP2000014416 A JP 2000014416A JP 2000014416 A JP2000014416 A JP 2000014416A JP 2001211507 A JP2001211507 A JP 2001211507A
Authority
JP
Japan
Prior art keywords
target
charge level
current
voltage battery
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000014416A
Other languages
Japanese (ja)
Other versions
JP3644335B2 (en
Inventor
Asami Kubo
麻巳 久保
Kenichi Goto
健一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000014416A priority Critical patent/JP3644335B2/en
Publication of JP2001211507A publication Critical patent/JP2001211507A/en
Application granted granted Critical
Publication of JP3644335B2 publication Critical patent/JP3644335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a regenerative energy efficiency of a hybrid vehicle at deceleration. SOLUTION: The control apparatus differentiates a target state of charge TSOC at a constant-speed driving from that of decelerating driving, and sets a target state of charge for the steady-speed driving lower (TSOCL) and that of the reduced-speed driving higher (TSOCH) (21). The apparatus calculates a target charge current for a high voltage battery after detecting a state of charge of the high voltage battery and compare the actual state of charge SOC with the target state of charge TSOC. It further calculates a target generating current for a generating motor 2 (27) after detecting an electric load current supplied from a low voltage battery to the load of vehicle (26) and integrates the electric load current with the target charge current. It then controls an amount of electric generation of the generating motor 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両走行用の駆動
源として、内燃機関と、高電圧バッテリを電力源とする
電気モータとを備え、減速運転時を含む所定の運転条件
にて、前記電気モータを発電機として用いて、前記高電
圧バッテリと車載電気負荷用の低電圧バッテリとに充電
するハイブリッド車両の制御装置に関する。
BACKGROUND OF THE INVENTION The present invention provides an internal combustion engine and an electric motor powered by a high-voltage battery as driving sources for driving a vehicle. The present invention relates to a control device for a hybrid vehicle that uses an electric motor as a generator to charge the high-voltage battery and a low-voltage battery for a vehicle-mounted electric load.

【0002】[0002]

【従来の技術】近年、特開平11−22501号公報等
に示されているように、車両走行用の駆動源として、内
燃機関(ガソリンエンジン)と、高電圧バッテリを電力
源とする電気モータと備えるハイブリッド車両の開発が
進められている。
2. Description of the Related Art In recent years, as disclosed in Japanese Patent Application Laid-Open No. H11-22501, an internal combustion engine (gasoline engine) and an electric motor using a high-voltage battery as a power source are used as driving sources for running a vehicle. The development of hybrid vehicles equipped with them is underway.

【0003】かかるハイブリッド車両では、減速運転時
を含む所定の運転条件にて、前記電気モータを発電機と
して用いて、高電圧バッテリと車載電気負荷用の低電圧
バッテリとに充電するようにしている。
[0003] In such a hybrid vehicle, the electric motor is used as a generator to charge a high-voltage battery and a low-voltage battery for an on-vehicle electric load under predetermined operating conditions including deceleration operation. .

【0004】ここで、前記電気モータによる発電量(発
電電流)は、高電圧バッテリの充電レベルを検出し、満
充電レベルとなるように制御している。
[0004] Here, the amount of power generated by the electric motor (generated current) is detected by detecting the charge level of a high-voltage battery and controlled to be at a full charge level.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、減速運
転時に、エネルギー回生を行おうとしても、高電圧バッ
テリが既に満充電レベルであると、電力を受け付けない
ため、有効にエネルギー回生を行うことができないばか
りか、高電圧バッテリが過充電状態となって、バッテリ
の劣化を早めたり、減速度(減速G)が大きくなりす
ぎ、運転者に違和感を与えたりする。
However, even if an attempt is made to regenerate energy during deceleration operation, if the high-voltage battery is already at the full charge level, no power will be accepted, so that energy regeneration cannot be performed effectively. Not only that, the high-voltage battery is overcharged, so that the deterioration of the battery is accelerated or the deceleration (deceleration G) becomes too large, giving the driver an uncomfortable feeling.

【0006】また、高電圧バッテリとして、高価なリチ
ウムイオンバッテリや、ニッケル・水素バッテリ等に代
えて、安価な鉛酸バッテリを用いる場合、鉛酸バッテリ
は、特に過充電により劣化しやすいので、過充電を確実
に防止するための対策が必要不可欠である。
When an inexpensive lead-acid battery is used as a high-voltage battery instead of an expensive lithium-ion battery, nickel-metal hydride battery, or the like, the lead-acid battery is particularly liable to be deteriorated by overcharging. It is essential to take measures to prevent charging.

【0007】本発明は、このような実状に鑑み、減速運
転時のエネルギー回生効率の向上を図り、また過充電を
確実に防止できるようにすることを目的とする。
SUMMARY OF THE INVENTION In view of such circumstances, it is an object of the present invention to improve energy regeneration efficiency during deceleration operation and to reliably prevent overcharging.

【0008】[0008]

【課題を解決するための手段】このため、請求項1に係
る発明では、車両走行用の駆動源として、内燃機関と、
高電圧バッテリを電力源とする電気モータとを備え、減
速運転時を含む所定の運転条件にて、前記電気モータを
発電機として用いて、前記高電圧バッテリと車載電気負
荷用の低電圧バッテリとに充電するハイブリッド車両の
制御装置において、前記高電圧バッテリの充電レベルを
検出して、目標充電レベルとなるように前記電気モータ
の発電量をフィードバック制御する発電量フィードバッ
ク制御手段を設け、更に、定常運転時と減速運転時とで
目標充電レベルを異ならせる目標充電レベル切換手段を
設けたことを特徴とする。
According to the present invention, an internal combustion engine and a driving source for driving a vehicle are provided.
An electric motor having a high-voltage battery as a power source, and under predetermined operating conditions including a time of deceleration operation, using the electric motor as a generator, the high-voltage battery and a low-voltage battery for a vehicle-mounted electric load. In the control device for a hybrid vehicle, the power generation amount feedback control means for detecting the charge level of the high-voltage battery and performing feedback control of the power generation amount of the electric motor so as to reach the target charge level is further provided. A target charge level switching means for making the target charge level different between the operation and the deceleration operation is provided.

【0009】請求項2に係る発明では、定常運転時の目
標充電レベルを減速運転時の目標充電レベルより低く設
定することを特徴とする。請求項3に係る発明では、減
速運転時の目標充電レベルを満充電レベル相当に設定す
ることを特徴とする。
[0009] The invention according to claim 2 is characterized in that the target charge level during steady operation is set lower than the target charge level during deceleration operation. The invention according to claim 3 is characterized in that the target charge level during the deceleration operation is set to be equivalent to the full charge level.

【0010】請求項4に係る発明では、前記発電量フィ
ードバック制御手段は、前記高電圧バッテリの充電レベ
ルを検出する充電レベル検出手段と、実際の充電レベル
を目標充電レベルと比較して前記高電圧バッテリへの目
標充電電流を算出する目標充電電流算出手段と、前記低
電圧バッテリから車載電気負荷に供給されている電気負
荷電流を検出する電気負荷電流検出手段と、前記目標充
電電流と前記電気負荷電流とを加算して前記電気モータ
による目標発電電流を算出する目標発電電流算出手段
と、前記目標発電電流を得るように前記電気モータの発
電量制御を行う発電量制御手段と、を含んで構成される
ことを特徴とする。
[0010] In the invention according to claim 4, the power generation amount feedback control means includes a charge level detection means for detecting a charge level of the high voltage battery, and an actual charge level which is compared with a target charge level. Target charging current calculating means for calculating a target charging current to the battery; electric load current detecting means for detecting an electric load current supplied to the vehicle-mounted electric load from the low-voltage battery; the target charging current and the electric load A target power generation current calculation means for calculating a target power generation current by the electric motor by adding a current; and a power generation amount control means for performing power generation control of the electric motor so as to obtain the target power generation current. It is characterized by being performed.

【0011】請求項5に係る発明では、前記高電圧バッ
テリとして、鉛酸バッテリを用いることを特徴とする。
The invention according to claim 5 is characterized in that a lead-acid battery is used as the high-voltage battery.

【0012】[0012]

【発明の効果】請求項1に係る発明によれば、高電圧バ
ッテリの充電レベルを検出して、目標充電レベルとなる
ように電気モータの発電量をフィードバック制御する際
に、定常運転時と減速運転時とで目標充電レベルを異な
らせることにより、特に請求項2に係る発明のように、
定常運転時の目標充電レベルを減速運転時の目標充電レ
ベルより低く設定することにより、定常運転時に満充電
状態とならないように制御して、減速運転時のエネルギ
ー回生分の空容量を確保しておくことができ、減速運転
時のエネルギー回生をより効果的なものとすることがで
きる。
According to the first aspect of the present invention, when the charge level of the high-voltage battery is detected and the amount of electric power generated by the electric motor is feedback-controlled so as to reach the target charge level, deceleration during steady-state operation is reduced. By making the target charge level different from that during driving, particularly as in the invention according to claim 2,
By setting the target charge level during steady-state operation to be lower than the target charge level during deceleration operation, control is performed so that the battery does not become fully charged during steady-state operation, and the empty capacity for energy regeneration during deceleration operation is secured. Energy regeneration during deceleration operation can be made more effective.

【0013】また、請求項3に係る発明のように、減速
運転時の目標充電レベルを満充電レベル相当に設定する
ことで、減速運転時に十分なエネルギー回生を行うこと
ができる。
Further, by setting the target charge level during deceleration operation to be equivalent to the full charge level as in the invention according to claim 3, sufficient energy regeneration can be performed during deceleration operation.

【0014】請求項4に係る発明によれば、高電圧バッ
テリの充電レベルを検出して、目標充電レベルとなるよ
うに高電圧バッテリへの目標充電電流を算出する一方、
低電圧バッテリから車載電気負荷に供給されている電気
負荷電流を検出し、目標充電電流と電気負荷電流とを加
算して電気モータによる目標発電電流を算出し、この目
標発電電流を得るように電気モータの発電量制御を行う
ことで、すなわち、低電圧バッテリから車載電気負荷に
供給されている電気負荷電流を考慮して発電量制御を行
うことで、充電効率が向上し、バッテリの能力をフルに
使えるようになる。
According to the present invention, the charge level of the high-voltage battery is detected and the target charge current to the high-voltage battery is calculated so as to reach the target charge level.
The electric load current supplied from the low-voltage battery to the on-vehicle electric load is detected, and the target charging current and the electric load current are added to calculate a target generation current by the electric motor. By controlling the power generation of the motor, that is, by controlling the power generation in consideration of the electric load current supplied from the low-voltage battery to the on-vehicle electric load, the charging efficiency is improved and the capacity of the battery is fully utilized. Can be used for

【0015】請求項5に係る発明によれば、高電圧バッ
テリとして、鉛酸バッテリを用いることで、大幅なコス
ト低減が可能となる。
According to the fifth aspect of the invention, the use of a lead-acid battery as the high-voltage battery makes it possible to significantly reduce the cost.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。図1は本発明の一実施形態を示すハイブリ
ッド車両のシステム図である。
Embodiments of the present invention will be described below. FIG. 1 is a system diagram of a hybrid vehicle showing one embodiment of the present invention.

【0017】内燃機関(以下エンジンという)1の出力
側に、発電機を兼ねる電気モータ(以下モータジェネレ
ータという)2を直結し、このモータジェネレータ2に
変速機3を接続して、この変速機3の出力側の駆動軸4
によりデフ5を介して駆動輪側の車軸6を駆動するよう
にしてある。
An output side of an internal combustion engine (hereinafter referred to as an engine) 1 is directly connected to an electric motor (hereinafter referred to as a motor generator) 2 which also serves as a generator, and a transmission 3 is connected to the motor generator 2. Drive shaft 4 on the output side
Thus, the axle 6 on the driving wheel side is driven via the differential 5.

【0018】ここにおいて、モータジェネレータ2は、
エンジンの始動又は車両の発進時にエンジン1のクラン
キングを行う始動手段として使用し、特に、所定のアイ
ドルストップ条件にてエンジン1を自動的に停止させる
アイドルストップ装置を装備する場合に、アイドルスト
ップ後に、所定のアイドルストップ解除条件にてエンジ
ン1を自動的に始動する時に使用する一方、必要によ
り、加速時などの所定の運転条件にて、エンジン1のト
ルクにモータ2のトルクを付加して、車両の加速等を円
滑に行うために使用する。そして、減速運転時を含む所
定の運転条件では、モータジェネレータ2を発電機とし
て用いて、バッテリへの充電のために使用し、特に減速
運転時には、駆動軸4側からのエネルギーを回生して、
バッテリ充電のための発電を行わせる。
Here, the motor generator 2 is
Used as a starting means for cranking the engine 1 when the engine is started or when the vehicle starts, especially when an idle stop device for automatically stopping the engine 1 under predetermined idle stop conditions is provided, It is used when the engine 1 is automatically started under a predetermined idle stop release condition. On the other hand, if necessary, the torque of the motor 2 is added to the torque of the engine 1 under a predetermined operating condition such as acceleration. Used to smoothly accelerate the vehicle. Then, under predetermined operating conditions including at the time of deceleration operation, the motor generator 2 is used as a generator and used for charging a battery, and particularly at the time of deceleration operation, energy from the drive shaft 4 side is regenerated.
Power generation for battery charging is performed.

【0019】図2は上記ハイブリッド車両における電力
供給系のシステム図である。高電圧バッテリ11は、定
格42V程度の、モータジェネレータ2の電力源となる
充放電可能な電池電源であって、具体的には鉛酸バッテ
リ(lead-acid battery ;充放電中に組成が変わる酸化
鉛を含む鉛の格子を電極とし、希硫酸を電解質とする鉛
蓄電池)を用いている。
FIG. 2 is a system diagram of a power supply system in the hybrid vehicle. The high-voltage battery 11 is a chargeable / dischargeable battery power supply having a rating of about 42 V and serving as a power source of the motor generator 2. Specifically, a lead-acid battery (lead-acid battery) whose composition changes during charge / discharge A lead-acid battery using a lead grid containing lead as an electrode and dilute sulfuric acid as an electrolyte is used.

【0020】ここで、高電圧バッテリ11の充電時に
は、すなわち、モータジェネレータ2から発電電力が得
られている状態では、モータジェネレータ2より発生す
る3相交流電力が、インバータ12により直流電力に変
換されて、ジャンクションボックス13を介して、供給
され、放電時には、その放電電力がジャンクションボッ
クス13及びインバータ12を介して3相交流電力に変
換されて、モータジェネレータ2に供給される。
Here, when the high-voltage battery 11 is charged, that is, when the generated power is obtained from the motor generator 2, the three-phase AC power generated by the motor generator 2 is converted into DC power by the inverter 12. The electric power is supplied via the junction box 13, and at the time of discharging, the discharged electric power is converted into three-phase AC electric power via the junction box 13 and the inverter 12 and supplied to the motor generator 2.

【0021】低電圧バッテリ14は、エンジン補機負荷
を含む車載電気負荷の電力源として一般的に用いられて
いる定格14V程度の鉛酸電池で、その電気エネルギー
はモータジェネレータ2からインバータ12及びジャン
クションボックス13を経由した後、DC/DCコンバ
ータ15を介して蓄えられる。
The low-voltage battery 14 is a lead-acid battery having a rating of about 14 V which is generally used as a power source for an on-vehicle electric load including an engine auxiliary load, and its electric energy is supplied from the motor generator 2 to the inverter 12 and the junction. After passing through the box 13, it is stored via the DC / DC converter 15.

【0022】コントロールユニット16は、エンジン回
転数Ne、車速VSP及びアイドルスイッチ信号を含む
車両の各種運転条件が入力される他、電流センサ及び電
圧センサを介して、モータジェネレータ2より発生しイ
ンバータ12により変換された発電電流IMG、高電圧
バッテリ11への充電電流(又は放電電流)IH及びそ
の端子電圧VHの検出を行う。そして、これらを基に、
モータジェネレータ2の作動を制御する機能を有し、特
に、高電圧バッテリ11の充電レベルSOC(State of
Charge )を検出して、目標充電レベルTSOCとなる
ように、モータジェネレータ2の発電量(発電電流)を
フィードバック制御する発電量フィードバック制御手段
としての機能を有している。尚、充電レベルSOCの検
出は、前記IH,VHに基づく推定により行う。
The control unit 16 receives various operating conditions of the vehicle including the engine speed Ne, the vehicle speed VSP, and the idle switch signal. The control unit 16 generates the current from the motor generator 2 via the current sensor and the voltage sensor. The converted generated current IMG, the charging current (or discharging current) IH to the high-voltage battery 11 and the terminal voltage VH thereof are detected. And based on these,
It has a function of controlling the operation of the motor generator 2, and particularly has a charge level SOC (State of State) of the high-voltage battery 11.
Charge), and has a function as power generation amount feedback control means for performing feedback control of the power generation amount (generation current) of the motor generator 2 so as to reach the target charge level TSOC. Note that detection of the charge level SOC is performed by estimation based on the IH and VH.

【0023】図3は前記コントロールユニット16によ
るモータジェネレータ2の発電量(発電電流)制御の制
御ブロック図であり、全体が発電量フィードバック制御
手段に相当する。
FIG. 3 is a control block diagram of the control of the power generation amount (generation current) of the motor generator 2 by the control unit 16, and the whole corresponds to a power generation amount feedback control means.

【0024】目標充電レベル切換手段21は、高電圧バ
ッテリ11の目標充電レベルTSOCを設定するもの
で、切換スイッチ(SW)により、定常運転時は、減速
運転(エネルギー回生時)に余裕を残すように、目標充
電レベルTSOCを低めの所定値TSOCLに設定し、
減速運転時は、十分なエネルギー回生のため、目標充電
レベルTSOCを高めの所定値TSOCHに設定する。
The target charge level switching means 21 sets the target charge level TSOC of the high-voltage battery 11, and has a margin for deceleration operation (during energy regeneration) during steady operation by a changeover switch (SW). , The target charge level TSOC is set to a lower predetermined value TSOCL,
During deceleration operation, the target charge level TSOC is set to a higher predetermined value TSOCH for sufficient energy regeneration.

【0025】ここで、目標充電レベルTSOCは、満充
電量(所定の初期容量又は満充電状態にて学習した満充
電量)に対する目標充電量の割合で、定常運転時のTS
OCLは例えば80%、減速運転時のTSOCHは例え
ば95%に設定する。
Here, the target charge level TSOC is a ratio of the target charge amount to a full charge amount (a predetermined initial capacity or a full charge amount learned in a full charge state), and is a TS in a normal operation.
OCL is set to, for example, 80%, and TSOCH during deceleration operation is set to, for example, 95%.

【0026】具体的には、図4のフローチャートに示す
ように、S1にて、エンジン回転数Ne、車速VSP及
びアイドルスイッチ信号から、減速運転時(Ne≧所定
値、VSP≧所定値、かつアイドルスイッチON)か否
かを判定する。この結果、減速運転時でない場合、すな
わち、定常運転時の場合は、S2へ進んで、目標充電レ
ベルTSOCを低めの所定値TSOCL(例えば80
%)に設定する。また、減速運転時の場合は、S3へ進
んで、目標充電レベルTSOCを高めの所定値TSOC
H(例えば95%)に設定する。
More specifically, as shown in the flowchart of FIG. 4, at S1, the engine speed Ne, the vehicle speed VSP, and the idle switch signal are used to determine the deceleration operation (Ne ≧ predetermined value, VSP ≧ predetermined value, idle Switch ON) is determined. As a result, when the vehicle is not in the deceleration operation, that is, in the case of the steady operation, the process proceeds to S2, and the target charge level TSOC is lowered to a predetermined value TSOCL (for example, 80).
%). Further, in the case of the deceleration operation, the process proceeds to S3, in which the target charge level TSOC is increased to a predetermined value TSOC.
H (for example, 95%).

【0027】尚、減速運転時のTSOCHは満充電レベ
ル相当に設定するが、実際の充電レベルSOCの検出誤
差(推定誤差)を考慮し、検出誤差が±α(%)である
とすると、100−α(%)に設定する。従って、検出
誤差が±5%であれば、95%に設定する。検出誤差に
よる過充電を防止するためである。
Although TSOCH during deceleration operation is set to be equivalent to the full charge level, considering the detection error (estimation error) of the actual charge level SOC, if the detection error is ± α (%), 100 -Set to α (%). Therefore, if the detection error is ± 5%, it is set to 95%. This is to prevent overcharging due to a detection error.

【0028】充電レベル検出手段22は、高電圧バッテ
リ11の実際の充電レベルSOCを検出(推定)する。
具体的には、先ず、始動時(大放電時)に、放電時特性
VH=VH0−IH・R0(VHはバッテリ端子電圧、
VH0は開放端電圧(起電力)、IHは放電電流、R0
は内部抵抗)より、実際に検出した複数点でのVH、I
Hから、VH0、R0を求め、充電量=f(VH0)を
推定する。その後は、電流センサにより検出される高電
圧バッテリ11の充放電電流IHを時間積算して、充電
量を更新する(充電量=充電量+IH・Δt;Δtは積
算の時間隔)。そして、このようにして求められる充電
量を満充電量(所定の初期容量又は満充電状態にて学習
した満充電量)にて除算して、充電レベルSOC(%)
を算出する。
The charge level detecting means 22 detects (estimates) the actual charge level SOC of the high-voltage battery 11.
Specifically, first, at the time of startup (at the time of large discharge), the discharge characteristic VH = VH0−IH · R0 (VH is a battery terminal voltage,
VH0 is the open end voltage (electromotive force), IH is the discharge current, R0
Is the internal resistance), VH and I at a plurality of actually detected points
From H, VH0 and R0 are obtained, and the charge amount = f (VH0) is estimated. Thereafter, the charge / discharge current IH of the high-voltage battery 11 detected by the current sensor is integrated over time to update the charge amount (charge amount = charge amount + IH ・ Δt; Δt is a time interval of the integration). Then, the charge amount obtained in this manner is divided by a full charge amount (a predetermined initial capacity or a full charge amount learned in a full charge state) to obtain a charge level SOC (%).
Is calculated.

【0029】尚、ここでは充電レベルSOC及び目標充
電レベルTSOCを満充電状態に対する割合(%)とし
て検出、設定しているが、絶対量(A・Hr)である充
電量として検出、設定するようにしてもよい。
Here, the charge level SOC and the target charge level TSOC are detected and set as the ratio (%) to the fully charged state, but are detected and set as the charge amount which is the absolute amount (A · Hr). It may be.

【0030】目標充電電流算出手段23は、目標充電レ
ベルTSOCと実際の充電レベルSOCとを比較し、そ
の差分(TSOC−SOC)に比例積分制御に基づくゲ
インKを乗じるなどして、充電量のフィードバック制御
量を算出し、これを電流変換して、高電圧バッテリ11
への目標充電電流を算出する。
The target charge current calculating means 23 compares the target charge level TSOC with the actual charge level SOC, and multiplies the difference (TSOC-SOC) by a gain K based on the proportional integral control to calculate the charge amount. The feedback control amount is calculated, and this is converted into a current to obtain a high-voltage battery 11.
Calculate the target charging current to

【0031】一方、発電電流検出手段24は、電流セン
サにより、モータジェネレータ2の実際の発電電流IM
Gを検出する。充電電流検出手段25は、電流センサに
より、高電圧バッテリ11への実際の充電電流IHを検
出する。
On the other hand, the generated current detecting means 24 detects the actual generated current IM of the motor generator 2 by the current sensor.
G is detected. The charging current detecting means 25 detects an actual charging current IH to the high-voltage battery 11 by a current sensor.

【0032】電気負荷電流検出手段26は、モータジェ
ネレータ2の発電電流IMGから、高電圧バッテリ11
への充電電流IHを減算して、エアコン、パワステ、ラ
イト、ワイパー等の車載電気負荷に供給されている電気
負荷電流(=IMG−IH)を算出する。すなわち、モ
ータジェネレータ2の発電電流IMGから、高電圧バッ
テリ11への充電電流IHを減算して、低電圧バッテリ
14への充電電流IL=IMG−IHを求め、この低電
圧バッテリ14への充電電流ILを、電気負荷電流(=
IL)と推定するのである。
The electric load current detecting means 26 detects the high voltage battery 11 from the current IMG generated by the motor generator 2.
Is subtracted from the charging current IH to calculate the electric load current (= IMG-IH) supplied to the vehicle-mounted electric loads such as the air conditioner, the power steering, the light, and the wiper. That is, the charge current IH to the high-voltage battery 11 is subtracted from the current IMG generated by the motor generator 2 to obtain a charge current IL to the low-voltage battery 14 = IMG-IH. IL is expressed by the electric load current (=
IL).

【0033】バッテリ充電時目標発電電流算出手段27
は、前記目標充電電流算出手段23により算出された目
標充電電流に、前記電気負荷電流検出手段26により求
められた電気負荷電流を加算して、モータジェネレータ
2の目標発電電流(=目標充電電流+電気負荷電流)を
算出する。
Battery charge target power generation current calculation means 27
Is calculated by adding the electric load current calculated by the electric load current detecting means 26 to the target charging current calculated by the target charging current calculating means 23, and calculating the target generated current of the motor generator 2 (= target charging current + Electric load current) is calculated.

【0034】バッテリ放電時目標発電電流設定手段28
は、バッテリ放電時のバッテリ劣化を防止すべく、バッ
テリ放電時にモータジェネレータ2より微量の発電電流
を得るためのもので、目標発電電流を1〜2A程度(定
数)に設定する。
Target power generation current setting means 28 during battery discharge
Is for obtaining a small amount of generated current from the motor generator 2 during battery discharge in order to prevent battery deterioration during battery discharge, and sets the target generated current to about 1 to 2 A (constant).

【0035】目標発電電流決定手段29は、選択スイッ
チ(SW)により、バッテリ充電中は、前記バッテリ充
電時目標発電電流算出手段27により算出されたバッテ
リ充電時目標発電電流を、目標発電電流として決定し、
バッテリ放電中は、前記バッテリ放電時目標発電電流算
出手段28により設定されたバッテリ放電時目標発電電
流(微量発電電流)を、目標発電電流として決定する。
The target power generation current determination means 29 determines the target power generation current at the time of battery charging, calculated by the battery power target power generation current calculation means 27, as a target power generation current by the selection switch (SW) during battery charging. And
During battery discharge, the target power generation current during battery discharge (trace power generation current) set by the target power generation current at battery discharge calculation means 28 is determined as the target power generation current.

【0036】目標トルク算出手段30は、前記目標発電
電流決定手段29により決定された目標発電電流を、図
3中(a)のテーブルを参照して、目標トルクに変換す
る。モータジェネレータ駆動電流制御手段31は、この
目標トルクとエンジン回転数Neとに基づき、図3中
(b)のマップを参照して、現在のエンジン回転数Ne
で目標トルクを出すために必要なモータジェネレータ2
への駆動電流を決定して出力し、これによりモータジェ
ネレータ2の発電電流を制御する。ここで、目標トルク
算出手段30及びモータジェネレータ駆動電流制御手段
31が発電量制御手段に相当する。
The target torque calculating means 30 converts the target generated current determined by the target generated current determining means 29 into a target torque with reference to the table shown in FIG. The motor generator drive current control means 31 refers to the map shown in FIG. 3B based on the target torque and the engine speed Ne to determine the current engine speed Ne.
Motor generator 2 required to produce target torque
Is determined and output, and thereby the generated current of the motor generator 2 is controlled. Here, the target torque calculation means 30 and the motor generator drive current control means 31 correspond to the power generation amount control means.

【0037】以上のような制御により、高電圧バッテリ
11として鉛酸バッテリを用い、定常運転時は減速運転
時(エネルギー回生時)に余裕を残すようにバッテリに
充電することで、減速運転時に十分なエネルギー回生が
可能となり、回生効率を大幅に向上することができる。
また、過充電によるバッテリ劣化を防止し、併せて減速
Gが大きくなり過ぎるのを防止することができる。
With the above-described control, a lead-acid battery is used as the high-voltage battery 11, and the battery is charged so as to leave a margin during deceleration operation (at the time of energy regeneration) during steady-state operation. Energy regeneration becomes possible, and the regeneration efficiency can be greatly improved.
Further, it is possible to prevent the battery from being deteriorated due to overcharging and also prevent the deceleration G from becoming too large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示すハイブリッド車両
のシステム図
FIG. 1 is a system diagram of a hybrid vehicle showing an embodiment of the present invention.

【図2】 同上のハイブリッド車両における電力供給系
のシステム図
FIG. 2 is a system diagram of a power supply system in the hybrid vehicle according to the first embodiment;

【図3】 モータジェネレータの発電量制御の制御ブロ
ック図
FIG. 3 is a control block diagram of power generation control of a motor generator.

【図4】 目標充電レベル切換のフローチャートFIG. 4 is a flowchart for switching a target charge level.

【符号の説明】[Explanation of symbols]

1 エンジン 2 モータジェネレータ 3 変速機 11 高電圧バッテリ 12 インバータ 13 ジャンクションボックス 14 低電圧バッテリ 15 DC−DCコンバータ 16 コントロールユニット 21 目標充電レベル切換手段 22 充電レベル検出手段 23 目標充電電流算出手段 24 発電電流検出手段 25 充電電流検出手段 26 電気負荷電流検出手段 27 バッテリ充電時目標発電電流算出手段 28 バッテリ放電時目標発電電流設定手段 29 目標発電電流決定手段 30 目標トルク算出手段(発電量制御手段) 31 モータジェネレータ駆動電流制御手段(発電量制
御手段)
DESCRIPTION OF SYMBOLS 1 Engine 2 Motor generator 3 Transmission 11 High voltage battery 12 Inverter 13 Junction box 14 Low voltage battery 15 DC-DC converter 16 Control unit 21 Target charging level switching means 22 Charge level detecting means 23 Target charging current calculating means 24 Generated current detection Means 25 Charge current detecting means 26 Electric load current detecting means 27 Target generating current calculating means at battery charging 28 Target generating current setting means at battery discharging 29 Target generating current determining means 30 Target torque calculating means (power generation amount controlling means) 31 Motor generator Drive current control means (power generation amount control means)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G093 AA07 BA00 CB01 CB07 EB09 FA04 5H115 PA11 PG04 PI15 PI16 PI29 PI30 PO17 PU01 PU08 PU25 PV02 PV09 QE10 QI04 QN09 RB08 SE04 SE06 TI01 TI05 TI06 TO12 TR19 TU16  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G093 AA07 BA00 CB01 CB07 EB09 FA04 5H115 PA11 PG04 PI15 PI16 PI29 PI30 PO17 PU01 PU08 PU25 PV02 PV09 QE10 QI04 QN09 RB08 SE04 SE06 TI01 TI05 TI06 TO12 TR19 TU16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】車両走行用の駆動源として、内燃機関と、
高電圧バッテリを電力源とする電気モータとを備え、減
速運転時を含む所定の運転条件にて、前記電気モータを
発電機として用いて、前記高電圧バッテリと車載電気負
荷用の低電圧バッテリとに充電するハイブリッド車両の
制御装置において、 前記高電圧バッテリの充電レベルを検出して、目標充電
レベルとなるように前記電気モータの発電量をフィード
バック制御する発電量フィードバック制御手段を設け、 更に、定常運転時と減速運転時とで目標充電レベルを異
ならせる目標充電レベル切換手段を設けたことを特徴と
するハイブリッド車両の制御装置。
An internal combustion engine as a driving source for driving a vehicle,
An electric motor having a high-voltage battery as a power source, and under predetermined operating conditions including a time of deceleration operation, using the electric motor as a generator, the high-voltage battery and a low-voltage battery for a vehicle-mounted electric load. A control device for a hybrid vehicle that charges the electric motor, wherein a power generation amount feedback control unit that detects a charge level of the high-voltage battery and performs feedback control of a power generation amount of the electric motor so as to reach a target charge level; A control device for a hybrid vehicle, comprising target charge level switching means for making a target charge level different between during operation and during deceleration operation.
【請求項2】定常運転時の目標充電レベルを減速運転時
の目標充電レベルより低く設定することを特徴とする請
求項1記載のハイブリッド車両の制御装置。
2. The hybrid vehicle control device according to claim 1, wherein a target charge level during steady operation is set lower than a target charge level during deceleration operation.
【請求項3】減速運転時の目標充電レベルを満充電レベ
ル相当に設定することを特徴とする請求項2記載のハイ
ブリッド車両の制御装置。
3. The hybrid vehicle control device according to claim 2, wherein the target charge level at the time of deceleration operation is set to correspond to a full charge level.
【請求項4】前記発電量フィードバック制御手段は、前
記高電圧バッテリの充電レベルを検出する充電レベル検
出手段と、実際の充電レベルを目標充電レベルと比較し
て前記高電圧バッテリへの目標充電電流を算出する目標
充電電流算出手段と、前記低電圧バッテリから車載電気
負荷に供給されている電気負荷電流を検出する電気負荷
電流検出手段と、前記目標充電電流と前記電気負荷電流
とを加算して前記電気モータによる目標発電電流を算出
する目標発電電流算出手段と、前記目標発電電流を得る
ように前記電気モータの発電量制御を行う発電量制御手
段と、を含んで構成されることを特徴とする請求項1〜
請求項3のいずれか1つに記載のハイブリッド車両の制
御装置。
4. The power generation amount feedback control means includes: a charge level detection means for detecting a charge level of the high-voltage battery; and a target charge current to the high-voltage battery by comparing an actual charge level with a target charge level. A target charging current calculating unit that calculates an electric load current supplied to the vehicle-mounted electric load from the low-voltage battery, and adding the target charging current and the electric load current. A target power generation current calculation means for calculating a target power generation current by the electric motor, and a power generation amount control means for controlling the power generation amount of the electric motor to obtain the target power generation current, Claim 1 to
The control device for a hybrid vehicle according to claim 3.
【請求項5】前記高電圧バッテリとして、鉛酸バッテリ
を用いることを特徴とする請求項1〜請求項4のいずれ
か1つに記載のハイブリッド車両の制御装置。
5. The control device for a hybrid vehicle according to claim 1, wherein a lead-acid battery is used as the high-voltage battery.
JP2000014416A 2000-01-24 2000-01-24 Control device for hybrid vehicle Expired - Fee Related JP3644335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014416A JP3644335B2 (en) 2000-01-24 2000-01-24 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014416A JP3644335B2 (en) 2000-01-24 2000-01-24 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2001211507A true JP2001211507A (en) 2001-08-03
JP3644335B2 JP3644335B2 (en) 2005-04-27

Family

ID=18541871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014416A Expired - Fee Related JP3644335B2 (en) 2000-01-24 2000-01-24 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3644335B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917179B2 (en) 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP2015171296A (en) * 2014-03-10 2015-09-28 古河電気工業株式会社 Charge control apparatus, and charge control method
JP2016205386A (en) * 2015-04-14 2016-12-08 カルソニックカンセイ株式会社 Power generation control device
CN106394275A (en) * 2015-07-31 2017-02-15 丰田自动车株式会社 Hybrid vehicle
KR20190070204A (en) * 2017-12-12 2019-06-20 현대자동차주식회사 Controlling method and system for monitoring deterioration of battery of vehicle
FR3101733A1 (en) * 2019-10-07 2021-04-09 Continental Automotive Method of stabilizing the state of a charge of a traction battery
CN118220110A (en) * 2024-05-23 2024-06-21 盛瑞传动股份有限公司 Electric energy management method, device and equipment
WO2024177130A1 (en) * 2023-02-22 2024-08-29 エリーパワー株式会社 Secondary-battery-unit charging state estimation device, secondary-battery-unit charging state estimation method, and secondary-battery-unit charging state estimation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109572675B (en) * 2017-09-29 2020-07-10 比亚迪股份有限公司 Hybrid electric vehicle and power generation control method and device thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41303E1 (en) 2001-10-25 2010-05-04 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
US6917179B2 (en) 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP2015171296A (en) * 2014-03-10 2015-09-28 古河電気工業株式会社 Charge control apparatus, and charge control method
US10910971B2 (en) 2015-04-14 2021-02-02 Calsonic Kansei Corporation Alternator control unit, alternator driving control method, and power supply management system for engine vehicle
JP2016205386A (en) * 2015-04-14 2016-12-08 カルソニックカンセイ株式会社 Power generation control device
CN107532528A (en) * 2015-04-14 2018-01-02 康奈可关精株式会社 Control unit, the drive control method of alternating current generator and the power-supply management system of engine vehicle of alternating current generator
CN107532528B (en) * 2015-04-14 2021-01-05 康奈可关精株式会社 Control unit for alternator, method for controlling drive of alternator, and power management system for engine vehicle
CN106394275A (en) * 2015-07-31 2017-02-15 丰田自动车株式会社 Hybrid vehicle
KR20190070204A (en) * 2017-12-12 2019-06-20 현대자동차주식회사 Controlling method and system for monitoring deterioration of battery of vehicle
KR102542958B1 (en) * 2017-12-12 2023-06-14 현대자동차주식회사 Controlling method and system for monitoring deterioration of battery of vehicle
FR3101733A1 (en) * 2019-10-07 2021-04-09 Continental Automotive Method of stabilizing the state of a charge of a traction battery
WO2021069356A1 (en) * 2019-10-07 2021-04-15 Vitesco Technologies GmbH Method for stabilising the charge state of a traction battery
WO2024177130A1 (en) * 2023-02-22 2024-08-29 エリーパワー株式会社 Secondary-battery-unit charging state estimation device, secondary-battery-unit charging state estimation method, and secondary-battery-unit charging state estimation program
CN118220110A (en) * 2024-05-23 2024-06-21 盛瑞传动股份有限公司 Electric energy management method, device and equipment

Also Published As

Publication number Publication date
JP3644335B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3967043B2 (en) Control device for hybrid vehicle
JP3736268B2 (en) Control device for hybrid vehicle
JP3536581B2 (en) Power generation control device for hybrid electric vehicle
US8639413B2 (en) Vehicle power supply system and method for controlling the same
US20050099155A1 (en) Battery power circuit
CN103717434A (en) Vehicle drive device
US20150046007A1 (en) Electric power generation control system for hybrid automobile
JP2004328906A (en) Charging controller of hybrid vehicle
JP2004320877A (en) Power device for drive unit and automobile equipped with the same, and control method of power device
JP3185674B2 (en) Power generation control device for hybrid vehicle
JPH07236203A (en) Controller for electric automobile
JP3644335B2 (en) Control device for hybrid vehicle
JP2001292506A (en) Control apparatus for hybrid vehicle
JP3687463B2 (en) Control device for hybrid vehicle
JP2973657B2 (en) Power distribution system for series hybrid vehicles
JP2001157306A (en) Control device of hybrid vehicle
JP7373113B2 (en) Vehicle power control device
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
JP2006158161A (en) Charge/discharge control device for motor battery
JP3141779B2 (en) Battery remaining capacity measurement device
JP2004248465A (en) Apparatus and method for controlling charging of battery
JP2001157307A (en) Control device of hybrid vehicle
JP3772875B2 (en) Control device for hybrid vehicle
JP3661599B2 (en) Power generation control device for hybrid vehicle
JPH06233466A (en) Controller for electric car

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees