JP4538418B2 - Secondary battery charge / discharge controller - Google Patents

Secondary battery charge / discharge controller Download PDF

Info

Publication number
JP4538418B2
JP4538418B2 JP2006037896A JP2006037896A JP4538418B2 JP 4538418 B2 JP4538418 B2 JP 4538418B2 JP 2006037896 A JP2006037896 A JP 2006037896A JP 2006037896 A JP2006037896 A JP 2006037896A JP 4538418 B2 JP4538418 B2 JP 4538418B2
Authority
JP
Japan
Prior art keywords
secondary battery
power
charge
discharge
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006037896A
Other languages
Japanese (ja)
Other versions
JP2007221886A5 (en
JP2007221886A (en
Inventor
浩一郎 牟田
一平 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2006037896A priority Critical patent/JP4538418B2/en
Priority to US12/223,855 priority patent/US20100156352A1/en
Priority to PCT/IB2007/000333 priority patent/WO2007093882A2/en
Priority to EP07705578A priority patent/EP1984222A2/en
Priority to CN2007800055939A priority patent/CN101384461B/en
Publication of JP2007221886A publication Critical patent/JP2007221886A/en
Publication of JP2007221886A5 publication Critical patent/JP2007221886A5/ja
Application granted granted Critical
Publication of JP4538418B2 publication Critical patent/JP4538418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/56Temperature prediction, e.g. for pre-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/28Fuel cells
    • B60W2510/285Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、二次電池に対する充放電電力の制御技術に関し、特に低温時において二次電池を充放電させることで昇温する技術に関する。   The present invention relates to a charge / discharge power control technique for a secondary battery, and more particularly to a technique for raising the temperature by charging / discharging a secondary battery at a low temperature.

走行中の発電が可能である、ハイブリッド車両や燃料電池車などは、二次電池を搭載している。ハイブリッド車両では、電動機により当該二次電池に蓄えられた電力が駆動力に変換され、その駆動力は、単独あるいはエンジンが発生する駆動力と共に車輪に伝達される。また、燃料電池車は、走行状況に応じて、燃料電池が発生する電力に加えて、当該二次電池に蓄えられた電力が電動機に与えられ、当該電動機が発生する駆動力が車輪に伝達される。   A hybrid vehicle, a fuel cell vehicle, and the like that can generate power while running are equipped with a secondary battery. In the hybrid vehicle, the electric power stored in the secondary battery is converted into driving force by the electric motor, and the driving force is transmitted to the wheels alone or together with the driving force generated by the engine. In addition, in the fuel cell vehicle, in addition to the electric power generated by the fuel cell, the electric power stored in the secondary battery is given to the electric motor, and the driving force generated by the electric motor is transmitted to the wheels in accordance with the driving situation. The

二次電池は、電気エネルギを化学的作用により蓄えるため、充放電特性は、環境要件、特に温度条件に応じて、大きく変化する。すなわち、低温時においては、その化学的作用の反応度が大きく低下し、本来の性能を発揮することができない。たとえば、最適使用温度が20℃〜40℃において21kW程度の電力を供給できる二次電池を0℃で使用した場合においては、5kW程度の電力しか供給できない。   Since secondary batteries store electrical energy by chemical action, the charge / discharge characteristics vary greatly depending on environmental requirements, particularly temperature conditions. That is, at low temperatures, the reactivity of the chemical action is greatly reduced and the original performance cannot be exhibited. For example, when a secondary battery that can supply power of about 21 kW at an optimal use temperature of 20 ° C. to 40 ° C. is used at 0 ° C., only about 5 kW of power can be supplied.

そのため、冬季の早朝や寒冷地などにおいては、二次電池が低温となっているため、必要な電力を供給できず、スムーズな発進や加速ができないという問題がある。そこで、特開2000−92614号公報(特許文献1)に開示されるように、二次電池の温度が所定温度より低い場合に、所定の充放電範囲内で強制的に充放電を行ない、発生する抵抗熱により二次電池を所定温度に制御する構成が知られている。   For this reason, in the early morning of winter or in cold regions, the secondary battery is at a low temperature, so that there is a problem that necessary power cannot be supplied and smooth start-up and acceleration cannot be performed. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 2000-92614 (Patent Document 1), when the temperature of the secondary battery is lower than a predetermined temperature, the charge / discharge is forcibly performed within a predetermined charge / discharge range, and is generated. A configuration is known in which a secondary battery is controlled to a predetermined temperature by resistance heat.

また、特開2003−272712号公報(特許文献2)においては、バッテリの温度が所定値以下である場合において、バッテリの充電状態が所定領域内で充放電を繰返す構成が開示されている。さらに、特開2003−274565号公報(特許文献3)においては、二次電池を含む蓄電部を充電する発電手段と、蓄電部から電力を放電させる放電手段とを交互に作動させて、二次電池を発熱させる構成が開示されている。   Japanese Patent Laying-Open No. 2003-272712 (Patent Document 2) discloses a configuration in which, when the battery temperature is equal to or lower than a predetermined value, the charge state of the battery repeats charging and discharging within a predetermined region. Further, in Japanese Patent Application Laid-Open No. 2003-274565 (Patent Document 3), a power generation unit that charges a power storage unit including a secondary battery and a discharge unit that discharges power from the power storage unit are alternately operated to perform secondary operation. A configuration for heating a battery is disclosed.

なお、特許文献1〜3に開示されるような充放電を繰返す構成に限られず、積極的に充電のみを行なうことで、二次電池の昇温を行なう構成も開示されている。たとえば、特開平7−79503号公報(特許文献4)には、二次電池の温度に応じて、発電機の出力電圧を上昇させることで、充電抵抗による発熱を促進する構成が開示されている。また、特開2000−40532号公報(特許文献5)には、エンジン冷却水の水温が低い場合において、SOC(State Of Charge)を高く設定することで、二次電池の充電を行ない、二次電池の暖機を促進する構成が開示されている。
特開2000−92614号公報 特開2003−272712号公報 特開2003−274565号公報 特開平7−79503号公報 特開2000−40532号公報
In addition, it is not restricted to the structure which repeats charging / discharging as disclosed by patent documents 1-3, The structure which heats up a secondary battery only by positively charging is also disclosed. For example, Japanese Patent Laid-Open No. 7-79503 (Patent Document 4) discloses a configuration in which heat generated by a charging resistor is promoted by increasing the output voltage of a generator according to the temperature of a secondary battery. . Japanese Patent Laid-Open No. 2000-40532 (Patent Document 5) discloses that when the coolant temperature of the engine cooling water is low, the secondary battery is charged by setting the SOC (State Of Charge) high. A configuration for promoting battery warm-up is disclosed.
JP 2000-92614 A JP 2003-272712 A JP 2003-274565 A JP-A-7-79503 JP 2000-40532 A

一般的に、二次電池は、その充放電特性を向上させるために、内部抵抗が小さくなるように設計されている。そのため、上述した特許文献1〜5に開示されるような、充放電の繰返しまたは積極的な充電による、内部抵抗でのジュール熱に依存した二次電池の昇温動作では、単位時間の発生熱量はそれほど多くない。したがって、通常の使用温度域までの昇温動作が完了するまでには、たとえば数分から10数分程度の比較的長い時間を要する。   Generally, a secondary battery is designed so that internal resistance becomes small in order to improve its charge / discharge characteristics. Therefore, as disclosed in Patent Documents 1 to 5 described above, in the temperature rising operation of the secondary battery depending on the Joule heat in the internal resistance by repeated charging or discharging or active charging, the amount of heat generated per unit time Is not so many. Therefore, it takes a relatively long time, for example, from several minutes to 10 and several minutes to complete the temperature raising operation up to the normal use temperature range.

一方、二次電池を保護するために、二次電池の充放電電力は、各時点における二次電池の電池状態に応じて、化学反応的な観点から定められる充放電制限電力に制限される。通常の昇温動作時においては、昇温時間を短縮するため、充放電制限電力と一致するように充放電電力が設定される。   On the other hand, in order to protect the secondary battery, the charge / discharge power of the secondary battery is limited to the charge / discharge limit power determined from the viewpoint of chemical reaction according to the battery state of the secondary battery at each time point. In a normal temperature raising operation, the charge / discharge power is set to coincide with the charge / discharge limit power in order to shorten the temperature rise time.

しかしながら、二次電池がこの充放電制限電力の範囲内で継続的に充放電されると、電極部に生じる分極作用が大きくなり、二次電池の出力電圧が当該分極作用に起因する過剰な電圧変動(電圧上昇または電圧降下)を生じる場合があった。二次電池の出力電圧にこのような過剰な電圧変動が生じると、二次電池に接続されるインバータ装置や電動機に影響を与え、走行性能を低下させるという問題があった。   However, if the secondary battery is continuously charged and discharged within the range of the charge / discharge limit power, the polarization effect generated in the electrode portion increases, and the output voltage of the secondary battery is an excessive voltage due to the polarization action. In some cases, fluctuation (voltage rise or voltage drop) occurred. When such an excessive voltage fluctuation occurs in the output voltage of the secondary battery, there is a problem that the inverter device and the electric motor connected to the secondary battery are affected and the running performance is deteriorated.

この発明は、このような問題点を解決するためになされたものであって、その目的は、昇温動作時などのように、二次電池に対する充放電が比較的長い時間に亘って継続する場合において、二次電池の過剰な電圧変動を抑制可能な二次電池の充放電制御装置を提供することである。   The present invention has been made to solve such problems, and its purpose is to continue charging and discharging of the secondary battery for a relatively long time, such as during a temperature raising operation. In some cases, a secondary battery charge / discharge control device capable of suppressing excessive voltage fluctuation of the secondary battery is provided.

この発明によれば、充放電可能に構成される二次電池と、二次電池と接続され、電力を発生する発電手段と、二次電池と接続され、電力を消費する負荷手段と、を有するシステムにおける二次電池の充放電制御装置である。この発明に係る二次電池の充放電制御装置は、二次電池に対する継続的な充放電要求が存在しているか否かを判断する判断手段と、各時点における二次電池の電池状態に応じて定められる充放電制限電力より小さい範囲内で、二次電池を継続して充放電するための充放電継続電力を決定する決定手段と、判断手段により継続的な充放電要求が存在していると判断されたときに、二次電池に対して充放電される電力が決定手段により決定された充放電継続電力となるように、発電手段の発生電力および負荷手段の消費電力のうち、少なくともいずれか一方を制御する制御手段とを備える。   According to this invention, it has a secondary battery configured to be chargeable / dischargeable, a power generation means connected to the secondary battery to generate power, and a load means connected to the secondary battery to consume power. It is a charging / discharging control apparatus of the secondary battery in a system. The secondary battery charge / discharge control device according to the present invention is configured to determine whether or not there is a continuous charge / discharge request for the secondary battery, and according to the battery state of the secondary battery at each time point. When there is a continuous charge / discharge request by the determination means for determining the charge / discharge continuation power for continuously charging / discharging the secondary battery within a range smaller than the specified charge / discharge limit power, and the determination means When determined, at least one of the generated power of the power generation means and the power consumption of the load means so that the power charged / discharged with respect to the secondary battery becomes the charge / discharge continuation power determined by the determination means. Control means for controlling one of them.

この発明によれば、判断手段により継続的な充放電要求が存在すると判断されると、各時点における二次電池の電池状態に応じて定められる充放電制限電力より小さくなるように、二次電池を継続して充放電するための充放電継続電力が決定される。そして、二次電池は、この決定された充放電継続電力で継続的に充放電される。これにより、短時間についての制限値である充放電制限電力で継続的に充放電する場合に比較して、電極を流れる電流が小さくなるので、電極部に生じる分極作用を抑制できる。   According to the present invention, when the determination unit determines that there is a continuous charge / discharge request, the secondary battery is smaller than the charge / discharge limit power determined according to the battery state of the secondary battery at each time point. The charging / discharging continuation electric power for charging / discharging continuously is determined. The secondary battery is continuously charged / discharged with the determined charge / discharge continuation power. Thereby, compared with the case where it charges / discharges continuously with the charging / discharging limiting electric power which is the limiting value about a short time, since the electric current which flows through an electrode becomes small, the polarization effect which arises in an electrode part can be suppressed.

したがって、二次電池に対する充放電が比較的長い時間に亘って継続する場合であっても、二次電池の出力電圧における電圧変動を抑制できる。   Therefore, even when charging / discharging of the secondary battery continues for a relatively long time, voltage fluctuation in the output voltage of the secondary battery can be suppressed.

好ましくは、決定手段は、充放電制限電力に所定の低減定数を乗じた値を超過しないように、充放電制限電力を決定する。   Preferably, the determination unit determines the charge / discharge limit power so as not to exceed a value obtained by multiplying the charge / discharge limit power by a predetermined reduction constant.

好ましくは、二次電池の電池温度を取得する電池温度取得手段をさらに備え、判断手段は、電池温度取得手段により取得される当該電池温度が所定値以下であれば、継続的な充放電要求が存在していると判断する。   Preferably, battery temperature acquisition means for acquiring the battery temperature of the secondary battery is further provided, and the determination means receives a continuous charge / discharge request if the battery temperature acquired by the battery temperature acquisition means is equal to or lower than a predetermined value. Judge that it exists.

好ましくは、二次電池のSOCを取得するSOC取得手段と、SOC取得手段により取得される当該SOCが許容範囲内となるように、二次電池に対して充電または放電のいずれを実行するかを決定する充放電切換手段とをさらに備え、決定手段は、充放電切換手段により決定される充電または放電に応じて、二次電池を継続して充電するための充電継続電力または二次電池を継続して放電するための放電継続電力を決定する。   Preferably, an SOC acquisition unit that acquires the SOC of the secondary battery, and whether to charge or discharge the secondary battery so that the SOC acquired by the SOC acquisition unit falls within an allowable range. Charge / discharge switching means for determining, and the determination means continues the charge continuation power or the secondary battery for continuously charging the secondary battery according to the charge or discharge determined by the charge / discharge switching means. Then, the discharge continuous power for discharging is determined.

この発明によれば、昇温動作時などのように、二次電池に対する充放電が比較的長い時間に亘って継続する場合において、二次電池の過剰な電圧変動を抑制可能な二次電池の充放電制御装置を実現できる。   According to the present invention, in the case where charging / discharging of the secondary battery continues for a relatively long time, such as during a temperature raising operation, the secondary battery can suppress excessive voltage fluctuation of the secondary battery. A charge / discharge control device can be realized.

この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。   Embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.

[実施の形態]
図1は、この発明の実施の形態に従う二次電池の充放電制御装置を搭載した車両100の概略構成図である。
[Embodiment]
FIG. 1 is a schematic configuration diagram of a vehicle 100 equipped with a charge / discharge control device for a secondary battery according to an embodiment of the present invention.

図1を参照して、車両100は、一例として、エンジンENG(Engine)およびモータジェネレータMG1およびMG2(Motor Generator)を備えるハイブリッド車両である。そして、車両100は、エンジンENGと、動力分割機構6と、減速機18と、車輪20と、パワーコントロールユニットPCU(Power Control Unit)と、蓄電装置4と、制御装置2と、モータジェネレータMG1およびMG2とを含む。   Referring to FIG. 1, vehicle 100 is a hybrid vehicle including an engine ENG (Engine) and motor generators MG1 and MG2 (Motor Generator) as an example. Vehicle 100 includes engine ENG, power split mechanism 6, reduction gear 18, wheel 20, power control unit PCU (Power Control Unit), power storage device 4, control device 2, motor generator MG1, and Including MG2.

エンジンENGは、燃料と空気との混合気を燃焼させてクランクシャフト(図示せず)を回転させ、駆動力を発生する。エンジンENGが発生した駆動力は、動力分割機構6により、2経路に分割される。一方は減速機18を介して車輪20を駆動させる経路である。他方は、モータジェネレータMG1を駆動して発電させる経路である。   Engine ENG burns a mixture of fuel and air to rotate a crankshaft (not shown) to generate driving force. The driving force generated by the engine ENG is divided into two paths by the power split mechanism 6. One is a path for driving the wheel 20 via the speed reducer 18. The other is a path for generating power by driving motor generator MG1.

パワーコントロールユニットPCUは、それぞれモータジェネレータMG1、モータジェネレータMG2および蓄電装置4と電気的に接続され、制御装置2からの指令に応じて相互間で電力の授受および変換を行なう。そして、パワーコントロールユニットPCUは、昇降圧コンバータDC/DCと、インバータINV(Inverter)とを含む。昇降圧コンバータDC/DCは、蓄電装置4から供給される直流電力を所定の電圧に変換してインバータINVへ供給し、また、インバータINVから供給される直流電力を所定の電圧に変換して蓄電装置4へ与える。インバータINVは、昇降圧コンバータDC/DCから供給される直流電力を交流電力に変換して、それぞれモータジェネレータMG1およびMG2と、交流電力の授受を行なう。   Power control unit PCU is electrically connected to motor generator MG 1, motor generator MG 2 and power storage device 4, respectively, and performs transmission and reception of electric power and conversion between them according to a command from control device 2. Power control unit PCU includes a step-up / down converter DC / DC and an inverter INV (Inverter). The step-up / down converter DC / DC converts the DC power supplied from the power storage device 4 into a predetermined voltage and supplies it to the inverter INV, and also converts the DC power supplied from the inverter INV into a predetermined voltage to store the power. To device 4. Inverter INV converts the DC power supplied from step-up / down converter DC / DC into AC power, and exchanges AC power with motor generators MG1 and MG2, respectively.

蓄電装置4は、パワーコントロールユニットPCUと電気的に接続され、パワーコントロールユニットPCUから供給される直流電力を蓄え、また、蓄えた電力をパワーコントロールユニットPCUへ供給する。そして、蓄電装置4は、複数のバッテリセルが直列接続された組電池である二次電池を含み、後述するように、その二次電池の電池温度、電流値および電圧値などを制御装置2へ出力する。   The power storage device 4 is electrically connected to the power control unit PCU, stores DC power supplied from the power control unit PCU, and supplies the stored power to the power control unit PCU. The power storage device 4 includes a secondary battery that is an assembled battery in which a plurality of battery cells are connected in series. As will be described later, the battery temperature, current value, voltage value, and the like of the secondary battery are supplied to the control device 2. Output.

モータジェネレータMG1およびMG2は、一例として、三相交流回転電機である。そして、モータジェネレータMG2は、エンジンENGおよび動力分割機構6と同一の回転軸上に配置され、エンジンENGおよび車輪20との相互間で駆動力の授受を行なう。また、モータジェネレータMG1は、動力分割機構6により分割されたエンジンENGの駆動力を受ける。モータジェネレータMG1およびMG2は、いずれも電動機および発電機として機能することが可能であるが、この発明の実施の形態に従う車両100においては、主としてモータジェネレータMG1が発電機として機能し、モータジェネレータMG2が電動機として機能する。   Motor generators MG1 and MG2 are, for example, three-phase AC rotating electric machines. Motor generator MG2 is arranged on the same rotation shaft as engine ENG and power split mechanism 6, and exchanges driving force between engine ENG and wheels 20. Motor generator MG1 receives the driving force of engine ENG divided by power split mechanism 6. Motor generators MG1 and MG2 can both function as an electric motor and a generator, but in vehicle 100 according to the embodiment of the present invention, motor generator MG1 mainly functions as a generator, and motor generator MG2 Functions as an electric motor.

制御装置2は、予め格納されたプログラムを実行することで、図示しない各センサから送信された信号、走行状況、アクセル開度の変化率、蓄電装置4のSOC、格納しているマップなどに基づいて演算処理を行なう。これにより、制御装置2は、運転者の操作に応じて、車両100が所望の運転状態となるように、車両100に搭載された回路・機器類を制御する。そのような制御の一部として、制御装置2は、車両100の駆動時および回生制動時のそれぞれにおいて、パワーコントロールユニットPCUに所定の指令を与えて、モータジェネレータMG1およびMG2における動作を切換える。   The control device 2 executes a program stored in advance, so that it is based on a signal transmitted from each sensor (not shown), a traveling state, a rate of change of the accelerator opening, an SOC of the power storage device 4, a stored map, and the like. To perform arithmetic processing. Thereby, the control device 2 controls the circuits and devices mounted on the vehicle 100 so that the vehicle 100 is in a desired driving state according to the operation of the driver. As part of such control, control device 2 gives a predetermined command to power control unit PCU during driving of vehicle 100 and during regenerative braking, and switches operations in motor generators MG1 and MG2.

一例として、車両100の駆動時において、モータジェネレータMG2は、パワーコントロールユニットPCUから供給される交流電力を受けて駆動力を発生する。すると、モータジェネレータMG2が発生する駆動力は、減速機18を介して車輪20へ伝達される。さらに、エンジンENGは、走行状況に応じて運転または停止が切換えられる。したがって、車両100は、モータジェネレータMG2からの駆動力およびエンジンENGからの駆動力の少なくとも一方を受けて走行する。なお、モータジェネレータMG1が発電する電力の一部は、パワーコントロールユニットPCUで直流電力に変換された後、蓄電装置4に蓄えられ、その他は、パワーコントロールユニットPCUを介してモータジェネレータMG2に供給される。   As an example, when driving vehicle 100, motor generator MG2 receives AC power supplied from power control unit PCU and generates driving force. Then, the driving force generated by motor generator MG <b> 2 is transmitted to wheel 20 via reduction gear 18. Further, the engine ENG is switched between operation and stop according to the traveling state. Therefore, vehicle 100 travels by receiving at least one of the driving force from motor generator MG2 and the driving force from engine ENG. Part of the electric power generated by motor generator MG1 is converted into DC power by power control unit PCU and then stored in power storage device 4, and the rest is supplied to motor generator MG2 via power control unit PCU. The

また、車両100の回生制動時において、モータジェネレータMG2は、減速機18を介して車輪20により駆動させられ、発電機として作動する。すなわち、モータジェネレータMG2は、制動エネルギを電力に変換する回生ブレーキとして作動する。モータジェネレータMG2が発電した電力は、パワーコントロールユニットPCUで直流電力に変換された後、蓄電装置4に蓄えられる。   At the time of regenerative braking of vehicle 100, motor generator MG2 is driven by wheel 20 via reduction gear 18 and operates as a generator. That is, motor generator MG2 operates as a regenerative brake that converts braking energy into electric power. The electric power generated by motor generator MG2 is converted into DC power by power control unit PCU and then stored in power storage device 4.

なお、ここで言う回生制動とは、ハイブリッド車両の運転者によるフットブレーキ操作があった場合における発電制動を伴う制動、およびフットブレーキ操作をしないものの、走行中にアクセルペダルをオフすることで発電制動をさせながら減速(または加速を中止)することを含む。   The regenerative braking here refers to braking with power generation braking when the driver of the hybrid vehicle performs a foot braking operation, and power generation braking by turning off the accelerator pedal during traveling, although no foot brake operation is performed. Including decelerating (or stopping acceleration).

さらに、制御装置2は、二次電池10を含む蓄電装置4に対する継続的な充放電要求が存在するか否かを判断し、継続的な充放電要求が存在すると判断されると、各時点における二次電池10の電池状態に応じて定められる充放電制限電力より小さくなるように、二次電池10を継続して充放電するための充放電継続電力を決定する。なお、ここで言う充放電継続電力とは、継続的に充電するための充電継続電力#WINおよび継続的に放電するための放電継続電力#WOUTを含む。   Furthermore, the control device 2 determines whether or not there is a continuous charge / discharge request for the power storage device 4 including the secondary battery 10. The charge / discharge continuation power for continuously charging / discharging the secondary battery 10 is determined so as to be smaller than the charge / discharge limit power determined according to the battery state of the secondary battery 10. The charge / discharge continuation power mentioned here includes charge continuation power #WIN for continuous charging and discharge continuation power #WOUT for continuous discharge.

そして、制御装置2は、二次電池10に対して継続的に充放電される電力が決定された充放電継続電力となるように、モータジェネレータMG1およびMG2が発生する電力および消費する電力のうち、少なくともいずれか一方を制御する。同時に、制御装置2は、モータジェネレータMG1およびMG2の発生電力および消費電力に基づいて、必要とされるエンジンENGの出力を算出して、エンジンENGに回転数指令を与える。すなわち、概略すると、制御装置2は、二次電池10を充電する場合にはエンジン出力を増加させ、二次電池を放電する場合にはエンジン出力を低下させる。   And the control apparatus 2 is among the electric power which motor generators MG1 and MG2 generate | occur | produce, and the electric power consumed so that the electric power continuously charged / discharged with respect to the secondary battery 10 may be determined charging / discharging continuous electric power. , Control at least one of them. At the same time, control device 2 calculates the required output of engine ENG based on the generated power and power consumption of motor generators MG1 and MG2, and gives a rotational speed command to engine ENG. That is, in summary, the control device 2 increases the engine output when charging the secondary battery 10 and decreases the engine output when discharging the secondary battery.

なお、この発明の実施の形態に従う二次電池の充放電制御装置は、制御装置2が格納したプログラムを実行することにより実現される。   The secondary battery charge / discharge control device according to the embodiment of the present invention is realized by executing a program stored in control device 2.

この発明の実施の形態においては、二次電池10に対する継続的な充放電要求の一例として、二次電池10の電池温度が最適使用温度の最低値(最低使用温度)以下である場合において、二次電池10を継続的に充放電することで発生する内部抵抗からのジュール熱により、二次電池10を最低使用温度以上まで昇温する場合について説明する。   In the embodiment of the present invention, as an example of a continuous charge / discharge request for the secondary battery 10, when the battery temperature of the secondary battery 10 is equal to or lower than the minimum value (minimum use temperature) of the optimum use temperature, A case will be described in which the secondary battery 10 is heated to the minimum operating temperature or higher by Joule heat from the internal resistance generated by continuously charging and discharging the secondary battery 10.

図2は、この発明の実施の形態に従う二次電池の充放電制御装置に係る要部を示す概略構成図である。   FIG. 2 is a schematic configuration diagram showing the main part of the charge / discharge control device for a secondary battery according to the embodiment of the present invention.

図2を参照して、蓄電装置4は、パワーコントロールユニットPCUと電気的に接続され、パワーコントロールユニットPCUとの間で直流電力の授受を行なう。そして、蓄電装置4は、二次電池10と、二次電池10の出力端の電圧値を検出する電圧値検出部14と、二次電池10と入出力される電流値を検出する電流値検出部16と、二次電池10の各セルの温度を検出する温度センサ12とからなる。なお、二次電池10は、一例として、リチウムイオン電池やニッケル水素電池などからなる。   Referring to FIG. 2, power storage device 4 is electrically connected to power control unit PCU, and exchanges DC power with power control unit PCU. The power storage device 4 includes a secondary battery 10, a voltage value detection unit 14 that detects a voltage value of the output terminal of the secondary battery 10, and a current value detection that detects a current value input / output to / from the secondary battery 10. And a temperature sensor 12 that detects the temperature of each cell of the secondary battery 10. In addition, the secondary battery 10 consists of a lithium ion battery, a nickel metal hydride battery, etc. as an example.

制御装置2は、一例として、ECU(Electrical Control Unit)で構成され、CPU(Central Processing Unit)7と、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリ8とを含む。そして、制御装置2は、温度センサ12から取得した二次電池10の電池温度が最低使用温度以下であれば、二次電池10のSOCに応じて、二次電池10を継続的に充電または放電させる。   As an example, the control device 2 includes an ECU (Electrical Control Unit), and includes a CPU (Central Processing Unit) 7 and a memory 8 such as a RAM (Random Access Memory) and a ROM (Read Only Memory). And if the battery temperature of the secondary battery 10 acquired from the temperature sensor 12 is below the minimum use temperature, the control apparatus 2 will charge or discharge the secondary battery 10 continuously according to SOC of the secondary battery 10. Let

一般的なハイブリッド車両では、運転者の操作に応じて、モータジェネレータMG2に駆動電力を供給し、かつ、モータジェネレータMG1からの回生電力を蓄電することが可能であるように保つ必要がある。そのため、二次電池10は、そのSOCが所定のSOC許容範囲内(たとえば40%〜60%)となるように充放電電力が制御される。そこで、制御装置2は、二次電池10のSOCがSOC許容範囲内の下限値(SOC下限許容値)を下回っていれば、二次電池10を充電継続電力#WINで継続的に充電し(以下、「充電モード」とも称す)、二次電池10のSOCがSOC許容範囲内の上限値(SOC上限許容値)を上回っていれば、二次電池10を放電継続電力#WOUTで継続的に放電する(以下、「放電モード」とも称す)。   In a general hybrid vehicle, it is necessary to supply driving power to the motor generator MG2 and store the regenerative power from the motor generator MG1 in accordance with a driver's operation. Therefore, charge / discharge power of secondary battery 10 is controlled such that the SOC is within a predetermined SOC allowable range (for example, 40% to 60%). Therefore, if the SOC of the secondary battery 10 is below the lower limit value within the SOC allowable range (SOC lower limit allowable value), the control device 2 continuously charges the secondary battery 10 with the charging continuous power #WIN ( Hereinafter, if the SOC of the secondary battery 10 exceeds the upper limit value within the SOC allowable range (SOC upper limit allowable value), the secondary battery 10 is continuously discharged with the discharge continuous power #WOUT. Discharge (hereinafter also referred to as “discharge mode”).

すなわち、モータジェネレータMG1が発電する電力をP1[kW](発電時を正とする)とし、モータジェネレータMG2が駆動力の発生に消費する電力をP2[kW](消費時を正とする)とすると、パワーコントロールユニットPCUでの損失が無いとした場合には、二次電池10を充電する充電電力Pc[kW]は、Pc=P1−P2(P1>P2)となり、二次電池10から放電される放電電力Pd[kW]は、Pd=P2−P1(P2>P1)となる。   That is, the electric power generated by motor generator MG1 is P1 [kW] (positive during power generation), and the electric power consumed by motor generator MG2 for generating driving force is P2 [kW] (positive during consumption). Then, if there is no loss in the power control unit PCU, the charging power Pc [kW] for charging the secondary battery 10 is Pc = P1−P2 (P1> P2), and the secondary battery 10 is discharged. The discharged power Pd [kW] is Pd = P2−P1 (P2> P1).

充電モードにおいて、制御装置2は、充電電力Pcが充電継続電力#WINと一致するように、パワーコントロールユニットPCUにトルク指令および回転数指令などを与えて、モータジェネレータMG1およびMG2の電力P1およびP2のうち少なくとも一方を
制御する。
In the charging mode, control device 2 gives a torque command and a rotational speed command to power control unit PCU so that charging power Pc matches charging continuation power #WIN, and powers P1 and P2 of motor generators MG1 and MG2 are supplied. Control at least one of them.

一方、放電モードにおいて、制御装置2は、放電電力Pdが放電継続電力#WOUTと一致するように、パワーコントロールユニットPCUにトルク指令および回転数指令などを与えて、モータジェネレータMG1およびMG2の電力P1およびP2のうち少なくとも一方を制御する。   On the other hand, in the discharge mode, control device 2 gives a torque command, a rotational speed command, etc. to power control unit PCU so that discharge power Pd matches discharge continuation power #WOUT, and power P1 of motor generators MG1 and MG2 And at least one of P2.

なお、車両100が走行中であれば、運転者の操作により要求される車両100の駆動力、すなわち減速機18を介して車輪20(図1)に伝達される駆動力を発生する必要がある。そのため、制御装置2は、モータジェネレータMG2が発生する駆動力およびエンジンENGが発生する駆動力の総和およびその比率を、予め定められたマップなどに基づいて決定し、パワーコントロールユニットPCUにトルク指令および回転数指令を与えるのと同時に、エンジンENGに回転数指令を与える。   If the vehicle 100 is traveling, it is necessary to generate the driving force of the vehicle 100 required by the driver's operation, that is, the driving force transmitted to the wheels 20 (FIG. 1) via the speed reducer 18. . Therefore, control device 2 determines the sum of the driving force generated by motor generator MG2 and the driving force generated by engine ENG and the ratio thereof based on a predetermined map and the like, and provides torque command and power control unit PCU. At the same time as giving the rotational speed command, the rotational speed command is given to the engine ENG.

なお、二次電池10のSOCを取得する構成については、さまざまな周知技術を用いることができる。一例として、制御装置2は、各時点において電圧値検出部14および電流値検出部16からそれぞれ検出される電圧値および電流値から二次電池10の開回路電圧OCVを導出し、当該開回路電圧OCVを予め実験的に測定された二次電池10の基準状態におけるSOCと開回路電圧OCVとの関係を示す基準充放電特性に適用することで、二次電池10のSOCを取得する。さらに、二次電池10の入出力電流の積算値により、基準充放電特性に基づいて取得されたSOCを補正してもよい。このようなSOCを取得する構成は周知であるので、詳細な説明は繰返さない。   Various known techniques can be used for the configuration for obtaining the SOC of the secondary battery 10. As an example, the control device 2 derives the open circuit voltage OCV of the secondary battery 10 from the voltage value and the current value respectively detected from the voltage value detection unit 14 and the current value detection unit 16 at each time point, and the open circuit voltage The SOC of the secondary battery 10 is obtained by applying the OCV to the reference charge / discharge characteristics indicating the relationship between the SOC in the reference state of the secondary battery 10 that has been experimentally measured in advance and the open circuit voltage OCV. Further, the SOC acquired based on the reference charge / discharge characteristics may be corrected by the integrated value of the input / output current of the secondary battery 10. Since the configuration for obtaining such an SOC is well known, detailed description will not be repeated.

(充放電制限電力)
図3は、ある特定の温度における二次電池10の充放電制限電力の一例を示す図である。
(Charge / discharge limit power)
FIG. 3 is a diagram illustrating an example of charge / discharge limit power of the secondary battery 10 at a specific temperature.

図3を参照して、二次電池10では、その化学反応的な限界に応じた、各時点における短時間についての制限値である、充電制限電力WINおよび放電制限電力WOUTが定められる。なお、ここで言う充放電制限電力とは、充電制限電力WINおよび放電制限電力WOUTを含む。   Referring to FIG. 3, in secondary battery 10, charge limit power WIN and discharge limit power WOUT that are limit values for a short time at each time point are determined according to the chemical reaction limit. Note that the charge / discharge limit power mentioned here includes charge limit power WIN and discharge limit power WOUT.

この充電制限電力WINおよび放電制限電力WOUTは、二次電池10のSOCに応じて定められ、たとえば、リチウムイオン電池の場合においては、各セルの電圧が上限電圧4.2V、下限電圧3.0Vの範囲に入るように決定される。なお、この充放電制限電力は、電池温度に依存しても大きく変化する。   The charge limit power WIN and the discharge limit power WOUT are determined according to the SOC of the secondary battery 10. For example, in the case of a lithium ion battery, the voltage of each cell has an upper limit voltage of 4.2 V and a lower limit voltage of 3.0 V. It is determined to fall within the range. Note that the charge / discharge limit power varies greatly even depending on the battery temperature.

そのため、制御装置2は、予め実験的に取得された二次電池10のSOCおよび電池温度で規定される充放電制限電力のマップを格納しておき、取得されるSOCおよび電池温度に基づいて、各時点の充放電制限電力を取得する。そして、制御装置2は、当該充放電制限電力を超過しないように、二次電池10の充電電力および放電電力を制御する。なお、充放電制限電力を規定するマップには、SOCおよび電池温度以外のパラメータ、たとえば二次電池10の劣化度などを含ませることもできる。   Therefore, the control device 2 stores a map of the charge / discharge limit power defined by the SOC and battery temperature of the secondary battery 10 acquired experimentally in advance, and based on the acquired SOC and battery temperature, The charge / discharge limit power at each time point is acquired. Then, the control device 2 controls the charging power and discharging power of the secondary battery 10 so as not to exceed the charge / discharge limiting power. The map that defines the charge / discharge limit power may include parameters other than the SOC and the battery temperature, such as the degree of deterioration of the secondary battery 10.

ところで、充放電制限電力は、各時点における短時間についての制限値であるため、充放電制限電力の範囲内で、特に制限することなく二次電池10を継続的に充放電すると、大きな分極作用が生じ、二次電池の出力電圧に過剰な電圧変動が生じる。   By the way, since the charge / discharge limit power is a limit value for a short time at each time point, if the secondary battery 10 is continuously charged / discharged within the range of the charge / discharge limit power without particular limitation, a large polarization effect is obtained. And excessive voltage fluctuation occurs in the output voltage of the secondary battery.

図4は、二次電池10を充放電制限電力で継続的に充放電した場合の時間的変化を示す図である。   FIG. 4 is a diagram showing temporal changes when the secondary battery 10 is continuously charged and discharged with charge / discharge limit power.

図4(a)は、時間経過に伴う二次電池10のSOCの変化を示す。
図4(b)は、時間経過に伴う二次電池10の出力電圧の変化を示す。
FIG. 4A shows a change in the SOC of the secondary battery 10 over time.
FIG. 4B shows a change in the output voltage of the secondary battery 10 over time.

図4(a)を参照して、二次電池10を充電制限電力WINで継続的に充電すると、二次電池10のSOCは、当該充電電力に相応して単調増加する。   With reference to FIG. 4A, when the secondary battery 10 is continuously charged with the charge limiting power WIN, the SOC of the secondary battery 10 increases monotonously according to the charging power.

図4(b)を参照して、二次電池10の出力電圧は、図4(a)に示すような二次電池10のSOCの増加に伴い、基準充放電特性に従い増加すると考えられる(理論値)。しかしながら、実際に表れる二次電池10の出力電圧は、理論値に比較して過剰な電圧上昇を生じる場合がある。これは、長時間に亘って継続した充電電力(充電電流)によって、大きな分極作用が生じることによるものと考えられる。   Referring to FIG. 4B, the output voltage of the secondary battery 10 is considered to increase according to the reference charge / discharge characteristics as the SOC of the secondary battery 10 as shown in FIG. value). However, the output voltage of the secondary battery 10 that actually appears may cause an excessive voltage increase compared to the theoretical value. This is considered to be due to the fact that a large polarization action occurs due to the charging power (charging current) continued for a long time.

一方、二次電池10を放電制限電力WOUTで継続的に充電すると、二次電池10の出力電圧は、理論値に比較して過剰な電圧降下を生じる場合がある。この現象についても、長時間に亘って継続した放電電力(放電電流)によって、大きな分極作用が生じることによるものと考えられる。   On the other hand, when the secondary battery 10 is continuously charged with the discharge limited power WOUT, the output voltage of the secondary battery 10 may cause an excessive voltage drop compared to the theoretical value. This phenomenon is also considered to be caused by a large polarization effect caused by the discharge power (discharge current) continued for a long time.

このように、充電電力および放電電力を各時点における充放電制限電力に制限した場合であっても、過剰な電圧変動が生じる場合がある。これは、充放電制限電力が、二次電池10を保護する目的で、「各時点」の電池状態に基づいて、「短時間」における制限値として定められたものであり、継続して充放電されることが考慮されていないことに起因する。   Thus, even when charging power and discharging power are limited to charging / discharging limiting power at each time point, excessive voltage fluctuation may occur. This is because the charge / discharge limit power is determined as a limit value in “short time” based on the battery state at “each time” for the purpose of protecting the secondary battery 10, and is continuously charged / discharged. This is because it is not taken into consideration.

そこで、この発明の実施の形態に従う制御装置2は、二次電池10の昇温動作などのように、二次電池10に対する継続的な充放電要求が存在する場合において、充放電制限電力より小さい充放電継続電力を決定する。具体的には、制御装置2は、各時点の充放電制限電力に所定の低減定数α(0<α<1)を乗じて得られる低減電力を超過しないように充放電継続電力を決定する。   Therefore, control device 2 according to the embodiment of the present invention is smaller than the charge / discharge limit power when there is a continuous charge / discharge request for secondary battery 10, such as a temperature rising operation of secondary battery 10. Determine the continuous charge / discharge power. Specifically, the control device 2 determines the charge / discharge continuation power so as not to exceed the reduced power obtained by multiplying the charge / discharge limit power at each time by a predetermined reduction constant α (0 <α <1).

(処理フロー)
図5は、充放電継続電力の決定に係る処理の流れを示すフローチャートである。
(Processing flow)
FIG. 5 is a flowchart showing a flow of processing relating to determination of charge / discharge continuation power.

図5を参照して、制御装置2は、二次電池10に対する継続的な充放電要求の一例として、二次電池10が最適使用温度の最低値(最低使用温度)以下である場合において、二次電池10を昇温させる必要があるか否かを判断する。まず、制御装置2は、温度センサ12から二次電池10の電池温度を取得する(ステップS100)。そして、制御装置2は、二次電池10を昇温させる必要があるか否かを判断するために、取得した電池温度が最低使用温度以下であるか否かを判断する(ステップS102)。   Referring to FIG. 5, as an example of a continuous charge / discharge request for secondary battery 10, control device 2 uses a secondary battery 10 when the secondary battery 10 is below the minimum value (minimum use temperature) of the optimum use temperature. It is determined whether the secondary battery 10 needs to be heated. First, the control device 2 acquires the battery temperature of the secondary battery 10 from the temperature sensor 12 (step S100). And the control apparatus 2 judges whether the acquired battery temperature is below the minimum use temperature, in order to judge whether it is necessary to heat up the secondary battery 10 (step S102).

電池温度が最低使用温度以下である場合(ステップS102においてYESの場合)には、制御装置2は、二次電池10に対する継続的な充放電要求が存在すると判断し、二次電池10のSOCを取得する(ステップS104)。そして、制御装置2は、二次電池10のSOCがSOC下限許容値を下回っているか否かを判断する(ステップS106)。   When the battery temperature is equal to or lower than the minimum use temperature (in the case of YES in step S102), control device 2 determines that there is a continuous charge / discharge request for secondary battery 10, and determines the SOC of secondary battery 10. Obtain (step S104). Then, control device 2 determines whether or not the SOC of secondary battery 10 is below the SOC lower limit allowable value (step S106).

二次電池10のSOCがSOC下限許容値を下回っている場合(ステップS106においてYESの場合)には、制御装置2は、二次電池10を継続して充電させるための「充電モード」に移行する(ステップS108)。   When the SOC of secondary battery 10 is below the SOC lower limit allowable value (YES in step S106), control device 2 shifts to a “charge mode” for continuously charging secondary battery 10. (Step S108).

二次電池10のSOCがSOC下限許容値を下回っていない場合(ステップS106においてNOの場合)には、制御装置2は、二次電池10のSOCがSOC上限許容値を超過しているか否かを判断する(ステップS110)。   If the SOC of secondary battery 10 is not lower than the SOC lower limit allowable value (NO in step S106), control device 2 determines whether the SOC of secondary battery 10 exceeds the SOC upper limit allowable value. Is determined (step S110).

二次電池10のSOCがSOC上限許容値を超過している場合(ステップS110においてYESの場合)には、制御装置2は、二次電池10を継続して放電させるための「放電モード」に移行する(ステップS112)。   If the SOC of secondary battery 10 exceeds the SOC upper limit allowable value (YES in step S110), control device 2 enters “discharge mode” for continuously discharging secondary battery 10. Transition is made (step S112).

二次電池10のSOCがSOC下限許容値を下回っておらず(ステップS106においてNO)、かつ、SOC上限許容値を超過していない(ステップS110においてNO)場合には、制御装置2は現在選択中のモードを維持する(ステップS113)。なお、イグニションオン直後などにおいて、本処理フローを最初に実行する場合においては、制御装置2により選択されるモードが不定となる場合があるので、初期値としていずれかのモード(たとえば充電モード)を予め選択しておいてもよい。   When the SOC of secondary battery 10 is not below the SOC lower limit allowable value (NO in step S106) and does not exceed the SOC upper limit allowable value (NO in step S110), control device 2 is currently selected. The middle mode is maintained (step S113). Note that when this processing flow is executed for the first time immediately after the ignition is turned on, the mode selected by the control device 2 may be indeterminate, so one of the modes (for example, the charging mode) is selected as the initial value. It may be selected in advance.

そして、制御装置2は、二次電池10の充放電継続電力(暫定値)を算出する(ステップS114)。なお、充放電継続電力(暫定値)は、二次電池10の電池温度と最低使用温度との温度差、二次電池10の内部抵抗値、外気温などに応じて、決定される。そして、制御装置2は、現在選択中のモードが「充電モード」であるのか「放電モード」であるのかを判断する(ステップS116)。   And the control apparatus 2 calculates the charging / discharging continuation electric power (provisional value) of the secondary battery 10 (step S114). The charging / discharging continuous power (provisional value) is determined according to the temperature difference between the battery temperature of the secondary battery 10 and the minimum operating temperature, the internal resistance value of the secondary battery 10, the outside air temperature, and the like. Then, the control device 2 determines whether the currently selected mode is “charge mode” or “discharge mode” (step S116).

現在選択中のモードが「充電モード」(ステップS116において「充電モード」)の場合には、制御装置2は、現時点のSOCに応じた充電制限電力WINに低減定数αを乗じて、低減電力(充電モード)を算出する(ステップS118)。そして、制御装置2は、充放電継続電力(暫定値)を、算出した低減電力(充電モード)を超過しないように制限し、その制限後の値を充電継続電力#WINとして決定する(ステップS120)。   When the currently selected mode is “charge mode” (“charge mode” in step S116), control device 2 multiplies charge limit power WIN corresponding to the current SOC by reduction constant α to reduce power ( (Charging mode) is calculated (step S118). Then, the control device 2 limits the charge / discharge continuation power (provisional value) so as not to exceed the calculated reduced power (charge mode), and determines the value after the limit as the charge continuation power #WIN (step S120). ).

現在選択中のモードが「放電モード」(ステップS116において「放電モード」)の場合には、制御装置2は、現時点のSOCに応じた放電制限電力WOUTに低減定数αを乗じて、低減電力(放電モード)を算出する(ステップS122)。一例として、低減定数αは、0.5などを採用する。   When the currently selected mode is “discharge mode” (“discharge mode” in step S116), control device 2 multiplies discharge limit power WOUT corresponding to the current SOC by reduction constant α to reduce power ( (Discharge mode) is calculated (step S122). As an example, the reduction constant α is 0.5 or the like.

そして、制御装置2は、充放電継続電力(暫定値)を、算出した低減電力(放電モード)を超過しないように制限し、その制限後の値を放電継続電力#WOUTとして決定する(ステップS124)。   Then, the control device 2 limits the charge / discharge continuation power (provisional value) so as not to exceed the calculated reduced power (discharge mode), and determines the value after the limit as the discharge continuation power #WOUT (step S124). ).

また、電池温度が最低使用温度以下でない場合(ステップS102においてNOの場合)には、制御装置2は、二次電池10に対する継続的な充放電要求が存在しないと判断し、充放電継続電力をゼロに決定する(ステップS126)。   If the battery temperature is not lower than the minimum operating temperature (NO in step S102), control device 2 determines that there is no continuous charge / discharge request for secondary battery 10 and determines the charge / discharge continuation power. It is determined to be zero (step S126).

充放電継続電力(充電継続電力#WINまたは放電継続電力#WOUT)を決定した(ステップS120,S124,S126)後、制御装置2は、決定された充放電継続電力で二次電池10が継続的に充放電されるように、運転者の操作などによる他の要求に、当該充放電継続電力による要求を加えて最終的な指令を生成し、パワーコントロールユニットPCUおよびエンジンENGに当該指令を与える(ステップS128)。   After determining the charge / discharge continuation power (charge continuation power #WIN or discharge continuation power #WOUT) (steps S120, S124, and S126), the control device 2 continues the secondary battery 10 with the determined charge / discharge continuation power. So that the final command is generated by adding the request by the charging / discharging continuous power to the other request due to the driver's operation or the like, and the command is given to the power control unit PCU and the engine ENG ( Step S128).

以後、制御装置2は、上述した処理を所定の周期またはシーケンシャルに繰返し実行する。   Thereafter, the control device 2 repeatedly executes the above-described processing in a predetermined cycle or sequentially.

なお、上述のフローチャートにおいては、低減定数αが固定値である場合について例示したが、これに限られず、二次電池10の電池温度と最低使用温度との温度差および外気温などから予想される昇温時間、すなわち充放電の継続時間に応じて、低減定数αを変化させてもよい。   In the above flowchart, the case where the reduction constant α is a fixed value is exemplified, but the present invention is not limited to this, and is predicted from the temperature difference between the battery temperature of the secondary battery 10 and the minimum operating temperature, the outside air temperature, and the like. The reduction constant α may be changed according to the temperature raising time, that is, the charge / discharge duration.

また、上述のフローチャートにおいては、充電モードまたは放電モードに関わらず、充放電継続電力(暫定値)を一括して算出する(ステップS114)場合について例示したが、充電モードまたは放電モードごとに独立して、充電継続電力(暫定値)または放電継続電力(暫定値)を算出するようにしてもよい。   In the above-described flowchart, the case where charge / discharge continuation power (provisional value) is calculated all at once (step S114) regardless of the charge mode or the discharge mode has been illustrated, but is independent for each charge mode or discharge mode. Thus, the charge continuation power (provisional value) or the discharge continuation power (provisional value) may be calculated.

図6は、低減定数α=1とした場合における昇温動作に伴う各部の時間波形の一例を示す。   FIG. 6 shows an example of the time waveform of each part associated with the temperature raising operation when the reduction constant α = 1.

図6(a)は、時間経過に伴う二次電池10の電池温度の変化を示す。
図6(b)は、時間経過に伴う二次電池10のSOCの変化を示す。
FIG. 6A shows changes in the battery temperature of the secondary battery 10 over time.
FIG. 6B shows a change in the SOC of the secondary battery 10 over time.

図6(c)は、時間経過に伴う二次電池10の充放電電力の変化を示す。
図6(a)を参照して、たとえば、イグニッションオンの時点で、二次電池10の電池温度が最低使用温度以下であれば、制御装置2は、二次電池10の昇温を開始する。
FIG.6 (c) shows the change of the charging / discharging electric power of the secondary battery 10 with progress of time.
Referring to FIG. 6A, for example, if the battery temperature of secondary battery 10 is equal to or lower than the minimum use temperature at the time of ignition ON, control device 2 starts to raise secondary battery 10 temperature.

図6(b)を参照して、制御装置2は、イグニッションオンの時点で、そのSOCがSOC許容範囲内にある二次電池10に対して、充電継続電力#WINを供給して充電を開始する(充電モード)。その後、二次電池10のSOCがSOC上限許容値を超過すると、制御装置2は放電モードに移行して、二次電池10から放電継続電力#WOUTを放電させる。以後、制御装置2は、充電モードと放電モードを交互に切換えて、二次電池10のSOCをSOC許容範囲内に維持しつつ、二次電池10を最低使用温度まで昇温する。   Referring to FIG. 6B, control device 2 starts charging by supplying charging continuous power #WIN to secondary battery 10 whose SOC is within the allowable SOC range when the ignition is turned on. (Charging mode) After that, when the SOC of the secondary battery 10 exceeds the SOC upper limit allowable value, the control device 2 shifts to the discharge mode and discharges the continuous discharge power #WOUT from the secondary battery 10. Thereafter, the control device 2 alternately switches between the charging mode and the discharging mode, and raises the temperature of the secondary battery 10 to the minimum operating temperature while maintaining the SOC of the secondary battery 10 within the SOC allowable range.

図6(c)を参照して、低減定数α=1、すなわち充放電制限電力まで充放電継続電力が許容される場合には、二次電池10には、現時点の充放電制限電力(充電制限電力WINまたは放電制限電力WOUT)と一致する充放電電力が生じる。そのため、上述したように、二次電池10は、過剰な電圧変動を生じる場合がある。   Referring to FIG. 6C, when the reduction constant α = 1, that is, when the charge / discharge continuation power is allowed up to the charge / discharge limit power, the secondary battery 10 has the current charge / discharge limit power (charge limit). Charge / discharge power that coincides with power WIN or discharge limit power WOUT) is generated. Therefore, as described above, the secondary battery 10 may cause excessive voltage fluctuation.

図7は、低減定数α=0.5とした場合における昇温動作に伴う各部の時間波形を示す。   FIG. 7 shows a time waveform of each part associated with the temperature raising operation when the reduction constant α = 0.5.

図7(a)は、時間経過に伴う二次電池10の電池温度の変化を示す。
図7(b)は、時間経過に伴う二次電池10のSOCの変化を示す。
FIG. 7A shows changes in the battery temperature of the secondary battery 10 over time.
FIG. 7B shows a change in the SOC of the secondary battery 10 over time.

図7(c)は、時間経過に伴う二次電池10の充放電電力の変化を示す。
図7(a)および図7(b)を参照して、図6(a)および図6(b)と同様に、たとえば、イグニッションオンの時点で、二次電池10の電池温度が最低使用温度以下であれば、制御装置2は、二次電池10のSOCをSOC許容範囲内に維持しながら、二次電池10を昇温する。
FIG.7 (c) shows the change of the charging / discharging electric power of the secondary battery 10 with progress of time.
7 (a) and 7 (b), as in FIGS. 6 (a) and 6 (b), for example, when the ignition is turned on, the battery temperature of the secondary battery 10 is the minimum operating temperature. If it is below, the control device 2 raises the temperature of the secondary battery 10 while maintaining the SOC of the secondary battery 10 within the SOC allowable range.

図7(c)を参照して、低減定数α=0.5であるので、二次電池10の充放電継続電力(充電継続電力#WINまたは放電継続電力#WOUT)は、現時点の充放電制限電力(充電制限電力WINまたは放電制限電力WOUT)の50%に抑制される。この結果、二次電池10の電極を流れる電流値が小さくなるので、電極部に生じる分極作用を抑制でき、二次電池10に生じる過剰な電圧変動を回避できる。よって、二次電池10の昇温動作などのように、二次電池10に対する継続的な充放電要求が存在する場合であっても、車両100の走行性能を低下させることがない。   Referring to FIG. 7C, since the reduction constant α = 0.5, the charge / discharge continuation power (charge continuation power #WIN or discharge continuation power #WOUT) of the secondary battery 10 is the current charge / discharge limit. It is suppressed to 50% of electric power (charge limit power WIN or discharge limit power WOUT). As a result, the value of the current flowing through the electrode of the secondary battery 10 is reduced, so that the polarization action that occurs in the electrode portion can be suppressed, and excessive voltage fluctuations that occur in the secondary battery 10 can be avoided. Therefore, even when there is a continuous charge / discharge request for the secondary battery 10 as in the temperature raising operation of the secondary battery 10, the running performance of the vehicle 100 is not deteriorated.

なお、二次電池10に対する充放電電力が充放電制限電力から充放電継続電力まで低減されるため、昇温時間(二次電池10の充放電継続時間)は、図6の場合に比較して相対的に長くなる。しかしながら、二次電池10に生じる分極作用の大きさに関しては、電極に流れる電流を低減することによる効果がより有効となるため、図6の場合に比較して、分極作用は小さくなる。そのため、二次電池10の電圧変動を抑制することができる。   In addition, since charging / discharging electric power with respect to the secondary battery 10 is reduced from charging / discharging restriction | limiting electric power to charging / discharging continuation electric power, temperature rising time (charging / discharging continuation time of the secondary battery 10) is compared with the case of FIG. Relatively long. However, with respect to the magnitude of the polarization action occurring in the secondary battery 10, the effect of reducing the current flowing through the electrode becomes more effective, and therefore the polarization action becomes smaller than in the case of FIG. Therefore, voltage fluctuation of the secondary battery 10 can be suppressed.

この発明の実施の形態においては、モータジェネレータMG1およびMG2が「発電手段」および「負荷手段」を実現可能であるが、多くの場面において、モータジェネレータMG1が「発電手段」を実現し、モータジェネレータMG2が「負荷手段」を実現する。そして、制御装置2が「判断手段」、「決定手段」、「制御手段」、「電池温度取得手段」、および「SOC取得手段」を実現する。   In the embodiment of the present invention, motor generators MG1 and MG2 can realize “power generation means” and “load means”. However, in many situations, motor generator MG1 realizes “power generation means” and motor generator MG2 realizes “loading means”. Then, the control device 2 realizes “determination means”, “determination means”, “control means”, “battery temperature acquisition means”, and “SOC acquisition means”.

この発明の実施の形態によれば、冬季の早朝や寒冷地などにおける二次電池の昇温動作などのように、二次電池に対する継続な充放電要求が存在する場合において、充放電制限電力より小さくなるように充放電継続電力が決定される。そして、二次電池は、この決定された充放電継続電力で継続的に充放電されるため、充放電制限電力で継続的に充放電された場合に比較して、二次電池に生じる分極作用を抑制できる。そのため、二次電池を継続的に充放電した場合であっても、分極作用による二次電池の過剰な電圧変動を小さくできる。   According to the embodiment of the present invention, in the case where there is a continuous charge / discharge request for the secondary battery, such as a secondary battery temperature rising operation in the early morning of winter or in a cold region, the charge / discharge limit power is The charge / discharge continuation power is determined to be smaller. And, since the secondary battery is continuously charged and discharged with the determined charging / discharging continuous power, the polarization effect generated in the secondary battery compared with the case where the secondary battery is continuously charged and discharged with the charge / discharge limiting power. Can be suppressed. Therefore, even when the secondary battery is continuously charged and discharged, excessive voltage fluctuation of the secondary battery due to the polarization action can be reduced.

よって、過剰な電圧変動によるインバータ装置や電動機への影響を抑制でき、冬季の早朝や寒冷地などにおいても、安定した走行性能を発揮させることができる。   Therefore, the influence on the inverter device and the electric motor due to excessive voltage fluctuation can be suppressed, and stable running performance can be exhibited even in the early morning of winter or in cold regions.

なお、この発明の実施の形態においては、この発明に係る二次電池の制御装置を搭載したハイブリッド車両について説明したが、この発明の適用は、二次電池を搭載しており、かつ、発電手段および負荷手段を備えるシステムであれば、ハイブリッド車両に限られない。一例として、燃料電池を搭載した燃料電池車などにも適用できる。   In the embodiment of the present invention, the hybrid vehicle equipped with the control device for the secondary battery according to the present invention has been described. However, the application of the present invention is equipped with a secondary battery and power generation means. And if it is a system provided with a load means, it will not be restricted to a hybrid vehicle. As an example, the present invention can be applied to a fuel cell vehicle equipped with a fuel cell.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態に従う二次電池の充放電制御装置を搭載した車両の概略構成図である。It is a schematic block diagram of the vehicle carrying the charging / discharging control apparatus of the secondary battery according to embodiment of this invention. この発明の実施の形態に従う二次電池の充放電制御装置に係る要部を示す概略構成図である。It is a schematic block diagram which shows the principal part which concerns on the charging / discharging control apparatus of the secondary battery according to embodiment of this invention. ある特定の温度における二次電池の充放電制限電力の一例を示す図である。It is a figure which shows an example of the charging / discharging limiting power of the secondary battery in a certain specific temperature. 二次電池10を継続的に充電することで昇温を行なう場合について説明する図である。It is a figure explaining the case where it heats up by charging the secondary battery 10 continuously. 充放電継続電力の決定に係る処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process which concerns on determination of charging / discharging continuation electric power. 低減定数α=1とした場合における昇温動作に伴う各部の時間波形の一例を示す。An example of the time waveform of each part accompanying the temperature rising operation when the reduction constant α = 1 is shown. 低減定数α=0.5とした場合における昇温動作に伴う各部の時間波形を示す。The time waveform of each part accompanying the temperature rising operation when the reduction constant α = 0.5 is shown.

符号の説明Explanation of symbols

2 制御装置、4 蓄電装置、6 動力分割機構、8 メモリ、10 二次電池、12 温度センサ、14 電圧値検出部、16 電流値検出部、18 減速機、20 車輪、100 車両、DC/DC 昇降圧コンバータ、ENG エンジン、INV インバータ、MG1,MG2 モータジェネレータ、PCU パワーコントロールユニット、WIN 充電制限電力、WOUT 放電制限電力、#WIN 充電継続電力、#WOUT 放電継続電力、α 低減定数。   2 control device, 4 power storage device, 6 power split mechanism, 8 memory, 10 secondary battery, 12 temperature sensor, 14 voltage value detection unit, 16 current value detection unit, 18 speed reducer, 20 wheels, 100 vehicle, DC / DC Buck-boost converter, ENG engine, INV inverter, MG1, MG2 motor generator, PCU power control unit, WIN charge limit power, WOUT discharge limit power, #WIN charge continuation power, #WOUT discharge continuation power, α reduction constant.

Claims (5)

充放電可能に構成される二次電池と、
前記二次電池と接続され、電力を発生する発電手段と、
前記二次電池と接続され、電力を消費する負荷手段と、を有するシステムにおける二次電池の充放電制御装置であって、
前記二次電池の電池温度を取得する電池温度取得手段と、
前記電池温度取得手段により取得される当該電池温度が所定値以下であれば、昇温のために、前記二次電池に対する継続的な充放電要求が必要と判断する判断手段と、
前記二次電池のSOCを逐次取得するSOC取得手段と、
前記判断手段により前記継続的な充放電要求が必要と判断されているときに、各時点における前記二次電池のSOCに応じて定められる充放電制限電力より小さい範囲内で、前記二次電池を継続して充放電するための充放電継続電力を決定する決定手段とを備え、前記判断手段は、逐次取得されるSOCに対応付けられた充放電制限電力を逐次取得し、取得された充放電制限電力に所定の低減定数を乗じた値を超過しないように、前記充放電継続電力を逐次決定し、さらに
前記二次電池に対して充放電される電力が前記決定手段により決定された前記充放電継続電力となるように、前記発電手段の発生電力および前記負荷手段の消費電力のうち、少なくともいずれか一方を制御する制御手段と
前記SOC取得手段により逐次取得されたSOCが許容範囲内となるように、前記二次電池に対して充電動作または放電動作のいずれを実行するかを決定する充放電切換手段とを備え、前記充放電切換手段は、充電動作中に逐次取得されたSOCが前記許容範囲の上限値に到達すると放電動作に切換え、放電動作中に逐次取得されたSOCが前記許容範囲の上限値に到達すると充電動作に切換える、二次電池の充放電制御装置。
A secondary battery configured to be chargeable / dischargeable;
A power generation means connected to the secondary battery and generating electric power;
A charging / discharging control device for a secondary battery in a system having a load means connected to the secondary battery and consuming electric power,
Battery temperature acquisition means for acquiring the battery temperature of the secondary battery;
If the battery temperature acquired by the battery temperature acquisition unit is equal to or lower than a predetermined value, a determination unit that determines that a continuous charge / discharge request for the secondary battery is necessary for temperature increase;
SOC acquisition means for sequentially acquiring the SOC of the secondary battery;
When the determination means determines that the continuous charge / discharge request is necessary, the secondary battery is within a range smaller than the charge / discharge limit power determined according to the SOC of the secondary battery at each time point. Determining means for determining charge / discharge continuation power for continuous charge / discharge , wherein the determination means sequentially acquires charge / discharge limit power associated with the sequentially acquired SOC, and the acquired charge / discharge The charge / discharge continuation power is sequentially determined so as not to exceed a value obtained by multiplying a limit power by a predetermined reduction constant, and the charge / discharge power for the secondary battery is further determined by the determination means. as the discharge continues power among the power consumption of the power generated and the load means of the generator means, and control means for controlling at least one,
Charge / discharge switching means for determining whether the secondary battery is to be charged or discharged so that the SOC sequentially acquired by the SOC acquisition means falls within an allowable range; The discharge switching means switches to the discharging operation when the SOC sequentially acquired during the charging operation reaches the upper limit value of the allowable range, and the charging operation when the SOC sequentially acquired during the discharging operation reaches the upper limit value of the allowable range. A secondary battery charge / discharge control device.
記決定手段は、前記充放電切換手段により決定される充電動作または放電動作に応じて、前記二次電池を継続して充電するための充電継続電力または前記二次電池を継続して放電するための放電継続電力を決定する、請求項1に記載の二次電池の充放電制御装置。 Before SL determining means, in accordance with the charging operation or the discharging operation is determined by the charge and discharge switching means to discharge continuously the continuous charging electric power or the secondary battery for charging to continue the secondary battery determining the continuous discharging power for charge and discharge control device for a secondary battery according to claim 1. 前記決定手段は、前記二次電池のSOCと前記充放電制限電力との予め格納された対応関係を参照して、各時点の充放電制限電力を決定する、請求項1または2に記載の二次電池の充放電制御装置。 3. The second determination unit according to claim 1, wherein the determination unit determines charge / discharge limit power at each time point with reference to a correspondence relationship stored in advance between the SOC of the secondary battery and the charge / discharge limit power. Charge / discharge control device for secondary battery. 前記発電手段は、エンジンにより駆動される第1モータジェネレータであり、
前記負荷手段は、電力を用いて駆動力を発生する第2モータジェネレータである、請求項1〜のいずれか1項に記載の二次電池の充放電制御装置。
The power generation means is a first motor generator driven by an engine,
It said load means is a second motor generator generates a driving force using electric power, the charge and discharge control device for a secondary battery according to any one of claims 1-3.
前記システムは、前記エンジンと前記第1モータジェネレータとの間の動力伝達経路上に、前記エンジンからの駆動力を第1および第2出力に分割するための動力分割機構をさらに有しており、The system further includes a power split mechanism for splitting the driving force from the engine into first and second outputs on a power transmission path between the engine and the first motor generator,
前記第1モータジェネレータは、前記動力分割機構の第1出力と機械的に接続されており、前記エンジンからの駆動力のうち前記動力分割機構の第1出力として出力される駆動力と、前記第1モータジェネレータからの駆動力とが結合されて合成駆動力として出力され、The first motor generator is mechanically connected to the first output of the power split mechanism, the driving force output as the first output of the power split mechanism out of the driving force from the engine, and the first The driving force from one motor generator is combined and output as a combined driving force,
前記第2モータジェネレータは、前記動力分割機構の第2出力と機械的に接続されており、前記エンジンからの駆動力のうち前記動力分割機構の第2出力として出力される駆動力を受けて、前記合成駆動力の大きさとは独立して電力の発生が可能に構成される、請求項4に記載の二次電池の充放電制御装置。The second motor generator is mechanically connected to the second output of the power split mechanism, and receives the driving force output as the second output of the power split mechanism out of the driving force from the engine, The charge / discharge control device for a secondary battery according to claim 4, configured to be capable of generating electric power independently of the magnitude of the combined driving force.
JP2006037896A 2006-02-15 2006-02-15 Secondary battery charge / discharge controller Active JP4538418B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006037896A JP4538418B2 (en) 2006-02-15 2006-02-15 Secondary battery charge / discharge controller
US12/223,855 US20100156352A1 (en) 2006-02-15 2007-02-13 Controller and Control Method for Charging of the Secondary Battery
PCT/IB2007/000333 WO2007093882A2 (en) 2006-02-15 2007-02-13 Controller and control method for charging of the secondary battery
EP07705578A EP1984222A2 (en) 2006-02-15 2007-02-13 Charging controller for a secondary battery and method of controlling the charging of the secondary battery
CN2007800055939A CN101384461B (en) 2006-02-15 2007-02-13 Charging controller for a secondary battery and method of controlling the charging of the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037896A JP4538418B2 (en) 2006-02-15 2006-02-15 Secondary battery charge / discharge controller

Publications (3)

Publication Number Publication Date
JP2007221886A JP2007221886A (en) 2007-08-30
JP2007221886A5 JP2007221886A5 (en) 2008-06-19
JP4538418B2 true JP4538418B2 (en) 2010-09-08

Family

ID=38222234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037896A Active JP4538418B2 (en) 2006-02-15 2006-02-15 Secondary battery charge / discharge controller

Country Status (5)

Country Link
US (1) US20100156352A1 (en)
EP (1) EP1984222A2 (en)
JP (1) JP4538418B2 (en)
CN (1) CN101384461B (en)
WO (1) WO2007093882A2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172524B1 (en) 2007-04-24 2008-10-29 トヨタ自動車株式会社 Vehicle and control method thereof
US8436586B2 (en) * 2008-01-21 2013-05-07 John Zonkoski No drain power saver
JP4353305B2 (en) 2008-03-21 2009-10-28 トヨタ自動車株式会社 Power control circuit
US7904217B2 (en) * 2008-03-25 2011-03-08 International Truck Intellectual Property Company, Llc Battery pack management strategy in a hybrid electric motor vehicle
JP4530078B2 (en) 2008-06-04 2010-08-25 トヨタ自動車株式会社 Power storage control device and vehicle
JP4715881B2 (en) * 2008-07-25 2011-07-06 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP5288170B2 (en) * 2008-10-03 2013-09-11 株式会社デンソー Battery temperature rise control device
US8575897B2 (en) * 2008-10-03 2013-11-05 Denso Corporation Battery temperature control system
US8928272B2 (en) * 2009-12-04 2015-01-06 Hyundai Motor Company Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
WO2011074330A1 (en) * 2009-12-15 2011-06-23 日本碍子株式会社 Control device for secondary battery, and control method for secondary battery
US20130009605A1 (en) * 2010-03-23 2013-01-10 Nec Corporation Charging and discharging method for lithium ion secondary batteries and charging and discharging system for the same
US9300015B2 (en) * 2010-05-04 2016-03-29 Dell Products Lp Systems and methods for monitoring and characterizing information handling system use behavior
JP5730501B2 (en) * 2010-05-20 2015-06-10 トヨタ自動車株式会社 Electric vehicle and control method thereof
WO2012056543A1 (en) * 2010-10-28 2012-05-03 トヨタ自動車株式会社 Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
JP5354110B2 (en) * 2010-11-17 2013-11-27 トヨタ自動車株式会社 Charge / discharge control apparatus and method
FR2967619B1 (en) * 2010-11-23 2013-01-04 Denis Ernest Celestin Buffet HYBRID VEHICLE WITH TWO EPICYCLOIDAL GEAR TRAINS WITH ENHANCED ENERGY EFFICIENCY
EP2721713B1 (en) * 2011-06-16 2016-08-10 Renault S.A.S. Method for powering an electrical accessory of a motor vehicle comprising an electric battery to which said accessory is connected
JP5696615B2 (en) * 2011-07-28 2015-04-08 トヨタ自動車株式会社 Charging device, vehicle, and charging device control method
JP5840425B2 (en) * 2011-08-31 2016-01-06 株式会社東芝 Electric railway vehicle charging system
JPWO2013038764A1 (en) * 2011-09-15 2015-03-23 日本電気株式会社 Secondary battery system and secondary battery operation method
JP5692014B2 (en) * 2011-11-16 2015-04-01 トヨタ自動車株式会社 Battery charge / discharge management apparatus and method
JP2014158414A (en) * 2013-01-21 2014-08-28 Semiconductor Energy Lab Co Ltd Vehicle having power storage body
FR3011132A3 (en) * 2013-09-25 2015-03-27 Renault Sa DEVICE FOR HEATING A BATTERY IN AN ELECTRICAL DRIVE CHAIN FOR A HYBRID MOTOR VEHICLE
KR101558363B1 (en) * 2013-12-12 2015-10-07 현대자동차 주식회사 Method and system for controlling charging and discharging of battery
JP6393983B2 (en) * 2013-12-19 2018-09-26 日産自動車株式会社 Secondary battery control device
JP6094469B2 (en) * 2013-12-25 2017-03-15 トヨタ自動車株式会社 Power control device
JP6417829B2 (en) * 2014-09-30 2018-11-07 三菱自動車工業株式会社 Hybrid car
JP6311675B2 (en) * 2014-11-28 2018-04-18 トヨタ自動車株式会社 In-vehicle secondary battery charge / discharge controller
ITUB20152010A1 (en) * 2015-07-09 2017-01-09 Magneti Marelli Spa Electronic battery pack control device for vehicle and system using this device
JP6254139B2 (en) * 2015-11-28 2017-12-27 本田技研工業株式会社 Power supply system, transport equipment, and power transmission method
CN108684209B (en) 2016-01-29 2023-03-14 株式会社半导体能源研究所 Power control system
US20170264105A1 (en) * 2016-03-08 2017-09-14 Lucas STURNFIELD Method and apparatus for electric battery temperature maintenance
DE102016005125A1 (en) * 2016-04-28 2017-11-02 Audi Ag Method for controlling an energy storage device of a mild hybrid motor vehicle and state of charge control device for a mild hybrid motor vehicle
CN106058972A (en) * 2016-06-13 2016-10-26 北京奇虎科技有限公司 Method and device for charging assembled battery
JP6796571B2 (en) * 2017-11-06 2020-12-09 本田技研工業株式会社 Vehicle control systems, vehicle control methods, and programs
JP7024448B2 (en) * 2018-01-29 2022-02-24 トヨタ自動車株式会社 Electric vehicle
JP7047603B2 (en) * 2018-06-01 2022-04-05 トヨタ自動車株式会社 vehicle
JP7122186B2 (en) * 2018-07-13 2022-08-19 日野自動車株式会社 motor controller
JP7314666B2 (en) * 2019-07-09 2023-07-26 トヨタ自動車株式会社 charging controller
CN112701740A (en) * 2019-10-23 2021-04-23 英研智能移动股份有限公司 Battery protection method
CN111114532B (en) * 2020-03-31 2020-08-21 潍柴动力股份有限公司 Control method of fuel cell vehicle and vehicle control unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102133A (en) * 2001-09-26 2003-04-04 Nissan Motor Co Ltd Apparatus for controlling temperature rise of secondary battery
JP2005094992A (en) * 2003-09-19 2005-04-07 Ford Global Technologies Llc Battery heating method for hybrid electric automobile
JP2005332777A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Warm-up control unit of battery

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614805A (en) * 1992-11-19 1997-03-25 Tokin Corporation Method and apparatus for charging a secondary battery by supplying pulsed current as charging current
JPH0779503A (en) 1993-09-09 1995-03-20 Toyota Motor Corp Battery warmer for hybrid vehicle
US7147071B2 (en) * 2004-02-04 2006-12-12 Battelle Energy Alliance, Llc Thermal management systems and methods
JP3905219B2 (en) * 1998-04-09 2007-04-18 トヨタ自動車株式会社 CHARGE CONTROL DEVICE, CONTROL METHOD, AND POWER OUTPUT DEVICE
JP4300600B2 (en) 1998-07-23 2009-07-22 トヨタ自動車株式会社 Battery charge state control device for hybrid vehicle
JP3379444B2 (en) 1998-09-07 2003-02-24 トヨタ自動車株式会社 Hybrid vehicle charge / discharge state control device
JP4340020B2 (en) * 2001-04-10 2009-10-07 パナソニック株式会社 Charge control method for secondary battery for automatic guided vehicle
JP3964635B2 (en) * 2001-06-20 2007-08-22 松下電器産業株式会社 Memory effect detection method and solution
JP2003274565A (en) 2002-03-13 2003-09-26 Nissan Motor Co Ltd Power storage system
JP3876979B2 (en) 2002-03-18 2007-02-07 三菱自動車工業株式会社 Battery control device
JP3676336B2 (en) * 2002-10-02 2005-07-27 本田技研工業株式会社 Output control device for hybrid vehicle
JP4052080B2 (en) * 2002-10-09 2008-02-27 アイシン・エィ・ダブリュ株式会社 Vehicle control device
US7078877B2 (en) * 2003-08-18 2006-07-18 General Electric Company Vehicle energy storage system control methods and method for determining battery cycle life projection for heavy duty hybrid vehicle applications
JP4134877B2 (en) * 2003-10-20 2008-08-20 トヨタ自動車株式会社 Storage device control device
US20060001399A1 (en) * 2004-07-02 2006-01-05 Lembit Salasoo High temperature battery system for hybrid locomotive and offhighway vehicles
JP4232751B2 (en) * 2005-03-16 2009-03-04 トヨタ自動車株式会社 Hybrid vehicle
US7982437B2 (en) * 2008-05-06 2011-07-19 Ford Motor Company Automotive power supply system and method of operating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102133A (en) * 2001-09-26 2003-04-04 Nissan Motor Co Ltd Apparatus for controlling temperature rise of secondary battery
JP2005094992A (en) * 2003-09-19 2005-04-07 Ford Global Technologies Llc Battery heating method for hybrid electric automobile
JP2005332777A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Warm-up control unit of battery

Also Published As

Publication number Publication date
WO2007093882A3 (en) 2007-10-18
CN101384461A (en) 2009-03-11
JP2007221886A (en) 2007-08-30
WO2007093882A2 (en) 2007-08-23
CN101384461B (en) 2013-07-31
EP1984222A2 (en) 2008-10-29
US20100156352A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4538418B2 (en) Secondary battery charge / discharge controller
JP4020646B2 (en) Control method of hybrid electric vehicle
EP0985570B1 (en) Apparatus and method for controlling state of charge/discharge of battery of hybrid car
JP5288170B2 (en) Battery temperature rise control device
WO2013024675A1 (en) Vehicle drive device
JP3933096B2 (en) Battery control device and control method mounted on vehicle
JP5267734B2 (en) Electric vehicle and control method thereof
JP2007306771A (en) Charge and discharge control device for storage unit, and motor vehicle loaded therewith
WO2008023245A2 (en) Battery control system and battery control method
JP2005063682A (en) Battery cooling control device
US9868434B2 (en) Vehicle and control method for vehicle
EP2740644B1 (en) Vehicle, and vehicle control method
JP2006280161A (en) Regenerative controller for hybrid electric vehicle
JP2009078807A (en) Battery control device and charge/discharge control method for battery
JP5024558B2 (en) Charge control device
JPH10304511A (en) Method for controlling generator of hybrid electric vehicle
JP2006217757A (en) Controller for secondary battery
JP2011073643A (en) Control device for vehicle
KR101518898B1 (en) Charge sustaining mode control system for plug in hybrid vehicle and method thereof
JP2008163867A (en) Vehicle control device
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP2017165179A (en) Hybrid vehicle
JP6699766B2 (en) Hybrid vehicle
JP2004278315A (en) Engine starting control device
JP3707206B2 (en) Generator control device for hybrid vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4538418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250