JP2010093969A - Battery temperature rise controller - Google Patents

Battery temperature rise controller Download PDF

Info

Publication number
JP2010093969A
JP2010093969A JP2008262623A JP2008262623A JP2010093969A JP 2010093969 A JP2010093969 A JP 2010093969A JP 2008262623 A JP2008262623 A JP 2008262623A JP 2008262623 A JP2008262623 A JP 2008262623A JP 2010093969 A JP2010093969 A JP 2010093969A
Authority
JP
Japan
Prior art keywords
temperature
battery
amplitude
discharging
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008262623A
Other languages
Japanese (ja)
Other versions
JP5077699B2 (en
Inventor
Eiji Masuda
英二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008262623A priority Critical patent/JP5077699B2/en
Priority to US12/572,771 priority patent/US8575897B2/en
Publication of JP2010093969A publication Critical patent/JP2010093969A/en
Priority to US13/448,570 priority patent/US8564241B2/en
Application granted granted Critical
Publication of JP5077699B2 publication Critical patent/JP5077699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce noise of the vibration noise generated during execution of temperature rise control or fluctuations in drive force, in a system that executes temperature rise control for increasing the temperature of a battery by the internal heat generation through repetition of charging and discharging. <P>SOLUTION: When the temperature of a high-voltage battery 12 detected by a temperature sensor 26 is lower than a predetermined temperature, the temperature rise control for making the temperature of the high-voltage battery 12 increase by periodically repeating charging and discharging thereof is executed. Here, the amplitude of the charging and discharging is limited, based on the repetition period of the charging and discharging, set according to the temperature of the high-voltage battery 12 so that vibration noise or fluctuations in the drive are be reduced. Accordingly, the temperature of the high-voltage battery 12 can be risen rapidly, while noise, such as, vibration noise or the fluctuation in the drive force generated during the execution of temperature rise control are reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両に搭載したバッテリの充電及び/又は放電を周期的に繰り返すことで該バッテリを昇温させる昇温制御を実行するバッテリの昇温制御装置に関する発明である。   The present invention relates to a battery temperature increase control device that performs temperature increase control for increasing the temperature of a battery by periodically charging and / or discharging a battery mounted on a vehicle.

一般に、バッテリ(二次電池)は、低温状態にある場合、常温時と比べて内部の活性化レベルが低下して内部抵抗が大きくなる(図2参照)。そのため、バッテリ放電時の電流が同一の場合でも、内部抵抗により両端電圧の低下幅が大きくなる。バッテリは、その両端電圧により性能が制約されるため、バッテリ温度が低温になるほど、連続放電可能時間が短くなり、バッテリから取り出せる電力量が減少する。反対に、充電時は、バッテリ温度が低温になるほど、両端電圧の上昇幅が大きくなり、連続充電可能時間も短くなる。   In general, when a battery (secondary battery) is in a low temperature state, the internal activation level is reduced and the internal resistance is increased as compared to normal temperature (see FIG. 2). For this reason, even when the current during battery discharge is the same, the width of decrease in the voltage across the terminal increases due to the internal resistance. Since the performance of the battery is limited by the voltage across the battery, the continuous dischargeable time is shortened and the amount of power that can be extracted from the battery decreases as the battery temperature decreases. On the contrary, during charging, the lower the battery temperature, the larger the increase in the voltage at both ends, and the shorter the continuous chargeable time.

そこで、近年、バッテリの低温時にバッテリを強制的に昇温して早期に充放電性能を確保するために、バッテリの充放電を強制的に実行してバッテリ内部でジュール熱の発生を促進することで、バッテリを内部から昇温させる技術が幾つか提案されている。   Therefore, in recent years, in order to forcibly raise the temperature of the battery at a low temperature and ensure early charge / discharge performance, the battery is forcibly executed to promote the generation of Joule heat inside the battery. Some techniques for raising the temperature of the battery from the inside have been proposed.

例えば、特許文献1(特開2007−12568号公報)、特許文献2(特開2007−28702号公報)には、バッテリの温度を温度センサで検出して、バッテリの検出温度が低温のときに、バッテリの充電と放電を交互に周期的に繰り返すことで、バッテリ内部でジュール熱の発生を促進してバッテリを昇温させる昇温制御を実行することが開示され、更に、この昇温制御の実行中にバッテリの充放電を周期的に繰り返す手段として、昇圧コンバータ又はモータ駆動回路(インバータ)を用いることが開示されている。   For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2007-12568) and Patent Document 2 (Japanese Patent Laid-Open No. 2007-28702), the temperature of the battery is detected by a temperature sensor, and the detected temperature of the battery is low. In addition, it is disclosed that the temperature increase control for promoting the generation of Joule heat inside the battery to increase the temperature of the battery by executing charging and discharging of the battery alternately and periodically is performed. It is disclosed that a step-up converter or a motor drive circuit (inverter) is used as means for periodically charging and discharging a battery during execution.

しかし、特許文献1のように、昇圧コンバータを用いて周期的な充放電を繰り返した場合、昇圧コンバータのコンデンサへの入出力電流が発生し、コンデンサの振動音が発生するという課題がある。この課題を解決するために、特許文献3(特開2008−78167号公報)のように、コンデンサの内部に振動を吸収する緩衝材層を追加したり、特許文献4(特開2008−66503号公報)のように、コンデンサの電極面を弾性率の小さい樹脂材料でモールド成形するようにしたものがある。   However, as described in Patent Document 1, when periodic charge / discharge is repeated using a boost converter, there is a problem that input / output current to the capacitor of the boost converter is generated, and vibration noise of the capacitor is generated. In order to solve this problem, as disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2008-78167), a buffer material layer that absorbs vibration is added inside the capacitor, or in Patent Document 4 (Japanese Patent Laid-Open No. 2008-66503). As described in Japanese Laid-Open Patent Publication No. HEI 10-101, there is one in which the electrode surface of the capacitor is molded with a resin material having a low elastic modulus.

また、特許文献2のように、モータ駆動回路(インバータ)を用いて周期的な充放電を繰り返した場合、モータの駆動力変動を伴う場合があり、その駆動力変動によってドライバビリティが低下するという課題がある。また、特許文献5(特開2008−162397号公報)には、歯車装置を介してモータの駆動力を伝達するハイブリッド車において、モータの駆動力変動により歯車の歯打ち音が発生するという課題が開示され、更に、この課題を解決するために、歯車の歯打ち音が発生したときに、歯車の歯打ち音の発生を低減するようにエンジン出力の補正等を行うことが開示されている。
特開2007−12568号公報 特開2007−28702号公報 特開2008−78167号公報 特開2008−66503号公報 特開2008−162397号公報
Further, as described in Patent Document 2, when periodic charge / discharge is repeated using a motor drive circuit (inverter), the drive force of the motor may be changed, and the drivability is reduced due to the drive force change. There are challenges. Further, Patent Document 5 (Japanese Patent Application Laid-Open No. 2008-162397) has a problem that gear rattling noise is generated due to fluctuations in the driving force of the motor in a hybrid vehicle that transmits the driving force of the motor via a gear device. Further, in order to solve this problem, it is disclosed that when the gear rattling noise is generated, the engine output is corrected so as to reduce the gear rattling noise.
JP 2007-12568 A JP 2007-28702 A JP 2008-78167 A JP 2008-66503 A JP 2008-162397 A

しかし、上記従来技術では、昇温制御時のバッテリの充放電の繰り返し周期や振幅によっては、振動音等の騒音を低減する効果が不足したり、駆動力変動を低減する効果が不足する場合が予想される。   However, in the above-described conventional technology, there are cases where the effect of reducing noise such as vibration noise is insufficient or the effect of reducing fluctuations in driving force is insufficient depending on the repetition period and amplitude of charging / discharging of the battery during temperature rise control. is expected.

そこで、本発明の目的は、昇温制御の実行中に発生する振動音等の騒音や駆動力変動を上記従来技術とは異なる方法で効果的に低減させることができるバッテリの昇温制御装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a battery temperature increase control device that can effectively reduce noise such as vibration noise and driving force fluctuation generated during execution of temperature increase control by a method different from the above-described conventional technology. It is to provide.

上記目的を達成するために、請求項1に係る発明は、車両に搭載したバッテリの充電及び/又は放電を周期的に繰り返すことで該バッテリを昇温させる昇温制御を実行するバッテリの昇温制御装置において、前記昇温制御の実行中に前記バッテリの充電及び/又は放電の繰り返し周期と振幅の少なくとも一方を振動騒音及び/又は駆動力変動が減少するように制限する制限手段を備えた構成としたものである。   In order to achieve the above object, the invention according to claim 1 is directed to increasing the temperature of a battery that performs temperature increase control for increasing the temperature of the battery by periodically charging and / or discharging the battery mounted on the vehicle. In the control device, a configuration is provided that includes a limiting unit that limits at least one of a repetition period and an amplitude of charging and / or discharging of the battery so as to reduce vibration noise and / or driving force variation during execution of the temperature increase control. It is what.

本発明は、昇温制御の実行中に乗員が騒音として認識するのは、可聴周波数域(おおよそ20〜20000Hz)の音であるという特性を利用し、この可聴周波数域での振動振幅を小さくすることで、乗員が認識する振動騒音を低減させることが可能となる。また、昇温制御の実行中に乗員が駆動力変動として認識するのは、低周波数域の駆動力変動であるという特性を利用し、低周波数域での振動振幅を小さくすることで、乗員が認識する駆動力変動を低減させることが可能となる。これにより、昇温制御による振動音等の騒音や駆動力変動を低減しながら、速やかにバッテリを昇温させることが可能となる。   The present invention utilizes the characteristic that the occupant recognizes noise as noise during execution of temperature rise control using sound in the audible frequency range (approximately 20 to 20000 Hz), and reduces the vibration amplitude in this audible frequency range. This makes it possible to reduce vibration noise recognized by the occupant. In addition, the fact that the occupant recognizes the driving force fluctuation during the temperature rise control is the driving force fluctuation in the low frequency range, and by reducing the vibration amplitude in the low frequency range, It becomes possible to reduce the recognized driving force fluctuation. As a result, it is possible to quickly raise the temperature of the battery while reducing noise such as vibration noise and driving force fluctuations due to temperature rise control.

この場合、請求項2のように、繰り返し周期と振幅のいずれか一方に基づいて他方を制限するようにすると良い。例えば、繰り返し周期に基づいて振幅を制限するようにすれば、確実に可聴周波数域での振動振幅を小さくすることができる。反対に、振幅に基づいて繰り返し周期を制限するようにすれば、振動振幅が大きくなる領域が、可聴周波数域や駆動力変動を認識しやすい低周波数域に入らないように繰り返し周期を制限することができ、同様の効果を得ることができる。   In this case, as in claim 2, it is preferable to limit the other based on one of the repetition period and the amplitude. For example, if the amplitude is limited based on the repetition period, the vibration amplitude in the audible frequency range can be reliably reduced. On the other hand, if the repetition period is limited based on the amplitude, the repetition period should be limited so that the region where the vibration amplitude becomes large does not enter the audible frequency range or the low frequency range where fluctuations in driving force are easily recognized. The same effect can be obtained.

ところで、車速が速くなるほど、ロードノイズ、風切り音等の走行騒音が大きくなるため、低速走行時に乗員に聞こえていた昇温制御による騒音が、高速走行時には走行騒音に埋もれてほとんど聞こえなくなる場合がある。同様に、車速が速くなるほど、昇温制御による駆動力変動も乗員が感じにくくなる。   By the way, as the vehicle speed increases, road noise such as road noise and wind noise increases. Therefore, noise caused by temperature increase control that was heard by passengers during low-speed driving may be buried in the driving noise and hardly heard during high-speed driving. . Similarly, as the vehicle speed increases, it becomes more difficult for the occupant to feel the driving force fluctuation due to the temperature rise control.

この点を考慮して、請求項3のように、車速を検出する車速検出手段を備えたシステムでは、車速検出手段で検出した車速も考慮して繰り返し周期と振幅の少なくとも一方を制限するようにしても良い。このようにすれば、車速が速くなるに従って、乗員が昇温制御による騒音や駆動力変動を認識しにくくなるのに対応して、繰り返し周期や振幅の制限条件を適正に変化させることができ、高速走行時に繰り返し周期や振幅を過剰に制限することを回避することができて、繰り返し周期や振幅の制限による昇温性能の低下を最小限に抑えることができる。   In consideration of this point, in a system including vehicle speed detection means for detecting vehicle speed as in claim 3, at least one of the repetition period and the amplitude is limited in consideration of the vehicle speed detected by the vehicle speed detection means. May be. In this way, as the vehicle speed increases, it is possible to appropriately change the repetition period and the amplitude limiting condition in response to the occupant becoming difficult to recognize noise and driving force fluctuations due to temperature rise control, It is possible to avoid excessively limiting the repetition period and amplitude during high-speed traveling, and it is possible to minimize a decrease in temperature rise performance due to the limitation of the repetition period and amplitude.

また、請求項4のように、運転者の走行意図を検出する走行意図検出手段を備えたシステムでは、走行意図検出手段で検出した運転者の走行意図も考慮して繰り返し周期と振幅の少なくとも一方を制限するようにしても良い。このようにすれば、例えば、昇温制御の実行中に運転者がアクセルペダルを踏み込んで急加速する場合に、運転者の加速要求を満たすように繰り返し周期や振幅の制限条件を適正に変化させることができ、昇温制御の実行中に、随時、運転者の加速要求等を満たしながら、バッテリの昇温を促進させることができる。   Further, in the system including the driving intention detection means for detecting the driving intention of the driver as in claim 4, the driving intention of the driver detected by the driving intention detection means is also taken into consideration and at least one of the repetition period and the amplitude. You may make it restrict | limit. In this way, for example, when the driver depresses the accelerator pedal and suddenly accelerates during the temperature rise control, the repetition period and the amplitude limiting condition are appropriately changed so as to satisfy the driver's acceleration request. It is possible to increase the temperature of the battery while satisfying the driver's acceleration request and the like at any time during execution of the temperature increase control.

以下、本発明を実施するための最良の形態を電気自動車に適用して具体化した3つの実施例1〜3を説明する。   Hereinafter, three Examples 1 to 3 in which the best mode for carrying out the present invention is applied to an electric vehicle will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいて電気自動車全体のシステム構成を説明する。
本実施例1の電気自動車には、車両駆動源となるモータ11と、該モータ11の電源となる高電圧バッテリ12と、車両の各種電装品(電気負荷)の電源となる低電圧バッテリ17とが搭載されている。モータ11は、発電機兼用の電動機である同期発電電動機により構成され、高電圧バッテリ12は、例えば200〜300Vの高電圧を出力するLiイオン電池、ニッケル水素電池等の二次電池により構成されている。
A first embodiment of the present invention will be described with reference to FIGS.
First, the system configuration of the entire electric vehicle will be described with reference to FIG.
The electric vehicle according to the first embodiment includes a motor 11 serving as a vehicle driving source, a high voltage battery 12 serving as a power source for the motor 11, and a low voltage battery 17 serving as a power source for various electrical components (electric loads) of the vehicle. Is installed. The motor 11 is configured by a synchronous generator motor that is an electric motor also serving as a generator, and the high voltage battery 12 is configured by a secondary battery such as a Li ion battery or a nickel metal hydride battery that outputs a high voltage of 200 to 300 V, for example. Yes.

高電圧バッテリ12とモータ11との間には、昇圧コンバータ13とインバータ14が設けられ、モータ11の駆動時には、高電圧バッテリ12から出力される直流電圧が昇圧コンバータ13で昇圧されてインバータ14で交流電圧に変換されてモータ11に供給される。これにより、モータ11が回転して車両の駆動輪15が駆動される。また、モータ11の発電時には、駆動輪15の回転力によりモータ11が回転されて交流電力が発電され、その交流電力がインバータ14で直流電力に変換されて昇圧コンバータ13で降圧されて高電圧バッテリ12に充電される。   A boost converter 13 and an inverter 14 are provided between the high voltage battery 12 and the motor 11. When the motor 11 is driven, a DC voltage output from the high voltage battery 12 is boosted by the boost converter 13 and It is converted into an AC voltage and supplied to the motor 11. Thereby, the motor 11 rotates and the driving wheel 15 of the vehicle is driven. In addition, when the motor 11 generates power, the motor 11 is rotated by the rotational force of the drive wheels 15 to generate AC power, and the AC power is converted into DC power by the inverter 14 and stepped down by the boost converter 13 to be a high voltage battery. 12 is charged.

低電圧バッテリ17は、高電圧バッテリ12の出力電圧よりも低い直流電圧(例えば、12V)を出力する鉛蓄電池等の二次電池により構成されている。低電圧バッテリ17は、双方向DC/DCコンバータ18を介して高電圧バッテリ12の電源ラインに接続されている。低電圧バッテリ17の充電時には、高電圧バッテリ12の出力電圧を双方向DC/DCコンバータ18で降圧して低電圧バッテリ17に充電する。   The low voltage battery 17 is composed of a secondary battery such as a lead storage battery that outputs a DC voltage (for example, 12 V) lower than the output voltage of the high voltage battery 12. The low voltage battery 17 is connected to the power supply line of the high voltage battery 12 via the bidirectional DC / DC converter 18. When charging the low voltage battery 17, the output voltage of the high voltage battery 12 is stepped down by the bidirectional DC / DC converter 18 to charge the low voltage battery 17.

一方、イグニッションスイッチ(図示せず)のオン操作直後に、低電圧バッテリ17の出力電圧を双方向DC/DCコンバータ18で昇圧して高電圧バッテリ12の電源ラインに供給することで、昇圧コンバータ13の平滑コンデンサ(図示せず)にプリチャージする。また、後述する昇温制御の実行中に、高電圧バッテリ12と低電圧バッテリ17との間で双方向DC/DCコンバータ18の昇圧/降圧動作により高電圧バッテリ12の充電及び/又は放電を周期的に繰り返して、高電圧バッテリ12を昇温させるようにしても良い。   On the other hand, immediately after the ignition switch (not shown) is turned on, the output voltage of the low voltage battery 17 is boosted by the bidirectional DC / DC converter 18 and supplied to the power supply line of the high voltage battery 12, thereby boosting the converter 13. To a smoothing capacitor (not shown). Further, during the temperature increase control described later, charging and / or discharging of the high voltage battery 12 is periodically performed by the step-up / step-down operation of the bidirectional DC / DC converter 18 between the high voltage battery 12 and the low voltage battery 17. Therefore, the high voltage battery 12 may be heated up repeatedly.

昇圧コンバータ13、インバータ14及び双方向DC/DCコンバータ18の動作は、電子制御ユニット(以下「ECU」と表記する)20によって制御される。このECU20は、CPU21を主体とするマイクロコンピュータにより構成され、CPU21の他に、各種のプログラムやイニシャル値等のデータを記憶するROM22と、各種データを一時的に記憶するRAM23等により構成されている。   The operations of the boost converter 13, the inverter 14 and the bidirectional DC / DC converter 18 are controlled by an electronic control unit (hereinafter referred to as “ECU”) 20. The ECU 20 is composed of a microcomputer having a CPU 21 as a main component, and is composed of a ROM 22 that stores data such as various programs and initial values, a RAM 23 that temporarily stores various data, in addition to the CPU 21. .

このECU20には、高電圧バッテリ12の充放電を管理するのに必要な信号、例えば、電流センサ24で検出した高電圧バッテリ12の充放電電流と、電圧センサ25で検出した高電圧バッテリ12の電圧と、温度センサ26で検出した高電圧バッテリ12の温度等の信号が入力される。その他、ECU20には、シフトレバー27の操作位置を検出するシフトポジションセンサ28からのシフトポジション信号、アクセルペダル29の踏込み量を検出するアクセル開度センサ30(走行意図検出手段)からのアクセル開度信号、ブレーキペダル31の踏み込み量を検出するブレーキペダルポジションセンサ32からのブレーキペダルポジション信号、車速センサ33からの車速信号、モータ11の回転角を検出する回転角センサ34からの回転角信号等が入力される。   The ECU 20 includes signals necessary for managing charging / discharging of the high voltage battery 12, for example, charging / discharging current of the high voltage battery 12 detected by the current sensor 24, and the high voltage battery 12 detected by the voltage sensor 25. A voltage and a signal such as the temperature of the high voltage battery 12 detected by the temperature sensor 26 are input. In addition, the ECU 20 includes a shift position signal from the shift position sensor 28 that detects the operation position of the shift lever 27, and an accelerator opening from an accelerator opening sensor 30 (travel intention detection means) that detects the amount of depression of the accelerator pedal 29. A signal, a brake pedal position signal from the brake pedal position sensor 32 that detects the depression amount of the brake pedal 31, a vehicle speed signal from the vehicle speed sensor 33, a rotation angle signal from the rotation angle sensor 34 that detects the rotation angle of the motor 11, and the like. Entered.

以上のように構成された本実施例1では、ECU20は、アクセル開度センサ30からのアクセル開度信号と車速センサ33(車速検出手段)からの車速信号等に基づいて要求トルクを算出し、この要求トルクを実現するようにモータ11の運転を制御する。   In the first embodiment configured as described above, the ECU 20 calculates the required torque based on the accelerator opening signal from the accelerator opening sensor 30, the vehicle speed signal from the vehicle speed sensor 33 (vehicle speed detection means), and the like. The operation of the motor 11 is controlled to realize this required torque.

更に、ECU20は、後述する図3の昇温制御ルーチンを実行することで、温度センサ26で検出した高電圧バッテリ12の温度が所定温度よりも低いときに、高電圧バッテリ12をその充放電を周期的に繰り返して昇温させる昇温制御を実行する。この昇温制御の実行中に、高電圧バッテリ12の内部で発生するジュール熱は、電流の2乗に比例することが分かっている。従って、電流が流れる方向(充電か放電か)とは関係なく、より大きな電流を高電圧バッテリ12に流した方が高電圧バッテリ12の昇温を促進できる。   Further, the ECU 20 executes a temperature increase control routine shown in FIG. 3 described later to charge / discharge the high voltage battery 12 when the temperature of the high voltage battery 12 detected by the temperature sensor 26 is lower than a predetermined temperature. The temperature raising control for raising the temperature periodically and repeatedly is executed. It is known that Joule heat generated inside the high voltage battery 12 during execution of the temperature increase control is proportional to the square of the current. Therefore, regardless of the direction in which the current flows (whether charging or discharging), the temperature increase of the high voltage battery 12 can be promoted by flowing a larger current through the high voltage battery 12.

しかし、昇温制御の実行中に充電又は放電のいずれか一方のみを連続して長時間行うと、高電圧バッテリ12の分極効果が大きくなり、顕著な電圧変化が発生する。この対策として、昇温制御の実行中に充電と放電を交互に周期的に繰り返すことが効果的であるが、最適な昇温を実現するための充放電の繰り返し周期と振幅は、残存容量SOCやバッテリ温度のみならず、内部抵抗、製造ばらつき、劣化など、時々刻々と変化する高電圧バッテリ12の内部状態に応じて変化する。従って、最大限の昇温性能を発揮するための充放電の繰り返し周期と振幅は、高電圧バッテリ12の内部状態に応じて変化させることが望ましい。しかし、充放電の繰り返し周期や振幅によっては、乗員が認識する振動音等の騒音や駆動力変動が大きくなる可能性がある。   However, if only one of charging and discharging is continuously performed for a long time during the temperature increase control, the polarization effect of the high voltage battery 12 becomes large, and a significant voltage change occurs. As a countermeasure against this, it is effective to alternately repeat charging and discharging periodically during the temperature increase control. However, the charge / discharge repetition period and amplitude for realizing the optimum temperature increase is determined by the remaining capacity SOC. In addition to the battery temperature, the internal resistance of the high voltage battery 12 varies from moment to moment, such as internal resistance, manufacturing variations, and deterioration. Therefore, it is desirable to change the charge / discharge repetition period and amplitude for maximizing the temperature rise performance according to the internal state of the high-voltage battery 12. However, depending on the charge / discharge repetition period and amplitude, there is a possibility that noise such as vibration noise recognized by the occupant and driving force fluctuation may increase.

例えば、昇温制御を実行する電気装置として昇圧コンバータ13を用いる場合は、高電圧バッテリ12と昇圧コンバータ13のコンデンサ(図示せず)との間で充電と放電を交互に周期的に切り換える。この際、昇圧コンバータのコンデンサへの入出力電流が発生して、コンデンサ自体が振動して騒音が発生する。この振動騒音の大きさは、コンデンサへの充放電電流(もしくは電力)の振幅に応じて決まり、その周期は電流周期で決まる。   For example, when the boost converter 13 is used as an electric device that executes the temperature rise control, charging and discharging are alternately and periodically switched between the high voltage battery 12 and a capacitor (not shown) of the boost converter 13. At this time, an input / output current to the capacitor of the boost converter is generated, and the capacitor itself vibrates to generate noise. The magnitude of the vibration noise is determined according to the amplitude of the charge / discharge current (or power) to the capacitor, and the period is determined by the current period.

そして、昇温制御の実行中に乗員が騒音として認識するのは、可聴周波数域(おおよそ20〜20000Hz)の音であるという特性を利用し、この可聴周波数域での振動振幅を小さくすることで、乗員が認識する振動騒音を低減させることが可能となる。これにより、昇温制御による振動騒音を低減しながら、速やかにバッテリを昇温させることが可能となる。   Then, using the characteristic that the occupant recognizes the noise as noise during execution of the temperature rise control is a sound in the audible frequency range (approximately 20 to 20000 Hz), and by reducing the vibration amplitude in the audible frequency range. It is possible to reduce the vibration noise recognized by the occupant. As a result, it is possible to quickly raise the temperature of the battery while reducing vibration noise due to the temperature rise control.

また、昇温制御を実行する電気装置としてモータ11を用いる場合は、モータ11の駆動力変動を伴う場合があるが、乗員が駆動力変動として認識するのは、低周波数域の駆動力変動であることから、低周波数域での振動振幅を小さくすれば、乗員が認識する駆動力変動を低減させることが可能となる。これにより、騒音だけではなく駆動力変動を低減しながら、速やかな高電圧バッテリ12の昇温が可能となる。   Further, when the motor 11 is used as an electric device for executing the temperature rise control, the driving force fluctuation of the motor 11 may be accompanied. However, it is the driving force fluctuation in the low frequency range that the occupant recognizes as the driving force fluctuation. For this reason, if the vibration amplitude in the low frequency region is reduced, it is possible to reduce fluctuations in the driving force recognized by the occupant. Thereby, it is possible to quickly raise the temperature of the high-voltage battery 12 while reducing not only noise but also driving force fluctuations.

そこで、本実施例1では、図3の昇温制御ルーチンによって、昇温制御の実行中に高電圧バッテリ12の温度に基づいて設定した充放電の繰り返し周期に基づいて振幅を振動騒音や駆動力変動が低減するように制限することで、昇温制御の実行中に乗員が認識する振動騒音や駆動力変動を低減させるようにしている。   Therefore, in the first embodiment, the amplitude is controlled based on the charge / discharge repetition period set based on the temperature of the high voltage battery 12 during the temperature increase control by the temperature increase control routine of FIG. By limiting the fluctuations to be reduced, vibration noise and driving force fluctuations recognized by the occupant during the temperature increase control are reduced.

図3の昇温制御ルーチンは、ECU20の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ101で、温度センサ26で検出した高電圧バッテリ12の温度(以下「バッテリ温度」という)Tb を読み込む。この後、ステップ102に進み、検出したバッテリ温度Tb が所定温度よりも低いか否かで、昇温制御の実行領域であるか否かを判定し、バッテリ温度Tb が所定温度以上であれば、昇温制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。   The temperature increase control routine of FIG. 3 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 20. When this routine is started, first, in step 101, the temperature Tb of the high voltage battery 12 (hereinafter referred to as “battery temperature”) detected by the temperature sensor 26 is read. Thereafter, the process proceeds to step 102, where it is determined whether or not the detected battery temperature Tb is lower than the predetermined temperature, and whether or not the temperature rise control is performed. If the battery temperature Tb is equal to or higher than the predetermined temperature, It is determined that it is not necessary to perform the temperature increase control, and this routine is terminated without performing the subsequent processing.

これに対して、上記ステップ102で、バッテリ温度Tb が所定温度よりも低いと判定されれば、ステップ103以降の昇温制御の処理を次のようにして実行する。まず、ステップ103で、検出したバッテリ温度Tb をパラメータとして充放電電流の振幅ベース値Ibamp.bs を算出するマップMap1を参照して、現在のバッテリ温度Tb に応じた充放電電流の振幅ベース値Ibamp.bs を算出する。
Ibamp.bs =Map1(Tb )
On the other hand, if it is determined in step 102 that the battery temperature Tb is lower than the predetermined temperature, the temperature increase control processing after step 103 is executed as follows. First, in step 103, referring to the map Map1 for calculating the charge / discharge current amplitude base value Ibamp.bs using the detected battery temperature Tb as a parameter, the charge / discharge current amplitude base value Ibamp corresponding to the current battery temperature Tb is obtained. Calculate .bs.
Ibamp.bs = Map1 (Tb)

この振幅ベース値Ibamp.bs は、次のステップ104で算出する充放電の周期τchg で制限する前の振幅に相当する。尚、マップMap1は、予め、実験データ、設計データ、シミュレーション結果等に基づいて作成されている。バッテリ温度Tb の他に、高電圧バッテリ12の電流及び/又は電圧も考慮して振幅ベース値Ibamp.bs を算出するようにしても良い。   The amplitude base value Ibamp.bs corresponds to the amplitude before being limited by the charge / discharge cycle τchg calculated in the next step 104. The map Map1 is created in advance based on experimental data, design data, simulation results, and the like. The amplitude base value Ibamp.bs may be calculated in consideration of the current and / or voltage of the high voltage battery 12 in addition to the battery temperature Tb.

次のステップ104で、バッテリ温度Tb をパラメータとして充放電の周期τchg を算出するマップMap2を参照して、現在のバッテリ温度Tb に応じた充放電の周期τchg を算出する。
τchg =Map2(Tb )
In the next step 104, the charging / discharging cycle τchg corresponding to the current battery temperature Tb is calculated with reference to the map Map2 for calculating the charging / discharging cycle τchg using the battery temperature Tb as a parameter.
τchg = Map2 (Tb)

このマップMap2は、予め、実験データ、設計データ、シミュレーション結果等に基づいて作成されている。バッテリ温度Tb の他に、高電圧バッテリ12の電流及び/又は電圧も考慮して周期τchg を算出するようにしても良い。   This map Map2 is created in advance based on experimental data, design data, simulation results, and the like. The cycle τchg may be calculated in consideration of the current and / or voltage of the high voltage battery 12 in addition to the battery temperature Tb.

この後、ステップ105に進み、図4のマップMap3を参照して充放電の周期τchg に基づいて充放電電流の振幅制限値Ibamp.maxを算出する。この振幅制限値Ibamp.maxは充放電による振動音等の騒音を低減させるために設定され、また、昇温制御を実行する電気装置としてモータ11を用いる場合は、騒音だけではなく、充放電による駆動力変動や回転数変動を抑制してドライバビリティを向上させるために振幅制限値Ibamp.maxが設定されている。図4のマップMap3は、予め、実験データ、設計データ、シミュレーション結果等に基づいて、充放電による振動騒音、モータ11の駆動力変動、回転数変動が発生しやすい周期領域(周波数領域)で振幅制限値Ibamp.maxを小さくするように設定されている。   Thereafter, the process proceeds to step 105, and the charge / discharge current amplitude limit value Ibamp.max is calculated based on the charge / discharge cycle τchg with reference to the map Map3 of FIG. This amplitude limit value Ibamp.max is set in order to reduce noise such as vibration noise caused by charging / discharging. When the motor 11 is used as an electric device for executing temperature rise control, not only noise but also charging / discharging. An amplitude limit value Ibamp.max is set in order to suppress driving force fluctuations and rotation speed fluctuations and improve drivability. The map Map3 in FIG. 4 has an amplitude in a periodic region (frequency region) in which vibration noise due to charging / discharging, driving force fluctuation of the motor 11, and rotational speed fluctuation are likely to occur based on experimental data, design data, simulation results, and the like in advance. The limit value Ibamp.max is set to be small.

そして、次のステップ106で、振幅ベース値Ibamp.bs を振幅制限値Ibamp.maxで制限処理(ガード処理)して最終的な充放電電流の振幅Ibampを決定する。具体的には、振幅ベース値Ibamp.bs と振幅制限値Ibamp.maxとを比較して小さい方を最終的な充放電電流の振幅Ibampとする。
Ibamp=Min(Ibamp.bs ,Ibamp.max)
これらのステップ105、106の処理が特許請求の範囲でいう制限手段としての役割を果たす。
In the next step 106, the amplitude base value Ibamp.bs is limited (guarded) with the amplitude limit value Ibamp.max to determine the final charge / discharge current amplitude Ibamp. Specifically, the amplitude base value Ibamp.bs and the amplitude limit value Ibamp.max are compared, and the smaller one is set as the final charge / discharge current amplitude Ibamp.
Ibamp = Min (Ibamp.bs, Ibamp.max)
The processing of these steps 105 and 106 serves as a restricting means in the claims.

この後、ステップ107に進み、充放電電流の振幅Ibampと周期τchg を用いて、次式により指令電流Ib を算出する。
Ib =Ibamp×sin(2π・t/τchg )
上式において、tは、昇温制御開始からの経過時間である。
Thereafter, the process proceeds to step 107, and the command current Ib is calculated by the following equation using the amplitude Ibamp and period τchg of the charge / discharge current.
Ib = Ibamp × sin (2π · t / τchg)
In the above equation, t is the elapsed time from the start of temperature increase control.

この後、ステップ108に進み、上記ステップ107で算出した指令電流Ib に応じて電気装置(例えば昇圧コンバータ13、インバータ14、モータ11、双方向DC/DCコンバータ18等)を制御することで、高電圧バッテリ12の充電と放電とを周期τchg 、振幅Ibampで繰り返して高電圧バッテリ12を昇温させる。   Thereafter, the process proceeds to step 108, where an electric device (for example, the boost converter 13, the inverter 14, the motor 11, the bidirectional DC / DC converter 18, etc.) is controlled in accordance with the command current Ib calculated in the above step 107. The charging and discharging of the voltage battery 12 is repeated with the period τchg and the amplitude Ibamp, and the temperature of the high voltage battery 12 is raised.

尚、充放電電流の振幅Ibamp、周期τchg に加え、電圧センサ25で検出した高電圧バッテリ12の電圧Vpresを用いて、下記式により指令電力Pb を算出して、この指令電力Pb に応じて電気装置を制御することによって、高電圧バッテリ12の充電と放電とを周期τchg 、電流振幅Ibampで繰り返して高電圧バッテリ12を昇温させるようにしても良い。
Pb =Vpres×Ibamp×sin(2π・t/τchg )
The command power Pb is calculated by the following equation using the voltage Vpres of the high voltage battery 12 detected by the voltage sensor 25 in addition to the amplitude Ibamp and period τchg of the charge / discharge current, and the electric power is calculated according to the command power Pb. By controlling the apparatus, charging and discharging of the high voltage battery 12 may be repeated with a period τchg and a current amplitude Ibamp to raise the temperature of the high voltage battery 12.
Pb = Vpres × Ibamp × sin (2π · t / τchg)

以上説明した本実施例1では、昇温制御の実行中に高電圧バッテリ12の充放電の繰り返し周期に基づいて振幅を振動騒音を低減させるように制限したので、昇温制御の実行中に発生する振動音等の騒音を低減しながら、速やかに高電圧バッテリ12を昇温させることができる。また、昇温制御を実行する電気装置としてモータ11を用いる場合は、充放電の繰り返し周期に基づいて振幅を制限することで、騒音だけではなく、駆動力変動も低減しながら、速やかな高電圧バッテリ12の昇温が可能となる。   In the first embodiment described above, the amplitude is limited to reduce the vibration noise based on the charge / discharge repetition cycle of the high voltage battery 12 during the temperature increase control, and thus occurs during the temperature increase control. The high voltage battery 12 can be quickly heated while reducing noise such as vibration noise. In addition, when the motor 11 is used as an electric device that performs temperature increase control, the amplitude is limited based on the charge / discharge repetition period, so that not only noise but also fluctuations in driving force can be reduced while promptly increasing the high voltage. The battery 12 can be raised in temperature.

ところで、車速が速くなるほど、ロードノイズ、風切り音等の走行騒音が大きくなるため、低速走行時に乗員に聞こえていた昇温制御による騒音が、高速走行時には走行騒音に埋もれてほとんど聞こえなくなる場合がある。同様に、車速が速くなるほど、昇温制御による駆動力変動も乗員が感じにくくなる。   By the way, as the vehicle speed increases, road noise such as road noise and wind noise increases. Therefore, noise caused by temperature increase control that was heard by passengers during low-speed driving may be buried in the driving noise and hardly heard during high-speed driving. . Similarly, as the vehicle speed increases, it becomes more difficult for the occupant to feel the driving force fluctuation due to the temperature rise control.

この点を考慮して、本発明の実施例2では、図5の昇温制御ルーチンを実行することで、繰り返し周期の他に車速も考慮して振幅制限値Ibamp.maxを算出して振幅を制限するようにしている。   In consideration of this point, in the second embodiment of the present invention, by executing the temperature increase control routine of FIG. 5, the amplitude limit value Ibamp.max is calculated in consideration of the vehicle speed in addition to the repetition period, and the amplitude is calculated. I try to limit it.

図5の昇温制御ルーチンは、ECU20の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ201で、温度センサ26で検出したバッテリ温度Tb と、車速センサ33で検出した車速Spdを読み込む。この後、ステップ202〜204で、前記実施例1で説明した図3の昇温制御ルーチンのステップ102〜104と同様の方法で、バッテリ温度Tb が所定温度よりも低いときに、バッテリ温度Tb に応じた振幅ベース値Ibamp.bs と周期τchg を算出する。   The temperature increase control routine of FIG. 5 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 20. When this routine is started, first, in step 201, the battery temperature Tb detected by the temperature sensor 26 and the vehicle speed Spd detected by the vehicle speed sensor 33 are read. Thereafter, in steps 202 to 204, when the battery temperature Tb is lower than a predetermined temperature in the same manner as the steps 102 to 104 of the temperature increase control routine of FIG. The corresponding amplitude base value Ibamp.bs and period τchg are calculated.

この後、ステップ205に進み、図6のマップMap4を参照して充放電の周期τchg と車速Spdに基づいて充放電電流の振幅制限値Ibamp.maxを算出する。この際、車速Spd毎に作成した複数枚のマップの中から、現在の車速Spdに対応したマップを選択して周期τchg に応じた振幅制限値Ibamp.maxを算出するようにしても良いし、或は、車速Spdと周期τchg をパラメータとして振幅制限値Ibamp.maxを算出する1枚の二次元マップを用いて現在の車速Spdと周期τchg に応じた振幅制限値Ibamp.maxを算出するようにしても良い。   Thereafter, the process proceeds to step 205, and the amplitude limit value Ibamp.max of the charge / discharge current is calculated based on the charge / discharge cycle τchg and the vehicle speed Spd with reference to the map Map4 in FIG. At this time, a map corresponding to the current vehicle speed Spd may be selected from a plurality of maps created for each vehicle speed Spd and the amplitude limit value Ibamp.max corresponding to the cycle τchg may be calculated. Alternatively, the amplitude limit value Ibamp.max corresponding to the current vehicle speed Spd and the period τchg is calculated using one two-dimensional map for calculating the amplitude limit value Ibamp.max using the vehicle speed Spd and the period τchg as parameters. May be.

この後、ステップ206〜208で、前記実施例1で説明した図3の昇温制御ルーチンのステップ106〜108と同様の方法で、振幅ベース値Ibamp.bs を振幅制限値Ibamp.maxで制限処理(ガード処理)して最終的な充放電電流の振幅Ibampを決定し、この振幅Ibampと周期τchg を用いて算出した指令電流Ib に応じて電気装置を制御することで、高電圧バッテリ12の充電と放電とを周期τchg 、振幅Ibampで繰り返して高電圧バッテリ12を昇温させる。   Thereafter, in steps 206 to 208, the amplitude base value Ibamp.bs is limited to the amplitude limit value Ibamp.max in the same manner as in steps 106 to 108 of the temperature increase control routine of FIG. 3 described in the first embodiment. (Guard processing) is performed to determine the final charge / discharge current amplitude Ibamp, and the electric device is controlled according to the command current Ib calculated using the amplitude Ibamp and the period τchg, thereby charging the high-voltage battery 12. And discharging are repeated with a period τchg and an amplitude Ibamp to raise the temperature of the high voltage battery 12.

以上説明した本実施例2によれば、充放電の周期の他に車速も考慮して振幅制限値Ibamp.maxを算出して振幅を制限するようにしたので、車速が速くなるに従って、乗員が昇温制御による振動騒音や駆動力変動を認識しにくくなるのに対応して、振幅の制限を緩和することができ、高速走行時に振幅を過剰に制限することを回避することができて、振幅の制限による昇温性能の低下を最小限に抑えることができる。   According to the second embodiment described above, the amplitude limit value Ibamp.max is calculated by limiting the amplitude in consideration of the vehicle speed in addition to the charge / discharge cycle. Therefore, as the vehicle speed increases, Corresponding to the difficulty of recognizing vibration noise and driving force fluctuations due to temperature rise control, the amplitude limitation can be relaxed, and it is possible to avoid excessively limiting the amplitude during high-speed driving, and the amplitude It is possible to minimize a decrease in temperature rise performance due to the limitation of the above.

ところで、昇温制御の実行中に運転者がアクセルペダル29を踏み込んで急加速する場合には、騒音や駆動力変動を低減するよりも、運転者の加速要求を満たすことを優先させることが望ましい。   By the way, when the driver depresses the accelerator pedal 29 and accelerates rapidly during the temperature rise control, it is desirable to give priority to satisfying the driver's acceleration request rather than reducing noise and driving force fluctuation. .

この点を考慮して、本発明の実施例3では、図7の昇温制御ルーチンを実行することで、繰り返し周期の他にアクセル踏込み量も考慮して振幅制限値Ibamp.maxを算出して振幅を制限するようにしている。   In consideration of this point, in the third embodiment of the present invention, by executing the temperature increase control routine of FIG. 7, the amplitude limit value Ibamp.max is calculated in consideration of the accelerator depression amount in addition to the repetition period. The amplitude is limited.

図7の昇温制御ルーチンは、ECU20の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まずステップ301で、温度センサ26で検出したバッテリ温度Tb と、アクセル開度センサ30で検出したアクセル踏込み量Acrを読み込む。この後、ステップ302〜304で、前記実施例1で説明した図3の昇温制御ルーチンのステップ102〜104と同様の方法で、バッテリ温度Tb が所定温度よりも低いときに、バッテリ温度Tb に応じた振幅ベース値Ibamp.bs と周期τchg を算出する。   The temperature increase control routine of FIG. 7 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 20. When this routine is started, first, in step 301, the battery temperature Tb detected by the temperature sensor 26 and the accelerator depression amount Acr detected by the accelerator opening sensor 30 are read. Thereafter, in steps 302 to 304, when the battery temperature Tb is lower than a predetermined temperature in the same manner as the steps 102 to 104 of the temperature increase control routine of FIG. The corresponding amplitude base value Ibamp.bs and period τchg are calculated.

この後、ステップ305に進み、図8のマップMap5を参照して充放電の周期τchg とアクセル踏込み量Acrに基づいて充放電電流の振幅制限値Ibamp.maxを算出する。この際、アクセル踏込み量Acr毎に作成した複数枚のマップの中から、現在のアクセル踏込み量Acrに対応したマップを選択して周期τchg に応じた振幅制限値Ibamp.maxを算出するようにしても良いし、或は、アクセル踏込み量Acrと周期τchg をパラメータとして振幅制限値Ibamp.maxを算出する1枚の二次元マップを用いて現在のアクセル踏込み量Acrと周期τchg に応じた振幅制限値Ibamp.maxを算出するようにしても良い。   Thereafter, the process proceeds to step 305, and the amplitude limit value Ibamp.max of the charge / discharge current is calculated based on the charge / discharge cycle τchg and the accelerator depression amount Acr with reference to the map Map5 of FIG. At this time, a map corresponding to the current accelerator depression amount Acr is selected from a plurality of maps created for each accelerator depression amount Acr, and the amplitude limit value Ibamp.max corresponding to the period τchg is calculated. Alternatively, the amplitude limit value corresponding to the current accelerator depression amount Acr and the period τchg using a single two-dimensional map for calculating the amplitude limit value Ibamp.max using the accelerator depression amount Acr and the period τchg as parameters. Ibamp.max may be calculated.

この後、ステップ306〜308で、前記実施例1で説明した図3の昇温制御ルーチンのステップ106〜108と同様の方法で、振幅ベース値Ibamp.bs を振幅制限値Ibamp.maxで制限処理(ガード処理)して最終的な充放電電流の振幅Ibampを決定し、この振幅Ibampと周期τchg を用いて算出した指令電流Ib に応じて電気装置を制御することで、高電圧バッテリ12の充電と放電とを周期τchg 、振幅Ibampで繰り返して高電圧バッテリ12を昇温させる。   Thereafter, in steps 306 to 308, the amplitude base value Ibamp.bs is limited to the amplitude limit value Ibamp.max in the same manner as in steps 106 to 108 of the temperature increase control routine of FIG. 3 described in the first embodiment. (Guard processing) is performed to determine the final charge / discharge current amplitude Ibamp, and the electric device is controlled according to the command current Ib calculated using the amplitude Ibamp and the period τchg, thereby charging the high-voltage battery 12. And discharging are repeated with a period τchg and an amplitude Ibamp to raise the temperature of the high voltage battery 12.

以上説明した本実施例3によれば、充放電の周期の他にアクセル踏込み量も考慮して振幅制限値Ibamp.maxを算出して振幅を制限するようにしたので、昇温制御の実行中に運転者がアクセルペダル29を踏み込んで急加速する場合に、運転者の加速要求を満たすように振幅の制限を緩和することができ、昇温制御の実行中に、随時、運転者の加速要求を満たしながら、高電圧バッテリ12の昇温を促進させることができる。   According to the third embodiment described above, the amplitude is limited by calculating the amplitude limit value Ibamp.max in consideration of the accelerator depression amount in addition to the charging / discharging period. When the driver depresses the accelerator pedal 29 and accelerates rapidly, the amplitude limit can be relaxed so as to satisfy the driver's acceleration request. The temperature rise of the high voltage battery 12 can be promoted while satisfying the above.

尚、昇温制御の実行中に、運転者がブレーキペダル31を踏み込んで急減速する場合にも、ブレーキペダル31の踏込み量に応じて、運転者の減速要求を満たすように振幅の制限を緩和するようにしても良く、要は、運転者の走行意図を考慮して振幅の制限条件を変化させるようにすれば良い。   When the driver depresses the brake pedal 31 and suddenly decelerates during the temperature rise control, the amplitude limit is relaxed to satisfy the driver's deceleration request according to the depression amount of the brake pedal 31. In short, the amplitude limiting condition may be changed in consideration of the driver's intention to travel.

[その他の実施例]
上記実施例1〜3では、いずれも、昇温制御の実行中に高電圧バッテリ12の温度に応じて設定した充放電の周期に基づいて振幅を制限するようにしたが、これとは反対に、昇温制御の実行中に高電圧バッテリ12の温度、電流、電圧等に応じて設定した充放電の振幅に基づいて周期を制限するようにしても良い。このように、振幅に基づいて周期を制限するようにしても、振動振幅が大きくなる領域が、可聴周波数域や駆動力変動を認識しやすい低周波数域に入らないように周期を制限することが可能となり、同様の効果を得ることができる。勿論、充放電の周期と振幅の両方を振動騒音や駆動力変動を低減させるように制限するようにしても良い。
[Other Examples]
In each of the first to third embodiments, the amplitude is limited based on the charge / discharge cycle set in accordance with the temperature of the high-voltage battery 12 during the temperature increase control. The cycle may be limited based on the charge / discharge amplitude set according to the temperature, current, voltage, etc. of the high-voltage battery 12 during the temperature rise control. As described above, even if the period is limited based on the amplitude, the period may be limited so that the region where the vibration amplitude becomes large does not enter the audible frequency range or the low frequency range where fluctuations in driving force are easily recognized. The same effect can be obtained. Of course, both the charge / discharge cycle and amplitude may be limited so as to reduce vibration noise and driving force fluctuation.

また、昇温制御用の電気装置は、双方向DC/DCコンバータ18、昇圧コンバータ13、モータ11に限定されず、例えば、オルタネータ、電動式エアコン、電動式パワーステアリング装置、一方向のみの電圧変換を行うDC/DCコンバータ等を用いても良い。この場合、オルタネータ(発電機)と他の電気装置とを組み合わせて充電と放電を周期的に繰り返すようにしても良いし、いずれか1つの電気装置で充電と放電のいずれか一方のみを周期的(間欠的)に繰り返すようにしても良い。   Further, the electric device for temperature control is not limited to the bidirectional DC / DC converter 18, the boost converter 13, and the motor 11. For example, the alternator, the electric air conditioner, the electric power steering device, and the voltage conversion only in one direction. A DC / DC converter or the like that performs the above may be used. In this case, the alternator (generator) and another electric device may be combined so that charging and discharging are repeated periodically, or only one of charging and discharging is periodically performed by any one electric device. It may be repeated (intermittently).

尚、本発明は、高電圧バッテリ12の昇温制御に限定されず、低電圧バッテリ17の昇温制御に適用して実施しても良い。
その他、本発明は、図1に示すような電気自動車に限定されず、モータとエンジンの両方を駆動源とするハイブリッド電気自動車にも適用して実施でき、更には、エンジンのみを駆動源とする車両に搭載されたバッテリの昇温制御にも本発明を適用して実施できる等、要旨を逸脱しない範囲内で種々変更して実施できる。
The present invention is not limited to the temperature increase control of the high voltage battery 12 and may be implemented by being applied to the temperature increase control of the low voltage battery 17.
In addition, the present invention is not limited to the electric vehicle as shown in FIG. 1, but can be applied to a hybrid electric vehicle that uses both a motor and an engine as driving sources, and further uses only the engine as a driving source. Various modifications can be made without departing from the gist of the present invention, for example, the present invention can be applied to temperature rise control of a battery mounted on a vehicle.

本発明の実施例1の電気自動車のシステム構成を概略的に示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows schematically the system configuration | structure of the electric vehicle of Example 1 of this invention. 高電圧バッテリの温度と内部抵抗との関係を説明する図である。It is a figure explaining the relationship between the temperature of a high voltage battery, and internal resistance. 実施例1の昇温制御ルーチンの処理の流れを示すフローチャートである。3 is a flowchart showing a flow of processing of a temperature raising control routine of Example 1. 実施例1の充放電の周期τchg に基づいて充放電電流の振幅制限値Ibamp.maxを算出するマップMap3の一例を概念的に示す図である。It is a figure which shows notionally an example of map Map3 which calculates the amplitude limitation value Ibamp.max of charging / discharging electric current based on the charging / discharging period (tau) chg of Example 1. FIG. 実施例2の昇温制御ルーチンの処理の流れを示すフローチャートである。7 is a flowchart showing a flow of processing of a temperature increase control routine of Example 2. 実施例2の充放電の周期τchg と車速Spdに基づいて充放電電流の振幅制限値Ibamp.maxを算出するマップMap4の一例を概念的に示す図である。It is a figure which shows notionally the example of map Map4 which calculates the amplitude limitation value Ibamp.max of charging / discharging electric current based on the charging / discharging period (tau) chg and vehicle speed Spd of Example 2. FIG. 実施例3の昇温制御ルーチンの処理の流れを示すフローチャートである。12 is a flowchart showing a flow of processing of a temperature raising control routine of Example 3. 実施例3の充放電の周期τchg とアクセル踏込み量Acrに基づいて充放電電流の振幅制限値Ibamp.maxを算出するマップMap5の一例を概念的に示す図である。It is a figure which shows notionally an example of map Map5 which calculates the amplitude limitation value Ibamp.max of charging / discharging electric current based on charging / discharging period (tau) chg and accelerator depression amount Acr of Example 3. FIG.

符号の説明Explanation of symbols

11…モータ(電気装置)、12…高電圧バッテリ、13…昇圧コンバータ、14…インバータ、17…低電圧バッテリ、18…双方向DC/DCコンバータ、20…ECU(制限手段)、24…電流センサ、25…電圧センサ、26…温度センサ、28…シフトポジションセンサ、30…アクセル開度センサ(走行意図検出手段)、32…ブレーキペダルポジションセンサ、33…車速センサ(車速検出手段)   DESCRIPTION OF SYMBOLS 11 ... Motor (electrical device), 12 ... High voltage battery, 13 ... Boost converter, 14 ... Inverter, 17 ... Low voltage battery, 18 ... Bidirectional DC / DC converter, 20 ... ECU (limitation means), 24 ... Current sensor , 25 ... Voltage sensor, 26 ... Temperature sensor, 28 ... Shift position sensor, 30 ... Accelerator opening sensor (travel intention detection means), 32 ... Brake pedal position sensor, 33 ... Vehicle speed sensor (vehicle speed detection means)

Claims (4)

車両に搭載したバッテリの充電及び/又は放電を周期的に繰り返すことで該バッテリを昇温させる昇温制御を実行するバッテリの昇温制御装置において、
前記昇温制御の実行中に前記バッテリの充電及び/又は放電の繰り返し周期と振幅の少なくとも一方を振動騒音及び/又は駆動力変動が減少するように制限する制限手段を備えていることを特徴とするバッテリの昇温制御装置。
In a battery temperature increase control device that executes temperature increase control for increasing the temperature of the battery by periodically charging and / or discharging the battery mounted on the vehicle,
It is characterized by comprising limiting means for limiting at least one of the repetition period and amplitude of charging and / or discharging of the battery so as to reduce vibration noise and / or driving force fluctuation during execution of the temperature raising control. Battery temperature control device.
前記制限手段は、前記繰り返し周期と振幅のいずれか一方に基づいて他方を制限することを特徴とする請求項1に記載のバッテリの昇温制御装置。   The battery temperature increase control device according to claim 1, wherein the limiting means limits the other based on one of the repetition period and amplitude. 車速を検出する車速検出手段を備え、
前記制限手段は、前記車速検出手段で検出した車速も考慮して前記繰り返し周期と振幅の少なくとも一方を制限することを特徴とする請求項1又は2に記載のバッテリの昇温制御装置。
Vehicle speed detecting means for detecting the vehicle speed,
The battery temperature increase control device according to claim 1, wherein the limiting unit limits at least one of the repetition period and the amplitude in consideration of the vehicle speed detected by the vehicle speed detection unit.
運転者の走行意図を検出する走行意図検出手段を備え、
前記制限手段は、前記走行意図検出手段で検出した運転者の走行意図も考慮して前記繰り返し周期と振幅の少なくとも一方を制限することを特徴とする請求項1乃至3のいずれかに記載のバッテリの昇温制御装置。
Provided with a driving intention detection means for detecting the driving intention of the driver;
4. The battery according to claim 1, wherein the limiting unit limits at least one of the repetition period and the amplitude in consideration of the driving intention of the driver detected by the driving intention detection unit. Temperature rise control device.
JP2008262623A 2008-10-03 2008-10-09 Battery temperature rise control device Active JP5077699B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008262623A JP5077699B2 (en) 2008-10-09 2008-10-09 Battery temperature rise control device
US12/572,771 US8575897B2 (en) 2008-10-03 2009-10-02 Battery temperature control system
US13/448,570 US8564241B2 (en) 2008-10-03 2012-04-17 Battery temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262623A JP5077699B2 (en) 2008-10-09 2008-10-09 Battery temperature rise control device

Publications (2)

Publication Number Publication Date
JP2010093969A true JP2010093969A (en) 2010-04-22
JP5077699B2 JP5077699B2 (en) 2012-11-21

Family

ID=42256120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262623A Active JP5077699B2 (en) 2008-10-03 2008-10-09 Battery temperature rise control device

Country Status (1)

Country Link
JP (1) JP5077699B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077452A (en) * 2011-09-30 2013-04-25 Toyota Central R&D Labs Inc Power supply system
JP2013099029A (en) * 2011-10-28 2013-05-20 Toyota Motor Corp Electric vehicle
EP2782206A1 (en) * 2013-03-19 2014-09-24 Kabushiki Kaisha Toshiba Secondary battery control device
US9209637B2 (en) 2013-03-15 2015-12-08 Kabushiki Kaisha Toshiba Battery control apparatus
JP2016004649A (en) * 2014-06-16 2016-01-12 富士重工業株式会社 Temperature rising control device and temperature rising control method for battery
US9520733B2 (en) 2011-01-07 2016-12-13 Mitsubishi Electric Corporation Charging and discharging device to increase battery temperature by controlling ripple current
US9656557B2 (en) 2014-11-25 2017-05-23 Hyundai Motor Company Battery charging apparatus and method of electric vehicle
KR101787823B1 (en) * 2014-05-01 2017-10-18 도요타지도샤가부시키가이샤 Electrically-driven vehicle
CN109950660A (en) * 2019-03-25 2019-06-28 清华大学 The method that ternary lithium-ion-power cell is preheated using itself energy storage excitation
WO2019235052A1 (en) * 2018-06-06 2019-12-12 住友電気工業株式会社 Secondary-battery temperature increasing device, computer program, and secondary-battery temperature increasing method
WO2023120030A1 (en) * 2021-12-24 2023-06-29 株式会社デンソー Control device for power converter and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274565A (en) * 2002-03-13 2003-09-26 Nissan Motor Co Ltd Power storage system
JP2004015866A (en) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd Method and apparatus for controlling charging/discharging
JP2005332777A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Warm-up control unit of battery
JP2006174597A (en) * 2004-12-15 2006-06-29 Fuji Heavy Ind Ltd Battery warm-up controller for hybrid car
JP2007028702A (en) * 2005-07-12 2007-02-01 Toyota Motor Corp Controller of secondary battery
JP2007026700A (en) * 2005-07-12 2007-02-01 Toyota Motor Corp Control device of secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274565A (en) * 2002-03-13 2003-09-26 Nissan Motor Co Ltd Power storage system
JP2004015866A (en) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd Method and apparatus for controlling charging/discharging
JP2005332777A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Warm-up control unit of battery
JP2006174597A (en) * 2004-12-15 2006-06-29 Fuji Heavy Ind Ltd Battery warm-up controller for hybrid car
JP2007028702A (en) * 2005-07-12 2007-02-01 Toyota Motor Corp Controller of secondary battery
JP2007026700A (en) * 2005-07-12 2007-02-01 Toyota Motor Corp Control device of secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520733B2 (en) 2011-01-07 2016-12-13 Mitsubishi Electric Corporation Charging and discharging device to increase battery temperature by controlling ripple current
JP2013077452A (en) * 2011-09-30 2013-04-25 Toyota Central R&D Labs Inc Power supply system
JP2013099029A (en) * 2011-10-28 2013-05-20 Toyota Motor Corp Electric vehicle
US9209637B2 (en) 2013-03-15 2015-12-08 Kabushiki Kaisha Toshiba Battery control apparatus
EP2782206A1 (en) * 2013-03-19 2014-09-24 Kabushiki Kaisha Toshiba Secondary battery control device
US10079565B2 (en) 2014-05-01 2018-09-18 Toyota Jidosha Kabushiki Kaisha Electrically-driven vehicle
KR101787823B1 (en) * 2014-05-01 2017-10-18 도요타지도샤가부시키가이샤 Electrically-driven vehicle
JP2016004649A (en) * 2014-06-16 2016-01-12 富士重工業株式会社 Temperature rising control device and temperature rising control method for battery
US9656557B2 (en) 2014-11-25 2017-05-23 Hyundai Motor Company Battery charging apparatus and method of electric vehicle
WO2019235052A1 (en) * 2018-06-06 2019-12-12 住友電気工業株式会社 Secondary-battery temperature increasing device, computer program, and secondary-battery temperature increasing method
CN109950660A (en) * 2019-03-25 2019-06-28 清华大学 The method that ternary lithium-ion-power cell is preheated using itself energy storage excitation
CN109950660B (en) * 2019-03-25 2022-01-18 清华大学 Method for preheating ternary lithium ion power battery by utilizing self energy storage excitation
WO2023120030A1 (en) * 2021-12-24 2023-06-29 株式会社デンソー Control device for power converter and program

Also Published As

Publication number Publication date
JP5077699B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5077699B2 (en) Battery temperature rise control device
JP5288170B2 (en) Battery temperature rise control device
US8575897B2 (en) Battery temperature control system
US8089234B2 (en) Motor control device, motored vehicle equipped therewith, and method of controlling a motor
JP4835383B2 (en) Control device and control method for power supply unit, program for causing computer to realize the method, and recording medium recording the program
JP5695393B2 (en) Idle charging device and method for hybrid vehicle
JP5575203B2 (en) Vehicle power generation apparatus and power generation control method
US8096919B2 (en) Motor control device, motored vehicle equipped therewith, and method of controlling a motor
KR101807364B1 (en) Vehicle driven by electric motor and control method for vehicle
JP2011076927A (en) Warming-up control device of battery
RU2619067C2 (en) Device for controlling battery charge, method for charging control, computer program and recording medium
WO2008032494A1 (en) Hybrid vehicle, method of controlling hybrid vehicle, and computer readable recording medium having recorded thereon program for causing computer to execute control of hybrid vehicle
US9533675B2 (en) Method for controlling battery of mild hybrid vehicle
JP4936017B2 (en) Battery temperature rise control device
JP2013086791A (en) Creep control device and method for hybrid vehicle
JP2015213419A (en) Electric vehicle
JP6814830B2 (en) Control systems, vehicle systems, and control methods
JP2004048844A (en) Apparatus and method for controlling vehicle, program for realizing method, and recording medium for recording its program
JP2010130807A (en) Power supply device for vehicle driving motor
JP4483697B2 (en) Power generation control system
CN111479735B (en) Vehicle control method and vehicle control device
JP2012182912A (en) Electric vehicle and control method therefor
JP2006283735A (en) Restart control device of internal combustion engine
JP2021066316A (en) Power train system
JP2001095102A (en) Series hybrid motor-driven vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5077699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250