JP3780979B2 - Charge / discharge control apparatus and method - Google Patents

Charge / discharge control apparatus and method Download PDF

Info

Publication number
JP3780979B2
JP3780979B2 JP2002163091A JP2002163091A JP3780979B2 JP 3780979 B2 JP3780979 B2 JP 3780979B2 JP 2002163091 A JP2002163091 A JP 2002163091A JP 2002163091 A JP2002163091 A JP 2002163091A JP 3780979 B2 JP3780979 B2 JP 3780979B2
Authority
JP
Japan
Prior art keywords
storage device
power storage
charge
secondary battery
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163091A
Other languages
Japanese (ja)
Other versions
JP2004015866A (en
Inventor
泰成 久光
孝昭 安部
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002163091A priority Critical patent/JP3780979B2/en
Publication of JP2004015866A publication Critical patent/JP2004015866A/en
Application granted granted Critical
Publication of JP3780979B2 publication Critical patent/JP3780979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば二次電池とキャパシタとを並列接続し、これら二次電池及びキャパシタの電力を電源として駆動するパラレルハイブリッド車に使用して好適な充放電制御装置及び方法に関する。
【0002】
【従来の技術】
従来より、二次電池に蓄積した電力を用いて車両内の駆動モータや補機を駆動するハイブリッド車両が知られている。このようなハイブリッド車両に搭載される二次電池は、化学反応を利用しているため、周囲温度が低下すると内部抵抗が大きくなり、放電可能出力が低下する。
【0003】
このように放電可能出力が低下するため、低温での二次電池性能で車両の性能設計を行う必要があり、その結果、二次電池を多く車載することになる。すると、二次電池のコストアップや、二次電池の重量が増加することによる車両の動力性能の低下や燃費性能の低下が発生してしまう。
【0004】
これに対し、常温での二次電池性能で車両の性能設計を行うと、低温での燃費性能が著しく低下してしまう。そこで、従来では、低温時の二次電池性能が低下するが、コスト面と車両の動力性能などを考慮して車両を設計することが多い。
【0005】
また、従来より、ハイブリット車両の電源として、二次電池とキャパシタとを並列に接続した蓄電装置が検討されている。この蓄電装置は、低温時の電力出力特性を確保し、二次電池単体での蓄電装置と比較して小型化かつ低コストを実現可能であるという利点がある。これは、二次電池は温度変化により出力特性が大きく変化するのに対し、キャパシタは温度変化に対する出力特性がほとんど変化しないことによる。
【0006】
すなわち、このパラレルハイブリッド車両では、低温時の電力出力特性を満足させるために、二次電池を多く車載しなければならない分を低温性能の良いキャパシタで補う。また、このパラレルハイブリッド車両では、蓄電装置に要求される低温時の出力性能を、車両走行に支障がない程度の出力とする。
【0007】
このようなパラレルハイブリッド車両では、低温時に車両が走行を開始した場合、二次電池の放電可能電力が低く所定の燃費性能が得られないことになるので、蓄電装置内の二次電池を加熱し、二次電池の放電可能電力を向上させることが望まれる。二次電池を最も早く昇温させる手法としては、二次電池の最大電流値を車両駆動用モータ及び補機に流すことが考えられる。このことを利用した従来技術としては、例えば特開平11−026032号公報に記載されたものがある。
【0008】
この技術をパラレルハイブリット型車両に適用した場合、蓄電装置の最大電流値を車両駆動用モータ及び補機に流し、蓄電装置の残容量が低下したら蓄電装置を発電機で充電し、蓄電装置の残容量がある所定値以上となると充電を停止し、再度、蓄電装置の最大電流値を車両駆動用モータ及び補機に流すように制御をする。
【0009】
【発明が解決しようとする課題】
しかしながら、上述の従来の技術では、車両の走行条件や補機の容量の制限によって蓄電装置の最大電流を充放電時に流すことができないといった問題がある。すなわち、その上限電力付近で使用されるように設定しておくため二次電池に流れる電流が最大となるSOCが決まるが、キャパシタと二次電池を並列に接続した蓄電装置では十分に対応できず、効率的に二次電池を昇温することが困難である。
【0010】
そこで、本発明は、上述した実情に鑑みて提案されたものであり、蓄電装置を定電力で充放電する場合であっても、短時間で二次電池を昇温させることができる充放電制御装置及び方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明は、少なくとも1つの二次電池と少なくとも1つのキャパシタとを並列に接続した蓄電装置に対する充放電を制御するに際して、二次電池の動作時の発熱量が最大となるときの蓄電装置の残容量を演算し、二次電池の動作時の発熱量が最大となるときの蓄電装置の充放電周期を演算し、現在の蓄電装置の残容量を演算した蓄電装置の残容量とした後に、蓄電装置の充放電周期を演算した充放電周期にして蓄電装置に対する充放電をすることにより、二次電池の温度を制御することによって上述の課題を解決する。
【0012】
【発明の効果】
本発明によれば、二次電池の発熱量が最大となる蓄電装置の残容量になるように蓄電装置を充放電し、二次電池の発熱量が最大となる充放電周期で充放電するので、定電力にて蓄電装置の充放電を行う必要がある場合であっても、二次電池の温度を短時間で上昇させて、短時間で蓄電装置の放電可能出力及び充電可能入力を向上させることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0014】
本発明は、例えば図1に示すように構成されたハイブリッド型車両に適用される。
【0015】
[ハイブリッド型車両の構成]
このハイブリッド型車両は、その駆動系として、発電モータ1、エンジン2、クラッチ3、駆動モータ4、無段変速機5、ディファレンシャルギヤ6及び駆動輪7を備え、エンジン2及び駆動モータ4にて発生した駆動トルクを無段変速機5及びディファレンシャルギヤ6を介して駆動輪7に伝達する。
【0016】
このハイブリッド型車両は、発電モータ1の出力軸とエンジン2の出力軸、及びエンジン2の出力軸とクラッチ3の入力軸とが互いに連結されており、また、クラッチ3の出力軸と駆動モータ4の出力軸、及び駆動モータ4の出力軸と無段変速機5の入力軸とが互いに連結されている。このハイブリッド型車両は、車両運転者の運転操作に従ってクラッチ3を締結、解放する。クラッチ3は、パウダークラッチであり、駆動輪7に伝達するトルクを調節する。
【0017】
このハイブリッド型車両において、クラッチ3の締結時は、エンジン2及び駆動モータ4がハイブリッド型車両の推進源となり、クラッチ3の解放時は、駆動モータ4のみがハイブリッド型車両の推進源となり、無段変速機5及びディファレンシャルギヤ6を介して駆動輪7に伝達される。
【0018】
発電モータ1及び駆動モータ4は、三相同期電動機または三相誘導電動機などの交流機である。本例において、発電モータ1は、主としてエンジン2の始動と発電に用いられ、駆動モータ4は、主としてハイブリッド型車両の推進と制動に用いられる。
【0019】
このハイブリッド型車両では、発電モータ1がインバータ8により駆動されると共に、駆動モータ4がインバータ9により駆動される。インバータ8及びインバータ9は、共通のDCリンク10を介して蓄電装置11に接続されている。インバータ8では、発電モータ1にて発電した交流発電電力を直流電力にしてDCリンク10を介して蓄電装置11に充電すると共に、インバータ9やDC/DCコンバータ12に供給したりする。また、インバータ9では、蓄電装置11を放電させて直流電力を交流電力に変換して、駆動モータ4へ供給すると共に、駆動モータ4からの回生電力を蓄電装置11に充電する。また、蓄電装置11に充電された電力は、DCリンク10を介してDC/DCコンバータ12に供給され、ハイブリッド型車両の補機13に電力を供給する。
【0020】
蓄電装置11は、図2に示すように、二次電池21とキャパシタ22A、22Bとを並列接続した回路構成を有する。この蓄電装置11では、DCリンク10と接続され、インバータ8、インバータ9及びDC/DCコンバータ12からの直流電力を二次電池21及びキャパシタ22に充電すると共に、充電した直流電力をインバータ9又はDC/DCコンバータ12に放電する。
【0021】
更に、このハイブリッド型車両では、上述した各部を制御するコントローラ14を備える。このコントローラ14は、各部と制御線を介して接続され、エンジン2の回転速度、出力及び駆動トルク、クラッチ3の伝達トルク、発電モータ1の回転速度及びトルク、無段変速機5の変速比、蓄電装置11の充放電などを制御する。
【0022】
コントローラ14は、二次電池21の二次電池温度TB1を検出する二次電池温度センサ15、キャパシタ22のキャパシタ温度TB2を検出するキャパシタ温度センサ16、蓄電装置11の端子電圧VBを検出する電圧センサ17及び二次電池21の二次電池電流値IB1を検出する二次電池電流センサ18、キャパシタ22のキャパシタ電流値IB2を検出するキャパシタ電流センサ19からの信号が入力され、蓄電装置11の現在の残容量SOCを検出する機能を有する。
【0023】
また、コントローラ14は、二次電池温度TB1と蓄電装置11の現在の残容量SOCに対する蓄電装置11の放電可能電力及び充電可能電力のマップデータを予め用意して保持している。このコントローラ14は、二次電池温度TB1及び残容量SOCを検出すると、検出した二次電池温度TB1及び残容量SOCに応じてマップデータを参照して、蓄電装置11の放電可能電力PBOUT及び充電可能電力PBINを演算する。
【0024】
このような放電可能電力PBOUT及び充電可能電力PBINを演算するためのマップデータは、ハイブリッド型車両の設計段階時に二次電池21やキャパシタ22の容量や内部抵抗などによって作成されてコントローラ14内のROM(Read Only Memory)などにより記憶されている。
【0025】
更に、コントローラ14は、二次電池温度TB1、蓄電装置11の残容量SOC、蓄電装置11の実際の放電電力及び蓄電装置11の実際の充電電力に対する二次電池21の発熱量のマップデータを予め容易して保持している。このコントローラ14は、二次電池温度TB1、残容量SOCを検出すると共に、蓄電装置11を監視して実際の放電電力及び充電電力を検出すると、検出した各値に応じてマップデータを参照して、二次電池21の発熱量を演算する。
【0026】
このような二次電池21の発熱量を演算するためのマップデータは、ハイブリッド型車両の設計段階時に二次電池21やキャパシタ22の容量や内部抵抗などによって作成されてコントローラ14内のROM(Read Only Memory)などにより記憶されている。
【0027】
更にまた、コントローラ14は、ハイブリッド型車両の負荷変動が小さい状態である定速走行等において、エンジン2を制御してエンジン2の動力によりハイブリッド型車両を駆動させ、更に発電モータ1を制御して駆動させて発電を行わせて蓄電装置11の残容量SOCを制御する。また、コントローラ14では、発電モータ1及び駆動モータ4を制御することにより、発電モータ1及び駆動モータ4に流れる電流を制御することで、蓄電装置11を放電させる。すなわち、コントローラ14は、発電モータ1及び駆動モータ4の双方を同時に発電用又は駆動用に用いるように制御する。
【0028】
つぎに、上述のハイブリッド型車両において、二次電池21の発熱量を制御するときのコントローラ14の制御について説明する。
【0029】
コントローラ14は、例えば二次電池温度TB1が低温であって二次電池21の放電可能電力PBOUTが低くなる場合、二次電池21の発熱量が最大となる蓄電装置11の残容量SOCとなるように蓄電装置11を充放電させ、且つ二次電池21の発熱量が最大となる周期で充放電する制御をする。これにより、コントローラ14は、二次電池温度TB1を上昇させ、蓄電装置11の放電可能電力PBOUTを向上させる。
【0030】
ここで、蓄電装置11を定電力にて充放電させたとき、二次電池21の発熱量(W)は、図3に示すように、充電状態、すなわち残容量SOC(%)に対して変化する。図3において、二次電池21の発熱量が最大となるときの残容量SOCを「熱量最大残容量SOC*」と呼ぶ。
【0031】
図3によれば、熱量最大残容量SOC*から残容量SOCが高くなるほど二次電池21の発熱量が低くなる。これは、蓄電装置11の残容量SOCが高いほど蓄電装置11の開放電圧が高く、二次電池21に流れる電流値が小さくなるためである。一方、熱量最大残容量SOC*から残容量SOCが低くなるほど二次電池21の発熱量が低くなる。これは、蓄電装置11の放電可能電力PBOUTが要求される放電電力以下となり二次電池21に流れる電流値が小さくなるためである。
【0032】
このように二次電池21の発熱量が変化することから、コントローラ14では、蓄電装置11の残容量SOCを制御して二次電池21の発熱量を制御する。
【0033】
また、図4に、定電力で放電と充電とを繰り返して、充放電周期を変化させた場合の二次電池21の発熱量を示す。図4では、横軸に熱量最大残容量SOC*を中心として充放電を繰り返す際の充放電SOC幅(%)、縦軸に二次電池21の発熱量(W)を示す。
【0034】
図4によれば、ある充放電SOC幅(2α)のときに、二次電池21の発熱量が最大となる。ここで、充放電SOC幅(2α)で充電と放電を繰り返して一定の電力を供給することは、一定の充放電周期で充電と放電を繰り返すことに等しい。すなわち、コントローラ14は、駆動モータ4及び補機13にとって必要な定電力となるように放充電SOC幅(2α)にて充放電周期を制御することで二次電池21の発熱量を制御し、この充放電周期で充放電することで二次電池21の発熱量を最大とする。
【0035】
これは、充放電周期(2α)よりも速い周期で充放電をすると、内部抵抗の低いキャパシタ22側に全電流の大半が流れ、低温時にて内部抵抗の高い二次電池21側にはほとんど電流が流れないことによる。その結果、二次電池21のジュール発熱が抑えられ、二次電池21を効率よく昇温できない。これに対し、充放電周期(2α)よりも遅い周期で充放電をすると、蓄電装置11の放電可能電力PBOUTが要求される放電電力(定電力)以下となり二次電池21へ流れる電流値が小さくなる。
【0036】
そのため、コントローラ14は、低温時において蓄電装置11を充放電する際、二次電池21の温度を短時間にて上昇させるような充放電周期(2α)とするように蓄電装置11を制御する。このとき、コントローラ14は、二次電池21及びキャパシタ22の内部抵抗と二次電池21及びキャパシタ22の容量とのバランスに基づいて、最適な充放電周期を演算する。
【0037】
[コントローラ14による充放電制御処理]
つぎに、上述したハイブリッド型車両において、コントローラ14による充放電制御処理の処理手順について図5のフローチャートを参照して説明する。以下の説明では、二次電池温度TB1が低温であるときにハイブリッド型車両を駆動するために、二次電池21の温度を上昇させる場合の制御について説明する。
【0038】
コントローラ14は、車両運転者によりイグニッションスイッチがオンされると、ステップS1に処理を進め、蓄電装置11の放電可能電力PBOUTがハイブリッド型車両の走行に必要な電力出力未満か否かを判断する。コントローラ14は、蓄電装置11の放電可能電力PBOUTが電力出力未満である場合、蓄電装置11から放電して駆動モータ4が駆動しても、エンジン2の燃費性能が十分に発揮できないと判断してステップS2に処理を進める。
【0039】
一方、蓄電装置11の放電可能電力PBOUTが電力出力未満以上である場合は、蓄電装置11からの電力により駆動モータ4が十分に駆動可能であってエンジン2の燃費性能が十分に発揮可能と判断してステップS11に処理を進めて処理を終了する。
【0040】
ステップS2において、コントローラ14により、二次電池21の二次電池温度TB1を検出してステップS3に処理を進め、二次電池温度TB1に対する二次電池21の発熱量が最大となる蓄電装置11の熱量最大残容量SOC*を演算してステップS4に処理を進める。このとき、コントローラ14では、二次電池温度TB1から現在の二次電池21の内部抵抗を演算し、この内部抵抗から熱量最大残容量SOC*を演算する。
【0041】
ここで、二次電池温度TB1が変化すると、二次電池21の発熱量が最大となる熱量最大残容量SOC*が変化する。二次電池21の温度が上昇すると二次電池21の内部抵抗が小さくなるので、発熱量が低下する。また、二次電池21の内部抵抗が小さくなり、その結果、放電可能電力PBOUTが大きくなることから、この条件の電力を放電できる蓄電装置11の残容量SOCが小さくできる。一方、キャパシタ22は、温度変化に伴う内部抵抗の変化がほとんど無い。よって、二次電池21の発熱量が最大となる熱量最大残容量SOC*は二次電池温度TB1によって変化する。
【0042】
ステップS4において、コントローラ14により、蓄電装置11の熱量最大残容量SOC*を中心に充放電を繰り返す際に、二次電池21の発熱量が最大となる充放電SOC幅の半値αを演算してステップS5に処理を進める。
【0043】
ステップS5において、コントローラ14により、蓄電装置11の残容量SOCを検出するとステップS6に処理を進め、検出した残容量SOCと熱量最大残容量SOC*+αとを比較する。このとき、残容量SOCが熱量最大残容量SOC*+αと同値である場合にはそのままステップS9に処理を進める。また、残容量SOCが熱量最大残容量SOC*+αよりも高い場合にはステップS7に処理を進め、インバータ8及びインバータ9を制御することで蓄電装置11を熱量最大残容量SOC*+αまで放電してステップS9に処理を進めて、後述の二次電池21の昇温制御をする。一方、残容量SOCが熱量最大残容量SOC*+αよりも低い場合にはステップS8に処理を進め、インバータ8及びインバータ9を制御して熱量最大残容量SOC*+αまで充電してステップS9に処理を進めて、後述の二次電池21の昇温制御をする。
【0044】
ステップS9にて二次電池21の昇温制御が完了すると、ステップS10に処理を進め、コントローラ14により、昇温制御した結果、蓄電装置11の放電可能電力PBOUTがハイブリッド型車両の走行に必要な電力出力以上となったか否かを判定する。放電可能電力PBOUTが必要な電力出力以上となった場合には、ステップS11に処理を進め、ステップS9での昇温制御を停止し、放電可能電力PBOUTが必要な電力出力以上となっていない場合にはステップS9の処理を継続する。
【0045】
つぎに、上述のステップS9における二次電池21の昇温制御の処理手順について図6のフローチャートを参照して説明する。
【0046】
ステップS9に処理が移行すると、コントローラ14により、上述のステップS2〜ステップS8と同様の処理をステップS21〜ステップS27にて行って、ステップS28に処理を進める。
【0047】
ステップS28において、コントローラ14により、二次電池21の発熱量が最大となる蓄電装置11の充放電周期を、
放電時間t(dis)=(C ×(α/100)×3600)/P×2
充電時間t(chg)=(C×(α/100)×3600) /P×2
なる演算式にて求める。ここで、Cは蓄電装置11の全容量、Pは蓄電装置11を充放電する一定の電力値であり、発電モータ1、駆動モータ4の最大発電電力、最大駆動電力としている。これにより、コントローラ14では、放電時間t(dis)と充電時間t(dis)の和で表される充放電周期を決定する。
【0048】
例えば、1000Whの蓄電装置11で充放電の電力値が3000Wの場合では、αを2%とすると、放電時間t(dis)は48sとなり、二次電池21の発熱量が最大となる蓄電装置11の充放電周期は96sとなる。
【0049】
次のステップS29において、コントローラ14により、ステップS28にて決定した充放電周期となるようにインバータ8及びインバータ9を制御する。これにより、放電時間t(dis)だけ放電した後には、蓄電装置11の残容量SOCを二次電池21の発熱量が最大となる熱量最大残容量SOC*−αと等しくし、続いて充電時間t(chg)だけ充電した後には、蓄電装置11の残容量SOCを二次電池21の発熱量が最大となる熱量最大残容量SOC*+αと等しくする。
【0050】
次のステップS30において、コントローラ14により、充放電の回数が設定回数(例えば4〜5回)となったか否かを判定して、設定回数未満である場合はステップS21に処理を戻して再度ステップS21〜ステップS29の処理を繰り返し、充放電の回数が設定回数になった場合は、ステップS10に処理を進める。すなわち、コントローラ14では、繰り返してステップS21〜ステップS29の処理を行うことにより、熱量最大残容量SOC*及び充放電周期を更新しながら、ステップS29での充放電をする。
【0051】
なお、ハイブリッド型車両の走行条件に応じて蓄電装置11を充放電する電力値を制御する必要がある場合は、二次電池21を充放電する値を制御してもよい。
【0052】
[実施形態の効果]
以上詳細に説明したように、本実施形態に係るハイブリッド型車両によれば、二次電池温度TB1が低いために、蓄電装置11が走行に必要な電力出力に満たない場合、二次電池21の発熱量を最大とするような熱量最大残容量SOC*にて、二次電池21の発熱量が最大となる蓄電装置11の充放電周期で充放電することにしたので、短時間で二次電池21の昇温を行うことができる。したがって、このハイブリッド型車両によれば、二次電池21を短時間で昇温させることにより、蓄電装置11にハイブリット走行に必要電力出力を短時間にて実現することができ、高い燃費性能を発揮することができる。
【0053】
すなわち、このハイブリッド型車両によれば、コントローラ14により、発電モータ1及び駆動モータ4の双方を同時に発電用又は駆動用に用いて蓄電装置11の充放電を行うことができ、ハイブリッド型車両の負荷変動が小さい状態の定速走行時等においても、すばやく二次電池21を昇温することができる。
【0054】
また、このハイブリッド型車両によれば、二次電池21の昇温制御を行うことで充放電を繰り返して二次電池21の温度が上がって熱量最大残容量SOC*が変化しても、繰り返して熱量最大残容量SOC*を演算して充放電周期を制御するので、更に短時間にて二次電池21を昇温させることができ、効率よく二次電池21の昇温を行うことができる。
【0055】
なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
【0056】
すなわち、発電モータ1及び駆動モータ4としては、交流電動機に限らず直流電動機を用いても良く、発電モータ1及び駆動モータ4として直流電動機を用いた場合にはインバータ8及びインバータ9としてDC/DCコンバータを用いる。
【0057】
また、クラッチ3の締結時に、発電モータ1を車両の推進と制動に用いることもでき、駆動モータ4をエンジン2の始動や発電に用いることもできる。
【0058】
更に、クラッチ3は、パウダークラッチに限らず、乾式単板クラッチや湿式多板クラッチを用いても良い。
【0059】
更に、発電機としての発電モータ1に代えて、燃料電池を用いても上述と同様の効果を得ることができる。
【0060】
更にまた、本実施形態では、二次電池温度センサ15により測定した二次電池温度TB1及び残容量SOCから二次電池21の発熱量を演算したが、これに限らず、コントローラ14により、蓄電装置11の内部抵抗および蓄電装置11の開放電圧のマップデータから二次電池21の発熱量を演算しても良い。
【図面の簡単な説明】
【図1】本発明を適用したハイブリッド型車両の構成を示すブロック図である。
【図2】蓄電装置の構成を示す回路図である。
【図3】蓄電装置の充電状態(残容量SOC)と二次電池の発電量との関係を示す図である。
【図4】充放電SOC幅と二次電池の発熱量との関係を示す図である。
【図5】本発明を適用したハイブリッド型車両において、コントローラによる充放電制御処理の処理手順を示すフローチャートである。
【図6】コントローラにより二次電池の昇温制御を行うときの処理手順を示すフローチャートである。
【符号の説明】
1 発電モータ
2 エンジン
3 クラッチ
4 駆動モータ
5 無段変速機
6 ディファレンシャルギヤ
7 駆動輪
8,9 インバータ
10 DCリンク
11 蓄電装置
12 DC/DCコンバータ
13 補機
14 コントローラ
15 二次電池温度センサ
16 キャパシタ温度センサ
17 電圧センサ
18 二次電池電流センサ
19 キャパシタ電流センサ
21 二次電池
22 キャパシタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge / discharge control apparatus and method suitable for use in, for example, a parallel hybrid vehicle in which a secondary battery and a capacitor are connected in parallel and the power of the secondary battery and the capacitor is driven as a power source.
[0002]
[Prior art]
Conventionally, a hybrid vehicle that drives a drive motor or an auxiliary machine in a vehicle using electric power stored in a secondary battery is known. Since the secondary battery mounted on such a hybrid vehicle uses a chemical reaction, when the ambient temperature decreases, the internal resistance increases and the dischargeable output decreases.
[0003]
Since the dischargeable output is thus reduced, it is necessary to design the performance of the vehicle with the performance of the secondary battery at a low temperature. As a result, a large number of secondary batteries are mounted on the vehicle. Then, the cost increase of a secondary battery, the fall of the power performance of a vehicle by the increase in the weight of a secondary battery, and the fall of a fuel consumption performance will generate | occur | produce.
[0004]
On the other hand, when the vehicle performance is designed with the performance of the secondary battery at room temperature, the fuel efficiency performance at low temperatures is significantly reduced. Therefore, conventionally, the performance of the secondary battery at low temperatures is lowered, but the vehicle is often designed in consideration of the cost and the power performance of the vehicle.
[0005]
Conventionally, a power storage device in which a secondary battery and a capacitor are connected in parallel has been studied as a power source for a hybrid vehicle. This power storage device is advantageous in that it can ensure power output characteristics at low temperatures and can be reduced in size and cost compared to a power storage device using a single secondary battery. This is because the output characteristics of the secondary battery greatly change due to temperature change, whereas the output characteristics of the capacitor hardly change with temperature change.
[0006]
In other words, in this parallel hybrid vehicle, in order to satisfy the power output characteristics at low temperatures, a large amount of secondary batteries that must be mounted on the vehicle are supplemented with capacitors having good low-temperature performance. In this parallel hybrid vehicle, the output performance at low temperatures required for the power storage device is set to an output that does not hinder vehicle travel.
[0007]
In such a parallel hybrid vehicle, when the vehicle starts running at a low temperature, the dischargeable power of the secondary battery is low and a predetermined fuel consumption performance cannot be obtained. Therefore, the secondary battery in the power storage device is heated. It is desired to improve the dischargeable power of the secondary battery. As a method of raising the temperature of the secondary battery earliest, it is conceivable to flow the maximum current value of the secondary battery to the vehicle drive motor and the auxiliary machine. As a prior art using this, there is one described in Japanese Patent Laid-Open No. 11-026032, for example.
[0008]
When this technology is applied to a parallel hybrid type vehicle, the maximum current value of the power storage device is passed to the vehicle drive motor and auxiliary equipment, and when the remaining capacity of the power storage device decreases, the power storage device is charged with a generator, and the remaining power storage device remains. When the capacity exceeds a predetermined value, charging is stopped, and control is performed so that the maximum current value of the power storage device flows again to the vehicle driving motor and the auxiliary machine.
[0009]
[Problems to be solved by the invention]
However, the above-described conventional technology has a problem in that the maximum current of the power storage device cannot be supplied during charging / discharging due to vehicle running conditions and the capacity of auxiliary equipment. In other words, the SOC that maximizes the current flowing through the secondary battery is determined because it is set to be used in the vicinity of the upper limit power, but the power storage device in which the capacitor and the secondary battery are connected in parallel cannot sufficiently cope with it. It is difficult to efficiently raise the temperature of the secondary battery.
[0010]
Therefore, the present invention has been proposed in view of the above-described circumstances, and charge / discharge control that can raise the temperature of the secondary battery in a short time even when the power storage device is charged / discharged with constant power. An apparatus and method are provided.
[0011]
[Means for Solving the Problems]
According to the present invention, when controlling charging / discharging of a power storage device in which at least one secondary battery and at least one capacitor are connected in parallel, the remaining power storage device when the amount of heat generated during operation of the secondary battery is maximized. After calculating the capacity, calculating the charge / discharge cycle of the power storage device when the amount of heat generated during the operation of the secondary battery is maximum, and calculating the remaining capacity of the current power storage device as the calculated remaining capacity of the power storage device, The above-described problem is solved by controlling the temperature of the secondary battery by charging / discharging the power storage device with the charge / discharge cycle calculated from the charge / discharge cycle of the device.
[0012]
【The invention's effect】
According to the present invention, the power storage device is charged / discharged so that the amount of heat generated by the secondary battery becomes the maximum, and the charge / discharge cycle at which the heat generation amount of the secondary battery is maximized is charged / discharged. Even if it is necessary to charge and discharge the power storage device with constant power, the temperature of the secondary battery is raised in a short time to improve the dischargeable output and chargeable input of the power storage device in a short time be able to.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
The present invention is applied to, for example, a hybrid vehicle configured as shown in FIG.
[0015]
[Configuration of hybrid vehicle]
This hybrid type vehicle includes a generator motor 1, an engine 2, a clutch 3, a drive motor 4, a continuously variable transmission 5, a differential gear 6 and a drive wheel 7 as a drive system, and is generated by the engine 2 and the drive motor 4. The drive torque thus transmitted is transmitted to the drive wheel 7 via the continuously variable transmission 5 and the differential gear 6.
[0016]
In this hybrid vehicle, the output shaft of the generator motor 1 and the output shaft of the engine 2 are connected to each other, and the output shaft of the engine 2 and the input shaft of the clutch 3 are connected to each other. , The output shaft of the drive motor 4 and the input shaft of the continuously variable transmission 5 are connected to each other. In this hybrid vehicle, the clutch 3 is engaged and released according to the driving operation of the vehicle driver. The clutch 3 is a powder clutch and adjusts the torque transmitted to the drive wheels 7.
[0017]
In this hybrid type vehicle, when the clutch 3 is engaged, the engine 2 and the drive motor 4 become the propulsion source of the hybrid type vehicle, and when the clutch 3 is released, only the drive motor 4 becomes the propulsion source of the hybrid type vehicle. It is transmitted to the drive wheel 7 via the transmission 5 and the differential gear 6.
[0018]
The generator motor 1 and the drive motor 4 are AC machines such as a three-phase synchronous motor or a three-phase induction motor. In this example, the generator motor 1 is mainly used for starting and power generation of the engine 2, and the drive motor 4 is mainly used for propulsion and braking of the hybrid type vehicle.
[0019]
In this hybrid vehicle, the generator motor 1 is driven by the inverter 8 and the drive motor 4 is driven by the inverter 9. The inverter 8 and the inverter 9 are connected to the power storage device 11 through a common DC link 10. In the inverter 8, AC power generated by the generator motor 1 is converted into DC power to charge the power storage device 11 via the DC link 10 and also supplied to the inverter 9 and the DC / DC converter 12. In the inverter 9, the power storage device 11 is discharged to convert DC power into AC power and supplied to the drive motor 4, and regenerative power from the drive motor 4 is charged to the power storage device 11. The electric power charged in the power storage device 11 is supplied to the DC / DC converter 12 via the DC link 10 and supplied to the auxiliary machine 13 of the hybrid vehicle.
[0020]
As shown in FIG. 2, the power storage device 11 has a circuit configuration in which a secondary battery 21 and capacitors 22A and 22B are connected in parallel. The power storage device 11 is connected to the DC link 10 and charges the secondary battery 21 and the capacitor 22 with the DC power from the inverter 8, the inverter 9, and the DC / DC converter 12, and the charged DC power is supplied to the inverter 9 or DC. / Discharge to DC converter 12.
[0021]
Further, the hybrid vehicle includes a controller 14 that controls the above-described units. The controller 14 is connected to each part via a control line, and the rotational speed, output and drive torque of the engine 2, the transmission torque of the clutch 3, the rotational speed and torque of the generator motor 1, the gear ratio of the continuously variable transmission 5, The charging / discharging of the power storage device 11 is controlled.
[0022]
The controller 14 includes a secondary battery temperature sensor 15 that detects the secondary battery temperature TB1 of the secondary battery 21, a capacitor temperature sensor 16 that detects the capacitor temperature TB2 of the capacitor 22, and a voltage sensor that detects the terminal voltage VB of the power storage device 11. 17 and the secondary battery current sensor 18 for detecting the secondary battery current value IB1 of the secondary battery 21 and the signal from the capacitor current sensor 19 for detecting the capacitor current value IB2 of the capacitor 22 are input. It has a function of detecting the remaining capacity SOC.
[0023]
Further, the controller 14 prepares and holds map data of the rechargeable power and the rechargeable power of the power storage device 11 with respect to the secondary battery temperature TB1 and the current remaining capacity SOC of the power storage device 11 in advance. When the controller 14 detects the secondary battery temperature TB1 and the remaining capacity SOC, the controller 14 refers to the map data according to the detected secondary battery temperature TB1 and the remaining capacity SOC, and can discharge the electric power PBOUT that can be discharged from the power storage device 11 and can be charged. The power PBIN is calculated.
[0024]
The map data for calculating the dischargeable power PBOUT and the chargeable power PBIN is created by the capacity and internal resistance of the secondary battery 21 and the capacitor 22 at the design stage of the hybrid vehicle, and is stored in the ROM in the controller 14. (Read Only Memory) or the like.
[0025]
Further, the controller 14 previously stores map data of the secondary battery temperature TB1, the remaining capacity SOC of the power storage device 11, the actual discharge power of the power storage device 11, and the heat generation amount of the secondary battery 21 with respect to the actual charge power of the power storage device 11. Easy to hold. When the controller 14 detects the secondary battery temperature TB1 and the remaining capacity SOC, and monitors the power storage device 11 to detect the actual discharge power and charge power, the controller 14 refers to the map data according to each detected value. The calorific value of the secondary battery 21 is calculated.
[0026]
Such map data for calculating the calorific value of the secondary battery 21 is created based on the capacity and internal resistance of the secondary battery 21 and the capacitor 22 at the design stage of the hybrid vehicle, and is read by the ROM (Read Only memory).
[0027]
Furthermore, the controller 14 controls the engine 2 to drive the hybrid vehicle with the power of the engine 2 and further controls the power generation motor 1 in constant speed traveling where the load fluctuation of the hybrid vehicle is small. The remaining capacity SOC of the power storage device 11 is controlled by driving to generate power. In addition, the controller 14 controls the power generation motor 1 and the drive motor 4 to control the current flowing through the power generation motor 1 and the drive motor 4, thereby discharging the power storage device 11. That is, the controller 14 controls to use both the generator motor 1 and the drive motor 4 for power generation or drive at the same time.
[0028]
Next, the control of the controller 14 when controlling the amount of heat generated by the secondary battery 21 in the hybrid vehicle described above will be described.
[0029]
For example, when the secondary battery temperature TB1 is low and the dischargeable power PBOUT of the secondary battery 21 is low, the controller 14 has the remaining capacity SOC of the power storage device 11 that maximizes the heat generation amount of the secondary battery 21. And charging / discharging the power storage device 11 and charging / discharging the secondary battery 21 at a cycle that maximizes the amount of heat generated. Thereby, controller 14 raises secondary battery temperature TB1 and improves dischargeable power PBOUT of power storage device 11.
[0030]
Here, when the power storage device 11 is charged and discharged with constant power, the amount of heat generated (W) of the secondary battery 21 changes with respect to the charged state, that is, the remaining capacity SOC (%), as shown in FIG. To do. In FIG. 3, the remaining capacity SOC when the calorific value of the secondary battery 21 is maximized is referred to as “heat quantity maximum remaining capacity SOC *”.
[0031]
According to FIG. 3, the heat generation amount of the secondary battery 21 decreases as the remaining capacity SOC increases from the maximum remaining heat capacity SOC *. This is because the higher the remaining capacity SOC of the power storage device 11 is, the higher the open-circuit voltage of the power storage device 11 is and the smaller the current value flowing through the secondary battery 21 is. On the other hand, the heat generation amount of the secondary battery 21 decreases as the remaining capacity SOC decreases from the maximum heat capacity remaining SOC *. This is because the dischargeable power PBOUT of the power storage device 11 becomes equal to or less than the required discharge power, and the value of the current flowing through the secondary battery 21 becomes small.
[0032]
Since the calorific value of the secondary battery 21 changes in this way, the controller 14 controls the remaining capacity SOC of the power storage device 11 to control the calorific value of the secondary battery 21.
[0033]
FIG. 4 shows the amount of heat generated by the secondary battery 21 when the charge / discharge cycle is changed by repeating discharging and charging with constant power. In FIG. 4, the horizontal axis represents the charge / discharge SOC width (%) when charging / discharging is repeated centering on the maximum remaining heat capacity SOC *, and the vertical axis represents the calorific value (W) of the secondary battery 21.
[0034]
According to FIG. 4, the calorific value of the secondary battery 21 is maximized at a certain charge / discharge SOC width (2α). Here, repeating charging and discharging with a charge / discharge SOC width (2α) to supply a constant power is equivalent to repeating charging and discharging at a constant charge / discharge cycle. That is, the controller 14 controls the heat generation amount of the secondary battery 21 by controlling the charge / discharge cycle with the discharge / charge SOC width (2α) so that the constant power required for the drive motor 4 and the auxiliary machine 13 is obtained. Charging / discharging at this charging / discharging cycle maximizes the amount of heat generated by the secondary battery 21.
[0035]
This is because when charging / discharging is performed at a cycle faster than the charging / discharging cycle (2α), most of the total current flows to the capacitor 22 side having a low internal resistance, and almost no current flows to the secondary battery 21 side having a high internal resistance at a low temperature. Is due to not flowing. As a result, Joule heat generation of the secondary battery 21 is suppressed, and the secondary battery 21 cannot be efficiently heated. On the other hand, when charging / discharging is performed at a cycle slower than the charging / discharging cycle (2α), the dischargeable power PBOUT of the power storage device 11 becomes equal to or less than the required discharge power (constant power), and the current value flowing to the secondary battery 21 is small. Become.
[0036]
Therefore, when charging / discharging the power storage device 11 at a low temperature, the controller 14 controls the power storage device 11 so that the charge / discharge cycle (2α) increases the temperature of the secondary battery 21 in a short time. At this time, the controller 14 calculates an optimal charge / discharge cycle based on the balance between the internal resistance of the secondary battery 21 and the capacitor 22 and the capacity of the secondary battery 21 and the capacitor 22.
[0037]
[Charge / Discharge Control Processing by Controller 14]
Next, in the hybrid vehicle described above, the processing procedure of the charge / discharge control processing by the controller 14 will be described with reference to the flowchart of FIG. In the following description, control when the temperature of the secondary battery 21 is increased in order to drive the hybrid vehicle when the secondary battery temperature TB1 is low will be described.
[0038]
When the ignition switch is turned on by the vehicle driver, the controller 14 proceeds to step S1, and determines whether or not the dischargeable power PBOUT of the power storage device 11 is less than the power output required for traveling of the hybrid vehicle. When the dischargeable power PBOUT of the power storage device 11 is less than the power output, the controller 14 determines that the fuel consumption performance of the engine 2 cannot be sufficiently exerted even if the drive motor 4 is driven by discharging from the power storage device 11. The process proceeds to step S2.
[0039]
On the other hand, when the dischargeable power PBOUT of the power storage device 11 is less than or equal to the power output, it is determined that the drive motor 4 can be sufficiently driven by the power from the power storage device 11 and the fuel consumption performance of the engine 2 can be sufficiently exerted. Then, the process proceeds to step S11 to end the process.
[0040]
In step S2, the controller 14 detects the secondary battery temperature TB1 of the secondary battery 21 and proceeds to step S3, and the heat generation amount of the secondary battery 21 with respect to the secondary battery temperature TB1 is maximized. The maximum amount of heat remaining SOC * is calculated and the process proceeds to step S4. At this time, the controller 14 calculates the current internal resistance of the secondary battery 21 from the secondary battery temperature TB1, and calculates the maximum amount of heat remaining SOC * from the internal resistance.
[0041]
Here, when the secondary battery temperature TB1 changes, the maximum amount of heat remaining SOC * at which the heat generation amount of the secondary battery 21 becomes maximum changes. When the temperature of the secondary battery 21 rises, the internal resistance of the secondary battery 21 decreases, so the amount of heat generation decreases. Moreover, since the internal resistance of the secondary battery 21 is reduced, and as a result, the dischargeable power PBOUT is increased, the remaining capacity SOC of the power storage device 11 that can discharge the power under this condition can be reduced. On the other hand, the capacitor 22 has almost no change in internal resistance due to temperature change. Therefore, the maximum amount of heat remaining SOC * at which the calorific value of the secondary battery 21 is maximized varies depending on the secondary battery temperature TB1.
[0042]
In step S4, the controller 14 calculates a half value α of the charge / discharge SOC width that maximizes the amount of heat generated by the secondary battery 21 when the controller 14 repeats charging / discharging centering on the maximum heat capacity SOC * of the power storage device 11. The process proceeds to step S5.
[0043]
In step S5, when the controller 14 detects the remaining capacity SOC of the power storage device 11, the process proceeds to step S6, and the detected remaining capacity SOC is compared with the maximum heat amount remaining capacity SOC * + α. At this time, when the remaining capacity SOC is the same value as the maximum heat capacity remaining SOC * + α, the process proceeds to step S9 as it is. When the remaining capacity SOC is higher than the maximum heat capacity SOC * + α, the process proceeds to step S7, and the inverter 8 and the inverter 9 are controlled to discharge the power storage device 11 to the maximum heat capacity SOC * + α. Then, the process proceeds to step S9 to control the temperature rise of the secondary battery 21 described later. On the other hand, when the remaining capacity SOC is lower than the maximum heat capacity SOC * + α, the process proceeds to step S8, the inverter 8 and the inverter 9 are controlled to charge up to the maximum heat capacity remaining SOC * + α, and the process proceeds to step S9. The temperature rise control of the secondary battery 21 described later is performed.
[0044]
When the temperature increase control of the secondary battery 21 is completed in step S9, the process proceeds to step S10, and as a result of the temperature increase control performed by the controller 14, the dischargeable power PBOUT of the power storage device 11 is necessary for running the hybrid vehicle. It is determined whether or not the power output is equal to or higher. When the dischargeable power PBOUT exceeds the required power output, the process proceeds to step S11, the temperature increase control at step S9 is stopped, and the dischargeable power PBOUT does not exceed the required power output. The process of step S9 is continued.
[0045]
Next, the processing procedure of the temperature rise control of the secondary battery 21 in step S9 will be described with reference to the flowchart of FIG.
[0046]
When the process proceeds to step S9, the controller 14 performs the same process as the above-described step S2 to step S8 in step S21 to step S27, and advances the process to step S28.
[0047]
In step S28, the controller 14 sets the charge / discharge cycle of the power storage device 11 at which the amount of heat generated by the secondary battery 21 is maximized,
Discharge time t (dis) = (C × (α / 100) × 3600) / P × 2
Charging time t (chg) = (C × (α / 100) × 3600) / P × 2
It is calculated by the following formula. Here, C is the total capacity of the power storage device 11, P is a constant power value for charging and discharging the power storage device 11, and is the maximum generated power and the maximum drive power of the generator motor 1 and the drive motor 4. Thereby, in the controller 14, the charging / discharging period represented by the sum of the discharge time t (dis) and the charge time t (dis) is determined.
[0048]
For example, in the case of a 1000 Wh power storage device 11 with a charge / discharge power value of 3000 W, when α is 2%, the discharge time t (dis) is 48 s, and the heat generation amount of the secondary battery 21 is maximized. The charging / discharging cycle is 96 s.
[0049]
In the next step S29, the controller 14 controls the inverter 8 and the inverter 9 so that the charge / discharge cycle determined in step S28 is achieved. As a result, after discharging for the discharge time t (dis), the remaining capacity SOC of the power storage device 11 is made equal to the maximum heat remaining capacity SOC * -α at which the calorific value of the secondary battery 21 is maximized, followed by the charging time. After charging only t (chg), the remaining capacity SOC of the power storage device 11 is made equal to the maximum heat capacity SOC * + α at which the calorific value of the secondary battery 21 is maximized.
[0050]
In the next step S30, the controller 14 determines whether or not the number of times of charging / discharging has reached a set number (for example, 4 to 5 times). If the number is less than the set number, the process returns to step S21 and the step is repeated. When the processes of S21 to S29 are repeated and the number of times of charging / discharging has reached the set number, the process proceeds to step S10. That is, the controller 14 repeatedly performs the processes of Steps S21 to S29, thereby charging / discharging in Step S29 while updating the maximum heat amount remaining capacity SOC * and the charge / discharge cycle.
[0051]
In addition, when it is necessary to control the electric power value which charges / discharges the electrical storage apparatus 11 according to the driving | running conditions of a hybrid type vehicle, you may control the value which charges / discharges the secondary battery 21. FIG.
[0052]
[Effect of the embodiment]
As described above in detail, according to the hybrid vehicle according to the present embodiment, when the power storage device 11 does not satisfy the power output necessary for traveling because the secondary battery temperature TB1 is low, the secondary battery 21 The secondary battery 21 is charged / discharged at the charge / discharge cycle of the power storage device 11 where the heat generation amount of the secondary battery 21 is maximized with the maximum heat amount SOC * that maximizes the heat generation amount. A temperature increase of 21 can be performed. Therefore, according to this hybrid vehicle, by raising the temperature of the secondary battery 21 in a short time, the power output required for the hybrid running can be achieved in the power storage device 11 in a short time, and high fuel efficiency performance is exhibited. can do.
[0053]
That is, according to this hybrid vehicle, the controller 14 can charge and discharge the power storage device 11 by using both the generator motor 1 and the drive motor 4 for power generation or driving at the same time. The secondary battery 21 can be quickly heated even during constant speed running with little fluctuation.
[0054]
Moreover, according to this hybrid type vehicle, even if the temperature of the secondary battery 21 is increased by performing the temperature rise control of the secondary battery 21 to increase the temperature of the secondary battery 21 and the maximum heat capacity SOC * changes, it is repeated. Since the maximum amount of heat remaining SOC * is calculated to control the charge / discharge cycle, the temperature of the secondary battery 21 can be increased in a shorter time, and the temperature of the secondary battery 21 can be increased efficiently.
[0055]
The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and various modifications can be made depending on the design and the like as long as the technical idea according to the present invention is not deviated from this embodiment. Of course, it is possible to change.
[0056]
That is, the generator motor 1 and the drive motor 4 are not limited to an AC motor, and a DC motor may be used. When a DC motor is used as the generator motor 1 and the drive motor 4, a DC / DC is used as the inverter 8 and the inverter 9. Use a converter.
[0057]
In addition, when the clutch 3 is engaged, the generator motor 1 can be used for propulsion and braking of the vehicle, and the drive motor 4 can be used for starting the engine 2 and generating power.
[0058]
Furthermore, the clutch 3 is not limited to a powder clutch, and may be a dry single plate clutch or a wet multi-plate clutch.
[0059]
Further, even if a fuel cell is used instead of the generator motor 1 as a generator, the same effect as described above can be obtained.
[0060]
Furthermore, in this embodiment, the calorific value of the secondary battery 21 is calculated from the secondary battery temperature TB1 measured by the secondary battery temperature sensor 15 and the remaining capacity SOC. The calorific value of the secondary battery 21 may be calculated from the map data of the internal resistance of 11 and the open circuit voltage of the power storage device 11.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a hybrid vehicle to which the present invention is applied.
FIG. 2 is a circuit diagram illustrating a configuration of a power storage device.
FIG. 3 is a diagram showing a relationship between a state of charge of a power storage device (remaining capacity SOC) and a power generation amount of a secondary battery.
FIG. 4 is a diagram showing a relationship between a charge / discharge SOC width and a calorific value of a secondary battery.
FIG. 5 is a flowchart showing a processing procedure of charge / discharge control processing by a controller in a hybrid vehicle to which the present invention is applied.
FIG. 6 is a flowchart showing a processing procedure when performing temperature rise control of the secondary battery by the controller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Engine 3 Clutch 4 Drive motor 5 Continuously variable transmission 6 Differential gear 7 Drive wheel 8, 9 Inverter 10 DC link 11 Power storage device 12 DC / DC converter 13 Auxiliary machine 14 Controller 15 Secondary battery temperature sensor 16 Capacitor temperature Sensor 17 Voltage sensor 18 Secondary battery current sensor 19 Capacitor current sensor 21 Secondary battery 22 Capacitor

Claims (7)

少なくとも1つの二次電池と少なくとも1つのキャパシタとを並列に接続した蓄電装置と、
上記蓄電装置に充電する電力を発電する発電手段と、
上記蓄電装置に充電された電力を放電する放電手段と、
上記二次電池の動作時の発熱量が最大となるときの蓄電装置の残容量を演算する容量演算手段と、
上記二次電池の動作時の発熱量が最大となるときの蓄電装置の充放電周期を演算する周期演算手段と、
上記蓄電装置の残容量を検出する容量検出手段と、
上記容量検出手段にて検出した上記蓄電装置の残容量を上記容量演算手段で演算した残容量とするように上記発電手段又は放電手段を制御し、上記蓄電装置の充放電周期を上記周期演算手段で演算した充放電周期とするように上記発電手段及び放電手段を制御する制御手段と
を有することを特徴とする充放電制御装置。
A power storage device in which at least one secondary battery and at least one capacitor are connected in parallel;
Power generation means for generating electric power for charging the power storage device;
Discharging means for discharging the electric power charged in the power storage device;
Capacity calculating means for calculating the remaining capacity of the power storage device when the amount of heat generated during operation of the secondary battery is maximized;
A cycle calculating means for calculating a charge / discharge cycle of the power storage device when the amount of heat generated during operation of the secondary battery is maximized;
Capacity detecting means for detecting the remaining capacity of the power storage device;
The power generation unit or the discharge unit is controlled so that the remaining capacity of the power storage device detected by the capacity detection unit becomes the remaining capacity calculated by the capacity calculation unit, and the charge / discharge cycle of the power storage device is determined by the cycle calculation unit. And a control means for controlling the power generation means and the discharge means so as to obtain the charge / discharge cycle calculated in (1).
上記二次電池の温度を測定する温度測定手段を更に備え、
上記制御手段は、上記温度測定手段にて検出した温度及び上記容量検出手段にて検出した残容量に対する放電可能電力を演算して、所定の放電可能電力よりも小さい場合に、上記容量演算手段で演算した残容量とするように上記発電手段又は放電手段を制御し、上記周期演算手段で演算した充放電周期で上記蓄電装置の充電と放電とを繰り返すように上記発電手段及び放電手段を制御することを特徴とする請求項1に記載の充放電制御装置。
A temperature measuring means for measuring the temperature of the secondary battery;
The control means calculates the dischargeable power for the temperature detected by the temperature measurement means and the remaining capacity detected by the capacity detection means, and when it is smaller than a predetermined dischargeable power, the capacity calculation means The power generation unit or the discharge unit is controlled so as to have the calculated remaining capacity, and the power generation unit and the discharge unit are controlled so that charging and discharging of the power storage device are repeated in the charge / discharge cycle calculated by the cycle calculation unit. The charge / discharge control apparatus according to claim 1.
上記制御手段は、上記容量演算手段により演算する残容量及び上記周期演算手段により演算する充放電周期を更新して、上記容量検出手段にて検出した上記蓄電装置の残容量を上記容量演算手段で演算した残容量とするように上記発電手段又は放電手段を制御し、上記蓄電装置の充放電周期を上記周期演算手段で演算した充放電周期とするように上記発電手段及び放電手段を制御することを特徴とする請求項2に記載の充放電制御装置。The control means updates the remaining capacity calculated by the capacity calculating means and the charge / discharge cycle calculated by the period calculating means, and the remaining capacity of the power storage device detected by the capacity detecting means is updated by the capacity calculating means. Controlling the power generation means or the discharge means so as to obtain the calculated remaining capacity, and controlling the power generation means and the discharge means so that the charge / discharge cycle of the power storage device is the charge / discharge cycle calculated by the period calculation means. The charge / discharge control apparatus according to claim 2. 上記蓄電装置はエンジン、駆動モータ及び補機を有する車両に搭載され、
上記発電手段は上記エンジンで駆動される発電モータであり、上記放電手段は駆動モータ又は補機を駆動する手段であることを特徴とする請求項1に記載の充放電制御装置。
The power storage device is mounted on a vehicle having an engine, a drive motor and an auxiliary machine,
2. The charge / discharge control apparatus according to claim 1, wherein the power generation means is a power generation motor driven by the engine, and the discharge means is a means for driving a drive motor or an auxiliary machine.
少なくとも1つの二次電池と少なくとも1つのキャパシタとを並列に接続した蓄電装置に対する充放電を制御する充放電制御方法において、
上記二次電池の動作時の発熱量が最大となるときの蓄電装置の残容量を演算する第1ステップと、
上記二次電池の動作時の発熱量が最大となるときの蓄電装置の充放電周期を演算する第2ステップと、
現在の蓄電装置の残容量を上記第1ステップにて演算した蓄電装置の残容量とする第3ステップと、
上記蓄電装置の充放電周期を、上記第2ステップにて演算した充放電周期にして上記蓄電装置に対する充放電をする第4ステップと
を有することを特徴とする充放電制御方法。
In a charge / discharge control method for controlling charge / discharge of a power storage device in which at least one secondary battery and at least one capacitor are connected in parallel,
A first step of calculating a remaining capacity of the power storage device when the amount of heat generated during operation of the secondary battery is maximized;
A second step of calculating a charge / discharge cycle of the power storage device when the amount of heat generated during operation of the secondary battery is maximized;
A third step of setting the remaining capacity of the current power storage device to the remaining capacity of the power storage device calculated in the first step;
And a fourth step of charging / discharging the power storage device with the charge / discharge cycle of the power storage device being the charge / discharge cycle calculated in the second step.
上記第1ステップの前に、上記二次電池の温度及び現在の蓄電装置の残容量に対する放電可能電力を演算する第5ステップを更に有し、
上記第5ステップにて演算した放電可能電力が所定の放電可能電力よりも小さい場合に、上記第3ステップ及び第4ステップを実行することを特徴とする請求項5に記載の充放電制御方法。
Before the first step, further includes a fifth step of calculating dischargeable power for the temperature of the secondary battery and the current remaining capacity of the power storage device,
The charge / discharge control method according to claim 5, wherein the third step and the fourth step are executed when the dischargeable power calculated in the fifth step is smaller than a predetermined dischargeable power.
上記第1ステップにて演算した残容量及び上記第2ステップにて演算した充放電周期を更新する第6ステップを更に有し、
上記第3ステップ及び第4ステップを、上記第6ステップにて更新した残容量及び充放電周期にて実行することを特徴とする請求項6に記載の充放電制御方法。
A sixth step of updating the remaining capacity calculated in the first step and the charge / discharge cycle calculated in the second step;
The charge / discharge control method according to claim 6, wherein the third step and the fourth step are executed with the remaining capacity and the charge / discharge cycle updated in the sixth step.
JP2002163091A 2002-06-04 2002-06-04 Charge / discharge control apparatus and method Expired - Fee Related JP3780979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163091A JP3780979B2 (en) 2002-06-04 2002-06-04 Charge / discharge control apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163091A JP3780979B2 (en) 2002-06-04 2002-06-04 Charge / discharge control apparatus and method

Publications (2)

Publication Number Publication Date
JP2004015866A JP2004015866A (en) 2004-01-15
JP3780979B2 true JP3780979B2 (en) 2006-05-31

Family

ID=30431657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163091A Expired - Fee Related JP3780979B2 (en) 2002-06-04 2002-06-04 Charge / discharge control apparatus and method

Country Status (1)

Country Link
JP (1) JP3780979B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222297B2 (en) * 2004-11-24 2009-02-12 トヨタ自動車株式会社 Vehicle control device
WO2006126827A1 (en) * 2005-05-27 2006-11-30 Lg Chem, Ltd. Method and apparatus for estimating maximum power of battery by using internal resistance of the battery
JP4797476B2 (en) 2005-07-12 2011-10-19 トヨタ自動車株式会社 Secondary battery control device
JP4978082B2 (en) 2006-03-31 2012-07-18 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP4702155B2 (en) 2006-04-14 2011-06-15 トヨタ自動車株式会社 Power supply device and control method of power supply device
JP4501893B2 (en) 2006-04-24 2010-07-14 トヨタ自動車株式会社 Power supply system and vehicle
JP4379430B2 (en) 2006-04-24 2009-12-09 トヨタ自動車株式会社 Power supply system and vehicle
JP4179351B2 (en) 2006-07-07 2008-11-12 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, method for controlling power supply system, and computer-readable recording medium recording a program for causing computer to execute control of power supply system
JP4379441B2 (en) * 2006-07-18 2009-12-09 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, power storage device temperature rise control method, and computer-readable recording medium storing a program for causing a computer to execute power storage device temperature rise control
JP5197939B2 (en) * 2006-08-24 2013-05-15 株式会社日立製作所 Railway vehicle drive system
JP4984754B2 (en) 2006-09-04 2012-07-25 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP4208006B2 (en) 2006-11-08 2009-01-14 トヨタ自動車株式会社 Electric vehicle
JP5077699B2 (en) * 2008-10-09 2012-11-21 株式会社デンソー Battery temperature rise control device
JP5288170B2 (en) * 2008-10-03 2013-09-11 株式会社デンソー Battery temperature rise control device
US8575897B2 (en) 2008-10-03 2013-11-05 Denso Corporation Battery temperature control system
JP5487861B2 (en) * 2009-09-30 2014-05-14 マツダ株式会社 Battery warm-up control device
BR112013009653A2 (en) * 2010-11-05 2016-07-12 Mitsubishi Electric Corp charge / discharge device that controls charge / discharge of an electrical energy storage device, and charge / discharge control method
JP5622705B2 (en) * 2010-11-12 2014-11-12 本田技研工業株式会社 Charge / discharge control device and charge / discharge control method
US20160049809A1 (en) * 2013-03-28 2016-02-18 Nec Corporation Storage battery and operation method of storage battery
US11011788B2 (en) 2016-12-28 2021-05-18 Mitsubishi Electric Corporation Standby state maintaining device
JP6452926B2 (en) * 2016-12-28 2019-01-16 三菱電機株式会社 Standby state maintenance device
CN108032753B (en) * 2017-12-11 2020-06-19 哈尔滨理工大学 Preheating charging device for electric automobile and method for preheating and charging battery pack by adopting same
CN110341540A (en) * 2019-06-11 2019-10-18 汉腾汽车有限公司 A kind of automobile opens the decision-making system of required SOC value when energy regenerating
CN116298441B (en) * 2023-02-28 2023-11-07 东莞市冠达自动化设备有限公司 Outdoor power supply charge and discharge control method, equipment and storage medium
CN116404677B (en) * 2023-04-23 2023-10-27 杭州施福宁能源科技有限公司 Management system of electric power energy storage system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081855B2 (en) * 1998-05-14 2008-04-30 日産自動車株式会社 Battery temperature riser
JP3864560B2 (en) * 1998-06-03 2007-01-10 日産自動車株式会社 Battery control device
JP3379444B2 (en) * 1998-09-07 2003-02-24 トヨタ自動車株式会社 Hybrid vehicle charge / discharge state control device
JP2002151166A (en) * 2000-11-10 2002-05-24 Japan Storage Battery Co Ltd Method and device for temperature adjustment of secondary battery
JP4496696B2 (en) * 2001-09-26 2010-07-07 日産自動車株式会社 Secondary battery temperature rise control device
JP2003274565A (en) * 2002-03-13 2003-09-26 Nissan Motor Co Ltd Power storage system

Also Published As

Publication number Publication date
JP2004015866A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3780979B2 (en) Charge / discharge control apparatus and method
JP7072424B2 (en) Vehicle power system
JP4544273B2 (en) VEHICLE POWER SUPPLY DEVICE AND CHARGING STATE ESTIMATION METHOD FOR POWER STORAGE DEVICE IN VEHICLE POWER SUPPLY DEVICE
CN102545317B (en) The system risen for causing battery temperature
JP3415740B2 (en) Battery charger
JP4081855B2 (en) Battery temperature riser
CN100444495C (en) Battery power circuit
WO2008066092A1 (en) Secondary battery charge/discharge control device and vehicle using the same
US8035252B2 (en) Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program for causing computer to execute temperature increase control of power storage device
CN103717434B (en) The actuating device of vehicle
JP5487861B2 (en) Battery warm-up control device
JP3915258B2 (en) Control device for battery for hybrid vehicle
US20090315518A1 (en) Power supply device and vehicle
JP4078880B2 (en) Power storage system
EP2592716B1 (en) Control device for vehicle and control method for vehicle
JP2003274565A (en) Power storage system
CN101501602A (en) Solar photovoltaic power generation system, vehicle, solar photovoltaic power generation system control method, and computer readable recording medium having recorded therein program for causing compu
JPH06124720A (en) Hybrid power supply device
CN101682254B (en) Power supply system, vehicle using the same, power supply system control method, and computer-readable recording medium containing the program for causing computer to execute the control method
JP3882703B2 (en) Power storage system
WO2008072762A1 (en) Power supply system, vehicle using the same, and its control method
JP5092810B2 (en) Power storage device
JP4496696B2 (en) Secondary battery temperature rise control device
JP2005160271A (en) Hybrid power supply device, motor drive and vehicle
JP3750567B2 (en) Apparatus and method for calculating output deterioration of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees