JPH112605A - Directly analyzing method of gas using laser - Google Patents

Directly analyzing method of gas using laser

Info

Publication number
JPH112605A
JPH112605A JP15624397A JP15624397A JPH112605A JP H112605 A JPH112605 A JP H112605A JP 15624397 A JP15624397 A JP 15624397A JP 15624397 A JP15624397 A JP 15624397A JP H112605 A JPH112605 A JP H112605A
Authority
JP
Japan
Prior art keywords
plasma
measured
laser
mirror
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15624397A
Other languages
Japanese (ja)
Inventor
Kohei Ito
浩平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15624397A priority Critical patent/JPH112605A/en
Publication of JPH112605A publication Critical patent/JPH112605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a directly analyzing method of gas through the use of laser capable of detecting the component composition, the plasma temperature, and the concentration of the minor component of a part to be measured in a power plant, etc., online. SOLUTION: An optical window 6 is provided for a piping 1, etc., of various plants. While laser for plasma is reflected at a mirror 15 through a lens 4, then projected from the optical window 6, and converged to a part to be measured 2 in the piping 1, etc., to turn gases and solids at the part to be measured 2 into plasma, plasma emission and fluorescence emitted by the part to be measured 2 are detected at a CCD camera 12 through the mirror 15 and a spectrograph 11. By detected plasma signals, the component composition, the plasma temperature, and the concentration of the minor component of the part to be measured 2 are detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電プラント等に
おけるレーザを用いたガスの直接分析方法に関する。
The present invention relates to a method for directly analyzing gas using a laser in a power plant or the like.

【0002】[0002]

【従来の技術】従来、発電プラント等での配管及びダク
ト内のガス濃度の計測は、主要ガス成分についてはガス
クロマトグラフィーでオンラインで計測することが可能
であるが、微量なガス成分およびガス中に含まれる粉体
の組成については、ガス及び粉体を吸引した後に分析し
ており、オンラインでの計測は困難であった。
2. Description of the Related Art Conventionally, gas concentrations in pipes and ducts in power generation plants and the like can be measured on-line by gas chromatography for main gas components. The composition of the powder contained in the sample was analyzed after inhaling the gas and the powder, and it was difficult to perform online measurement.

【0003】また、配管内のガス及び粉体の分布に偏り
があった場合、得られた計測値が、正確な値を示してい
ない可能性がある。更に、配管及びダクト内の温度及び
濃度分布を計測するためには、配管及びダクト内のサン
プリング位置を複数にするか、あるいはサンプリング位
置をトラバースさせる方法しかなく、計測に時間がかか
るという問題点があった。
[0003] In addition, if the distribution of gas and powder in the pipe is biased, there is a possibility that the measured value obtained does not show an accurate value. Furthermore, in order to measure the temperature and concentration distribution in pipes and ducts, there is no other way but to use multiple sampling positions in pipes and ducts or to traverse the sampling positions. there were.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑みてなされたものであり、発電プラント等におけ
る被計測部の成分組成、プラズマ温度及び微量成分濃度
をオンラインで検出できるレーザを用いたガスの直接分
析方法を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above prior art, and uses a laser capable of detecting, on-line, the component composition, plasma temperature, and trace component concentration of a part to be measured in a power plant or the like. To provide a direct analysis method of the gas that was used.

【0005】[0005]

【課題を解決するための手段】斯かる目的を達成する本
発明は、各種プラントの配管等に光学窓を設けると共に
プラズマ用レーザをレンズを通してミラーで反射させた
後、前記光学窓より投射して、前記配管等内の被計測部
に集光し、前記被計測部での気体及び固体をプラズマ化
する一方、プラズマ発光並びに前記被計測部が発する蛍
光をミラー、分光器を介してCCDカメラにて検出し、
検出されたプラズマ信号により、前記被計測部の成分組
成、プラズマ温度及び微量成分濃度を検出することを特
徴とする。
According to the present invention for achieving the above object, an optical window is provided in piping of various plants, a plasma laser is reflected by a mirror through a lens, and then projected from the optical window. While condensing on the measured part in the pipe or the like and converting gas and solid in the measured part into plasma, plasma emission and fluorescent light emitted by the measured part are transmitted to a CCD camera via a mirror and a spectroscope. And detect
The composition of the component to be measured, the plasma temperature, and the concentration of the trace component are detected based on the detected plasma signal.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施倒1〕本発明の一実施例に係るレーザを用いた分
析装置の一例を図1に示す。同図に示すように、配管1
中の被計測場2にプラズマ用レーザ3(被計測場にレー
ザで誘起されたプラズマを生成させるためのレーザ)を
レンズ4を通し、ミラー15で反射させた後、パージ5
付き光学窓6を通して、被計測部2に集光し、そこに存
在する気体及び固体をプラズマ化させる。
Embodiment 1 FIG. 1 shows an example of an analyzer using a laser according to an embodiment of the present invention. As shown in FIG.
A laser 3 for plasma (laser for generating laser-induced plasma in the measurement field) is passed through a lens 4 to a measurement field 2 in the inside, reflected by a mirror 15, and then purged.
Through the attached optical window 6, the light is condensed on the portion to be measured 2 and the gas and solid existing there are turned into plasma.

【0007】プラズマ用レーザ3と同期させて、成分励
起用レーザ7(物質中の被計測成分の励起波長に対応す
る波長を発信するレーザ)の出力をミラー8、レンズ4
及びミラー15を介してレーザ誘起されたプラズマ中に
入射する。プラズマ発光、ならびに成分励起用レーザ光
により励起された被計測成分が発する蛍光は、ミラー1
5及びミラー9を介してレンズ10で集光され、分光器
11に入射され、CCDカメラ12にてそれぞれ検出さ
れる。
In synchronism with the plasma laser 3, the output of the component excitation laser 7 (laser transmitting a wavelength corresponding to the excitation wavelength of the component to be measured in the substance) is output to the mirror 8 and the lens 4.
And into the laser-induced plasma via the mirror 15. The plasma emission and the fluorescence emitted from the component to be measured excited by the component excitation laser light are reflected by the mirror 1
The light is condensed by the lens 10 through the mirror 5 and the mirror 9, enters the spectroscope 11, and is detected by the CCD camera 12.

【0008】それぞれの信号はコンピュータ13に転送
され、プラズマ発光の信号より、被計測場2の成分組成
及びプラズマ温度を求め、その情報から蛍光強度の補正
を行い、被計測場に存在する微量成分の濃度を検出す
る。尚、14はプラズマ用レーザ3及び成分励起用レー
ザ7の発信とCCDカメラ12を同期させるラインであ
る。
The respective signals are transferred to the computer 13 to determine the component composition and the plasma temperature of the field 2 to be measured from the signal of the plasma emission, correct the fluorescence intensity from the information, and determine the trace components existing in the field to be measured. The concentration of is detected. A line 14 synchronizes the transmission of the plasma laser 3 and the component excitation laser 7 with the CCD camera 12.

【0009】上記構成を有する本実施例の分析装置にお
いて、レンズ4の位置を図中矢印で示すように光軸方向
に調整する事により、被計測部2内におけるレーザ光の
焦点位置までの距離を変化させることができる。また、
ミラー15の角度を図中矢印で示すように前後に調整す
ることにより、被計測場2におけるレーザ光の焦点位置
を変えることができる。
In the analyzer of the present embodiment having the above configuration, the position of the lens 4 is adjusted in the direction of the optical axis as shown by the arrow in FIG. Can be changed. Also,
By adjusting the angle of the mirror 15 back and forth as indicated by the arrow in the figure, the focal position of the laser beam in the measurement site 2 can be changed.

【0010】これにより、レーザ光の位置を変えながら
計測を行い、それらの計測結果を平均することにより、
配管1内の、より精度の高い温度及び濃度を求めること
ができる。また、被計測場2における計測位置を、配管
1の流れ方向に垂直な断面内で変化させることにより、
配管1の同断面での濃度分布、温度分布を短時間で計測
することが可能となる。
[0010] Thus, by measuring while changing the position of the laser beam, and by averaging those measurement results,
More accurate temperature and concentration in the pipe 1 can be obtained. Also, by changing the measurement position in the measurement site 2 within a cross section perpendicular to the flow direction of the pipe 1,
It is possible to measure the concentration distribution and the temperature distribution in the same section of the pipe 1 in a short time.

【0011】このように本実施例によれば、レーザ光の
焦点位置を変化させることにより、被計測場2における
計測位置を変えることができ、その領域での平均温度及
び平均濃度を求めることができる。また、被計測場2に
おける計測位置を、配管1の流れ方向に垂直な断面内で
変化させて計測することにより、温度分布および濃度分
布を短時間で計測することができる。
As described above, according to this embodiment, by changing the focal position of the laser beam, the measurement position in the measurement target field 2 can be changed, and the average temperature and average concentration in that area can be obtained. it can. Further, the temperature distribution and the concentration distribution can be measured in a short time by changing the measurement position in the measurement site 2 within a cross section perpendicular to the flow direction of the pipe 1 and performing measurement.

【0012】〔実施倒2〕本発明の他の実施例に係るレ
ーザを用いた装置の概要を図2に示す。同図に示すよう
に、レーザ3をレーザ光の入射方向と平行な方向に動か
す機構を持つレンズ4を通し、入射方向に対する反射方
向を変える機構を持つミラー15で反射させた後、位置
2に集光する。
[Embodiment 2] FIG. 2 shows an outline of an apparatus using a laser according to another embodiment of the present invention. As shown in the drawing, the laser 3 is passed through a lens 4 having a mechanism for moving the laser 3 in a direction parallel to the incident direction of the laser beam, and is reflected by a mirror 15 having a mechanism for changing the reflection direction with respect to the incident direction. Collect light.

【0013】レンズ4の位置を前後に動かすことによ
り、レーザ3から焦点である位置2までの距離を変える
事ができる。また、ミラー15のレーザ3に対する角度
を変化させることにより、レーザ光の照射位置を変える
ことができる。このように本実施例に係る装置によれ
ば、レーザ光の焦点位置を目的の位置にあわせることが
でき、また、ある範囲で焦点位置を自由に動かす事がで
きる。
By moving the position of the lens 4 back and forth, the distance from the laser 3 to the focus 2 can be changed. Further, by changing the angle of the mirror 15 with respect to the laser 3, the irradiation position of the laser beam can be changed. As described above, according to the apparatus according to the present embodiment, the focal position of the laser beam can be adjusted to the target position, and the focal position can be freely moved within a certain range.

【0014】[0014]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明は、各種プラントの配管等に光学窓を
設けると共にプラズマ用レーザをレンズを通してミラー
で反射させた後、前記光学窓より投射して、前記配管等
内の被計測部に集光し、前記被計測部での気体及び固体
をプラズマ化する一方、プラズマ発光並びに前記被計測
部が発する蛍光をミラー、分光器を介してCCDカメラ
にて検出し、検出されたプラズマ信号により、前記被計
測部の成分組成、プラズマ温度及び微量成分濃度をオン
ラインで検出できる。
As described above in detail with reference to the embodiments, the present invention provides an optical window in piping of various plants, reflects a plasma laser through a lens through a mirror, and then sets the optical window. While projecting from a window, the light is condensed on the measured portion in the pipe or the like, and the gas and solid in the measured portion are turned into plasma, while the plasma emission and the fluorescence emitted by the measured portion are mirrored, Through the detected plasma signal, a component composition, a plasma temperature and a trace component concentration of the measured portion can be detected on-line based on the detected plasma signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のレーザを用いた分析装置の一実施例を
示す概念図である。
FIG. 1 is a conceptual diagram showing an embodiment of an analyzer using a laser according to the present invention.

【図2】本発明のレーザを用いた装置の他の実施例の概
念図である。
FIG. 2 is a conceptual diagram of another embodiment of the apparatus using the laser of the present invention.

【符号の説明】[Explanation of symbols]

1 配管 2 被計測場 3 プラズマ用レーザ 4 レンズ 5 パージ 6 光学窓 7 成分励起用レーザ 8 ミラー 9 ミラー 10 レンズ 11 分光器 12 CCDカメラ 13 コンピュータ 14 同期ライン 15 ミラー DESCRIPTION OF SYMBOLS 1 Pipe 2 Measurement field 3 Plasma laser 4 Lens 5 Purge 6 Optical window 7 Component excitation laser 8 Mirror 9 Mirror 10 Lens 11 Spectroscope 12 CCD camera 13 Computer 14 Synchronization line 15 Mirror

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 各種プラントの配管等に光学窓を設ける
と共にプラズマ用レーザをレンズを通してミラーで反射
させた後、前記光学窓より投射して、前記配管等内の被
計測部に集光し、前記被計測部での気体及び固体をプラ
ズマ化する一方、プラズマ発光並びに前記被計測部が発
する蛍光をミラー、分光器を介してCCDカメラにて検
出し、検出されたプラズマ信号により、前記被計測部の
成分組成、プラズマ温度及び微量成分濃度を検出するこ
とを特徴とするレーザを用いたガスの直接分析方法。
An optical window is provided in a pipe or the like of various plants, and a laser for plasma is reflected by a mirror through a lens, and then is projected from the optical window and condensed on a portion to be measured in the pipe or the like. While the gas and the solid in the measured part are turned into plasma, the plasma emission and the fluorescence emitted from the measured part are detected by a CCD camera via a mirror and a spectroscope, and the measured plasma signal is used. A direct gas analysis method using a laser, comprising detecting a component composition, a plasma temperature, and a trace component concentration of a part.
JP15624397A 1997-06-13 1997-06-13 Directly analyzing method of gas using laser Pending JPH112605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15624397A JPH112605A (en) 1997-06-13 1997-06-13 Directly analyzing method of gas using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15624397A JPH112605A (en) 1997-06-13 1997-06-13 Directly analyzing method of gas using laser

Publications (1)

Publication Number Publication Date
JPH112605A true JPH112605A (en) 1999-01-06

Family

ID=15623513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15624397A Pending JPH112605A (en) 1997-06-13 1997-06-13 Directly analyzing method of gas using laser

Country Status (1)

Country Link
JP (1) JPH112605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635743A (en) * 1979-08-30 1981-04-08 Taiho Kogyo Co Ltd Aluminum bearing alloy
WO2003023378A1 (en) * 2001-09-06 2003-03-20 Japan Science And Technology Agency Method for estimating concentration of generating hotochemical ozone by the use of pump-probe method, and apparatus for estimating concentration of generating photochemical ozone utilizing the method
JP2010133800A (en) * 2008-12-03 2010-06-17 Mitsubishi Heavy Ind Ltd Gas component measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635743A (en) * 1979-08-30 1981-04-08 Taiho Kogyo Co Ltd Aluminum bearing alloy
JPS6140026B2 (en) * 1979-08-30 1986-09-06 Taiho Kogyo Co Ltd
WO2003023378A1 (en) * 2001-09-06 2003-03-20 Japan Science And Technology Agency Method for estimating concentration of generating hotochemical ozone by the use of pump-probe method, and apparatus for estimating concentration of generating photochemical ozone utilizing the method
US7425452B2 (en) 2001-09-06 2008-09-16 Japan Science And Technology Agency Pump-and-probe method for estimating strength of forming photochemical ozone and apparatus therefor
JP2010133800A (en) * 2008-12-03 2010-06-17 Mitsubishi Heavy Ind Ltd Gas component measuring device

Similar Documents

Publication Publication Date Title
US8674306B2 (en) Gas sensing system employing raman scattering
US6181419B1 (en) Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
JP2003515164A (en) X-ray fluorescence device
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
CN112730383A (en) Optical fiber array LIBS detection system for online detection
US5953120A (en) Optical probe
JP2008032606A (en) Analyzing method and device in laser induced plasma spectroscopy
JP2004053405A (en) In-line gas analyzer
JPH0694605A (en) Spectral photographing device using pulse electromagnetic wave source and interferometer
CN112129743A (en) System and method for measuring mercury content in flue gas on line based on LIBS technology
JPH112605A (en) Directly analyzing method of gas using laser
CN109358036B (en) Laser-induced breakdown spectroscopy signal error correction system and method
JPH10132741A (en) Technique and apparatus for measurement of trace component by using laser
GB2287785A (en) Optical transmissometer for open path gas monitoring
JP2002529699A (en) X-ray diffractometer with x-ray optical reference channel
JPS6182142A (en) Measuring device for concentration of gas in gas current
JPH09229883A (en) Dark field type photothermal transduction spectrometer
CN207730671U (en) Hand-held LIBS optical systems
JPH10153561A (en) Photothermal transduction spectral analyzer
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
JP3660938B2 (en) Component analysis method using laser
RU2075065C1 (en) Gas analyzer
KR100299451B1 (en) Apparatus and method for measuring compositions of alloy steel using laser plasma
JP2003014631A (en) Atomic absorption spectrophotometer
JP3385670B2 (en) Infrared spectrophotometer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803