JP2003274565A - Power storage system - Google Patents

Power storage system

Info

Publication number
JP2003274565A
JP2003274565A JP2002067891A JP2002067891A JP2003274565A JP 2003274565 A JP2003274565 A JP 2003274565A JP 2002067891 A JP2002067891 A JP 2002067891A JP 2002067891 A JP2002067891 A JP 2002067891A JP 2003274565 A JP2003274565 A JP 2003274565A
Authority
JP
Japan
Prior art keywords
power storage
storage unit
discharging
unit
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002067891A
Other languages
Japanese (ja)
Inventor
Yasunari Hisamitsu
泰成 久光
Takaaki Abe
孝昭 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002067891A priority Critical patent/JP2003274565A/en
Publication of JP2003274565A publication Critical patent/JP2003274565A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quicken the temperature rise speed of a secondary battery by increasing the current flowing to the secondary battery, when heating the secondary battery by the internal heat generated by the repeated charging and discharging of the secondary battery. <P>SOLUTION: This power storage is equipped with a secondary battery 21 and a storage 2 having a capacitor 22 connected in parallel with each other, a generator-motor 3 to charge this storage 2, a vehicle drive motor 4 which discharges the power from the storage 2, and a controller 7 which controls the charging and discharging in the storage 2 with the generator-motor 3 and the vehicle drive motor 4, and an inductor 23 is connected in series with the capacitor 22 of the storage 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、二次電池
を搭載したハイブリッド車に用いるのに好適な蓄電装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device suitable for use in, for example, a hybrid vehicle equipped with a secondary battery.

【0002】[0002]

【従来の技術】上記した化学反応を伴う二次電池は、低
温環境下において放電可能出力が低下する特性を有して
いるが、例えば、このような二次電池をハイブリッド車
に搭載する場合には、低温時使用を重視した車両設計、
すなわち、放電可能出力の低下を補うべく二次電池を多
く搭載するといった車両設計ではなく、低温環境下での
放電可能出力の低下を多少犠牲にしてでも常温における
二次電池性能で車両の設計を行うことによって、コスト
アップや車両の動力性能および燃費性能の低下を回避す
るようにしている。
2. Description of the Related Art A secondary battery involving a chemical reaction as described above has a characteristic that the dischargeable output decreases in a low temperature environment. For example, when such a secondary battery is mounted in a hybrid vehicle. Is a vehicle design that emphasizes use at low temperatures,
In other words, instead of designing a vehicle that incorporates many secondary batteries to compensate for the drop in dischargeable output, design a vehicle with secondary battery performance at room temperature even at the expense of the drop in dischargeable output in low temperature environments. By doing so, an increase in cost and a decrease in vehicle power performance and fuel efficiency performance are avoided.

【0003】図8のグラフは、パラレルハイブリット車
の二次電池放電可能出力(横軸)に対する車両の燃料消
費率(縦軸)を示しており、線Aは二次電池を放電しな
がら走行する場合の燃料消費率を示し、線Bは二次電池
を充電しながら走行する場合の燃料消費率を示してい
る。
The graph of FIG. 8 shows the fuel consumption rate (vertical axis) of the vehicle for the secondary battery dischargeable output (horizontal axis) of the parallel hybrid vehicle, and line A runs while discharging the secondary battery. In this case, the fuel consumption rate is shown, and the line B shows the fuel consumption rate when traveling while charging the secondary battery.

【0004】図8のグラフから判るように、二次電池を
充電しながら走行する場合は、エンジンの駆動により発
電手段を作動させて二次電池を充電するので、二次電池
を放電しながら走行する場合と比べて二次電池を充電す
るのに必要とするエネルギ分だけ燃料の消費率が低下す
る。
As can be seen from the graph in FIG. 8, when traveling while charging the secondary battery, the engine is driven to operate the power generation means to charge the secondary battery, so that the secondary battery is discharged while traveling. The fuel consumption rate is reduced by the amount of energy required to charge the secondary battery, as compared with the case of performing.

【0005】二次電池放電可能出力は、大きければ大き
いほどモータを駆動源とした走行を長く持続することが
可能であり、車両発進時のようなエンジン低回転時の低
効率運転状態を回避することができる分だけ燃料の消費
率が良くなる。一方、二次電池放電可能出力がゼロにな
ると、通常のエンジン搭載車両と同じ燃料の消費率にな
るので、二次電池放電可能出力が設計値の出力を出せる
ようになると、本来のパラレルハイブリット車の燃費性
能を発揮できるようになる。
The larger the dischargeable output of the secondary battery, the longer the running with the motor as the driving source can be continued, and the low efficiency operation state at the time of low engine rotation such as when the vehicle starts is avoided. The fuel consumption rate improves as much as possible. On the other hand, if the dischargeable output of the secondary battery becomes zero, the fuel consumption rate will be the same as that of a vehicle equipped with a normal engine, so if the dischargeable output of the secondary battery can output the designed value, the original parallel hybrid vehicle Will be able to demonstrate the fuel efficiency performance of.

【0006】つまり、車両の燃費の向上を図るために
は、低温時に二次電池放電可能出力が低下することを考
慮して、二次電池の温度をできるだけ早く高くして二次
電池放電可能出力を増すことが必要となる。
That is, in order to improve the fuel efficiency of the vehicle, the temperature of the secondary battery is raised as quickly as possible in consideration of the decrease in the secondary battery dischargeable output at low temperatures. Will be required.

【0007】二次電池の温度を高くする加熱方法として
は、外部ヒータによる加熱や、二次電池の充放電の繰り
返しで発生する内部発熱による加熱が考えられるが、後
者の加熱法は、発電手段および放電手段があれば成立す
ることから、前者の重量増加を伴いかつ車載スペースを
必要とするヒータユニットを用いる外部加熱法に比して
実現性があると考えられ、とくに、発電手段および放電
手段となる駆動モータや補機を搭載したパラレルハイブ
リット車やシリーズハイブリット車に好適である。この
ような加熱法としては、例えば、交流電源と二次電池の
間にインダクタとキャパシタを直列に接続し、インダク
タとキャパシタの共振周波数の交流により、二次電池に
充放電を繰り返し行わせて昇温する構成をなすものがあ
る(特開平11-329516)。
As a heating method for raising the temperature of the secondary battery, heating by an external heater or internal heat generated by repeated charging / discharging of the secondary battery can be considered. The latter heating method is a power generating means. And the discharge means are satisfied, it is considered to be more feasible than the external heating method using the heater unit, which requires the space for mounting the vehicle, which is accompanied by an increase in weight, and particularly, the power generation means and the discharge means. It is suitable for parallel hybrid vehicles and series hybrid vehicles equipped with a drive motor and auxiliary equipment. As such a heating method, for example, an inductor and a capacitor are connected in series between an AC power source and a secondary battery, and the secondary battery is repeatedly charged and discharged by alternating current having a resonance frequency of the inductor and the capacitor to raise the voltage. There is a structure that heats up (Japanese Patent Laid-Open No. 11-329516).

【0008】[0008]

【発明が解決しようとする課題】従来において、低周波
での充放電の繰り返しでは、二次電池に流れる電流値は
大きくなるものの、ある周波数以上での充放電の繰り返
しでは、キャパシタ側のインピーダンスが小さくなっ
て、二次電池に流れる電流値が小さくなってしまい(図
6の線D参照)、蓄電部分にかけられる電力の一部だけ
しか二次電池の加熱に使用されず、その結果、二次電池
の昇温速度を十分に得ることができなくなって、燃費性
能を向上させることができないという問題を有してお
り、この問題を解決することが従来の課題となってい
る。
Conventionally, although the value of the current flowing through the secondary battery increases when the charging / discharging is repeated at a low frequency, the impedance on the capacitor side is increased when the charging / discharging is repeated at a certain frequency or higher. The current value flowing through the secondary battery becomes smaller (see line D in FIG. 6), and only a part of the electric power applied to the electricity storage portion is used for heating the secondary battery. There is a problem in that the temperature rising rate of the battery cannot be sufficiently obtained, and the fuel efficiency cannot be improved, and it has been a conventional problem to solve this problem.

【0009】[0009]

【発明の目的】本発明は、上記した従来の課題に着目し
てなされたもので、二次電池の充放電の繰り返しで発生
する内部発熱によって二次電池を加熱する場合におい
て、二次電池に流れる電流値を増加させて二次電池の昇
温速度を早めることが可能である蓄電装置を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above-mentioned conventional problems. When the secondary battery is heated by internal heat generated by repeated charging and discharging of the secondary battery, An object of the present invention is to provide a power storage device in which the value of flowing current can be increased to increase the temperature rising rate of a secondary battery.

【0010】[0010]

【課題を解決するための手段】本発明の請求項1に係わ
る蓄電装置は、互いに並列に接続した二次電池およびキ
ャパシタを有する蓄電部と、この蓄電部を充電する発電
手段と、蓄電部から電力を放電させる放電手段と、発電
手段および放電手段による蓄電部での充放電を制御する
充放電制御部を備え、充放電制御部の制御により発電手
段および放電手段を交互に作動させて蓄電部に対する充
放電を繰り返した段階で蓄電部の二次電池を発熱させる
べく蓄電部のキャパシタに対してインダクタを直列に接
続した構成としており、この蓄電装置の構成を前述した
従来の課題を解決するための手段としている。
A power storage device according to claim 1 of the present invention comprises a power storage unit having a secondary battery and a capacitor connected in parallel with each other, a power generation unit for charging the power storage unit, and a power storage unit. The power storage unit includes a discharging unit that discharges electric power, and a charging / discharging control unit that controls charging / discharging of the power storage unit by the power generation unit and the discharging unit. The power storage unit and the discharging unit are alternately operated under the control of the charging / discharging control unit. In order to solve the above-mentioned conventional problems, the configuration is such that an inductor is connected in series to the capacitor of the power storage unit in order to heat the secondary battery of the power storage unit at the stage of repeated charging and discharging. Is used as a means.

【0011】本発明の請求項2に係わる蓄電装置におい
て、充放電制御部は、蓄電部の二次電池の温度および残
容量を検出して蓄電部の放電可能出力を演算する放電可
能出力演算手段と、この放電可能出力演算手段により演
算された蓄電部の放電可能出力に基づいて蓄電部に対す
る充放電を繰り返し実行させる制御手段を具備している
構成としている。
In the power storage device according to claim 2 of the present invention, the charge / discharge control unit detects the temperature and the remaining capacity of the secondary battery of the power storage unit and calculates the dischargeable output of the power storage unit. And a control means for repeatedly performing charging / discharging of the power storage unit based on the dischargeable output of the power storage unit calculated by the dischargeable output calculation unit.

【0012】本発明の請求項3に係わる蓄電装置は、互
いに並列に接続した二次電池およびキャパシタを有する
蓄電部と、この蓄電部を充電する発電手段と、蓄電部か
ら電力を放電させる放電手段と、発電手段および放電手
段による蓄電部での充放電を制御する充放電制御部を備
え、充放電制御部の制御により発電手段および放電手段
を交互に作動させて蓄電部に対する充放電を繰り返した
段階で蓄電部の二次電池を発熱させるべく蓄電部のキャ
パシタに対してスイッチを介して抵抗を直列に接続した
構成としており、この蓄電装置の構成を前述した従来の
課題を解決するための手段としている。
According to a third aspect of the present invention, there is provided a power storage device including a power storage unit having a secondary battery and a capacitor connected in parallel with each other, a power generation unit for charging the power storage unit, and a discharging unit for discharging power from the power storage unit. And a charging / discharging control unit for controlling charging / discharging of the power storage unit by the power generation unit and the discharging unit, and the charging / discharging unit repeatedly operates by alternately operating the power generation unit and the discharging unit under the control of the charging / discharging control unit. In order to heat the secondary battery of the power storage unit in stages, a resistor is connected in series to the capacitor of the power storage unit via a switch, and the configuration of this power storage device is a means for solving the above-mentioned conventional problems. I am trying.

【0013】本発明の請求項4に係わる蓄電装置におい
て、充放電制御部は、蓄電部の二次電池の温度および残
容量を検出して蓄電部の放電可能出力を演算する放電可
能出力演算手段と、この放電可能出力演算手段により演
算された蓄電部の放電可能出力に基づいて抵抗に電流を
流す制御手段を具備している構成とし、本発明の請求項
5に係わる蓄電装置において、充放電制御部は、蓄電部
に対する充放電を繰り返す周波数に応じて、蓄電部の抵
抗に電流を流す制御手段を具備している構成とし、本発
明の請求項6に係わる蓄電装置は、蓄電部のキャパシタ
を電気二重層キャパシタとした構成としている。
In the power storage device according to a fourth aspect of the present invention, the charge / discharge control unit detects the temperature and the remaining capacity of the secondary battery of the power storage unit and calculates the dischargeable output of the power storage unit. And a control unit that causes a current to flow through a resistor based on the dischargeable output of the power storage unit calculated by the dischargeable output calculation unit, and the charge and discharge according to claim 5 of the present invention. The control unit is configured to include a control unit that causes a current to flow through a resistance of the power storage unit according to a frequency at which the power storage unit is repeatedly charged and discharged, and the power storage device according to claim 6 of the present invention is the capacitor of the power storage unit. Is an electric double layer capacitor.

【0014】本発明の請求項7に係わる蓄電装置は、放
電手段がシリーズハイブリット車の車両駆動用モータま
たは車両の補機である構成とし、本発明の請求項8に係
わる蓄電装置は、放電手段が車両駆動用モータ以外の動
力源をもったパラレルハイブリット車の車両駆動用モー
タまたは車両の補機である構成としている。
According to a seventh aspect of the present invention, the discharging means is a vehicle driving motor of a series hybrid vehicle or an auxiliary machine of the vehicle, and the electricity storing device according to the eighth aspect of the invention is a discharging means. Is a vehicle driving motor of a parallel hybrid vehicle having a power source other than the vehicle driving motor or an auxiliary machine of the vehicle.

【0015】本発明に係わる蓄電装置において、二次電
池およびキャパシタを並列に接続した蓄電部は、パラレ
ルハイブリット車の電源とした場合、低温時の出力特性
を確保するにあたって、二次電池単体で構成した蓄電部
よりもコンパクトで低コストなものとなる。その理由と
して、二次電池の温度変化による出力特性の変化が大き
いのに対して、キャパシタの温度変化による出力特性の
変化がほとんどないからである。つまり、低温性能を満
足させるために二次電池を多く搭載しなければならない
分を低温性能の良いキャパシタで補うからであり、この
際、蓄電部に要求される低温時の出力性能は、車両の走
行に支障がない程度の出力である。
In the power storage device according to the present invention, the power storage unit in which a secondary battery and a capacitor are connected in parallel is constituted by a single secondary battery in order to secure output characteristics at low temperature when used as a power source for a parallel hybrid vehicle. It is more compact and less expensive than the power storage unit. The reason is that the output characteristics change largely due to the temperature change of the secondary battery, while the output characteristics hardly change due to the temperature change of the capacitor. In other words, the reason why a large number of secondary batteries must be mounted to satisfy low-temperature performance is supplemented by a capacitor with good low-temperature performance.At this time, the output performance at low temperature required for the power storage unit is It is an output that does not hinder driving.

【0016】そして、二次電池およびキャパシタを並列
に接続した蓄電部において、インダクタをキャパシタに
直列に接続して、高周波での充放電の繰り返し時におけ
るインピーダンスを大きくすると、図6のグラフに線C
で示すように、二次電池に流れる電流値が増えて、内部
発熱による二次電池の昇温が早くなる。この図6グラフ
は、横軸に充電と放電の周波数を示し、縦軸に二次電池
に流れる電流値を示しており、インダクタをキャパシタ
に接続しないで充放電を繰り返した場合、すなわち、従
来の加熱法により充放電を繰り返した場合には、上述し
たように、二次電池に流れる電流値は線Dに示すように
なる。
In an electricity storage unit in which a secondary battery and a capacitor are connected in parallel, an inductor is connected in series with the capacitor to increase the impedance during repeated charging and discharging at high frequencies.
As indicated by, the current value flowing through the secondary battery increases, and the temperature rise of the secondary battery due to internal heat generation becomes faster. In this graph of FIG. 6, the horizontal axis represents the charging and discharging frequencies, and the vertical axis represents the current value flowing in the secondary battery. When charging and discharging are repeated without connecting the inductor to the capacitor, that is, When charging and discharging are repeated by the heating method, the value of the current flowing through the secondary battery is as shown by the line D, as described above.

【0017】ここで、キャパシタの容量に対する二次電
池の昇温に最適なインダクタのインダクタンスの関係を
図7に示す。図7のグラフは、横軸にキャパシタの容量
を示し、縦軸にインダクタのインダクタンスを示してお
り、キャパシタの容量によってインダクタのインダクタ
ンスは変化することになる。この関係を導く方法は、キ
ャパシタの容量とインダクタのインダクタンスとを含む
交流回路のインピーダンス計算によって求めることがで
きる。つまり、二次電池の昇温を効果的に行うために
は、インダクタの値を図7の線Eより右上の領域の値に
するのが良いが、インダクタはインダクタンスが大きく
なるほど重量および容積が大きくなるので、線E上のイ
ンダクタンスに設計することが好ましい。
Here, FIG. 7 shows the relation between the capacitance of the capacitor and the optimum inductance of the inductor for raising the temperature of the secondary battery. The graph of FIG. 7 shows the capacitance of the capacitor on the horizontal axis and the inductance of the inductor on the vertical axis, and the inductance of the inductor changes depending on the capacitance of the capacitor. The method of deriving this relationship can be obtained by calculating the impedance of the AC circuit including the capacitance of the capacitor and the inductance of the inductor. That is, in order to effectively raise the temperature of the secondary battery, it is preferable to set the value of the inductor to the value in the upper right region of the line E in FIG. 7, but the larger the inductance of the inductor, the larger the weight and volume. Therefore, it is preferable to design the inductance on the line E.

【0018】[0018]

【発明の作用】本発明の請求項1に係わる蓄電装置で
は、上記した構成としているので、充放電制御部の制御
によって発電手段および放電手段を交互に作動させて蓄
電部に対する充放電を繰り返して行わせると、キャパシ
タおよびインダクタ側のインピーダンスが大きくなるの
に伴って、これらと並列位置にある二次電池に流れる電
流値が大きくなる。二次電池の発熱量は二次電池に流れ
る電流値の二乗に比例することから、二次電池の昇温速
度の向上が図られることとなる。
Since the power storage device according to the first aspect of the present invention has the above-mentioned structure, the power generation means and the discharge means are alternately operated by the control of the charge / discharge control section to repeat the charge / discharge of the power storage section. If this is done, as the impedance on the capacitor and inductor side increases, the value of the current flowing through the secondary battery in parallel with these increases. Since the amount of heat generated by the secondary battery is proportional to the square of the current value flowing through the secondary battery, the rate of temperature rise of the secondary battery can be improved.

【0019】本発明の請求項2に係わる蓄電装置では、
充放電制御部の放電可能出力演算手段によって、二次電
池の温度および残容量から二次電池の放電可能出力が求
められ、例えば、二次電池の放電可能出力が所定値以下
である場合には、制御手段が二次電池を昇温する必要が
有りと判断して、充放電の繰り返し制御を実行すること
から、蓄電部の充放電が適切なタイミングでなされるこ
ととなる。
In the electric storage device according to claim 2 of the present invention,
The dischargeable output calculation means of the charge / discharge control unit determines the dischargeable output of the secondary battery from the temperature and the remaining capacity of the secondary battery. For example, when the dischargeable output of the secondary battery is equal to or less than a predetermined value, Since the control means determines that it is necessary to raise the temperature of the secondary battery and executes repeated control of charging / discharging, charging / discharging of the power storage unit is performed at an appropriate timing.

【0020】本発明の請求項3に係わる蓄電装置では、
上記した構成としているので、充放電制御部の制御によ
って発電手段および放電手段を交互に作動させて蓄電部
に対する充放電を繰り返して行わせると、キャパシタお
よび抵抗側の直流抵抗が大きくなるのに伴って、これら
と並列位置にある二次電池に流れる電流値が大きくな
る。二次電池の発熱量は二次電池に流れる電流値の二乗
に比例することから、二次電池の昇温速度の向上が図ら
れることとなる。
In the electricity storage device according to claim 3 of the present invention,
With the above-mentioned configuration, when the power generation means and the discharge means are alternately operated under the control of the charge / discharge control section to repeatedly charge / discharge the power storage section, the DC resistance on the capacitor side and the resistance side increases. As a result, the current value flowing through the secondary battery located in parallel with these increases. Since the heat generation amount of the secondary battery is proportional to the square of the current value flowing in the secondary battery, the temperature rising rate of the secondary battery can be improved.

【0021】本発明の請求項4に係わる蓄電装置では、
充放電制御部の放電可能出力演算手段によって、二次電
池の温度および残容量から二次電池の放電可能出力が求
められ、例えば、二次電池の放電可能出力が所定値以下
である場合には、制御手段が二次電池を昇温する必要が
有りと判断して、抵抗のスイッチを入れて充放電の繰り
返し制御を実行することから、蓄電部の充放電が適切な
タイミングでなされることとなる。
In the electric storage device according to claim 4 of the present invention,
The dischargeable output calculation means of the charge / discharge control unit determines the dischargeable output of the secondary battery from the temperature and the remaining capacity of the secondary battery. For example, when the dischargeable output of the secondary battery is equal to or less than a predetermined value, Since the control means determines that the temperature of the secondary battery needs to be raised and the resistance switch is turned on to repeatedly execute the charging / discharging control, the charging / discharging of the power storage unit is performed at an appropriate timing. Become.

【0022】本発明の請求項5に係わる蓄電装置では、
上記した構成としたため、充電および放電を繰り返す周
波数が所定値より大きい場合において、制御手段が抵抗
のスイッチを入れて充放電の繰り返し制御を実行するこ
とから、蓄電部の充放電がより適切なタイミングでなさ
れることとなる。
According to a fifth aspect of the present invention, in the power storage device,
With the above configuration, when the frequency of repeating charging and discharging is higher than a predetermined value, the control means turns on the resistor to execute the repeated control of charging / discharging. Will be done in.

【0023】本発明の請求項6に係わる蓄電装置では、
電気二重層キャパシタがそれ以外のキャパシタである電
解コンデンサと比べて蓄電容量が10倍以上大きく、出
力特性に優れているので、電解コンデンサと同じ出力を
得ようとすると、重量およびスペースの点で有利なもの
となり、自動車に最適なものとなる。
In the electricity storage device according to claim 6 of the present invention,
The electric double layer capacitor has a storage capacity 10 times larger than that of other electrolytic capacitors and has excellent output characteristics. Therefore, it is advantageous in terms of weight and space to obtain the same output as the electrolytic capacitor. It is suitable for automobiles.

【0024】本発明の請求項7および8に係わる蓄電装
置では、二次電池の昇温のための発電機や放電器を別個
に用意する必要がなく、その分だけ、重量の軽減および
システムの簡略化が図られることとなる。
In the electricity storage device according to claims 7 and 8 of the present invention, it is not necessary to separately prepare a generator and a discharger for raising the temperature of the secondary battery, and the weight reduction and the system The simplification will be achieved.

【0025】[0025]

【発明の効果】本発明の請求項1に係わる蓄電装置で
は、上記した構成としているので、充放電制御部の制御
によって蓄電部に充放電を繰り返して行わせることで、
二次電池に流れる電流値を大きくすることができ、その
結果、二次電池の昇温速度の向上を実現することが可能
であるという非常に優れた効果がもたらされる。
Since the power storage device according to the first aspect of the present invention has the above-mentioned configuration, by repeatedly charging and discharging the power storage unit under the control of the charge / discharge control unit,
It is possible to increase the value of the current flowing through the secondary battery, and as a result, it is possible to realize the improvement of the temperature rising rate of the secondary battery, which is a very excellent effect.

【0026】本発明の請求項2に係わる蓄電装置では、
上記した構成としたため、蓄電部の充放電を適切なタイ
ミングで行うことができ、エネルギの無駄な消費を防ぐ
ことが可能であるという非常に優れた効果がもたらされ
る。
In the electric storage device according to claim 2 of the present invention,
With the above-described configuration, it is possible to charge and discharge the power storage unit at an appropriate timing, and it is possible to prevent wasteful consumption of energy, which is a very excellent effect.

【0027】本発明の請求項3に係わる蓄電装置では、
上記した構成としたから、低コスト化を実現したうえ
で、請求項1の蓄電装置と同じく、二次電池の昇温速度
を大幅に早めることが可能であるという非常に優れた効
果がもたらされる。
In the electricity storage device according to claim 3 of the present invention,
Because of the above-described configuration, it is possible to realize a very excellent effect that the cost can be reduced and the temperature rising rate of the secondary battery can be drastically increased similarly to the power storage device according to claim 1. .

【0028】本発明の請求項4に係わる蓄電装置では、
上記した構成としたため、請求項2の蓄電装置と同様
に、エネルギの無駄な消費を防ぐことが可能であるとい
う非常に優れた効果がもたらされる。
In the electricity storage device according to claim 4 of the present invention,
With the above-described configuration, similarly to the power storage device according to the second aspect, it is possible to prevent the wasteful consumption of energy, which is a very excellent effect.

【0029】本発明の請求項5に係わる蓄電装置では、
充電および放電を繰り返す周波数が所定値より大きい場
合に、蓄電部に対する充放電の繰り返し制御を行うこと
ができ、蓄電部からの出力を常時得ることが可能である
という非常に優れた効果がもたらされる。
In the electricity storage device according to claim 5 of the present invention,
When the frequency of repeating charging and discharging is higher than a predetermined value, it is possible to perform repetitive control of charging and discharging of the power storage unit, and it is possible to obtain the output from the power storage unit at all times, which is a very excellent effect. .

【0030】本発明の請求項6に係わる蓄電装置では、
上記した構成としたから、自動車に搭載するのに重量お
よびスペースの点で有利となり、燃費性能の向上を実現
することが可能であるという非常に優れた効果がもたら
される。
In the electricity storage device according to claim 6 of the present invention,
Due to the above-mentioned configuration, it is advantageous in terms of weight and space for mounting on a vehicle, and an extremely excellent effect that fuel consumption performance can be improved is brought about.

【0031】本発明の請求項7および8に係わる蓄電装
置では、上記した構成としたため、重量の軽減およびシ
ステムの簡略化を実現することが可能であるという非常
に優れた効果がもたらされる。
Since the power storage device according to the seventh and eighth aspects of the present invention has the above-mentioned configuration, it is possible to achieve a very excellent effect that the weight can be reduced and the system can be simplified.

【0032】[0032]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0033】[実施例1]図1〜図3は、本発明に係わ
る蓄電装置の一実施例を示しており、この実施例では、
本発明に係わる蓄電装置をシリーズハイブリッド車に採
用した場合を示す。図1において、太い実線は機械力の
伝達経路を示し、太い破線は電力線を示し、細い実線は
制御線を示しており、この車両のパワートレインは、駆
動モータ4、差動機構18および駆動輪19から構成さ
れていて、駆動モータ4が車両の推進源となる。
[Embodiment 1] FIGS. 1 to 3 show an embodiment of a power storage device according to the present invention. In this embodiment,
The case where the power storage device according to the present invention is adopted in a series hybrid vehicle is shown. In FIG. 1, a thick solid line indicates a mechanical force transmission path, a thick broken line indicates a power line, and a thin solid line indicates a control line. The power train of this vehicle includes a drive motor 4, a differential mechanism 18, and drive wheels. The drive motor 4 serves as a propulsion source for the vehicle.

【0034】このシリーズハイブリッド車の蓄電装置1
は、蓄電部2と、主としてエンジン17の始動および発
電に用いる発電モータ(発電手段)3と、主として車両
の推進および制動に用いる上記駆動モータ(放電手段)
4と、発電モータ3および駆動モータ4をそれぞれ駆動
するインバータ5,6と、蓄電部2の充放電を制御する
コントローラ(充放電制御部)7と、蓄電部2にDCリ
ンク8およびDC/DCコンバータ9を介して接続する
車両の補機(放電手段)10を備えており、発電モータ
3および駆動モータ4は、いずれも三相同期電動機また
は三相誘導電動機などの交流機となっている。
Power storage device 1 of this series hybrid vehicle
Is a power storage unit 2, a power generation motor (power generation means) 3 mainly used for starting and power generation of the engine 17, and the drive motor (discharge means) mainly used for propulsion and braking of the vehicle.
4, inverters 5 and 6 respectively driving the generator motor 3 and the drive motor 4, a controller (charging / discharging control unit) 7 that controls charging / discharging of the power storage unit 2, a DC link 8 and a DC / DC to the power storage unit 2. A vehicle auxiliary machine (discharging means) 10 connected via a converter 9 is provided, and the generator motor 3 and the drive motor 4 are both AC machines such as a three-phase synchronous motor or a three-phase induction motor.

【0035】蓄電部2は、図2に示すように、二次電池
21と電気二重層キャパシタ22を並列に接続した電源
となっており、インダクタ23が電気二重層キャパシタ
22と直列に接続してあって、すなわち、二次電池21
と並列に接続してあって、電力を車両の補機10に供給
するものとなっている。
As shown in FIG. 2, the power storage unit 2 is a power source in which a secondary battery 21 and an electric double layer capacitor 22 are connected in parallel, and an inductor 23 is connected in series with the electric double layer capacitor 22. Yes, that is, the secondary battery 21
And is connected in parallel to supply electric power to the auxiliary device 10 of the vehicle.

【0036】インバータ5,6は、共通のDCリンク8
を介して蓄電部2に接続してあり、蓄電部2の直流放電
電力を交流電力に変換して発電モータ3および駆動モー
タ4へ供給すると共に、発電モータ3および駆動モータ
4の交流発電電力を直流電力に変換して蓄電部2を充電
するものとなっている。これらのインバータ5,6は、
互いにDCリンク8を介して接続してあるので、蓄電部
2を介さずに回生運転中のモータにより発電された電力
を直接力行運転中のモータへ供給することができるよう
になっている。
The inverters 5 and 6 have a common DC link 8
Is connected to the power storage unit 2 via the AC power supply unit 2, converts the DC discharge power of the power storage unit 2 into AC power and supplies the AC power to the power generation motor 3 and the drive motor 4, and at the same time, supplies the AC power generation of the power generation motor 3 and the drive motor 4. The power storage unit 2 is charged by converting into DC power. These inverters 5 and 6 are
Since they are connected to each other via the DC link 8, the electric power generated by the motor during the regenerative operation can be directly supplied to the motor during the power running operation without the power storage unit 2.

【0037】コントローラ7は、蓄電部2の充放電を制
御するほか、エンジン17の回転速度や出力やトルクを
制御すると共に、発電モータ3および駆動モータ4の回
転速度やトルクを制御する。このコントローラ7には、
蓄電部2内の二次電池の温度TBと電気二重層キャパシ
タ22の温度TCを検出する温度センサ11や、蓄電部
2の端子電圧VBを検出する電圧センサ12や、蓄電部
2の電流値IBを検出する電流センサ13からの信号が
入力されて、蓄電部2の残容量SOCを演算するように
なっている。
The controller 7 controls the charging / discharging of the power storage unit 2 and controls the rotation speed, output and torque of the engine 17, and also controls the rotation speed and torque of the generator motor 3 and the drive motor 4. This controller 7 has
Temperature sensor 11 that detects temperature TB of the secondary battery in power storage unit 2 and temperature TC of electric double layer capacitor 22, voltage sensor 12 that detects terminal voltage VB of power storage unit 2, and current value IB of power storage unit 2 The signal from the current sensor 13 for detecting the state of charge is input and the remaining capacity SOC of the power storage unit 2 is calculated.

【0038】また、コントローラ7は、蓄電部2の二次
電池21の温度TBならびに蓄電部2の残容量SOCに
対する蓄電部2の放電可能出力および充電可能入力のマ
ップデータを有しており、温度センサ11で計測された
二次電池21の温度TBおよび残容量SOCから、蓄電
部2の放電可能出力Pout,maxおよび充電可能入力Pin,
maxを演算できるようになっている。
Further, controller 7 has temperature TB of secondary battery 21 of power storage unit 2 and map data of dischargeable output and chargeable input of power storage unit 2 with respect to remaining capacity SOC of power storage unit 2, From the temperature TB and the remaining capacity SOC of the secondary battery 21 measured by the sensor 11, the dischargeable output Pout, max and the chargeable input Pin,
You can calculate max.

【0039】コントローラ7は、車両の負荷変動が小さ
い状態である定速度走行時などにおいて、エンジン17
の動力によって発電モータ3を動作させて発電を行う、
すなわち、蓄電部2を充電することができ、一方、駆動
モータ4の動力による車両駆動および補機10の駆動を
行う、すなわち、蓄電部2を放電することができるよう
になっている。つまり、蓄電部2に対して、車両の走行
性能を損なわずに任意の周波数で充電および放電を繰り
返すことができるようになっている。
The controller 7 controls the engine 17 when the vehicle is traveling at a constant speed in which the load fluctuation of the vehicle is small.
To generate power by operating the generator motor 3 with the power of
That is, power storage unit 2 can be charged, while the vehicle can be driven by the power of drive motor 4 and auxiliary device 10 can be driven, that is, power storage unit 2 can be discharged. That is, the power storage unit 2 can be repeatedly charged and discharged at any frequency without impairing the running performance of the vehicle.

【0040】蓄電部2に対する充放電の繰り返し周波数
は、機械的に小さくすることが可能であるが、充放電の
繰り返し周波数を小さくすると、車両の発電手段である
発電モータ3あるいは放電手段である駆動モータ4や補
機10を長時間使用することになり、車両の走行時には
制御不能である。したがって、充放電の繰り返し周波数
は1Hz以上となる。
The charging / discharging repetition frequency for the power storage unit 2 can be mechanically reduced. However, if the charging / discharging repetition frequency is reduced, the generator motor 3 which is the power generating means of the vehicle or the drive which is the discharging means. Since the motor 4 and the auxiliary machine 10 are used for a long time, they cannot be controlled when the vehicle is running. Therefore, the charging / discharging repetition frequency is 1 Hz or higher.

【0041】次に、上記した実施例に係わる蓄電装置1
の作用について、図3のフローチャートに基づいて説明
する。
Next, the electricity storage device 1 according to the above embodiment
The action of will be described based on the flowchart of FIG.

【0042】図3に示すように、ステップS1において
車両のキーがオンされると、ステップS2においてキー
オフか否かが判断され、キーオフ(Yes)と判断され
るとステップS3へ進んでシステムが停止し、キーオン
(No)と判断されるとステップS4へ進み、コントロ
ーラ7により蓄電部2の残容量演算,蓄電部2の温度計
測,蓄電部2の残容量および蓄電部2の温度から蓄電部
放電可能出力Pout,maxが演算される。
As shown in FIG. 3, when the key of the vehicle is turned on in step S1, it is determined in step S2 whether or not the key is off. If it is determined to be key off (Yes), the process proceeds to step S3 and the system is stopped. If it is determined that the key is on (No), the process proceeds to step S4, and the controller 7 calculates the remaining capacity of the power storage unit 2, measures the temperature of the power storage unit 2, discharges the power storage unit 2 from the remaining capacity of the power storage unit 2 and the temperature of the power storage unit 2. The possible output Pout, max is calculated.

【0043】次いで、ステップS5において蓄電部2の
放電可能出力Pout,maxがハイブリット走行に必要な出
力以上か否かが判断され、蓄電部2の放電可能出力がそ
の値以下である場合は、シリーズハイブリット車として
燃費性能が十分に発揮できないと判断されてステップS
6へ進み、このステップS6において蓄電部2の昇温制
御が開始されてステップS2へ戻る。一方、蓄電部2の
放電可能出力がハイブリット走行に必要な出力値以上で
ある場合は、シリーズハイブリット車として燃費性能が
十分に発揮できると判断され、ステップS7へ進んで蓄
電部2の昇温制御が停止されてステップS2へ戻る。
Next, in step S5, it is determined whether or not the dischargeable output Pout, max of the power storage unit 2 is equal to or more than the output required for hybrid traveling, and if the dischargeable output of the power storage unit 2 is less than that value, the series It is judged that the fuel economy performance cannot be fully exerted as a hybrid vehicle
6, the temperature rise control of power storage unit 2 is started in step S6, and the process returns to step S2. On the other hand, when the dischargeable output of power storage unit 2 is equal to or higher than the output value required for hybrid traveling, it is determined that fuel efficiency performance can be sufficiently exhibited as a series hybrid vehicle, and the process proceeds to step S7 to control the temperature rise of power storage unit 2. Is stopped and the process returns to step S2.

【0044】この蓄電装置1では、上記したように、コ
ントローラ7の昇温制御によって蓄電部2に対する充放
電が繰り返してなされると、蓄電部2の電気二重層キャ
パシタ22およびインダクタ23側のインピーダンスが
大きくなるのに伴って、これらと並列位置にある二次電
池21に流れる電流値が大きくなり、この際、二次電池
21の発熱量は二次電池21に流れる電流値の二乗に比
例するため、二次電池21の昇温速度の向上が図られる
こととなる。
In this electricity storage device 1, as described above, when charging / discharging of electricity storage unit 2 is repeatedly performed by the temperature rise control of controller 7, the impedance of electric double layer capacitor 22 and inductor 23 side of electricity storage unit 2 is changed. As the size of the secondary battery 21 increases, the value of the current flowing through the secondary battery 21 in the parallel position increases, and at this time, the amount of heat generated by the secondary battery 21 is proportional to the square of the value of the current flowing through the secondary battery 21. Therefore, the rate of temperature rise of the secondary battery 21 can be improved.

【0045】また、上記した蓄電装置1では、二次電池
21の温度TBおよび残容量SOCから、コントローラ
7が蓄電部2の放電可能出力Pout,maxおよび充電可能
入力Pin,maxを演算するようになっているうえ、蓄電部
2の放電可能出力Pout,maxがハイブリット走行に必要
な出力以上か否かを判断するようになっているので、二
次電池21の放電可能出力が所定値以下である場合に
は、コントローラ7による昇温制御が実行されることと
なり、したがって、蓄電部2の充放電が適切なタイミン
グでなされることとなる。
Further, in the above-described power storage device 1, the controller 7 calculates the dischargeable output Pout, max and the chargeable input Pin, max of the power storage unit 2 from the temperature TB and the remaining capacity SOC of the secondary battery 21. In addition, it is determined whether or not the dischargeable output Pout, max of the power storage unit 2 is equal to or more than the output required for hybrid traveling, so that the dischargeable output of the secondary battery 21 is less than or equal to a predetermined value. In this case, the temperature increase control is executed by the controller 7, and therefore the power storage unit 2 is charged and discharged at an appropriate timing.

【0046】さらに、上記した蓄電装置1では、蓄電部
2のキャパシタを電気二重層キャパシタ22としている
ので、電解コンデンサと比べて蓄電容量が10倍以上大
きく、出力特性に優れているので、重量およびスペース
の点で有利なものとなり、自動車に最適なものとなる。
Further, in the above-described power storage device 1, since the capacitor of the power storage unit 2 is the electric double layer capacitor 22, the storage capacity is 10 times or more larger than that of the electrolytic capacitor and the output characteristics are excellent. It is advantageous in terms of space, and is optimal for automobiles.

【0047】さらにまた、この実施例では、上記蓄電装
置1をシリーズハイブリット車に搭載し、このシリーズ
ハイブリット車の車両用駆動モータ4および車両の補機
10を放電手段として採用しているので、二次電池21
の昇温のための発電機や放電器を別個に用意する必要が
なく、その分だけ、重量の軽減およびシステムの簡略化
が図られることとなる。
Furthermore, in this embodiment, the above-described power storage device 1 is mounted on a series hybrid vehicle, and the vehicle drive motor 4 of this series hybrid vehicle and the vehicle auxiliary machine 10 are adopted as discharging means. Secondary battery 21
Since it is not necessary to separately prepare a generator and a discharger for raising the temperature, the weight can be reduced and the system can be simplified accordingly.

【0048】[実施例2]図4は、本発明に係わる蓄電
装置の他の実施例を示しており、この実施例では、本発
明に係わる蓄電装置をパラレルハイブリッド車に採用し
た場合を示す。図4において、太い実線は機械力の伝達
経路を示し、太い破線は電力線を示し、細い実線は制御
線を示している。
[Embodiment 2] FIG. 4 shows another embodiment of the power storage device according to the present invention. In this embodiment, the power storage device according to the present invention is used in a parallel hybrid vehicle. In FIG. 4, a thick solid line indicates a mechanical force transmission path, a thick broken line indicates a power line, and a thin solid line indicates a control line.

【0049】この車両のパワートレインは、発電モータ
3,エンジン17,クラッチ16,駆動モータ4,無段
変速機15,差動装置18および駆動輪19から構成さ
れていて、発電モータ3の出力軸,エンジン17の出力
軸およびクラッチ16の入力軸は互いに連結されている
と共に、クラッチ16の出力軸,駆動モータ4の出力軸
および無段変速機15の入力軸は互いに連結されてい
る。クラッチ16の締結時はエンジン17および駆動モ
ータ4が車両の推進源となり、一方、クラッチ16の解
放時は駆動モータ4のみが車両の推進源となる。そし
て、エンジン17および駆動モータ4の各駆動力あるい
は駆動モータ4単独の駆動力は、いずれの場合も無段変
速機15および差動装置18を介して駆動輪19へ伝達
される。
The power train of this vehicle comprises a generator motor 3, an engine 17, a clutch 16, a drive motor 4, a continuously variable transmission 15, a differential device 18, and drive wheels 19, and the output shaft of the generator motor 3 is used. The output shaft of the engine 17 and the input shaft of the clutch 16 are connected to each other, and the output shaft of the clutch 16, the output shaft of the drive motor 4 and the input shaft of the continuously variable transmission 15 are connected to each other. When the clutch 16 is engaged, the engine 17 and the drive motor 4 are propulsion sources for the vehicle, while when the clutch 16 is disengaged, only the drive motor 4 is a propulsion source for the vehicle. Then, the driving force of each of the engine 17 and the drive motor 4 or the driving force of the drive motor 4 alone is transmitted to the drive wheels 19 via the continuously variable transmission 15 and the differential device 18 in any case.

【0050】この場合、クラッチ16はパウダークラッ
チであり、伝達トルクを調節する。なお、クラッチに
は、乾式単板クラッチや湿式多板クラッチを用いること
もできる。また、無段変速機15はベルト式やトロイダ
ル式などの無段変速機であり、変速比を無段階に調節す
る。
In this case, the clutch 16 is a powder clutch and adjusts the transmission torque. A dry single-plate clutch or a wet multi-plate clutch can be used as the clutch. Further, the continuously variable transmission 15 is a continuously variable transmission such as a belt type or toroidal type, and adjusts the gear ratio steplessly.

【0051】このパラレルハイブリッド車の蓄電装置1
Aは、先の実施例における蓄電装置1の蓄電部2と同一
構成の蓄電部2と、主としてエンジン17の始動および
発電に用いる上記発電モータ(発電手段)3と、主とし
て車両の推進および制動に用いる上記駆動モータ(放電
手段)4と、先の実施例における蓄電装置1のインバー
タ5,6と同一構成をなすインバータ5,6と、蓄電部
2の充放電を制御するコントローラ(充放電制御部)7
と、蓄電部2にDCリンク8およびDC/DCコンバー
タ9を介して接続する車両の補機(放電手段)10を備
えており、発電モータ3および駆動モータ4は、いずれ
も三相同期電動機または三相誘導電動機などの交流機と
なっている。なお、クラッチ16の締結時において、発
電モータ3を車両の推進および制動に用いることがで
き、また、駆動モータ4をエンジン17の始動や発電に
用いることができる。
Power storage device 1 of this parallel hybrid vehicle
A is a power storage unit 2 having the same configuration as the power storage unit 2 of the power storage device 1 in the previous embodiment, the power generation motor (power generation means) 3 mainly used for starting and generating power of the engine 17, and mainly for propulsion and braking of the vehicle. The drive motor (discharge means) 4 to be used, the inverters 5 and 6 having the same configuration as the inverters 5 and 6 of the power storage device 1 in the previous embodiment, and the controller (charge / discharge control unit) that controls the charge / discharge of the power storage unit 2. ) 7
And a vehicle auxiliary device (discharging means) 10 connected to the power storage unit 2 via the DC link 8 and the DC / DC converter 9. The generator motor 3 and the drive motor 4 are both three-phase synchronous motors or It is an AC machine such as a three-phase induction motor. When the clutch 16 is engaged, the generator motor 3 can be used for propulsion and braking of the vehicle, and the drive motor 4 can be used for starting the engine 17 and generating electricity.

【0052】コントローラ7は、蓄電部2の充放電を制
御するほか、エンジン17の回転速度や出力やトルクを
制御したり、クラッチ16の伝達トルクを制御したり、
発電モータ3および駆動モータ4の回転速度やトルクを
制御したり、無段変速機15の変速比を制御したりす
る。このコントローラ7には、蓄電部2内の二次電池の
温度TBと電気二重層キャパシタ22の温度TCを検出
する温度センサ11や、蓄電部2の端子電圧VBを検出
する電圧センサ12や、蓄電部2の電流値IBを検出す
る電流センサ13からの信号が入力されて、蓄電部2の
残容量SOCを演算するようになっている。
The controller 7 controls the charging / discharging of the power storage unit 2, the rotation speed, output and torque of the engine 17, the transmission torque of the clutch 16, and the like.
The rotation speed and torque of the generator motor 3 and the drive motor 4 are controlled, and the gear ratio of the continuously variable transmission 15 is controlled. The controller 7 includes a temperature sensor 11 that detects the temperature TB of the secondary battery in the power storage unit 2 and a temperature TC of the electric double layer capacitor 22, a voltage sensor 12 that detects the terminal voltage VB of the power storage unit 2, and a power storage unit. A signal from the current sensor 13 that detects the current value IB of the unit 2 is input, and the remaining capacity SOC of the power storage unit 2 is calculated.

【0053】また、このコントローラ7は、先の実施例
に係わる蓄電装置1のコントローラ7と同じく蓄電部2
の二次電池21の温度TBならびに蓄電部2の残容量S
OCに対する蓄電部2の放電可能出力および充電可能入
力のマップデータを有しており、温度センサ11で計測
された二次電池21の温度TBおよび残容量SOCか
ら、蓄電部2の放電可能出力Pout,maxおよび充電可能
入力Pin,maxを演算できるようになっている。
Further, this controller 7 is the same as the controller 7 of the power storage device 1 according to the above-described embodiment in the power storage unit 2.
Temperature TB of the secondary battery 21 and the remaining capacity S of the power storage unit 2 of
It has map data of the dischargeable output and the chargeable input of the power storage unit 2 with respect to OC, and the dischargeable output Pout of the power storage unit 2 from the temperature TB and the remaining capacity SOC of the secondary battery 21 measured by the temperature sensor 11. , max and chargeable input Pin, max can be calculated.

【0054】上記コントローラ7は、車両の負荷変動が
小さい状態である定速度走行時などにおいて、エンジン
17の動力によって車両の駆動を行うと共に発電モータ
3を動作させて発電を行う、すなわち、蓄電部2を充電
することができ、一方、エンジン17の動力,発電モー
タ1の動力および駆動モータ4の動力による車両駆動や
補機10の駆動を行う、すなわち、蓄電部2を放電する
ことができるようになっている。つまり、蓄電部2に対
して、車両の走行性能を損なわずに任意の周波数で充電
および放電を繰り返すことができるようになっている。
The controller 7 drives the vehicle by the motive power of the engine 17 and operates the generator motor 3 to generate power when the vehicle runs at a constant speed in which the load fluctuation of the vehicle is small, that is, the power storage unit. 2 can be charged, while the vehicle is driven by the power of the engine 17, the power of the generator motor 1, and the power of the drive motor 4 and the auxiliary device 10, that is, the power storage unit 2 can be discharged. It has become. That is, the power storage unit 2 can be repeatedly charged and discharged at any frequency without impairing the running performance of the vehicle.

【0055】上記した蓄電装置1Aにおいても、蓄電部
2に対する昇温制御が先の実施例と同じ要領でなされる
ので、すなわち、図3のフローチャートに基づいてなさ
れるので、蓄電部2の充放電が適切なタイミングで行わ
れて、二次電池21の昇温速度の向上が図られることと
なる。
In the above-described power storage device 1A, the temperature rise control for power storage unit 2 is performed in the same manner as in the previous embodiment, that is, based on the flowchart of FIG. Is performed at an appropriate timing, and the temperature rising rate of the secondary battery 21 is improved.

【0056】また、この実施例では、上記蓄電装置1A
をパラレルハイブリット車に搭載し、このパラレルハイ
ブリット車の車両用駆動モータ4および車両の補機10
を放電手段として採用していることから、先の実施例と
同じく、重量の軽減およびシステムの簡略化が図られる
こととなる。
In this embodiment, the power storage device 1A described above is used.
Mounted on a parallel hybrid vehicle, the vehicle drive motor 4 of the parallel hybrid vehicle and the vehicle accessory 10
Since the discharge means is adopted as the discharge means, the weight can be reduced and the system can be simplified as in the previous embodiment.

【0057】[実施例3]図5は、本発明に係わる蓄電
装置のさらに他の実施例を示しており、この実施例に係
わる蓄電装置が先の実施例の蓄電装置1と異なるところ
は、蓄電部2Aにおいてキャパシタ22と直列に抵抗2
4およびスイッチ25を接続した点にあり、他の構成
は、先の実施例に係わる蓄電装置1と同じである。
[Embodiment 3] FIG. 5 shows still another embodiment of the electricity storage device according to the present invention. The electricity storage device according to this embodiment is different from the electricity storage device 1 of the previous embodiment. In the power storage unit 2A, the resistor 2 is connected in series with the capacitor 22.
4 and the switch 25 are connected, and other configurations are the same as those of the power storage device 1 according to the previous embodiment.

【0058】この場合、スイッチ25は、コントローラ
7によってオンオフ制御することが可能であり、通常、
このスイッチ25をオンにして抵抗24に電流が流れな
いようにしている。
In this case, the switch 25 can be on / off controlled by the controller 7, and normally,
The switch 25 is turned on so that no current flows through the resistor 24.

【0059】そして、先の実施例に係わる蓄電装置1の
蓄電部2に対する昇温制御において、すなわち、図3に
示すフローチャートにおいて、ステップS6の二次電池
昇温制御ルーチンに入った段階でかつ充放電の繰り返し
周波数が所定値よりも小さい場合には、スイッチ25を
オンのままにして抵抗24に電流が流れないようにし、
一方、充放電の繰り返し周波数が所定値よりも大きい場
合には、スイッチ25をオフにしてキャパシタ22に流
れる電流が抵抗24に流れるように制御する。
Then, in the temperature rise control for the electricity storage unit 2 of the electricity storage device 1 according to the previous embodiment, that is, in the flowchart shown in FIG. 3, at the stage of entering the secondary battery temperature rise control routine of step S6, the charging is performed. When the discharge repetition frequency is lower than the predetermined value, the switch 25 is kept on so that no current flows through the resistor 24.
On the other hand, when the charging / discharging repetition frequency is higher than the predetermined value, the switch 25 is turned off so that the current flowing through the capacitor 22 is controlled to flow through the resistor 24.

【0060】この制御は、スイッチ25を常時オフにし
ている場合において、抵抗24を設けたことによる蓄電
部2からの出力の低下を阻止して、車両の動力性能が得
られなくなるのを回避するために行う。
This control prevents a decrease in the output from the power storage unit 2 due to the provision of the resistor 24 when the switch 25 is always turned off, and avoids that the power performance of the vehicle cannot be obtained. To do so.

【0061】上記した蓄電装置では、蓄電部2Aにおい
てキャパシタ22と直列に抵抗24およびスイッチ25
を接続した構成としているので、低コスト化を図りつ
つ、先の実施例に係わる蓄電装置1と同じく、二次電池
21の昇温速度を大幅に早め得ることとなる。
In the power storage device described above, the resistor 24 and the switch 25 are connected in series with the capacitor 22 in the power storage unit 2A.
Since the configuration is connected, the temperature rising rate of the secondary battery 21 can be significantly increased, similarly to the power storage device 1 according to the previous embodiment, while achieving cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる蓄電装置の一実施例を示すシス
テムブロック図である。
FIG. 1 is a system block diagram showing an embodiment of a power storage device according to the present invention.

【図2】図1に示した蓄電装置の蓄電部の回路説明図で
ある。
FIG. 2 is a circuit explanatory diagram of a power storage unit of the power storage device shown in FIG.

【図3】図1に示した蓄電装置の蓄電部昇温制御を説明
するフローチャートである。
FIG. 3 is a flowchart illustrating power storage unit temperature raising control of the power storage device shown in FIG. 1.

【図4】本発明に係わる蓄電装置の他の実施例を示すシ
ステムブロック図である。
FIG. 4 is a system block diagram showing another embodiment of the power storage device according to the present invention.

【図5】本発明に係わる蓄電装置のさらに他の実施例を
示す蓄電部の回路説明図である。
FIG. 5 is a circuit explanatory diagram of a power storage unit showing still another embodiment of the power storage device according to the present invention.

【図6】充放電繰り返し周波数−二次電池に流れる電流
値の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between charge / discharge repetition frequency and the value of current flowing in a secondary battery.

【図7】キャパシタ容量−インダクタのインダクタンス
の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the capacitance of a capacitor and the inductance of an inductor.

【図8】二次電池放電可能出力−パラレルハイブリット
車の燃料消費率の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the dischargeable output of a secondary battery and the fuel consumption rate of a parallel hybrid vehicle.

【符号の説明】[Explanation of symbols]

1,1A 蓄電装置 2,2A 蓄電部 3 発電モータ(発電手段) 4 駆動モータ(放電手段) 7 コントローラ(充放電制御部) 10 車両の補機(放電手段) 21 二次電池 22 キャパシタ 23 インダクタ 24 抵抗 25 スイッチ 1,1A power storage device 2,2A power storage unit 3 Power generation motor (power generation means) 4 Drive motor (discharging means) 7 Controller (charge / discharge control unit) 10 Vehicle accessories (discharging means) 21 secondary battery 22 Capacitor 23 Inductor 24 resistance 25 switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60L 11/12 ZHV B60L 11/12 ZHV 11/14 11/14 H01M 10/44 H01M 10/44 P 10/50 10/50 Fターム(参考) 5G003 AA07 BA01 CB01 DA07 FA06 GC05 5H030 AA01 AS08 BB01 BB08 BB10 BB21 FF22 FF41 5H031 CC09 KK03 5H115 PA12 PC06 PG04 PI14 PI16 PI24 PI29 PI30 PO01 PO02 PO06 PO09 PO11 PO17 PU09 PU10 PU22 PU24 PU25 PU26 PU27 PU29 PV02 PV10 QE20 QI04 QN03 SE04 SE05 SE06 SE09 TI02 TI05 TI06 TI10─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B60L 11/12 ZHV B60L 11/12 ZHV 11/14 11/14 H01M 10/44 H01M 10/44 P 10 / 50 10/50 F term (reference) 5G003 AA07 BA01 CB01 DA07 FA06 GC05 5H030 AA01 AS08 BB01 BB08 BB10 BB21 FF22 FF41 5H031 CC09 KK03 5H115 PA12 PC06 PG04 PI14 PI16 PI24 PI29 PI30 PO01 PO02 PO06 PU27 PU22 PU17 PU22 PU22 PU29 PV02 PV10 QE20 QI04 QN03 SE04 SE05 SE06 SE09 TI02 TI05 TI06 TI10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 互いに並列に接続した二次電池および
キャパシタを有する蓄電部と、この蓄電部を充電する発
電手段と、蓄電部から電力を放電させる放電手段と、発
電手段および放電手段による蓄電部での充放電を制御す
る充放電制御部を備え、充放電制御部の制御により発電
手段および放電手段を交互に作動させて蓄電部に対する
充放電を繰り返した段階で蓄電部の二次電池を発熱させ
るべく蓄電部のキャパシタに対してインダクタを直列に
接続したことを特徴とする蓄電装置。
1. A power storage unit having a secondary battery and a capacitor connected in parallel to each other, a power generation unit for charging the power storage unit, a discharging unit for discharging electric power from the power storage unit, and a power storage unit including the power generation unit and the discharging unit. A charging / discharging control unit that controls charging / discharging is provided, and the secondary battery of the power storage unit generates heat when the charging / discharging control unit controls the power generation unit and the discharging unit alternately to repeatedly charge / discharge the power storage unit. In order to achieve this, an inductor is connected in series to a capacitor of the electricity storage unit, which is an electricity storage device.
【請求項2】 充放電制御部は、蓄電部の二次電池の
温度および残容量を検出して蓄電部の放電可能出力を演
算する放電可能出力演算手段と、この放電可能出力演算
手段により演算された蓄電部の放電可能出力に基づいて
蓄電部に対する充放電を繰り返し実行させる制御手段を
具備している請求項1に記載の蓄電装置。
2. A charging / discharging control unit detects a temperature and a remaining capacity of a secondary battery of a power storage unit and calculates a dischargeable output of the power storage unit, and a dischargeable output calculation unit. The power storage device according to claim 1, further comprising a control unit configured to repeatedly charge and discharge the power storage unit based on the dischargeable output of the stored power storage unit.
【請求項3】 互いに並列に接続した二次電池および
キャパシタを有する蓄電部と、この蓄電部を充電する発
電手段と、蓄電部から電力を放電させる放電手段と、発
電手段および放電手段による蓄電部での充放電を制御す
る充放電制御部を備え、充放電制御部の制御により発電
手段および放電手段を交互に作動させて蓄電部に対する
充放電を繰り返した段階で蓄電部の二次電池を発熱させ
るべく蓄電部のキャパシタに対してスイッチを介して抵
抗を直列に接続したことを特徴とする蓄電装置。
3. A power storage unit having a secondary battery and a capacitor connected in parallel with each other, a power generation unit for charging the power storage unit, a discharging unit for discharging electric power from the power storage unit, and a power storage unit including the power generation unit and the discharging unit. A charging / discharging control unit that controls charging / discharging is provided, and the secondary battery of the power storage unit generates heat when the charging / discharging control unit controls the power generation unit and the discharging unit alternately to repeatedly charge / discharge the power storage unit. In order to achieve this, a resistor is connected in series via a switch to the capacitor of the electricity storage unit, which is an electricity storage device.
【請求項4】 充放電制御部は、蓄電部の二次電池の
温度および残容量を検出して蓄電部の放電可能出力を演
算する放電可能出力演算手段と、この放電可能出力演算
手段により演算された蓄電部の放電可能出力に基づいて
抵抗に電流を流す制御手段を具備している請求項3に記
載の蓄電装置。
4. A charging / discharging control unit detects a temperature and a remaining capacity of a secondary battery of a power storage unit and calculates a dischargeable output of the power storage unit, and a dischargeable output calculation unit. The power storage device according to claim 3, further comprising a control unit that causes a current to flow through the resistor based on the dischargeable output of the power storage unit.
【請求項5】 充放電制御部は、蓄電部に対する充放
電を繰り返す周波数に応じて、蓄電部の抵抗に電流を流
す制御手段を具備している請求項3に記載の蓄電装置。
5. The power storage device according to claim 3, wherein the charge / discharge control unit includes a control unit that causes a current to flow in the resistance of the power storage unit according to a frequency at which the power storage unit is repeatedly charged and discharged.
【請求項6】 蓄電部のキャパシタを電気二重層キャ
パシタとした請求項1ないし5のいずれかに記載の蓄電
装置。
6. The power storage device according to claim 1, wherein the capacitor of the power storage unit is an electric double layer capacitor.
【請求項7】 放電手段がシリーズハイブリット車の
車両駆動用モータまたは車両の補機である請求項1ない
し6のいずれかに記載の蓄電装置。
7. The power storage device according to claim 1, wherein the discharging means is a vehicle drive motor of a series hybrid vehicle or an auxiliary machine of the vehicle.
【請求項8】 放電手段が車両駆動用モータ以外の動
力源をもったパラレルハイブリット車の車両駆動用モー
タまたは車両の補機である請求項1ないし7のいずれか
に記載の蓄電装置。
8. The power storage device according to claim 1, wherein the discharging means is a vehicle driving motor of a parallel hybrid vehicle having a power source other than the vehicle driving motor or an auxiliary machine of the vehicle.
JP2002067891A 2002-03-13 2002-03-13 Power storage system Pending JP2003274565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067891A JP2003274565A (en) 2002-03-13 2002-03-13 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067891A JP2003274565A (en) 2002-03-13 2002-03-13 Power storage system

Publications (1)

Publication Number Publication Date
JP2003274565A true JP2003274565A (en) 2003-09-26

Family

ID=29199128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067891A Pending JP2003274565A (en) 2002-03-13 2002-03-13 Power storage system

Country Status (1)

Country Link
JP (1) JP2003274565A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015866A (en) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd Method and apparatus for controlling charging/discharging
WO2007007900A1 (en) * 2005-07-12 2007-01-18 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and control method
JP2007129891A (en) * 2005-10-03 2007-05-24 Matsushita Electric Works Ltd Distribution board for residence
WO2007093882A2 (en) 2006-02-15 2007-08-23 Toyota Jidosha Kabushiki Kaisha Controller and control method for charging of the secondary battery
WO2008004440A1 (en) * 2006-07-07 2008-01-10 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, power supply system control method, and computer-readable recording medium containing program for causing computer to control the power supply system
WO2008013011A1 (en) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Power system and vehicle having same, method for controlling temperature rise of power storage device, and computer-readable recording medium on which program for allowing computer to execute temperature rise control of power storage device is recorded
JP2008098098A (en) * 2006-10-16 2008-04-24 Toyota Motor Corp Power supply device and vehicle
JP2008109756A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Power supply system and vehicle equipped with the same, control method of the power supply system, and computer-readable recording medium stored with program for making computer implement control method of the power supply system
WO2008056818A1 (en) * 2006-11-08 2008-05-15 Toyota Jidosha Kabushiki Kaisha Electric vehicle and method of controlling voltage conversion device
EP2026404A1 (en) * 2006-05-22 2009-02-18 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2010093969A (en) * 2008-10-09 2010-04-22 Denso Corp Battery temperature rise controller
JP2010093883A (en) * 2008-10-06 2010-04-22 Denso Corp Device for controlling battery temperature rise
JP2010182511A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Temperature rising system
JP2010179666A (en) * 2009-02-03 2010-08-19 Nissan Motor Co Ltd Control device for electric vehicle
US7911077B2 (en) 2006-07-31 2011-03-22 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, temperature rise control method of power storage device, and computer-readable recording medium with program recorded thereon for causing computer to execute temperature rise control of power storage device
US7939969B2 (en) 2006-07-18 2011-05-10 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program causing computer to execute temperature increase control of power storage device
US7956489B2 (en) 2006-03-31 2011-06-07 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle including the same
DE102009057174A1 (en) * 2009-12-05 2011-06-09 Volkswagen Ag Method and device for controlling hybrid functions in a motor vehicle
WO2011092662A1 (en) * 2010-01-28 2011-08-04 Maxwell Technologies, Inc. Battery self-warming
CN102479983A (en) * 2010-11-30 2012-05-30 比亚迪股份有限公司 Charging control method and device for electric vehicle power battery
JP2012257435A (en) * 2011-06-10 2012-12-27 Toyota Motor Corp Vehicle
CN103189230A (en) * 2010-10-28 2013-07-03 丰田自动车株式会社 Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
US8564241B2 (en) 2008-10-03 2013-10-22 Denso Corporation Battery temperature control system
JP2015120515A (en) * 2015-02-03 2015-07-02 住友重機械工業株式会社 Hybrid type construction machine and method of controlling the same
JP2017046400A (en) * 2015-08-25 2017-03-02 太陽誘電株式会社 Controller, power storage device and mobile
CN107394284A (en) * 2016-05-16 2017-11-24 铃木株式会社 The battery control device of vehicle
CN110828918A (en) * 2019-11-13 2020-02-21 奇瑞新能源汽车股份有限公司 Control system and control method for automobile power battery
CN113948796A (en) * 2020-07-17 2022-01-18 本田技研工业株式会社 Temperature rising device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015866A (en) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd Method and apparatus for controlling charging/discharging
US7629755B2 (en) 2005-07-12 2009-12-08 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and secondary battery control method
WO2007007900A1 (en) * 2005-07-12 2007-01-18 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and control method
JP2007026700A (en) * 2005-07-12 2007-02-01 Toyota Motor Corp Control device of secondary battery
JP2007129891A (en) * 2005-10-03 2007-05-24 Matsushita Electric Works Ltd Distribution board for residence
WO2007093882A2 (en) 2006-02-15 2007-08-23 Toyota Jidosha Kabushiki Kaisha Controller and control method for charging of the secondary battery
US7956489B2 (en) 2006-03-31 2011-06-07 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle including the same
US7924562B2 (en) 2006-05-22 2011-04-12 Toyota Jidosha Kabushiki Kaisha Power supply unit
EP2026404A1 (en) * 2006-05-22 2009-02-18 Toyota Jidosha Kabushiki Kaisha Power supply device
EP2302726A1 (en) 2006-05-22 2011-03-30 Toyota Jidosha Kabushiki Kaisha Power supply unit
EP2026404A4 (en) * 2006-05-22 2009-11-11 Toyota Motor Co Ltd Power supply device
CN101489823B (en) * 2006-07-07 2012-05-30 丰田自动车株式会社 Power supply system, vehicle using the same, power supply system control method
US8297391B2 (en) 2006-07-07 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
WO2008004440A1 (en) * 2006-07-07 2008-01-10 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, power supply system control method, and computer-readable recording medium containing program for causing computer to control the power supply system
US7939969B2 (en) 2006-07-18 2011-05-10 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program causing computer to execute temperature increase control of power storage device
US7888811B2 (en) 2006-07-25 2011-02-15 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, temperature rise control method of power storage device and computer-readable recording medium bearing program for executing computer to perform temperature rise control of power supply device
WO2008013011A1 (en) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Power system and vehicle having same, method for controlling temperature rise of power storage device, and computer-readable recording medium on which program for allowing computer to execute temperature rise control of power storage device is recorded
US7911077B2 (en) 2006-07-31 2011-03-22 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, temperature rise control method of power storage device, and computer-readable recording medium with program recorded thereon for causing computer to execute temperature rise control of power storage device
WO2008047615A1 (en) 2006-10-16 2008-04-24 Toyota Jidosha Kabushiki Kaisha Power supply device and vehicle
JP2008098098A (en) * 2006-10-16 2008-04-24 Toyota Motor Corp Power supply device and vehicle
KR101113191B1 (en) * 2006-10-16 2012-02-16 도요타 지도샤(주) Power supply device and vehicle
US7989978B2 (en) 2006-10-24 2011-08-02 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, control method of power supply system and computer-readable recording medium bearing program causing computer to execute control method of power supply system
JP4656042B2 (en) * 2006-10-24 2011-03-23 トヨタ自動車株式会社 POWER SUPPLY SYSTEM AND VEHICLE HAVING THE SAME, POWER SUPPLY SYSTEM CONTROL METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE POWER SUPPLY SYSTEM CONTROL METHOD
JP2008109756A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Power supply system and vehicle equipped with the same, control method of the power supply system, and computer-readable recording medium stored with program for making computer implement control method of the power supply system
US8188710B2 (en) 2006-11-08 2012-05-29 Toyota Jidosha Kabushiki Kaisha Motored vehicle and method of controlling voltage conversion device for rapidly charging a power storage device
WO2008056818A1 (en) * 2006-11-08 2008-05-15 Toyota Jidosha Kabushiki Kaisha Electric vehicle and method of controlling voltage conversion device
US8564241B2 (en) 2008-10-03 2013-10-22 Denso Corporation Battery temperature control system
US8575897B2 (en) 2008-10-03 2013-11-05 Denso Corporation Battery temperature control system
JP2010093883A (en) * 2008-10-06 2010-04-22 Denso Corp Device for controlling battery temperature rise
JP2010093969A (en) * 2008-10-09 2010-04-22 Denso Corp Battery temperature rise controller
JP2010179666A (en) * 2009-02-03 2010-08-19 Nissan Motor Co Ltd Control device for electric vehicle
JP2010182511A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Temperature rising system
US9030170B2 (en) 2009-12-05 2015-05-12 Volkswagen Aktiengesellschaft Method and device for controlling hybrid functions in a motor vehicle
DE102009057174A1 (en) * 2009-12-05 2011-06-09 Volkswagen Ag Method and device for controlling hybrid functions in a motor vehicle
WO2011092662A1 (en) * 2010-01-28 2011-08-04 Maxwell Technologies, Inc. Battery self-warming
CN103189230B (en) * 2010-10-28 2015-04-22 丰田自动车株式会社 Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
CN103189230A (en) * 2010-10-28 2013-07-03 丰田自动车株式会社 Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
CN102479983A (en) * 2010-11-30 2012-05-30 比亚迪股份有限公司 Charging control method and device for electric vehicle power battery
JP2012257435A (en) * 2011-06-10 2012-12-27 Toyota Motor Corp Vehicle
JP2015120515A (en) * 2015-02-03 2015-07-02 住友重機械工業株式会社 Hybrid type construction machine and method of controlling the same
JP2017046400A (en) * 2015-08-25 2017-03-02 太陽誘電株式会社 Controller, power storage device and mobile
CN107394284A (en) * 2016-05-16 2017-11-24 铃木株式会社 The battery control device of vehicle
CN110828918A (en) * 2019-11-13 2020-02-21 奇瑞新能源汽车股份有限公司 Control system and control method for automobile power battery
CN113948796A (en) * 2020-07-17 2022-01-18 本田技研工业株式会社 Temperature rising device
US12074305B2 (en) 2020-07-17 2024-08-27 Honda Motor Co., Ltd. Temperature raising device

Similar Documents

Publication Publication Date Title
JP2003274565A (en) Power storage system
JP5454701B2 (en) Power supply device for electric vehicle, control method therefor, and electric vehicle
JP4081855B2 (en) Battery temperature riser
KR101113191B1 (en) Power supply device and vehicle
JP3732828B2 (en) POWER OUTPUT DEVICE AND VEHICLE MOUNTING THE SAME, POWER OUTPUT DEVICE CONTROL METHOD AND STORAGE MEDIUM AND PROGRAM, DRIVE DEVICE AND VEHICLE MOUNTING THE SAME, DRIVE DEVICE CONTROL METHOD, STORAGE MEDIUM AND PROGRAM
US11097624B2 (en) Driving system
JP3780979B2 (en) Charge / discharge control apparatus and method
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP5844787B2 (en) Auxiliary drive device and manufacturing method thereof
CN101553967B (en) Secondary battery charge/discharge control device and vehicle using the same
US6930460B2 (en) Load driver with power storage unit
CN105990624B (en) Electric power supply system
JPH06270695A (en) Power supply device
JP6974234B2 (en) Vehicle power system
JP6744350B2 (en) vehicle
JP5320988B2 (en) Power supply system and power balance control method thereof
CN108482102B (en) Hybrid power driving system
JP2009038958A (en) Vehicle control device and method
JP4496696B2 (en) Secondary battery temperature rise control device
JPH05328528A (en) Controller for engine-driven generator of hybrid vehicle
KR102691476B1 (en) System of increasing temperature of battery for vehicle
JP2007089264A (en) Motor driver
JP4134509B2 (en) Charging device and electric vehicle
JP2005204363A (en) Power supply for vehicle
JP4701552B2 (en) Secondary battery temperature rise control device