JP4496696B2 - Secondary battery temperature rise control device - Google Patents

Secondary battery temperature rise control device Download PDF

Info

Publication number
JP4496696B2
JP4496696B2 JP2001293193A JP2001293193A JP4496696B2 JP 4496696 B2 JP4496696 B2 JP 4496696B2 JP 2001293193 A JP2001293193 A JP 2001293193A JP 2001293193 A JP2001293193 A JP 2001293193A JP 4496696 B2 JP4496696 B2 JP 4496696B2
Authority
JP
Japan
Prior art keywords
secondary battery
remaining capacity
temperature
capacity
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293193A
Other languages
Japanese (ja)
Other versions
JP2003102133A (en
Inventor
孝昭 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001293193A priority Critical patent/JP4496696B2/en
Publication of JP2003102133A publication Critical patent/JP2003102133A/en
Application granted granted Critical
Publication of JP4496696B2 publication Critical patent/JP4496696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2次電池の昇温制御装置に関する。
【0002】
【従来の技術】
化学反応を伴う2次電池は、電池の温度が低下すると内部抵抗が大きくなり、放電可能出力が低下してしまう。
【0003】
図4は、2次電池とエンジンの両方が搭載されるパラレルハイブリット型車両における2次電池放電可能出力に対する車両の燃料消費率を示す図である。横軸に2次電池放電可能出力、縦軸に車両の燃料消費率を示す。図4において、線aは2次電池を放電しながら走行する場合の燃料消費率を示し、線bは2次電池を充電しながら走行する場合の燃料消費率を示している。2次電池を充電しながら走行する場合は、エンジン駆動により発電機を作動させ2次電池を充電するので、2次電池を放電しながら走行する場合に比べ、2次電池を充電するエネルギー分燃料消費率が低下する。
【0004】
2次電池放電可能出力が大きいほどモータを駆動源とした走行が長くできるため、車両発進時であるエンジン低回転時の低効率運転状態を回避できるので燃料消費率が良くなる。2次電池放電可能出力がゼロとなると、通常のエンジン搭載車両の燃費効率になる。本来のパラレルハイブリット車の燃費性能を発揮するためには、2次電池の放電可能出力が設計値の出力を出せるようにしなければならない。
【0005】
常温時での2次電池の性能で車両設計を行うと、低温時での燃費性能が低下し、また低温時での2次電池の性能で車両設計を行うと、2次電池を多く搭載することになり、2次電池のコストアップや2次電池の重量増加による車両の燃費性能が低下してしまう。通常、低温時の2次電池性能を多少犠牲にして、車両の燃費性能の設計を行うことになる。そこで、低温時の2次電池を早く昇温させて2次電池の放電可能出力を向上させ、車両の燃費を向上させることが必要となる。
【0006】
2次電池を最も早く昇温させる方法としては、2次電池が流せる最大電流値を車両駆動用モータ及び補機に流すことが考えられる。この事を利用した従来技術として、例えば特開平11−026032号公報に記載されたものがある。
【0007】
この技術をパラレルハイブリット型車両に適用すると、2次電池が流せる最大電流値を車両駆動用モータ及び補機に流し、2次電池の残容量が低下したら2次電池を発電機で充電し、2次電池の残容量がある所定値以上となると充電をやめ、再度、2次電池が流せる最大電流値を車両駆動用モータ及び補機に流すことになる。
【0008】
【発明が解決しようとする課題】
しかしながら、車両の走行条件や補機の容量の制限によって2次電池の持つ性能の最大電流を充放電に使用する事ができないといった問題が生じる。そのため、定電力での充放電となる。
【0009】
図5に定電力での充電と放電を行ったときの2次電池の発熱量を表わす実験結果を示す。
2次電池の残容量を2次電池の残容量SOC、2次電池充電放電電力に対する2次電池発熱量が最大となる2次電池の残容量を2次電池の残容量SOC*とする。
横軸に2次電池の残容量SOC、縦軸に2次電池の発熱量を示す。2次電池を定電力で放電しているときの発熱量は、図5中の線cとなり、ある2次電池の残容量SOC*の時に最大となる。2次電池の残容量SOC*を境に2次電池の残容量SOCが高いほど発熱量は低くなる。このようになるのは、2次電池の残容量SOCが高いほど2次電池の開放電圧が高く、電流値が小さくなるためである。2次電池の残容量SOC*を境に2次電池の残容量SOCが低くなると発熱量は低くなる。これは2次電池の放電可能出力が要求される放電電力以下となり電流値が小さくなるからである。
【0010】
2次電池を定電力で充電しているときの発熱量は、図5中の線dとなり2次電池の残容量SOCが高いほど小さくなる。このようになるのは、2次電池の残容量SOCが高いほど2次電池の開放電圧が高く、電流値が小さくなるためである。
【0011】
放電と充電を繰り返したときの発熱量は、図5中の線eとなり、ある2次電池の残容量SOC*の時に最大となる。放電と充電を繰り返した際、2次電池の残容量がΔSOCの範囲で変化する。しかし、2次電池の残容量の振れ幅ΔSOCは0.5%以下を考えているので、ここでは2次電池の残容量の振れ幅ΔSOCが2次電池発熱量に与える影響は無視できる。
【0012】
本発明は上記2次電池を定電力で充放電しているときに発熱量が最大となる2次電池の残容量SOC*について着目し、すばやく2次電池を昇温させることのできる2次電池の昇温制御装置を提供することを目的とする。
【0013】
請求項1記載の発明は、2次電池と、前記2次電池を充電するための発電手段と、前記2次電池を放電させるための放電手段と、前記2次電池の動作時の発熱量が最大となる電池の残容量を演算する容量演算手段と、前記2次電池の実際の残容量を検出する容量検出手段と、検出した2次電池の残容量が前記容量演算手段で演算した残容量となるように、前記2次電池の充放電を行う制御手段とを有し、前記容量演算手段は、前記2次電池の状態に相関する発熱量のデータを予め保有し、前記データに基づき前記残容量を演算するものとした。
【0014】
請求項2記載の発明は、さらに前記2次電池の温度を測定するための測定手段を有し、前記制御手段、検出した温度が、前記2次電池の充放電可能入出力が所定値未満となる温度である場合には、前記2次電池の充電または放電を行って前記容量演算手段で演算した残容量となるように設定し、前記2次電池の残容量が前記設定した残容量から所定の範囲内となるように前記2次電池の充電と放電とを繰り返すように制御するものとした。
【0015】
請求項3記載の発明は、前記容量演算手段は、前記2次電池の残容量と温度に相関する発熱量のデータを予め保有し、前記2次電池の温度に基づいて前記2次電池の動作時の発熱量が最大となる電池の残容量を演算するものとした。
【0016】
請求項4記載の発明は、前記制御手段は、検出した温度が、前記2次電池の充放電可能入出力が前記発電手段及び前記放電手段の要求充放電入出力未満となる温度である場合には、前記2次電池の充電または放電を行って前記容量演算手段で演算した残容量となるように設定するものとした。
【0017】
【発明の効果】
請求項1記載の発明によれば、2次電池の発熱量が最大となる2次電池の残容量SOC*になるように2次電池を充放電することにより、2次電池の温度が上昇し2次電池の放電可能出力と2次電池の充電可能入力が向上する。
【0018】
請求項2記載の発明によれば、2次電池の残容量SOCが2次電池発熱量が最大となる2次電池の残容量SOC*の所定の範囲内で変化するように2次電池の充電量と放電量を制御することにより、2次電池の昇温速度が速くなる。2次電池の温度が上昇することにより2次電池の放電可能出力と2次電池の充電可能入力が向上する。
【0019】
請求項3記載の発明によれば、2次電池の温度が変化すると、2次電池発熱量が最大となる2次電池残容量SOC*が変化するので、2次電池の残容量SOCが変化する2次電池発熱量が最大となる2次電池残容量SOC*の所定の範囲内で変化するように2次電池の充電量と放電量を制御することにより、2次電池の昇温速度が速くなる。2次電池の温度が上昇することにより2次電池の放電可能出力と2次電池の充電可能入力が向上する。
【0020】
請求項4記載の発明によれば、2次電池の温度が上昇することにより2次電池の放電可能出力と充電可能出力が向上し、車両の燃費を向上させることができる。
【0021】
2次電池の温度が変化すると、2次電池発熱量が最大となる2次電池残容量SOC*が変化することを図6で示す。
図6中、線f、g、hは2次電池温度が−30℃、−20℃、−10℃の場合で、それぞれ一定の電力で放電と充電を繰り返した場合である。2次電池の温度が上昇すると2次電池の内部抵抗が小さくなるので、発熱量が低下する。また、内部抵抗が小さくなり2次電池の放電可能出力が大きくなることから、この条件の電力を放電できる2次電池の残容量が小さくなる。よって、2次電池の発熱量が最大となる2次電池の残容量SOC*は2次電池の温度によって変化する。
【0022】
【発明の実施の形態】
次に発明の実施の形態を実施例により説明する。
図1は実施例として本発明を適用したパラレルハイブリット型車両の構成を示す図である。
図において、太い実線は機械力の伝達経路を示し、破線は電力線を示す。
この車両のパワートレインは、発電モータ1、エンジン2、クラッチ3、駆動モータ4、無段変速機5、ディファレンシャルギヤ6及び駆動輪7から構成される。発電モータ1の出力軸、エンジン2の出力軸およびクラッチ3の入力軸は互いに連結されており、また、クラッチ3の出力軸、駆動モータ4の出力軸及び無段変速機5の入力軸は互いに連結されている。
【0023】
クラッチ3締結時はエンジン2と駆動モータ4が車両の推進源となり、クラッチ3解放時は駆動モータ4のみが車両の推進源となる。推進源の駆動力は、無段変速機5、およびディファレンシャルギヤ6を介して駆動輪7へ伝達される。
【0024】
発電モータ1、駆動モータ4は三相同期電動機または三相誘導電動機などの交流機であり、発電モータ1は主としてエンジン2の始動と発電に用いられ、駆動モータ4は主として車両の推進と制動に用いられる。
クラッチ3はパウダークラッチであり、伝達トルクを調節することができる。
【0025】
発電モータ1、駆動モータ4はそれぞれ、インバータ8、9により駆動される。インバータ8、9は共通のDCリンク10を介して2次電池11に接続されており、2次電池11の直流電力を交流電力に変換して、駆動モータ4へ供給するとともに、発電モータ1の交流発電電力を直流電力に変換して2次電池11を充電する。なお、インバータ8、9は互いにDCリンク10を介して接続されているので、回生運転中のモータにより発電された電力を、2次電池11を介さずに直接、力行運転中のモータへ供給することができる。
2次電池11の電力はDCリンク10を介してDC/DCコンバータ12に接続され、車両の補機13に電力を供給する。
【0026】
コントローラ14は、エンジン2の回転速度、出力およびトルク、クラッチ3の伝達トルク、発電モータ1の回転速度およびトルク、無段変速機5の変速比、2次電池11の充放電などを制御する。
【0027】
コントローラ14は、2次電池11の温度TBを検出する温度センサ15、2次電池11の端子電圧VBを検出する電圧センサ16および2次電池11の電流値IBを検出する電流センサ17からの信号が入力され、2次電池11の残容量SOCを検出する機能を持っている。
【0028】
また、コントローラ14は2次電池11の温度TBと2次電池11の残容量SOCに対する2次電池11の放電可能出力と充電可能入力のマップデータを持っており、マップデータから2次電池11の放電可能出力PBOUTと充電可能入力PBINを演算できるようようになっている。
【0029】
また、コントローラ14は2次電池11の温度TB、2次電池11の残容量SOC、2次電池11の放電電力と2次電池11の充電電力に対する2次電池11の発熱量のマップデータから発熱量を演算する機能を持っており、測定された2次電池11の温度TBと2次電池11の残容量SOCから2次電池11の発熱量を演算できるようになっている。
【0030】
コントローラ14は、車両の負荷変動が小さい状態である定速走行等において、エンジン2の動力により、車両を駆動させ、さらに発電モータ1を駆動させて発電を行うことができ2次電池11を充電することができる。また、発電モータ1、駆動モータ4に電流を流し、2次電池11を放電することができる。このように発電モータ1、駆動モータ4の両方を同時に発電用または駆動用に用いることにより、2次電池は車両の負荷変動が小さい状態である定速走行等においても、すばやく昇温することができる。
【0031】
次に、図2のフローチャートにしたがって、コントローラ14における2次電池11を昇温させるための制御の流れを説明する。
この制御はイグニッションがオンされて開始する。
【0032】
ステップ100において、2次電池11の放電可能出力PBOUTがハイブリット走行に必要な出力未満かどうか判断される。2次電池11の放電可能出力がこの出力未満である場合はハイブリット車として燃費性能が十分に発揮できないと判断され、ステップ101へ進む。2次電池11の放電可能出力がこの値以上である場合は、ハイブリット車として燃費性能が十分に発揮されると判断され、ステップ109へ進む。
【0033】
ステップ101では2次電池11の温度TBが測定される。
ステップ102では2次電池11の発熱量が最大となる2次電池11の残容量SOC*が演算される。
ステップ103では2次電池11の残容量SOCが検出される。
【0034】
ステップ104では2次電池11の残容量SOCと2次電池11の発熱量が最大となる2次電池11の残容量SOC*とが比較される。
【0035】
2次電池11の残容量SOCが2次電池11の残容量SOC*より高い場合には、ステップ105へ進み、2次電池11を2次電池11の発熱量が最大となる2次電池11の残容量SOC*まで放電する。2次電池11の発熱量が最大となる2次電池11の残容量SOC*まで放電後ステップ107へ進み、2次電池11の昇温制御を行う。
【0036】
2次電池11の残容量SOCが2次電池11の残容量SOC*より低い場合は、ステップ106へ進み、2次電池11を2次電池11の発熱量が最大となる2次電池11の残容量SOC*まで充電する。2次電池11の発熱量が最大となる2次電池11の残容量SOC*まで充電後ステップ107へ進む。
【0037】
2次電池11の残容量SOCが2次電池11の発熱量が最大となる2次電池11の残容量SOC*と等しい場合あるいは値が近い場合はステップ107へ進む。ステップ107での2次電池11の昇温制御については後で説明する。
【0038】
ステップ108では、昇温制御した結果2次電池11の放電可能出力がハイブリット走行に必要な出力以上になったかどうか判断される。2次電池11の放電可能出力がハイブリット走行に必要な出力未満である場合はステップ107へ戻り、2次電池11の放電可能出力がこの値以上になるまで2次電池11の昇温制御を続ける。2次電池11の放電可能出力がこの値以上になるとステップ109へ進み、2次電池11の昇温制御を停止して終了する。
【0039】
図3はステップ107で行なわれる2次電池11の昇温制御の説明を示すフローチャートである。
ステップ200でコントローラ14において、温度センサ15からの信号より2次電池11の温度TBが測定される。
【0040】
ステップ201でコントローラ14において前記測定された2次電池11の温度TBより2次電池11の発熱量が最大となる2次電池11の残容量SOC*が演算される。
ステップ202でコントローラ14において2次電池11の残容量SOCを検出する。
【0041】
ステップ203で充電時間t(chg)を演算する。
充電時間t(chg)は放電時間t(dis)に対し、2次電池11の残容量SOCと2次電池11の発熱量が最大となる2次電池11の残容量SOC*の差(%)に比例した分だけ増減するように次式で演算する。
t(chg)=t(dis)−k×(SOC−SOC*)
kは2次電池11の残容量SOCと2次電池11の発熱量が最大となる2次電池11の残容量SOC*の差を充電時間に反映させるための定数である。
【0042】
放電時間t(dis)は2次電池11の残容量SOCが2次電池11の発熱量が最大となる2次電池11の残容量SOC*から大きくずれない範囲で設定する。
例えば、1000Whの2次電池で充放電の電力値が3000Wの場合で、2次電池の残容量SOCの2次電池の発熱量が最大となる2次電池の残容量SOC*からのずれを1%許容できるとすると、放電時間t(dis)は12secとなる。放電時間t(dis)を12secとした場合、定数kを12とすれば、充電時間t(chg)は24secとなり、2次電池11の残容量SOCはSOC*より1%低い点から充電によって1%高い点へ変化することになる。このようにSOC*を挟んで充放電を繰り返すようにkを設定する。
【0043】
ステップ204において上記の放電時間t(dis)、充電時間t(chg)で放電、充電する。
ステップ205において、充放電の回数が設定回数(例えば4〜5回)になったかどうか判断される。設定回数未満である場合はステップ200に戻る。充放電の回数が設定回数になった場合は、メインフローチャートのステップ108へ進む。2次電池11を充放電する電力値は、発電モータ1、駆動モータ4の最大発電電力、最大駆動電力としている。2次電池11を充放電する電力値が大きいほど、2次電池11の昇温速度が速いためである。
ここでは説明しないが、車両の走行条件で2次電池11を充放電する電力値を制御する必要がある場合は、電池を充放電する値を制御してもよい。
【0044】
ステップ105、106で2次電池11の残容量SOCがSOC*に近い値になった後は、ステップ200からステップ205において2次電池11の残容量SOC*から所定の範囲内で2次電池の残容量SOCが変化するように2次電池11の充電と放電を繰り返すことにより、効率的に2次電池の昇温を行うことができる。
【0045】
2次電池11からインバータ9を介して駆動モータ4、車両の補機13を駆動する系統が放電手段を構成する。
ステップ101、200は本発明における2次電池11の温度を測定する測定手段を構成する。
ステップ102、201は本発明における2次電池11の発熱量が最大となる2次電池11の残容量を演算する容量演算手段を構成する。
【0046】
ステップ104からステップ107、ステップ201からステップ205は本発明における制御手段を構成する。
ステップ103、202は本発明における2次電池11の残容量を検出する容量検出手段を構成する。
【0047】
本実施例は以上のように構成され、パラレルハイブリット型車両に搭載の2次電池11がハイブリット走行必要出力に満たない場合、2次電池11をコントローラ14で演算された発熱量が最大となる2次電池11の残容量SOC*から所定の範囲内で変化するように充放電することにしたので、すばやく2次電池11の昇温を行う事ができる。
【0048】
充放電を繰り返し2次電池11の温度が上がることによって変化する発熱量が最大となる2次電池11の残容量SOC*に対しても、2次電池11の残容量SOCが変化する2次電池11の残容量SOC*の所定の範囲内で変化するように充放電をすることにしたので、効率よく2次電池11の昇温を行うことができる。
2次電池11が昇温することにより、2次電池11はハイブリット走行必要出力をすばやく出せるようになり、パラレルハイブリット車としての高い燃費性能を発揮することができる。
【0049】
なお、発電モータ1、駆動モータ4には交流電動機に限らず直流電動機を用いることもできる。また、発電モータ1、駆動モータ4に直流電動機を用いた場合にはインバータ8、9はDC/DCコンバータを用いる。
クラッチ3締結時に、発電モータ1を車両の推進と制動に用いることもでき、駆動モータ4をエンジン2の始動や発電に用いることもできる。
【0050】
クラッチ3はパウダークラッチの代りに乾式単板クラッチや湿式多板クラッチを用いることもできる。
さらに、発電機としての発電モータの代りに燃料電池を用いることもできる。
【0051】
本実施例では温度センサ15により測定された2次電池11の温度TBと2次電池11の残容量SOCから2次電池11の発熱量を演算したが、コントローラ14は2次電池11の内部抵抗および2次電池11の開放電圧のマップデータから2次電池11の発熱量を演算することもできる。
【図面の簡単な説明】
【図1】本発明の実施例を示す図である。
【図2】本発明の実施例における制御の流れを示すフローチャートである。
【図3】2次電池11の昇温制御の詳細を示すフローチャートである。
【図4】パラレルハイブリット型車両の2次電池放電可能出力に対する車両の燃料消費率を示す図である。
【図5】定電力の放電と充電を行った時の2次電池の発熱量を示す図である。
【図6】2次電池の温度変化により、2次電池発熱量が最大となる2次電池残容量が変化することを示す図である。
【符号の説明】
1 発電モータ (発電手段)
2 エンジン
3 クラッチ
4 駆動モータ
5 無段変速機
6 デファレンシャルギヤ
7 駆動輪
8 インバータ
9 インバータ
10 DCリンク
11 2次電池
12 DC/DCコンバータ
13 補機
14 コントローラ
15 温度センサ
16 電圧センサ
17 電流センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature increase control device for a secondary battery.
[0002]
[Prior art]
In a secondary battery with a chemical reaction, when the battery temperature decreases, the internal resistance increases and the dischargeable output decreases.
[0003]
FIG. 4 is a diagram showing the fuel consumption rate of the vehicle with respect to the secondary battery dischargeable output in the parallel hybrid type vehicle in which both the secondary battery and the engine are mounted. The horizontal axis shows the secondary battery dischargeable output, and the vertical axis shows the fuel consumption rate of the vehicle. In FIG. 4, line a indicates the fuel consumption rate when traveling while discharging the secondary battery, and line b indicates the fuel consumption rate when traveling while charging the secondary battery. When running while charging the secondary battery, the generator is operated by the engine to charge the secondary battery, so that the fuel for the energy that charges the secondary battery compared to running while discharging the secondary battery. The consumption rate decreases.
[0004]
The larger the secondary battery dischargeable output, the longer the travel using the motor as a drive source. Therefore, it is possible to avoid the low-efficiency operation state at the time of low engine speed when starting the vehicle, and the fuel consumption rate is improved. When the secondary battery dischargeable output becomes zero, the fuel efficiency of a normal engine-equipped vehicle is obtained. In order to exhibit the fuel efficiency performance of the original parallel hybrid vehicle, the dischargeable output of the secondary battery must be able to output the design value.
[0005]
If the vehicle design is performed with the performance of the secondary battery at normal temperature, the fuel efficiency performance is lowered at low temperatures, and if the vehicle design is performed with the performance of the secondary battery at low temperatures, many secondary batteries are installed. As a result, the fuel efficiency of the vehicle decreases due to the cost increase of the secondary battery and the weight increase of the secondary battery. Usually, the fuel efficiency performance of a vehicle is designed at the expense of a secondary battery performance at a low temperature. Therefore, it is necessary to quickly raise the temperature of the secondary battery at a low temperature to improve the dischargeable output of the secondary battery and improve the fuel efficiency of the vehicle.
[0006]
As a method for raising the temperature of the secondary battery earliest, it is conceivable to pass the maximum current value that can be passed through the secondary battery to the vehicle drive motor and the auxiliary machine. For example, Japanese Patent Laid-Open No. 11-026032 discloses a conventional technique using this fact.
[0007]
When this technology is applied to a parallel hybrid type vehicle, the maximum current value that can be supplied by the secondary battery is supplied to the vehicle drive motor and auxiliary equipment, and when the remaining capacity of the secondary battery decreases, the secondary battery is charged by the generator. When the remaining capacity of the secondary battery exceeds a predetermined value, charging is stopped, and the maximum current value that can be supplied by the secondary battery is passed again to the vehicle drive motor and the auxiliary machine.
[0008]
[Problems to be solved by the invention]
However, there arises a problem that the maximum current of the performance of the secondary battery cannot be used for charging and discharging due to the vehicle running conditions and the capacity of the auxiliary machine. Therefore, charging / discharging with constant power is performed.
[0009]
FIG. 5 shows the experimental results representing the amount of heat generated by the secondary battery when charging and discharging with constant power are performed.
The remaining capacity of the secondary battery is defined as the remaining capacity SOC of the secondary battery, and the remaining capacity of the secondary battery that maximizes the secondary battery heat generation amount with respect to the secondary battery charging / discharging power is defined as the remaining capacity SOC * of the secondary battery.
The horizontal axis shows the remaining capacity SOC of the secondary battery, and the vertical axis shows the calorific value of the secondary battery. The amount of heat generated when the secondary battery is discharged at a constant power is the line c in FIG. 5, and is maximum when the remaining capacity SOC * of a certain secondary battery. The higher the remaining capacity SOC of the secondary battery, the lower the remaining capacity SOC * of the secondary battery, the lower the heat generation amount. This is because the open circuit voltage of the secondary battery is higher and the current value is smaller as the remaining capacity SOC of the secondary battery is higher. When the remaining capacity SOC of the secondary battery becomes lower than the remaining capacity SOC * of the secondary battery, the calorific value becomes lower. This is because the dischargeable output of the secondary battery is less than the required discharge power and the current value becomes small.
[0010]
The amount of heat generated when the secondary battery is charged at a constant power becomes the line d in FIG. 5 and decreases as the remaining capacity SOC of the secondary battery increases. This is because the open circuit voltage of the secondary battery is higher and the current value is smaller as the remaining capacity SOC of the secondary battery is higher.
[0011]
The amount of heat generated when discharging and charging are repeated is the line e in FIG. 5, and becomes the maximum at the remaining capacity SOC * of a certain secondary battery. When discharging and charging are repeated, the remaining capacity of the secondary battery changes within a range of ΔSOC. However, since the amount of fluctuation ΔSOC of the remaining capacity of the secondary battery is considered to be 0.5% or less, the influence of the amount of fluctuation ΔSOC of the remaining capacity of the secondary battery on the secondary battery heat generation can be ignored.
[0012]
The present invention pays attention to the remaining capacity SOC * of the secondary battery that generates the maximum amount of heat when the secondary battery is charged and discharged with constant power, and can quickly raise the temperature of the secondary battery. An object of the present invention is to provide a temperature rise control device.
[0013]
The invention according to claim 1 is a secondary battery, a power generation means for charging the secondary battery, a discharge means for discharging the secondary battery, and a calorific value during operation of the secondary battery. a capacity calculation means for calculating the remaining capacity of the battery becomes maximum, and the capacitance detection means for detecting an actual actual remaining capacity of the secondary battery, the actual remaining capacity of the secondary battery detected is calculated by the volume calculating means as the remaining capacity, it has a control unit that performs charging and discharging of the secondary battery, the capacity calculation unit, the data of the heating value that is correlated to the state of the secondary battery in advance and held in the data Based on this, the remaining capacity was calculated .
[0014]
According to a second aspect of the invention, further comprising a measuring means for measuring the temperature of said secondary battery, said control means, the detected temperature, can be charged and discharged output is less than the predetermined value of said secondary battery and if the temperature is made by performing charging or discharging of the secondary battery is set so that the remaining capacity computed by the volume calculating means, from the remaining capacity the remaining capacity is the setting of the secondary battery The secondary battery is controlled to be repeatedly charged and discharged so as to be within a predetermined range.
[0015]
According to a third aspect of the present invention, the capacity calculation means holds in advance heat generation data correlated with the remaining capacity and temperature of the secondary battery, and the operation of the secondary battery based on the temperature of the secondary battery. The remaining battery capacity at which the amount of heat generated at the time was maximized was calculated.
[0016]
According to a fourth aspect of the present invention, the control means detects the temperature when the chargeable / dischargeable input / output of the secondary battery is less than the required charge / discharge input / output of the power generation means and the discharge means. Is set so as to be the remaining capacity calculated by the capacity calculating means by charging or discharging the secondary battery .
[0017]
【The invention's effect】
According to the first aspect of the present invention, the temperature of the secondary battery rises by charging and discharging the secondary battery so that the secondary battery has a maximum remaining heat SOC * that maximizes the amount of heat generated by the secondary battery. The dischargeable output of the secondary battery and the chargeable input of the secondary battery are improved.
[0018]
According to the second aspect of the present invention, the secondary battery is charged such that the remaining capacity SOC of the secondary battery changes within a predetermined range of the remaining capacity SOC * of the secondary battery that maximizes the secondary battery heat generation amount. By controlling the amount and the discharge amount, the temperature increase rate of the secondary battery is increased. As the temperature of the secondary battery rises, the dischargeable output of the secondary battery and the chargeable input of the secondary battery are improved.
[0019]
According to the third aspect of the present invention, when the temperature of the secondary battery changes, the secondary battery remaining capacity SOC * that maximizes the secondary battery heat generation changes, so the remaining capacity SOC of the secondary battery changes. By controlling the charge amount and discharge amount of the secondary battery so as to change within a predetermined range of the secondary battery remaining capacity SOC * at which the secondary battery heat generation amount becomes maximum, the temperature increase rate of the secondary battery is increased. Become. As the temperature of the secondary battery rises, the dischargeable output of the secondary battery and the chargeable input of the secondary battery are improved.
[0020]
According to the fourth aspect of the invention, when the temperature of the secondary battery rises, the dischargeable output and the chargeable output of the secondary battery are improved, and the fuel efficiency of the vehicle can be improved.
[0021]
FIG. 6 shows that when the temperature of the secondary battery changes, the secondary battery remaining capacity SOC * that maximizes the secondary battery heat generation amount changes.
In FIG. 6, lines f, g, and h are cases where the secondary battery temperatures are −30 ° C., −20 ° C., and −10 ° C., respectively, and discharging and charging are repeated with constant power. When the temperature of the secondary battery rises, the internal resistance of the secondary battery decreases, so the amount of heat generation decreases. Moreover, since the internal resistance is reduced and the dischargeable output of the secondary battery is increased, the remaining capacity of the secondary battery capable of discharging the power under this condition is reduced. Therefore, the remaining capacity SOC * of the secondary battery that maximizes the amount of heat generated by the secondary battery varies depending on the temperature of the secondary battery.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described by way of examples.
FIG. 1 is a diagram showing a configuration of a parallel hybrid vehicle to which the present invention is applied as an embodiment.
In the figure, a thick solid line indicates a transmission path of mechanical force, and a broken line indicates a power line.
The power train of the vehicle includes a generator motor 1, an engine 2, a clutch 3, a drive motor 4, a continuously variable transmission 5, a differential gear 6, and drive wheels 7. The output shaft of the generator motor 1, the output shaft of the engine 2, and the input shaft of the clutch 3 are connected to each other, and the output shaft of the clutch 3, the output shaft of the drive motor 4, and the input shaft of the continuously variable transmission 5 are mutually connected. It is connected.
[0023]
When the clutch 3 is engaged, the engine 2 and the drive motor 4 serve as a vehicle propulsion source, and when the clutch 3 is released, only the drive motor 4 serves as a vehicle propulsion source. The driving force of the propulsion source is transmitted to the driving wheel 7 via the continuously variable transmission 5 and the differential gear 6.
[0024]
The generator motor 1 and the drive motor 4 are AC machines such as a three-phase synchronous motor or a three-phase induction motor. The generator motor 1 is mainly used for starting and generating power of the engine 2, and the drive motor 4 is mainly used for propulsion and braking of the vehicle. Used.
The clutch 3 is a powder clutch and can adjust the transmission torque.
[0025]
The generator motor 1 and the drive motor 4 are driven by inverters 8 and 9, respectively. The inverters 8 and 9 are connected to the secondary battery 11 through a common DC link 10, convert the DC power of the secondary battery 11 into AC power, supply the AC power to the drive motor 4, and The secondary battery 11 is charged by converting AC generated power into DC power. Since the inverters 8 and 9 are connected to each other via the DC link 10, the electric power generated by the motor during the regenerative operation is directly supplied to the motor during the power running operation without going through the secondary battery 11. be able to.
The electric power of the secondary battery 11 is connected to the DC / DC converter 12 through the DC link 10 and supplies electric power to the auxiliary machine 13 of the vehicle.
[0026]
The controller 14 controls the rotational speed, output and torque of the engine 2, the transmission torque of the clutch 3, the rotational speed and torque of the generator motor 1, the gear ratio of the continuously variable transmission 5, the charge / discharge of the secondary battery 11, and the like.
[0027]
The controller 14 includes signals from a temperature sensor 15 that detects the temperature TB of the secondary battery 11, a voltage sensor 16 that detects the terminal voltage VB of the secondary battery 11, and a current sensor 17 that detects the current value IB of the secondary battery 11. Is input, and has a function of detecting the remaining capacity SOC of the secondary battery 11.
[0028]
Further, the controller 14 has map data of the dischargeable output and the chargeable input of the secondary battery 11 with respect to the temperature TB of the secondary battery 11 and the remaining capacity SOC of the secondary battery 11. The dischargeable output PBOUT and the chargeable input PBIN can be calculated.
[0029]
Further, the controller 14 generates heat from the map data of the heat generation amount of the secondary battery 11 with respect to the temperature TB of the secondary battery 11, the remaining capacity SOC of the secondary battery 11, the discharge power of the secondary battery 11 and the charge power of the secondary battery 11. It has a function of calculating the amount, and the calorific value of the secondary battery 11 can be calculated from the measured temperature TB of the secondary battery 11 and the remaining capacity SOC of the secondary battery 11.
[0030]
The controller 14 can drive the vehicle with the power of the engine 2 and drive the power generation motor 1 to generate power during charging at a constant speed where the load fluctuation of the vehicle is small. The secondary battery 11 is charged. can do. Further, the secondary battery 11 can be discharged by passing a current through the generator motor 1 and the drive motor 4. In this way, by using both the generator motor 1 and the drive motor 4 for power generation or driving simultaneously, the secondary battery can quickly rise in temperature even during constant speed driving where the load fluctuation of the vehicle is small. it can.
[0031]
Next, according to the flowchart of FIG. 2, the flow of control for raising the temperature of the secondary battery 11 in the controller 14 will be described.
This control is started when the ignition is turned on.
[0032]
In step 100, it is determined whether or not the dischargeable output PBOUT of the secondary battery 11 is less than the output required for the hybrid travel. If the dischargeable output of the secondary battery 11 is less than this output, it is determined that the fuel efficiency cannot be sufficiently exhibited as a hybrid vehicle, and the routine proceeds to step 101. If the dischargeable output of the secondary battery 11 is equal to or greater than this value, it is determined that the fuel efficiency is sufficiently exhibited as a hybrid vehicle, and the routine proceeds to step 109.
[0033]
In step 101, the temperature TB of the secondary battery 11 is measured.
In step 102, the remaining capacity SOC * of the secondary battery 11 at which the calorific value of the secondary battery 11 is maximized is calculated.
In step 103, the remaining capacity SOC of the secondary battery 11 is detected.
[0034]
In step 104, the remaining capacity SOC of the secondary battery 11 is compared with the remaining capacity SOC * of the secondary battery 11 that maximizes the amount of heat generated by the secondary battery 11.
[0035]
When the remaining capacity SOC of the secondary battery 11 is higher than the remaining capacity SOC * of the secondary battery 11, the process proceeds to step 105, and the secondary battery 11 has the maximum amount of heat generated by the secondary battery 11. Discharge to remaining capacity SOC *. After discharging to the remaining capacity SOC * of the secondary battery 11 at which the calorific value of the secondary battery 11 is maximized, the process proceeds to step 107 after discharging and the temperature rise control of the secondary battery 11 is performed.
[0036]
When the remaining capacity SOC of the secondary battery 11 is lower than the remaining capacity SOC * of the secondary battery 11, the process proceeds to step 106 and the remaining capacity of the secondary battery 11 in which the amount of heat generated by the secondary battery 11 is maximized. Charge to capacity SOC *. The process proceeds to step 107 after charging until the remaining capacity SOC * of the secondary battery 11 at which the calorific value of the secondary battery 11 is maximized.
[0037]
If the remaining capacity SOC of the secondary battery 11 is equal to or close to the remaining capacity SOC * of the secondary battery 11 at which the secondary battery 11 generates the largest amount of heat, the process proceeds to step 107. The temperature increase control of the secondary battery 11 in step 107 will be described later.
[0038]
In step 108, it is determined whether or not the dischargeable output of the secondary battery 11 has become equal to or higher than the output required for hybrid travel as a result of the temperature rise control. When the dischargeable output of the secondary battery 11 is less than the output required for the hybrid running, the process returns to step 107 and the temperature increase control of the secondary battery 11 is continued until the dischargeable output of the secondary battery 11 exceeds this value. . When the dischargeable output of the secondary battery 11 exceeds this value, the routine proceeds to step 109, where the temperature rise control of the secondary battery 11 is stopped and terminated.
[0039]
FIG. 3 is a flowchart illustrating the temperature rise control of the secondary battery 11 performed in step 107.
In step 200, the controller 14 measures the temperature TB of the secondary battery 11 from the signal from the temperature sensor 15.
[0040]
In step 201, the remaining capacity SOC * of the secondary battery 11 at which the amount of heat generated by the secondary battery 11 is maximized is calculated from the measured temperature TB of the secondary battery 11 in the controller 14.
In step 202, the controller 14 detects the remaining capacity SOC of the secondary battery 11.
[0041]
In step 203, the charging time t (chg) is calculated.
The charging time t (chg) is the difference (%) between the remaining capacity SOC of the secondary battery 11 and the remaining capacity SOC * of the secondary battery 11 at which the amount of heat generated by the secondary battery 11 is maximized with respect to the discharging time t (dis). It is calculated by the following formula so as to increase or decrease by an amount proportional to.
t (chg) = t (dis) −k × (SOC−SOC *)
k is a constant for reflecting the difference between the remaining capacity SOC of the secondary battery 11 and the remaining capacity SOC * of the secondary battery 11 at which the calorific value of the secondary battery 11 is maximized in the charging time.
[0042]
The discharge time t (dis) is set in a range in which the remaining capacity SOC of the secondary battery 11 does not greatly deviate from the remaining capacity SOC * of the secondary battery 11 at which the secondary battery 11 generates the largest amount of heat.
For example, when a 1000 Wh secondary battery has a charge / discharge power value of 3000 W, the deviation of the secondary battery remaining capacity SOC from the secondary battery remaining capacity SOC * that maximizes the secondary battery heat generation amount is 1 If it is acceptable, the discharge time t (dis) is 12 sec. If the discharge time t (dis) is 12 sec, and the constant k is 12, the charge time t (chg) is 24 sec. The remaining capacity SOC of the secondary battery 11 is 1 by charging from a point 1% lower than SOC *. % Will change to a higher point. In this way, k is set so that charging / discharging is repeated with the SOC * interposed therebetween.
[0043]
In step 204, the battery is discharged and charged at the discharge time t (dis) and the charge time t (chg).
In step 205, it is determined whether the number of times of charging / discharging has reached a set number (for example, 4 to 5 times). If the number is less than the set number, the process returns to step 200. When the number of times of charging / discharging has reached the set number, the process proceeds to step 108 in the main flowchart. The power values for charging and discharging the secondary battery 11 are the maximum generated power and the maximum drive power of the generator motor 1 and the drive motor 4. This is because the temperature increase rate of the secondary battery 11 is faster as the power value for charging and discharging the secondary battery 11 is larger.
Although not described here, when it is necessary to control the power value for charging / discharging the secondary battery 11 under the driving conditions of the vehicle, the value for charging / discharging the battery may be controlled.
[0044]
After the remaining capacity SOC of the secondary battery 11 becomes close to the SOC * in Steps 105 and 106, the secondary battery capacity of the secondary battery is within a predetermined range from the remaining capacity SOC * of the secondary battery 11 in Step 200 to Step 205. By repeating charging and discharging of the secondary battery 11 so that the remaining capacity SOC changes, the temperature of the secondary battery can be efficiently increased.
[0045]
A system that drives the drive motor 4 and the auxiliary machine 13 of the vehicle from the secondary battery 11 via the inverter 9 constitutes a discharging means.
Steps 101 and 200 constitute measuring means for measuring the temperature of the secondary battery 11 in the present invention.
Steps 102 and 201 constitute capacity calculating means for calculating the remaining capacity of the secondary battery 11 that maximizes the amount of heat generated by the secondary battery 11 in the present invention.
[0046]
Steps 104 to 107 and steps 201 to 205 constitute the control means in the present invention.
Steps 103 and 202 constitute capacity detecting means for detecting the remaining capacity of the secondary battery 11 in the present invention.
[0047]
The present embodiment is configured as described above, and when the secondary battery 11 mounted on the parallel hybrid vehicle is less than the required hybrid running output, the calorific value calculated by the controller 14 for the secondary battery 11 is maximized 2 Since charging / discharging is performed so that the remaining capacity SOC * of the secondary battery 11 changes within a predetermined range, the secondary battery 11 can be quickly heated.
[0048]
The secondary battery in which the remaining capacity SOC of the secondary battery 11 also changes with respect to the remaining capacity SOC * of the secondary battery 11 in which the amount of heat generation that changes as the temperature of the secondary battery 11 rises by repeatedly charging and discharging. Since the charging / discharging is performed so as to change within a predetermined range of the remaining capacity SOC * of 11, the secondary battery 11 can be efficiently heated.
As the secondary battery 11 rises in temperature, the secondary battery 11 can quickly output the required hybrid travel output and can exhibit high fuel efficiency as a parallel hybrid vehicle.
[0049]
The generator motor 1 and the drive motor 4 are not limited to AC motors, and DC motors can also be used. Further, when a DC motor is used for the generator motor 1 and the drive motor 4, the inverters 8 and 9 use DC / DC converters.
When the clutch 3 is engaged, the generator motor 1 can be used for propulsion and braking of the vehicle, and the drive motor 4 can also be used for starting the engine 2 and generating power.
[0050]
The clutch 3 may be a dry single plate clutch or a wet multi-plate clutch instead of the powder clutch.
Furthermore, a fuel cell can be used instead of the generator motor as a generator.
[0051]
In this embodiment, the calorific value of the secondary battery 11 is calculated from the temperature TB of the secondary battery 11 measured by the temperature sensor 15 and the remaining capacity SOC of the secondary battery 11, but the controller 14 uses the internal resistance of the secondary battery 11. And the calorific value of the secondary battery 11 can be calculated from the map data of the open circuit voltage of the secondary battery 11.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a flowchart showing a control flow in an embodiment of the present invention.
FIG. 3 is a flowchart showing details of temperature increase control of the secondary battery 11;
FIG. 4 is a diagram showing a fuel consumption rate of a vehicle with respect to a secondary battery dischargeable output of a parallel hybrid type vehicle.
FIG. 5 is a diagram showing a calorific value of a secondary battery when discharging and charging a constant power.
FIG. 6 is a diagram showing that the remaining secondary battery capacity at which the secondary battery heat generation amount becomes maximum changes due to temperature change of the secondary battery.
[Explanation of symbols]
1 Electric motor (power generation means)
2 Engine 3 Clutch 4 Drive motor 5 Continuously variable transmission 6 Differential gear 7 Drive wheel 8 Inverter 9 Inverter 10 DC link 11 Secondary battery 12 DC / DC converter 13 Auxiliary machine 14 Controller 15 Temperature sensor 16 Voltage sensor 17 Current sensor

Claims (4)

2次電池と、
前記2次電池を充電するための発電手段と、
前記2次電池を放電させるための放電手段と、
前記2次電池の動作時の発熱量が最大となる電池の残容量を演算する容量演算手段と、前記2次電池の実際の残容量を検出する容量検出手段と、
検出した2次電池の残容量が前記容量演算手段で演算した残容量となるように、前記2次電池の充放電を行う制御手段と
を有し、
前記容量演算手段は、前記2次電池の状態に相関する発熱量のデータを予め保有し、前記データに基づき前記残容量を演算することを特徴とする2次電池の昇温制御装置。
A secondary battery;
Power generation means for charging the secondary battery;
Discharging means for discharging the secondary battery;
Capacity calculating means for calculating the remaining capacity of the battery that maximizes the amount of heat generated during operation of the secondary battery; capacity detecting means for detecting the actual actual remaining capacity of the secondary battery;
As the actual remaining capacity of the detected secondary battery is remaining capacity calculated in the capacity calculation means, have a control unit that performs charging and discharging of the secondary battery,
The secondary battery temperature rise control device , wherein the capacity calculation means stores in advance heat generation data correlated with the state of the secondary battery and calculates the remaining capacity based on the data .
請求項1において、
前記2次電池の温度を測定するための測定手段を有し、
前記制御手段
検出した温度が、前記2次電池の充放電可能入出力が所定値未満となる温度である場合には、前記2次電池の充電または放電を行って前記容量演算手段で演算した残容量となるように設定し、
前記2次電池の残容量が前記設定した残容量から所定の範囲内となるように前記2次電池の充電と放電とを繰り返すように制御すること
を特徴とする2次電池の昇温制御装置。
In claim 1,
Measuring means for measuring the temperature of the secondary battery;
The control means includes
When the detected temperature is a temperature at which the chargeable / dischargeable input / output of the secondary battery is less than a predetermined value, the secondary battery is charged or discharged and becomes the remaining capacity calculated by the capacity calculating means. Set as
The secondary battery temperature increase control device controls the secondary battery to be repeatedly charged and discharged so that the remaining capacity of the secondary battery falls within a predetermined range from the set remaining capacity. .
請求項1または請求項2において、
前記容量演算手段は、
前記2次電池の残容量と温度に相関する発熱量のデータを予め保有し、
前記2次電池の温度に基づいて前記2 次電池の動作時の発熱量が最大となる電池の残容量を演算すること
を特徴とする2次電池の昇温制御装置。
In claim 1 or claim 2,
The capacity calculating means includes
Preliminary data of calorific value correlated with remaining capacity and temperature of the secondary battery,
A secondary battery temperature increase control device that calculates a remaining battery capacity that maximizes the amount of heat generated during operation of the secondary battery based on the temperature of the secondary battery.
請求項2において、
前記制御手段は、
検出した温度が、前記2次電池の充放電可能入出力が前記発電手段及び前記放電手段の要求充放電入出力未満となる温度である場合には、前記2次電池の充電または放電を行って前記容量演算手段で演算した残容量となるように設定することを特徴とする2次電池の昇温制御装置。
In claim 2,
The control means includes
When the detected temperature is such that the chargeable / dischargeable input / output of the secondary battery is less than the required charge / discharge input / output of the power generation means and the discharge means, the secondary battery is charged or discharged. A temperature increase control device for a secondary battery, which is set to have a remaining capacity calculated by the capacity calculating means .
JP2001293193A 2001-09-26 2001-09-26 Secondary battery temperature rise control device Expired - Fee Related JP4496696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293193A JP4496696B2 (en) 2001-09-26 2001-09-26 Secondary battery temperature rise control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293193A JP4496696B2 (en) 2001-09-26 2001-09-26 Secondary battery temperature rise control device

Publications (2)

Publication Number Publication Date
JP2003102133A JP2003102133A (en) 2003-04-04
JP4496696B2 true JP4496696B2 (en) 2010-07-07

Family

ID=19115034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293193A Expired - Fee Related JP4496696B2 (en) 2001-09-26 2001-09-26 Secondary battery temperature rise control device

Country Status (1)

Country Link
JP (1) JP4496696B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876979B2 (en) * 2002-03-18 2007-02-07 三菱自動車工業株式会社 Battery control device
JP3780979B2 (en) * 2002-06-04 2006-05-31 日産自動車株式会社 Charge / discharge control apparatus and method
US7234552B2 (en) * 2003-09-19 2007-06-26 Ford Global Technologies, Llc Method for heating a battery in a hybrid electric vehicle
JP4762505B2 (en) * 2004-05-21 2011-08-31 富士重工業株式会社 Battery warm-up control device
JP4538418B2 (en) * 2006-02-15 2010-09-08 トヨタ自動車株式会社 Secondary battery charge / discharge controller
JP4984754B2 (en) 2006-09-04 2012-07-25 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP5011940B2 (en) * 2006-10-16 2012-08-29 トヨタ自動車株式会社 Power supply device and vehicle
JP4811503B2 (en) * 2009-07-08 2011-11-09 トヨタ自動車株式会社 Secondary battery temperature increase control device, vehicle equipped with the same, and secondary battery temperature increase control method
CN103419660B (en) * 2012-05-22 2016-03-30 比亚迪股份有限公司 The power system of electronlmobil, electronlmobil and heating of battery method
CN103419664B (en) 2012-05-22 2015-11-25 比亚迪股份有限公司 The power system of electronlmobil, electronlmobil and heating of battery method
JP5983683B2 (en) 2013-07-03 2016-09-06 トヨタ自動車株式会社 Temperature raising system
CN109689455B (en) * 2016-09-12 2022-04-01 株式会社东芝 Vehicle with a steering wheel
JP6796571B2 (en) * 2017-11-06 2020-12-09 本田技研工業株式会社 Vehicle control systems, vehicle control methods, and programs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092614A (en) * 1998-09-07 2000-03-31 Toyota Motor Corp Hybrid vehicle charging/discharging state controller
JP2000277151A (en) * 1999-03-23 2000-10-06 Toyota Central Res & Dev Lab Inc Lithium secondary battery using method
JP2001314039A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Apparatus and method for controlling input and output of secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092614A (en) * 1998-09-07 2000-03-31 Toyota Motor Corp Hybrid vehicle charging/discharging state controller
JP2000277151A (en) * 1999-03-23 2000-10-06 Toyota Central Res & Dev Lab Inc Lithium secondary battery using method
JP2001314039A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Apparatus and method for controlling input and output of secondary battery

Also Published As

Publication number Publication date
JP2003102133A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
JP3780979B2 (en) Charge / discharge control apparatus and method
JP3449226B2 (en) Battery control device for hybrid vehicle
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
US10797364B2 (en) Power supply system of vehicle
US6078163A (en) Battery temperature increasing device and method
KR101113191B1 (en) Power supply device and vehicle
JP5713111B2 (en) Vehicle control apparatus and control method
JP2003274565A (en) Power storage system
WO2008066092A1 (en) Secondary battery charge/discharge control device and vehicle using the same
CN103072570B (en) For the control convenience of hybrid electric vehicle
JP2013035534A (en) Hybrid vehicle
JP4078880B2 (en) Power storage system
JP4496696B2 (en) Secondary battery temperature rise control device
JP6694156B2 (en) Control device for hybrid vehicle
JP7095587B2 (en) Battery system, electric vehicle and its control method
JP5720620B2 (en) vehicle
JP2009033830A (en) Controller and control method for electric system, program achieving the method, and recording medium recording the program
JP4915273B2 (en) Electrical device and method for controlling electrical device
JP2005160271A (en) Hybrid power supply device, motor drive and vehicle
JPH089511A (en) Hybrid power source for motor-driven vehicle
JP2973657B2 (en) Power distribution system for series hybrid vehicles
JP3750567B2 (en) Apparatus and method for calculating output deterioration of secondary battery
JP4701552B2 (en) Secondary battery temperature rise control device
JP2003235169A (en) Storage system and vehicle provided therewith
JP3707206B2 (en) Generator control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees