JP2003014631A - Atomic absorption spectrophotometer - Google Patents

Atomic absorption spectrophotometer

Info

Publication number
JP2003014631A
JP2003014631A JP2001201596A JP2001201596A JP2003014631A JP 2003014631 A JP2003014631 A JP 2003014631A JP 2001201596 A JP2001201596 A JP 2001201596A JP 2001201596 A JP2001201596 A JP 2001201596A JP 2003014631 A JP2003014631 A JP 2003014631A
Authority
JP
Japan
Prior art keywords
mirror
optical system
light
sample
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201596A
Other languages
Japanese (ja)
Inventor
Akira Tateno
亮 立野
Yoshihisa Harada
善壽 原田
Akira Honda
晃 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001201596A priority Critical patent/JP2003014631A/en
Publication of JP2003014631A publication Critical patent/JP2003014631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the loss of light in the optical system of an atomic absorption spectrophotometer. SOLUTION: Luminous flux Ls on a sample side is condensed to an atomization part 8 by a toroidal mirror 4 and a plane mirror 5 and subsequently condensed to a chopper mirror 11 by a concave spherical mirror 9 and a plane mirror 10 while luminous flux Lr on a reference side is condensed to the chopper mirror 11 by a toroidal mirror 6 and a plane mirror 7. The convergent magnifications of both luminous fluxes are made equal by the chopper mirror 11. By this constitution, the loss of light in the chopper mirror 11 is reduced and the condensing efficiency to an inlet 14 is also enhanced. Since the changeover of both luminous fluxes accompanied by the rotation of the chopper mirror 11 is rapidly performed, a sampling time can be ensured long in a detection signal and an S/N ratio is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原子吸光分光光度計
に関し、更に詳しくは、ダブルビーム光学系を用いた原
子吸光分光光度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic absorption spectrophotometer, and more particularly to an atomic absorption spectrophotometer using a double beam optical system.

【0002】[0002]

【従来の技術】図3は原子吸光分光光度計におけるダブ
ルビーム光学系の概略的な光路構成図である。光源21
から発した光はハーフミラー22で試料側光束Lsと参
照側光束Lrとの二光束に分割される。直進した試料側
光束Lsは原子化部23を通過し、その際に試料に応じ
た波長の吸収を受けてチョッパミラー26に達する。一
方、ハーフミラー22で反射した参照側光束Lrは、反
射鏡24,25を経てチョッパミラー26に達する。チ
ョッパミラー26はモータ27の回転に同期して試料側
光束Lsと参照側光束Lrとを順次選択し、分光器28
へ向かう一つの光路へと送る。一般には、試料側光束L
sは図示しない集光光学系により原子化部23と分光器
28の入口スリットの2箇所で集光され、一方、参照側
光束Lrは分光器28の入口スリットのみで集光される
ように構成されている。
2. Description of the Related Art FIG. 3 is a schematic optical path configuration diagram of a double beam optical system in an atomic absorption spectrophotometer. Light source 21
The light emitted from is split by the half mirror 22 into two light fluxes, a sample-side light flux Ls and a reference-side light flux Lr. The sample-side light flux Ls that has traveled straight passes through the atomization section 23, and at that time, is absorbed by the wavelength corresponding to the sample and reaches the chopper mirror 26. On the other hand, the reference-side light flux Lr reflected by the half mirror 22 reaches the chopper mirror 26 via the reflecting mirrors 24 and 25. The chopper mirror 26 sequentially selects the sample-side light beam Ls and the reference-side light beam Lr in synchronization with the rotation of the motor 27, and the spectroscope 28
It sends it to one optical path toward. Generally, the sample side luminous flux L
s is condensed by an unillustrated condensing optical system at two points of the atomization part 23 and the entrance slit of the spectroscope 28, while the reference side light flux Lr is condensed only by the entrance slit of the spectroscope 28. Has been done.

【0003】分光器28では目的元素に対応する波長成
分のみが選択され検出器29へと送られる。試料側光束
Lsは原子化部23による吸収を受けるのに対し、参照
側光束Lrは反射鏡24,25によるごく僅かで無視で
きる程度の吸収を除けば、光源21の輝度変動がそのま
ま現れる。したがって、同一時刻(チョッパミラー26
による時間ずれは無視する)の試料側光束Lsに対する
光強度と参照側光束Lrに対する光強度との比を計算す
れば、光源21の輝度変動等の経時変動要因が相殺され
た吸光度を求めることができる。
In the spectroscope 28, only the wavelength component corresponding to the target element is selected and sent to the detector 29. The sample-side light beam Ls is absorbed by the atomization section 23, whereas the reference-side light beam Lr shows the brightness fluctuation of the light source 21 as it is, except for the negligible and negligible absorption by the reflecting mirrors 24 and 25. Therefore, at the same time (chopper mirror 26
By calculating the ratio of the light intensity with respect to the sample-side light beam Ls and the light intensity with respect to the reference-side light beam Lr (ignoring the time lag due to Eq. it can.

【0004】[0004]

【発明が解決しようとする課題】こうした原子吸光分光
光度計の性能を改善する上で、光学系で問題となる主な
点は次の通りである。まず第1に、光路上での光の損失
が大きいと、最終的に検出器29に到達する光の光量が
小さくなり、測定感度や精度を上げるのが困難になる。
従来の原子吸光分光光度計の光路構成では、原子化部に
おける光のけられ(例えば、フレームレス方式の場合に
はグラファイトチューブでの光のけられ)や分光器の入
口スリットを通過する際の光の損失などが大きく、この
ような光の損失をできる限り減らすことが必要である。
To improve the performance of such an atomic absorption spectrophotometer, the main problems in the optical system are as follows. First, if the loss of light on the optical path is large, the amount of light that finally reaches the detector 29 will be small, and it will be difficult to improve the measurement sensitivity and accuracy.
In the optical path configuration of a conventional atomic absorption spectrophotometer, light is blocked in the atomization part (for example, in the case of the frameless system, light is blocked in a graphite tube) or when passing through the entrance slit of the spectrometer. Light loss is large, and it is necessary to reduce such light loss as much as possible.

【0005】第2に、試料側光束Lsと参照側光束Lr
との条件が揃っていないと、光源21の輝度変動などの
影響を完全に相殺することができず、測定精度の劣化の
一因となる。なお、光源21の輝度変動に起因する測定
時のベースラインのドリフトは、光源21であるホロカ
ソードランプのウォーミングアップを充分に行えばかな
り軽減されるが、吸光度のスケール拡大率を高くして測
定する場合などにはドリフトも拡大されてしまうため無
視できなくなることが多い。
Second, the sample side light flux Ls and the reference side light flux Lr
If the conditions are not satisfied, the influence of the fluctuation of the brightness of the light source 21 cannot be completely canceled out, which causes the deterioration of the measurement accuracy. The baseline drift at the time of measurement due to the brightness variation of the light source 21 is considerably reduced by sufficiently warming up the hollow cathode lamp, which is the light source 21, but is measured by increasing the scale expansion ratio of the absorbance. In many cases, the drift will also be enlarged and cannot be ignored.

【0006】本発明はこのような点に鑑みて成されたも
のであり、その主たる目的は、光の損失が少なく、しか
も試料側光束と参照側光束の条件が揃っていて光源の輝
度変動の影響を充分に相殺することができるような光学
系を備えた原子吸光分光光度計を提供することにある。
The present invention has been made in view of the above points, and its main purpose is to reduce the light loss, and the conditions of the light flux on the sample side and the light flux on the reference side are uniform, so that the variation in the brightness of the light source can be suppressed. An object of the present invention is to provide an atomic absorption spectrophotometer equipped with an optical system capable of sufficiently canceling the influence.

【0007】[0007]

【課題を解決するための手段、及び効果】上記課題を解
決するために成された本発明は、光源から発した光をハ
ーフミラーにより試料側光束と参照側光束とに分割し、
該試料側光束を原子化部に通過させた後、前記両光束を
チョッパミラーにより選択して分光器の入口スリットへ
と照射するようにした原子吸光分光光度計において、前
記光源と原子化部との間、及び、該原子化部と前記チョ
ッパミラーとの間に、試料側光束が通る試料側前置光学
系及び試料側後置光学系をそれぞれ配置し、前記光源と
前記チョッパミラーとの間に参照側光束が通る参照側光
学系を配置し、更に前記チョッパミラーと前記入口スリ
ットの間に共通光学系を配置し、試料側光束は前記試料
側前置光学系により原子化部に集光された後に前記試料
側後置光学系によりチョッパミラーに再度集光され、他
方、参照側光束は前記参照側光学系によりチョッパミラ
ーに集光され、更に両光束は前記共通光学系により入口
スリット上に集光されてなることを特徴としている。
Means for Solving the Problems and Effects The present invention made to solve the above problems is to divide light emitted from a light source into a sample side light beam and a reference side light beam by a half mirror,
In the atomic absorption spectrophotometer, the sample-side light flux is passed through the atomization unit, and then both light fluxes are selected by a chopper mirror to irradiate the entrance slit of the spectroscope. And between the atomization part and the chopper mirror, a sample side front optical system and a sample side rear optical system through which the sample side light flux passes are respectively arranged, and between the light source and the chopper mirror. A reference side optical system through which the reference side light beam passes, and a common optical system is further arranged between the chopper mirror and the entrance slit, and the sample side light beam is condensed on the atomization part by the sample side front optical system. After that, the sample-side rear optical system refocuses the light on the chopper mirror, while the reference-side light beam is focused on the chopper-mirror by the reference-side optical system, and both light beams are on the entrance slit by the common optical system. Focused on It is characterized by comprising been.

【0008】すなわち、この原子吸光分光光度計では、
従来、集光させていなかったチョッパミラー面上で一旦
両光束を収束させることにより、入口スリット面上での
光の収束効率を一層高め、入口スリットでの光の損失を
減少させるようにしている。また、チョッパミラー面上
で光のスポット径が小さくなると、反射されるべき光が
ミラー面からはみ出してしまうことがなく確実にミラー
面に当たることになるので、この点でも光の損失が減少
する。このようなことから、本発明に係る原子吸光分光
光度計によれば、光の損失を抑え、最終的に検出器に導
入する光量が増加して、分析感度や精度の向上を図るこ
とができる。更にまた、チョッパミラー面上で光のスポ
ット径が小さいと、チョッパミラーの回転に伴う光の通
過・遮断や光束の切替えが迅速に行われるので、チョッ
パミラーが1回転する期間の中で、検出器の検出信号を
サンプリングすることが可能な時間を長くとることがで
きる。これにより、その分だけ検出信号をより多く蓄積
することができ、これによっても、分析感度や精度の向
上が図れる。
That is, in this atomic absorption spectrophotometer,
Conventionally, by converging both light fluxes on the chopper mirror surface that has not been condensed, the efficiency of light convergence on the entrance slit surface is further enhanced, and the light loss at the entrance slit is reduced. . Further, when the spot diameter of the light on the chopper mirror surface becomes small, the light to be reflected does not run off the mirror surface and hits the mirror surface without fail, so that the loss of light also decreases. From this, according to the atomic absorption spectrophotometer of the present invention, it is possible to suppress the loss of light, increase the amount of light finally introduced into the detector, and improve the analysis sensitivity and accuracy. . Furthermore, if the spot diameter of the light on the surface of the chopper mirror is small, the passage / blocking of the light and the switching of the light flux are rapidly performed with the rotation of the chopper mirror, so that the detection is performed during the period of one rotation of the chopper mirror. It is possible to take a long time to sample the detection signal of the container. As a result, more detection signals can be accumulated correspondingly, which also improves the analysis sensitivity and accuracy.

【0009】また、本発明に係る原子吸光分光光度計に
おいて、前記試料側前置光学系は、前記原子化部側に向
いたFナンバーが前記光源側に向いたFナンバーよりも
大きく設定されてなることを特徴としている。
Further, in the atomic absorption spectrophotometer according to the present invention, in the sample side front optical system, an F number directed to the atomization section side is set to be larger than an F number directed to the light source side. It is characterized by becoming.

【0010】このような構成によれば、光源側に対して
はたくさんの光を取り入れることが可能である一方、原
子化部において光軸に対する入射光の開き角が小さくな
るため、原子化部での光のけられがそれだけ減少し光の
損失が抑えられる。但し、光源側と原子化部側に向いた
Fナンバーの差が大きくなるほど光学系の収差が大きく
なり、また装置自体も大きくなる傾向にある。そこで、
Fナンバーの比率は1よりも大であって最大でも2倍程
度、好ましくは1.2〜1.5倍程度の値としておくとよい。
According to this structure, a large amount of light can be taken in to the light source side, while the opening angle of the incident light with respect to the optical axis in the atomization part is small, so that the atomization part The light eclipse is reduced to that extent and the light loss is suppressed. However, the larger the difference between the F-numbers facing the light source side and the atomization portion side, the larger the aberration of the optical system and the larger the device itself. Therefore,
The ratio of the F number is larger than 1 and is about 2 times at maximum, preferably about 1.2 to 1.5 times.

【0011】また、本発明に係る原子吸光分光光度計で
は、前記試料側前置光学系、試料側後置光学系、及び参
照側光学系は、前記チョッパミラーに集光される両光束
の収束倍率が略等しく構成されてなることを特徴として
いる。この構成によれば、チョッパミラー面上において
両光束のスポット径がほぼ同一となるので、試料側光束
が原子化部を通過したことを除いて両光束の条件がほぼ
同一となり、光源の輝度変動などの変動要因を精度よく
相殺することが可能となる。
Further, in the atomic absorption spectrophotometer according to the present invention, the sample side front optical system, the sample side rear optical system, and the reference side optical system converge both light beams focused on the chopper mirror. It is characterized in that the magnifications are configured to be substantially equal. According to this configuration, since the spot diameters of both light fluxes are almost the same on the chopper mirror surface, the conditions of both light fluxes are almost the same except that the sample-side light flux has passed through the atomization section, and the brightness variation of the light source is It is possible to accurately offset such fluctuation factors.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態による
原子吸光分光光度計について図面を参照して説明する。
図1は本実施形態による原子吸光分光光度計の光検出器
を除く光路構成図である。
DETAILED DESCRIPTION OF THE INVENTION An atomic absorption spectrophotometer according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is an optical path configuration diagram excluding a photodetector of the atomic absorption spectrophotometer according to the present embodiment.

【0013】この光学系は、原子化部8を含む測定光学
系Aと分光光学系Bとに大別できる。分光光学系Bは、
入口スリット14、凹球面鏡15,17、平面回折格子
16、及び出口スリット18から構成される、いわゆる
ツェルニ・ターナ型モノクロメータである。一方、測定
光学系Aは、ホロカソードランプ(HCL)である第1
光源1、重水素ランプ(D2L)である第2光源2、ハ
ーフミラー3、第1トロイダル鏡4、第1平面鏡5、第
2トロイダル鏡6、第2平面鏡7、原子化部8、第1凹
球面鏡9、第3平面鏡10、チョッパミラー11、第4
平面鏡12、第2凹球面鏡13を含んで構成されてい
る。ここでは、第1トロイダル鏡4及び第1平面鏡5が
上記試料側前置光学系、第1凹球面鏡9及び第3平面鏡
10が上記試料側後置光学系、第2トロイダル鏡6及び
第2平面鏡7が上記参照側光学系、第4平面鏡12及び
第2凹球面鏡13が上記共通光学系に相当する。
This optical system can be roughly divided into a measurement optical system A including an atomization section 8 and a spectroscopic optical system B. The spectroscopic optical system B is
It is a so-called Czerni-Turner type monochromator composed of an entrance slit 14, concave spherical mirrors 15 and 17, a plane diffraction grating 16 and an exit slit 18. On the other hand, the measurement optical system A is a first hollow cathode lamp (HCL).
Light source 1, second light source 2 which is a deuterium lamp (D2L), half mirror 3, first toroidal mirror 4, first plane mirror 5, second toroidal mirror 6, second plane mirror 7, atomization section 8, first concave Spherical mirror 9, third plane mirror 10, chopper mirror 11, fourth
The plane mirror 12 and the second concave spherical mirror 13 are included. Here, the first toroidal mirror 4 and the first plane mirror 5 are the sample side front optical system, the first concave spherical mirror 9 and the third plane mirror 10 are the sample side rear optical system, the second toroidal mirror 6 and the second plane mirror. Reference numeral 7 corresponds to the reference side optical system, and the fourth plane mirror 12 and the second concave spherical mirror 13 correspond to the common optical system.

【0014】なお、第2光源2はバックグランド吸収補
正処理のために設けられているものであって、本発明に
係る原子吸光分光光度計において必須ではない。したが
って、以下の説明では第2光源2については特に触れな
いこととする。
The second light source 2 is provided for background absorption correction processing and is not essential in the atomic absorption spectrophotometer according to the present invention. Therefore, the second light source 2 will not be particularly referred to in the following description.

【0015】上記構成について、光束の通過する経路に
従って詳しく説明する。第1光源1から発した光束はハ
ーフミラー3により試料側光束Lsと参照側光束Lrと
の二つに分割される。ハーフミラー3で反射された試料
側光束Lsは第1トロイダル鏡4、第1平面鏡5から成
る試料側前置光学系により倍率1.33で原子化部8に集光
される。試料側光束Lsが原子化部8を通過する際に、
試料の種類に応じた波長で且つその濃度に応じた吸収を
受けて光量が減少する。その後、第1凹球面鏡9、第3
平面鏡10から成る試料側後置光学系により倍率1でチ
ョッパミラー11に集光される。したがって、チョッパ
ミラー11には第1光源1の像が1.33倍に拡大された像
が結像される。
The above structure will be described in detail according to the path through which the light flux passes. The light beam emitted from the first light source 1 is split by the half mirror 3 into a sample-side light beam Ls and a reference-side light beam Lr. The sample-side light beam Ls reflected by the half mirror 3 is condensed by the sample-side front optical system including the first toroidal mirror 4 and the first plane mirror 5 at the atomization section 8 at a magnification of 1.33. When the sample side light flux Ls passes through the atomization part 8,
The amount of light decreases due to absorption at a wavelength according to the type of sample and according to its concentration. Then, the first concave spherical mirror 9, the third
The sample-side rear optical system including the plane mirror 10 focuses the light on the chopper mirror 11 at a magnification of 1. Therefore, an image of the first light source 1 magnified 1.33 times is formed on the chopper mirror 11.

【0016】一方、ハーフミラー3で直進した参照側光
束Lrは、第2トロイダル鏡6、第2平面鏡7から成る
参照側光学系により倍率1.33でチョッパミラー11に集
光される。すなわち、チョッパミラー11では、試料側
光束Lsと参照側光束Lrの倍率は一致しており、これ
により理論的には同一のスポット径になる。チョッパミ
ラー11は図示しないモータにより回転駆動され、その
回転周期に同期して試料側光束Lsと参照側光束Lrと
を交互に第4平面鏡12へと送る。第4平面鏡12、第
2凹球面鏡13から成る共通光学系は、上記交互の光束
を倍率1/1.33で入口スリット14に集光する。したが
って、入口スリット14には倍率1、つまり第1光源1
と同じ大きさの像が結像される。
On the other hand, the reference-side light flux Lr that has traveled straight through the half mirror 3 is condensed by the reference-side optical system including the second toroidal mirror 6 and the second plane mirror 7 on the chopper mirror 11 at a magnification of 1.33. That is, in the chopper mirror 11, the sample-side light flux Ls and the reference-side light flux Lr have the same magnification, and theoretically have the same spot diameter. The chopper mirror 11 is rotationally driven by a motor (not shown), and sends the sample-side light flux Ls and the reference-side light flux Lr alternately to the fourth plane mirror 12 in synchronization with the rotation cycle. The common optical system including the fourth plane mirror 12 and the second concave spherical mirror 13 focuses the above-mentioned alternating light flux on the entrance slit 14 at a magnification of 1 / 1.33. Therefore, the entrance slit 14 has a magnification of 1, that is, the first light source 1.
An image of the same size as is formed.

【0017】入口スリット14を通過した光は凹球面鏡
15により一方向に集光されて平面回折格子16へと送
られ、その直交方向に波長分散される。そして、凹球面
鏡17により波長分散と直交する方向に出口スリット1
8に集光され、ごく狭い波長範囲の光のみが出口スリッ
ト18から取り出される。
The light passing through the entrance slit 14 is condensed in one direction by the concave spherical mirror 15 and sent to the plane diffraction grating 16, where it is wavelength-dispersed in the orthogonal direction. Then, by the concave spherical mirror 17, the exit slit 1 is formed in the direction orthogonal to the wavelength dispersion.
Only light in a very narrow wavelength range is condensed at 8, and is extracted from the exit slit 18.

【0018】上記光学系の特徴の一つは、両光束を共に
チョッパミラー11上に一旦集光させている点にある。
One of the features of the above optical system is that both light fluxes are once condensed on the chopper mirror 11.

【0019】図1に示した光学系構成において、チョッ
パミラー11上での結像(レイ・トレース)を計算機シ
ミュレーションにより算出した結果を図2(a)に、従
来装置の光学系による同様の結像のシミュレーション結
果を図2(b)に示す。従来装置の光学系ではチョッパ
ミラー面上に集光させていないため、試料側光束、参照
側光束ともに長手方向に大きく延びた像になっており、
この像を入口スリットに集光しようとしても入口スリッ
トで損失する光量が多かった。それに対し本実施形態に
よる装置では、図2(a)に示すようにチョッパミラー
11面上でスポット径が小さく収まっているため、入口
スリット14においても小さなスポット径を得易く、入
口スリット14での光の損失はきわめて少なくてすむ。
In the configuration of the optical system shown in FIG. 1, the result of calculating the image formation (ray trace) on the chopper mirror 11 by computer simulation is shown in FIG. The image simulation result is shown in FIG. Since the optical system of the conventional device does not focus the light on the chopper mirror surface, both the sample-side light flux and the reference-side light flux are images that greatly extend in the longitudinal direction.
Even if this image was focused on the entrance slit, a large amount of light was lost at the entrance slit. On the other hand, in the device according to the present embodiment, the spot diameter is small on the surface of the chopper mirror 11 as shown in FIG. Light loss is extremely low.

【0020】また、チョッパミラー11で光のスポット
径が小さいと次のような利点もある。図4は典型的なチ
ョッパミラー11の形状と光スポットとの関係を示す概
略図である。光のスポット径が大きいと、チョッパミラ
ー11が回転する際にそのエッジ部11aが光に掛かる
時間が長くなる。このようにエッジ部11aが光を横切
っている期間は、入口スリット14へと送られる光束が
試料側光束Lsと参照側光束Lrのいずれか確定してい
ない期間であると言える。
Further, if the spot diameter of the light is small in the chopper mirror 11, there are the following advantages. FIG. 4 is a schematic diagram showing the relationship between the shape of a typical chopper mirror 11 and a light spot. If the spot diameter of the light is large, it takes a long time for the edge 11a to be exposed to the light when the chopper mirror 11 rotates. It can be said that the period in which the edge portion 11a crosses the light in this manner is a period in which the sample-side light beam Ls or the reference-side light beam Lr is not determined as the light beam sent to the entrance slit 14.

【0021】従来のように光のスポット径が大きな場合
には、検出器で得られる検出信号は図5(b)に示すよ
うに両光束の切り替わりに対応する期間が長いため、信
号のサンプリングが可能な期間が短い。これに対し、本
発明の装置のように光のスポット径を小さくすると、検
出器で得られる検出信号は図5(a)に示すように両光
束の切り替わりが迅速に行われ、信号のサンプリングが
可能な期間が長くなる。このことは受光信号の蓄積時間
が長くなることを意味するから、信号のS/N比の向上
に有利であり、分析感度や精度の向上が図れる。
When the spot diameter of the light is large as in the conventional case, the detection signal obtained by the detector has a long period corresponding to the switching of both light fluxes as shown in FIG. Possible period is short. On the other hand, when the light spot diameter is reduced as in the device of the present invention, the detection signal obtained by the detector is swiftly switched between both light fluxes as shown in FIG. The possible period becomes longer. This means that the accumulation time of the received light signal becomes long, which is advantageous for improving the S / N ratio of the signal, and the analysis sensitivity and accuracy can be improved.

【0022】また、この光学系の他の特徴は、測定光学
系Aにおいて、試料側前置光学系の第1光源1側のFナ
ンバーは「6」、原子化部8側のFナンバーは「8」
と、出口側でFナンバーを大きくしている点にある。つ
まり、これは拡大系の光学系であって、光の集光効率を
高めたことを意味する。従来一般的には、試料側前置光
学系の光源側と原子化部側のFナンバーは同一である。
それに対し、本装置では出口側でFナンバーを大きくし
ているため、出口側つまり原子化部8の入口側では光軸
に対する光束の入射拡がり角が小さくなっている。これ
により、原子化部8での光のけられが少なくなり、光量
の損失が少なくてすむ。
Another feature of this optical system is that in the measurement optical system A, the F number on the first light source 1 side of the sample side front optical system is "6" and the F number on the atomization part 8 side is " 8 "
The point is that the F number is increased on the exit side. In other words, this means that the optical system is a magnifying system and the efficiency of collecting light is enhanced. Conventionally, generally, the F-numbers on the light source side and the atomization section side of the sample side front optical system are the same.
On the other hand, in this device, the F number is increased on the exit side, so that the incident divergence angle of the light flux with respect to the optical axis is small on the exit side, that is, on the entrance side of the atomization section 8. As a result, light eclipse in the atomization section 8 is reduced, and the loss of light quantity is reduced.

【0023】ちなみに、本実施形態による原子吸光分光
光度計の光学系によれば、上記構成としたことによっ
て、従来の一般的な装置に比較して2倍以上の光量を検
出器で取得できることを確認することができた。
By the way, according to the optical system of the atomic absorption spectrophotometer according to the present embodiment, with the above-mentioned configuration, it is possible to obtain a light amount more than twice as much as that of the conventional general apparatus by the detector. I was able to confirm.

【0024】なお、上記実施形態は単に一例であって、
本発明の趣旨の範囲で適宜に変更や修正を行えることは
明らかである。
The above embodiment is merely an example,
It is obvious that appropriate changes and modifications can be made within the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態による原子吸光分光光度
計の光検出器を除く光路構成図。
FIG. 1 is an optical path configuration diagram excluding a photodetector of an atomic absorption spectrophotometer according to an embodiment of the present invention.

【図2】 図1に示した光学系と従来装置の光学系によ
りチョッパミラー面上での結像(レイ・トレース)を計
算機シミュレーションにより算出した結果を示す図。
FIG. 2 is a diagram showing a result of calculating an image (ray trace) on a chopper mirror surface by a computer simulation by the optical system shown in FIG. 1 and an optical system of a conventional apparatus.

【図3】 原子吸光分光光度計におけるダブルビーム光
学系の概略的な光路構成図。
FIG. 3 is a schematic optical path configuration diagram of a double beam optical system in an atomic absorption spectrophotometer.

【図4】 チョッパミラーの形状と光スポットとの関係
を示す概略図。
FIG. 4 is a schematic diagram showing the relationship between the shape of a chopper mirror and a light spot.

【図5】 検出器で得られる検出信号の一例を示す図。FIG. 5 is a diagram showing an example of a detection signal obtained by a detector.

【符号の説明】[Explanation of symbols]

1…第1光源 2…第2光源 3…ハーフミラー 4…第1トロイダル鏡 5…第1平面鏡 6…第2トロイダル鏡 7…第2平面鏡 8…原子化部 9…第1凹球面鏡 10…第3平面鏡 11…チョッパミラー 12…第4平面鏡 13…第2凹球面鏡 14…入口スリット 15…凹球面鏡 16…平面回折格子 17…凹球面鏡 18…出口スリット A…測定光学系 B…分光光学系 1 ... first light source 2 ... second light source 3 ... Half mirror 4 ... 1st toroidal mirror 5 ... 1st plane mirror 6 ... Second toroidal mirror 7 ... Second plane mirror 8 ... Atomization part 9 ... First concave spherical mirror 10 ... Third plane mirror 11 ... Chopper mirror 12 ... Fourth plane mirror 13 ... Second concave spherical mirror 14 ... Entrance slit 15 ... Concave spherical mirror 16 ... Planar diffraction grating 17 ... concave spherical mirror 18 ... Exit slit A ... Measuring optical system B ... Spectroscopic optical system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本多 晃 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 Fターム(参考) 2G020 BA05 CA02 CB05 CB26 CB33 CC48 2G059 AA01 EE01 FF09 GG03 GG07 JJ05 JJ14 JJ22 JJ24 LL02 NN05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Honda             1st Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto City Stock Association             Inside the Shimadzu factory F-term (reference) 2G020 BA05 CA02 CB05 CB26 CB33                       CC48                 2G059 AA01 EE01 FF09 GG03 GG07                       JJ05 JJ14 JJ22 JJ24 LL02                       NN05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源から発した光をハーフミラーにより
試料側光束と参照側光束とに分割し、該試料側光束を原
子化部に通過させた後、前記両光束をチョッパミラーに
より選択して分光器の入口スリットへと照射するように
した原子吸光分光光度計において、 前記光源と原子化部との間、及び、該原子化部と前記チ
ョッパミラーとの間に、試料側光束が通る試料側前置光
学系及び試料側後置光学系をそれぞれ配置し、前記光源
と前記チョッパミラーとの間に参照側光束が通る参照側
光学系を配置し、更に前記チョッパミラーと前記入口ス
リットの間に共通光学系を配置し、 試料側光束は前記試料側前置光学系により原子化部に集
光された後に前記試料側後置光学系によりチョッパミラ
ーに再度集光され、他方、参照側光束は前記参照側光学
系によりチョッパミラーに集光され、更に両光束は前記
共通光学系により入口スリット上に集光されてなること
を特徴とする原子吸光分光光度計。
1. A light beam emitted from a light source is split by a half mirror into a sample-side light beam and a reference-side light beam, the sample-side light beam is passed through an atomization section, and then both light beams are selected by a chopper mirror. In an atomic absorption spectrophotometer adapted to irradiate the entrance slit of the spectroscope, a sample through which a light beam on the sample side passes between the light source and the atomization part, and between the atomization part and the chopper mirror A side front optical system and a sample side rear optical system are respectively arranged, a reference side optical system through which a reference side luminous flux passes is arranged between the light source and the chopper mirror, and further between the chopper mirror and the entrance slit. A common optical system is arranged on the sample side light beam, and the sample side light beam is condensed on the atomization part by the sample side front optical system and then again condensed on the chopper mirror by the sample side rear optical system. Is the reference side optical system More focused on the chopper mirror, further atomic absorption spectrophotometer, characterized in that formed by focused on the entrance slit by both light beams are the common optical system.
【請求項2】 前記試料側前置光学系は、前記原子化部
側に向いたFナンバーが前記光源側に向いたFナンバー
よりも大きく設定されてなることを特徴とする請求項1
に記載の原子吸光分光光度計。
2. The sample-side front optical system is characterized in that an F number directed to the atomization part side is set to be larger than an F number directed to the light source side.
Atomic absorption spectrophotometer described in.
【請求項3】 前記試料側前置光学系、前記試料側後置
光学系、及び参照側光学系は、前記チョッパミラーに集
光される両光束の収束倍率が略等しく構成されてなるこ
とを特徴とする請求項1又は2に記載の原子吸光分光光
度計。
3. The sample-side front optical system, the sample-side rear optical system, and the reference-side optical system are configured such that the converging magnifications of both light beams focused on the chopper mirror are substantially equal. The atomic absorption spectrophotometer according to claim 1 or 2, which is characterized.
JP2001201596A 2001-07-03 2001-07-03 Atomic absorption spectrophotometer Pending JP2003014631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201596A JP2003014631A (en) 2001-07-03 2001-07-03 Atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201596A JP2003014631A (en) 2001-07-03 2001-07-03 Atomic absorption spectrophotometer

Publications (1)

Publication Number Publication Date
JP2003014631A true JP2003014631A (en) 2003-01-15

Family

ID=19038523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201596A Pending JP2003014631A (en) 2001-07-03 2001-07-03 Atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JP2003014631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091446A (en) * 2008-10-09 2010-04-22 Shimadzu Corp Atomic absorption spectrophotometer
JP2011512532A (en) * 2008-02-15 2011-04-21 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシル Infrared spectrometer
CN102419205A (en) * 2011-08-16 2012-04-18 清华大学 Light path capable of compressing light spots and improving resolution simultaneously

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115886A (en) * 1974-09-16 1976-10-12 Perkin Elmer Corp Analysis of atomic absorption spectrum accompanying background correction and atomic absorption spectrum photometer
JPS5543413A (en) * 1978-09-22 1980-03-27 Hitachi Ltd Optical system of spectrophotometer
JPS62245945A (en) * 1986-04-18 1987-10-27 Fuji Electric Co Ltd Infrared gas analyzer
JPS63145947A (en) * 1986-12-09 1988-06-18 Shimadzu Corp Atomic absorption spectrochemical analyzer
JPH03215718A (en) * 1989-08-07 1991-09-20 Bodenseewerk Perkin Elmer & Co Gmbh Photometer using two rays of light
JPH07198589A (en) * 1993-12-31 1995-08-01 Horiba Ltd One-point concentration type high density light source
JP2000298095A (en) * 1999-04-14 2000-10-24 Nippon Sanso Corp Spectroscopic analysis method and apparatus of gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115886A (en) * 1974-09-16 1976-10-12 Perkin Elmer Corp Analysis of atomic absorption spectrum accompanying background correction and atomic absorption spectrum photometer
JPS5543413A (en) * 1978-09-22 1980-03-27 Hitachi Ltd Optical system of spectrophotometer
JPS62245945A (en) * 1986-04-18 1987-10-27 Fuji Electric Co Ltd Infrared gas analyzer
JPS63145947A (en) * 1986-12-09 1988-06-18 Shimadzu Corp Atomic absorption spectrochemical analyzer
JPH03215718A (en) * 1989-08-07 1991-09-20 Bodenseewerk Perkin Elmer & Co Gmbh Photometer using two rays of light
JPH07198589A (en) * 1993-12-31 1995-08-01 Horiba Ltd One-point concentration type high density light source
JP2000298095A (en) * 1999-04-14 2000-10-24 Nippon Sanso Corp Spectroscopic analysis method and apparatus of gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512532A (en) * 2008-02-15 2011-04-21 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシル Infrared spectrometer
EP2247929B1 (en) * 2008-02-15 2016-09-28 The Science and Technology Facilities Council Infrared spectrometer
JP2010091446A (en) * 2008-10-09 2010-04-22 Shimadzu Corp Atomic absorption spectrophotometer
US8107072B2 (en) 2008-10-09 2012-01-31 Shimadzu Corporation Atomic absorption spectrophotometer
CN101718685B (en) * 2008-10-09 2012-11-07 株式会社岛津制作所 Atomic absorption spectrophotometer
CN102419205A (en) * 2011-08-16 2012-04-18 清华大学 Light path capable of compressing light spots and improving resolution simultaneously
CN102419205B (en) * 2011-08-16 2013-08-21 清华大学 Light path capable of compressing light spots and improving resolution simultaneously

Similar Documents

Publication Publication Date Title
US7456950B2 (en) Spectroscope with spatial resolution control
WO2014110900A1 (en) Method and apparatus for laser differential confocal spectrum microscopy
TWI245114B (en) Apparatus for measuring imaging spectrograph
CN104698068A (en) High-spatial resolution laser biaxial differential confocal spectrum-mass spectrometry microimaging method and device
JP2963752B2 (en) Device for measuring absorbance of liquid
JP2000275173A (en) Isotopomer absorption spectroscopic analysis instrument and method therefor
CN104697967B (en) High-space resolution laser twin shaft confocal spectroscopic mass spectrum micro imaging method and device
JP2003014631A (en) Atomic absorption spectrophotometer
JP5261862B2 (en) Method and apparatus for measuring stray light of diffraction grating
US7248364B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
JP3665014B2 (en) Spectrofluorometer
JP4136891B2 (en) Fluorescence measurement device for measuring fluorescence image / spectrum
JP2021051074A (en) Spectroscopic analyzer
CN211877753U (en) Spectrum system for detecting trace gas concentration
JP6583525B2 (en) Microscopic analyzer
JP4013868B2 (en) Fluorescence detection device
JPH10153561A (en) Photothermal transduction spectral analyzer
JP2006300661A (en) Interferometer and fourier spectral device
JPH10186240A (en) Darkfield vertical illumination microscope device
JP2007271528A (en) Coaxial compact fluorescence spectroscopic analyzer
JP2000352556A (en) Spectroscopic analysis apparatus
JPH112605A (en) Directly analyzing method of gas using laser
JP4418293B2 (en) Atomic absorption photometer
JPH0443998A (en) X-ray analyzer, fine part x-ray diffracting device, fluorescent x-ray analyzer, and x-ray photoelectron analyzer
JPH10311791A (en) Atomic light absorbing spectroscopic photometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060417

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060714