JPH10132741A - Technique and apparatus for measurement of trace component by using laser - Google Patents

Technique and apparatus for measurement of trace component by using laser

Info

Publication number
JPH10132741A
JPH10132741A JP29228896A JP29228896A JPH10132741A JP H10132741 A JPH10132741 A JP H10132741A JP 29228896 A JP29228896 A JP 29228896A JP 29228896 A JP29228896 A JP 29228896A JP H10132741 A JPH10132741 A JP H10132741A
Authority
JP
Japan
Prior art keywords
plasma
component
laser
detected
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29228896A
Other languages
Japanese (ja)
Other versions
JP3377699B2 (en
Inventor
Yoshihiro Deguchi
祥啓 出口
Seiji Iwasaki
誠司 岩▲崎▼
Hirohisa Yoshida
博久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29228896A priority Critical patent/JP3377699B2/en
Publication of JPH10132741A publication Critical patent/JPH10132741A/en
Application granted granted Critical
Publication of JP3377699B2 publication Critical patent/JP3377699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the concentration of a trace component existing in a substance by receiving a pulsed laser beam, a component in the substance into a plasma, and correcting a fluorescent intensity which is generated by exciting the laser beam with the component composition and plasma temperature existing in a plasma part. SOLUTION: A pulsed laser 1 for plasma is condensed, by using a lens 2, in a measuring field through a purge optical window, and a gas, a liquid and a solid substance which exist are changed into a plasma. In synchronization with the pulsed laser 1 for plasma, the output of a pulsed laser 3 for component excitation is incident on the plasma via a mirror 4, a beam combiner 5 and a lens 2. Fluorescence which is emitted by an excited component to be measured is condensed by a lens 7 via a mirror 6 so as to be divided into two directions by a beam splitter. Plasma light is incident on a spectroscope 9 so as to be detected by a CCD camera 10. Fluorescence which is emitted by the measured component to be measured is detected by a detector 11. A computer 12 corrects a fluroescent intensity on the basis of a component composition and a plasma temperature in the measuring field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザを用いた微
量成分計測手法及びその装置に関する。詳しくは、気
体、液体、固体物質中に含まれるNa,Cl,Mg等の微
量成分の計測に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring trace components using a laser and an apparatus therefor. More specifically, the present invention relates to measurement of trace components such as Na, Cl, and Mg contained in gases, liquids, and solid substances.

【0002】[0002]

【従来の技術】従来の微量成分計測装置を図2に示す。
同図に示すように、測定場の固体サンプルをサンプラー
01にてサンプルし、サンプル試料を分析装置02(X
線分析器、化学分析器等)で成分を分析していた。
2. Description of the Related Art A conventional trace component measuring apparatus is shown in FIG.
As shown in the figure, a solid sample in a measurement field is sampled by a sampler 01, and the sample is analyzed by an analyzer 02 (X
Components were analyzed with a line analyzer, a chemical analyzer, and the like.

【0003】レーザを用いた微量成分検出法としては、
下記に示す方法が提案されている。 (1)レーザ光を気体、液体、固体物質に集光し、物質
中の成分をプラズマ化させ、そのプラズマ発光を検出し
て、微量成分濃度を測定する方法(以下この方法をレー
ザを用いた従来法1と呼ぶ。)。
As a method for detecting a trace component using a laser,
The following methods have been proposed. (1) A method in which laser light is focused on a gas, liquid, or solid substance, the components in the substance are turned into plasma, the plasma emission is detected, and the concentration of the trace component is measured (hereinafter, this method uses a laser. Conventional method 1).

【0004】(2)検出すべき成分の電子エネルギー差
に対応した波長を持つレーザ光を入射し、励起された測
定対象成分が発する蛍光強度を検出して、微量成分濃度
を測定する方法(以下この方法をレーザを用いた従来法
2と呼ぶ)。
(2) A method in which a laser beam having a wavelength corresponding to the electron energy difference of a component to be detected is incident, the intensity of fluorescence emitted from the excited component to be measured is detected, and the concentration of a trace component is measured (hereinafter, referred to as a method). This method is referred to as a conventional method 2 using a laser.)

【0005】(3)第一のレーザ光を気体、液体、固体
物質に集光し、物質中の測定対象成分を原子化(プラズ
マ化を含む)させ、一定時間後に検出すべき成分の電子
エネルギー差に対応した波長を持つ第二のレーザ光を入
射し、励起された測定対象成分が発する蛍光強度を検出
して、微量成分濃度を測定する方法(以下この方法をレ
ーザを用いた従来法3と呼ぶ)。
(3) The first laser beam is focused on a gas, liquid, or solid substance, the target component in the substance is atomized (including plasma), and the electron energy of the component to be detected after a predetermined time A method in which a second laser beam having a wavelength corresponding to the difference is incident, the fluorescence intensity emitted from the excited measurement target component is detected, and the concentration of the trace component is measured (hereinafter, this method is referred to as a conventional method 3 using a laser). ).

【0006】[0006]

【発明が解決しようとする課題】図2における従来法で
は、以下の行程が必要となる。 1)測定場からサンプル試料を採取する。 2)サンプル試料を成分分析器まで輸送する。 3)成分分析器02にてサンプル試料を分析する。
The conventional method shown in FIG. 2 requires the following steps. 1) Collect a sample from the measurement site. 2) Transport sample to component analyzer. 3) The sample is analyzed by the component analyzer 02.

【0007】そのため、測定場から試料を採取し、分析
結果が得られるまで、かなりの時間(10〜120分)
を必要とする。またサンプリング配管において、検出成
分が混入や、サンプリング配管にサンプリング物質が滞
留し検出成分の濃縮が発生する等の不具合点が存在し、
計器の管理、設置場所などが厳しく制限される不具合点
が存在していた。また、自動化する場合には、サンプル
試料の輸送装置、輸送配管、装置設置施設などが必要と
なり、装置が高価となる欠点を有していた。
For this reason, it takes a considerable time (10 to 120 minutes) until a sample is collected from the measurement field and the analysis result is obtained.
Need. In addition, in the sampling pipe, there is a problem that a detection component is mixed or a sampling substance stays in the sampling pipe and concentration of the detection component occurs.
There was a problem that instrument management and installation locations were severely restricted. In the case of automation, a transport device for sample samples, a transport pipe, a facility for installing the device, and the like are required, which has a disadvantage that the device becomes expensive.

【0008】更に、従来のレーザを用いる計測では、プ
ラズマ化用レーザ光のみ用いる方法や計測対象成分の電
子エネルギー差に対応した波長を持つレーザ光を入射す
る方法が存在していたが、(1)レーザを用いた従来法
1では検出限界濃度が低くできない、(2)レーザを用
いた従来法2では、成分の結合状態の影響が大きいた
め、結合状態毎にレーザ波長を変化させなくてはなら
ず、装置が複雑となるほか、計測不可能となる可能性も
発生する。
Further, in the conventional measurement using a laser, there are a method using only a laser beam for plasma generation and a method using a laser beam having a wavelength corresponding to the electron energy difference of a component to be measured. ) The detection limit concentration cannot be reduced by the conventional method 1 using a laser. (2) In the conventional method 2 using a laser, the influence of the combined state of the components is large. Therefore, the laser wavelength must be changed for each combined state. In addition, the device becomes complicated, and the measurement may not be possible.

【0009】例えば、Naを検出する場合に、NaClと
NaSO4では化学結合のためにNaのエネルギー凖位が
変化し、そのため励起される波長が変化し、単一波長で
は同時に励起できなくなる。例として、Naでは励起さ
れる波長として330nm,568nm,589nm、
Clでは233nm等が存在するが、NaClでは193
nm等が励起波長となる。
For example, when Na is detected, NaCl and NaSO 4 change the energy level of Na due to chemical bonding, so that the excited wavelength changes, and it becomes impossible to excite simultaneously with a single wavelength. As an example, for Na, the excitation wavelengths are 330 nm, 568 nm, 589 nm,
While 233 nm and the like exist for Cl, 193 nm exists for NaCl.
nm or the like is the excitation wavelength.

【0010】また、この方法では定量計測が困難とな
る。一般に、レーザ励起された成分が発する蛍光強度I
とその成分濃度nには以下の関係が存在する。 I=K・n/Q …(1) ここで、Kは比例定数、Qはクエンチング速度である。
Qは測定場の成分組成並びに温度の関数として以下の式
で表される。
[0010] Further, in this method, quantitative measurement becomes difficult. Generally, the fluorescence intensity I emitted by the laser-excited component
And its component concentration n have the following relationship. I = K · n / Q (1) where K is a proportionality constant and Q is a quenching speed.
Q is represented by the following equation as a function of the composition of the measurement field and the temperature.

【0011】[0011]

【数1】 (Equation 1)

【0012】ここで、Xiはi成分の濃度、σi(T) はi
成分の衝突断面積であり、測定場の温度の関数となる。
式(1)及び(2)より測定対象成分が発する蛍光強度
Iからその成分濃度nを求めるためには、測定対象場の
成分組成並びに温度の情報が必要となるが、その情報を
知ることは難しく、測定対象成分の定量化が困難とな
る。レーザを用いた従来法3では、(2)の方法で述べ
たようにクエンチング速度の問題が発生し、定量計測を
行うことが困難となる等の欠点が存在していた。
Where X i is the concentration of the i component and σ i (T) is i
The impact cross section of the component, which is a function of the temperature of the measurement field.
In order to obtain the component concentration n from the fluorescence intensity I emitted from the component to be measured from the formulas (1) and (2), information on the component composition and the temperature of the field to be measured is required. It is difficult, and it becomes difficult to quantify the components to be measured. In the conventional method 3 using a laser, as described in the method (2), the problem of the quenching speed occurs, and there are disadvantages such as difficulty in performing quantitative measurement.

【0013】[0013]

【課題を解決するための手段】本発明で用いた手段の概
略図を図4に示す。先ず、図4(a)に示すように、第
一のパルスレーザ光を気体、液体、固体物質のいずれか
に集光し、物質中の成分をプラズマ化させ、プラズマ内
の物質を原子化させる。
FIG. 4 is a schematic diagram of the means used in the present invention. First, as shown in FIG. 4A, the first pulsed laser light is focused on any one of a gas, a liquid, and a solid substance, the components in the substance are turned into plasma, and the substance in the plasma is turned into atoms. .

【0014】次に、図4(b)に示すように、プラズマ
を生成させてから一定時間後に、検出すべき成分の電子
エネルギー差に対応した波長を持つ第二のレーザ光を、
レーザで誘起されたプラズマ中に入射して検出すべき成
分をレーザ励起する。
Next, as shown in FIG. 4B, after a certain period of time from the generation of the plasma, a second laser beam having a wavelength corresponding to the electron energy difference of the component to be detected,
A component to be detected is incident on the laser-induced plasma to excite the laser.

【0015】第一のレーザ光照射により発生するプラズ
マ光を検出し、プラズマ部に存在する成分組成及びプラ
ズマ温度を同定すると共に、第二のレーザ光照射により
励起された測定対象成分が発する蛍光強度を光検出器を
用いて検出する。測定対象成分が発する蛍光強度を、プ
ラズマ部に存在する成分組成及びプラズマ温度で補正す
ることにより、気体、液体、固体物質中に存在する微量
成分の濃度を測定する。
[0015] The plasma light generated by the first laser light irradiation is detected, the component composition and the plasma temperature existing in the plasma part are identified, and the intensity of the fluorescent light emitted by the measurement object excited by the second laser light irradiation is detected. Is detected using a photodetector. The concentration of the trace component present in a gas, liquid, or solid substance is measured by correcting the intensity of the fluorescence emitted from the component to be measured by the composition of the component present in the plasma part and the plasma temperature.

【0016】〔作用〕従来法では、試料の採取、分析装
置への輸送などが、微量成分のリアルタイム計測の大き
な支障となっていたが、本発明により、計測場でのin−
situ計測が可能となるほか、サンプル試料の輸送などが
必要なくなるため、装置のコスト低減が可能となる。
[Operation] In the conventional method, the collection of a sample, transportation to an analyzer, and the like have been a major obstacle to real-time measurement of trace components.
In addition to being able to perform situ measurement, it is not necessary to transport a sample sample, so that the cost of the apparatus can be reduced.

【0017】また、本発明では、サンプリング配管を使
用しないため、サンプリング配管における検出成分の混
入や、サンプリング配管にサンプリング物質が滞留する
ことによる検出成分の濃縮等がなく、従来法の不具合点
を除去することが可能となる。
Further, in the present invention, since the sampling pipe is not used, there is no mixing of the detected component in the sampling pipe or the concentration of the detected component due to the stagnation of the sampling substance in the sampling pipe, and the disadvantages of the conventional method are eliminated. It is possible to do.

【0018】また、従来のレーザを用いる計測で問題と
なっている、(1)レーザを用いた従来法1では検出限
界濃度が低くできない、(2)レーザを用いた従来法2
では化学結合が変化すると、励起される波長変化し、単
一波長では同時に励起できなくなる、また定量化が困難
である、(3)レーザを用いた従来法3では定量化が困
難であるに対し、本発明では、まずプラズマ用レーザで
局所的な場所の温度を10,000〜20,000℃に上昇させるた
め、ほとんど全ての化学種が原子状態となり、結合状態
による励起波長の変化はなくなる。
Also, there is a problem in the measurement using the conventional laser. (1) The detection limit concentration cannot be reduced by the conventional method 1 using the laser. (2) The conventional method 2 using the laser.
When the chemical bond changes, the excited wavelength changes, and it becomes impossible to excite at a single wavelength at the same time, and it is difficult to quantify. (3) It is difficult to quantify by the conventional method 3 using a laser. According to the present invention, first, since the temperature of a local place is raised to 10,000 to 20,000 ° C. by the plasma laser, almost all chemical species are in an atomic state, and the excitation wavelength does not change due to the bonding state.

【0019】プラズマ化された測定分子に対する電子エ
ネルギー差に対応した波長を持つレーザ光を入射するた
め、プラズマ用レーザを用いる場合に比べ、検出感度を
大幅に向上(3桁から5桁程度)可能となる。また、プ
ラズマ発光を計測することにより、測定場(プラズマ
場)の成分組成並びにプラズマ温度を求めることができ
るため、式(2)を用いてクエンチング速度を計算で
き、式(1)より計測成分の定量化が可能となる。
Since a laser beam having a wavelength corresponding to the electron energy difference with respect to the measurement molecules converted into plasma is incident, the detection sensitivity can be greatly improved (about 3 to 5 digits) as compared with the case where a plasma laser is used. Becomes Also, by measuring the plasma emission, the component composition of the measurement field (plasma field) and the plasma temperature can be obtained. Therefore, the quenching rate can be calculated using the equation (2), and the measurement component can be calculated from the equation (1). Can be quantified.

【0020】図5にプラズマ発光例を示す。各成分から
の発光強度の比から成分組成(濃度)が算出される。ま
た、発光が複数の波長に現れる成分に対し(図中Nの発
光)、同一成分に起因する異なった波長の発光強度の比
は温度の依存性を有しているものがあり(図中発光1と
発光2の強度比)、その比からプラズマの温度が算出で
きる。
FIG. 5 shows an example of plasma emission. The component composition (concentration) is calculated from the ratio of the emission intensity from each component. In addition, the ratio of the emission intensity of different wavelengths caused by the same component to the component in which the emission appears at a plurality of wavelengths (the emission of N in the diagram) has a temperature dependency (the emission in the diagram) The intensity of the plasma can be calculated from the ratio of the intensity of the light emission to the intensity of the light emission 2.

【0021】[0021]

【実施例】本発明の第1の実施例における装置を図1に
示す。同図に示すように、プラズマ用パルスレーザ1を
レンズ2を用いてパージ光学窓を通して測定場に集光
し、測定場に存在する気体、液体、固体物質をプラズマ
化させる。プラズマ用パルスレーザ1とは、測定場にレ
ーザで誘起されたプラズマを生成させるためのレーザで
ある。
FIG. 1 shows an apparatus according to a first embodiment of the present invention. As shown in FIG. 1, a pulse laser 1 for plasma is focused on a measurement field through a purge optical window using a lens 2, and a gas, a liquid, and a solid substance existing in the measurement field are turned into plasma. The pulse laser for plasma 1 is a laser for generating plasma induced by a laser in a measurement field.

【0022】プラズマ用パルスレーザと同期させて、成
分励起用パルスレーザ3の出力をミラー4、ビームコン
バイナー5及びレンズ2を介してレーザ誘起されたプラ
ズマ中に入射する。成分励起用パルスレーザ3とは、物
質中の測定成分の励起波長に対応する波長を発振するレ
ーザである。
In synchronization with the plasma pulse laser, the output of the component excitation pulse laser 3 enters the laser-induced plasma via the mirror 4, the beam combiner 5 and the lens 2. The component excitation pulse laser 3 is a laser that oscillates at a wavelength corresponding to the excitation wavelength of the measurement component in the substance.

【0023】プラズマ発光並びに成分励起用パルスレー
ザ光により励起された計測成分が発する蛍光は、ミラー
6を介してレンズ7で集光される。それぞれの光はビー
ムスプリッター8で2方向に分割される。プラズマ光は
分光器9に入射され、CCDカメラ10にて検出され
る。計測成分が発する蛍光は光検出器11で検出され
る。
The fluorescence emitted from the measurement component excited by the plasma emission and the component excitation pulse laser beam is condensed by the lens 7 via the mirror 6. Each light is split in two directions by a beam splitter 8. The plasma light enters the spectroscope 9 and is detected by the CCD camera 10. Fluorescence emitted by the measurement component is detected by the photodetector 11.

【0024】それぞれの信号はコンピュータ12に転送
され、プラズマ発光の信号より、測定場(プラズマ場)
の成分組成並びにプラズマ温度を求め、その情報より蛍
光強度の補正を行い測定場に存在する微量成分の濃度を
算出する。プラズマ用パルスレーザ1及び成分励起用パ
ルスレーザ3の発振とCCDカメラ10、光検出器11
とは、同期ライン13にて同期させられている。
Each signal is transferred to the computer 12 and is measured from a plasma emission signal based on a plasma emission signal.
And the plasma temperature are obtained, the fluorescence intensity is corrected based on the information, and the concentration of the trace component present in the measurement field is calculated. Oscillation of pulse laser 1 for plasma and pulse laser 3 for component excitation, CCD camera 10, photodetector 11
Are synchronized by the synchronization line 13.

【0025】プラズマ用レーザと成分励起用レーザの波
長の例を下記に示す。例えば、プラズマ用レーザ波長例
としては、1064nm(YAGレーザの基本波)、5
32nm(YAGレーザの第2高調波)、355nm
(YAGレーザの第3高調波)のいずれか、成分励起用
レーザ波長例としては、Naについて330nm,56
8nm,589nmのいずれか、Clについては233
nmが挙げられる。尚、測定対象により、プラズマ用パ
ルスレーザ及び成分励起用パルスレーザの波長を変化さ
せることにより、広範囲な対象及び成分の計測が可能と
なる。
Examples of the wavelengths of the plasma laser and the component excitation laser are shown below. For example, as a plasma laser wavelength example, 1064 nm (basic wave of YAG laser), 5
32 nm (second harmonic of YAG laser), 355 nm
(Third harmonic of YAG laser), as an example of the component excitation laser wavelength,
Either 8 nm or 589 nm;
nm. By changing the wavelengths of the pulse laser for plasma and the pulse laser for component excitation depending on the measurement object, it is possible to measure a wide range of objects and components.

【0026】本発明の第2の実施例における装置を図3
に示す。本実施例では、プラズマ発光と計測成分が発す
る蛍光を同一のCCDカメラ10で検出する点に特徴が
ある。 その他の構成は、前述した第1の実施例と同じ
構成であり、同様な効果を奏する。
FIG. 3 shows an apparatus according to a second embodiment of the present invention.
Shown in The present embodiment is characterized in that plasma emission and fluorescence emitted by a measurement component are detected by the same CCD camera 10. Other configurations are the same as those of the above-described first embodiment, and provide similar effects.

【0027】[0027]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明によれば、気体、液体、固体物質中に
含まれるNa,Cl,Mg等の微量成分のin−situ計測が
可能となり、計測の自動化、高精度化により、各種プラ
ントの安全運転、余寿命予測などが可能となる。
As described above in detail with reference to the embodiments, according to the present invention, in-situ measurement of trace components such as Na, Cl and Mg contained in gas, liquid and solid substance. It is possible to perform safe operation of various plants and estimate the remaining life by automation and high accuracy of measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係わる実施例の微量成分
計測装置の構成図である。
FIG. 1 is a configuration diagram of a trace component measuring device of an embodiment according to a first embodiment of the present invention.

【図2】従来法を用いた微量成分計測装置の構成図であ
る。
FIG. 2 is a configuration diagram of a trace component measuring device using a conventional method.

【図3】プラズマ発光及び測定成分の蛍光に対し1つの
検出装置を用いた本発明の第2の実施例の構成図であ
る。
FIG. 3 is a configuration diagram of a second embodiment of the present invention using one detection device for plasma emission and fluorescence of a measurement component.

【図4】プラズマ発光スペクトル並びに発光強度比の温
度依存性を示すグラフである。
FIG. 4 is a graph showing the temperature dependence of a plasma emission spectrum and an emission intensity ratio.

【図5】本発明の計測原理略図である。FIG. 5 is a schematic diagram of the measurement principle of the present invention.

【符号の説明】[Explanation of symbols]

1 プラズマ用パルスレーザ 2 レンズ 3 成分励起用パルスレーザ 4 ミラー 5 ビームコンバイナー 6 ミラー 7 レンズ 8 ビームスプリッター 9 分光器 10 CCDカメラ 11 光検出器 12 コンピュータ 13 同期ライン 01 サンプラー 02 分析装置(X線分析器、化学分析器等) DESCRIPTION OF SYMBOLS 1 Pulse laser for plasma 2 Lens 3 Pulse laser for component excitation 4 Mirror 5 Beam combiner 6 Mirror 7 Lens 8 Beam splitter 9 Spectroscope 10 CCD camera 11 Photodetector 12 Computer 13 Synchronization line 01 Sampler 02 Analyzer (X-ray analyzer , Chemical analyzer, etc.)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気体、液体、固体物質中に含まれる微量
成分を検出するに際して、第一のレーザ光を気体、液
体、固体物質に集光し、物質中の成分をプラズマ化さ
せ、プラズマを生成させてから一定時間後に誘起された
プラズマ中に、検出すべき成分の電子エネルギー差に対
応した波長を持つ第二のレーザ光を入射し、プラズマ中
に存在する検出すべき成分をレーザ励起し、第一のレー
ザ光照射により発生するプラズマ光を検出し、プラズマ
部に存在する成分組成及びプラズマ温度を同定すると共
に、第二のレーザ光照射により励起された測定対象成分
が発する蛍光強度を光検出器を用いて検出し、測定対象
成分が発する蛍光強度をプラズマ部に存在する成分組成
及びプラズマ温度で補正することにより、気体、液体、
固体物質中に存在する微量成分の濃度を測定することを
特徴とするレーザを用いた微量成分計測手法。
When detecting a trace component contained in a gas, liquid, or solid substance, a first laser beam is focused on the gas, liquid, or solid substance, and the components in the substance are turned into plasma. A second laser beam having a wavelength corresponding to the electron energy difference of the component to be detected is incident on the plasma induced a certain time after generation, and the component to be detected present in the plasma is laser-excited. Detecting the plasma light generated by the first laser light irradiation, identifying the component composition and the plasma temperature present in the plasma portion, and detecting the fluorescence intensity emitted by the measurement target component excited by the second laser light irradiation. By detecting with a detector and correcting the fluorescence intensity emitted by the component to be measured with the component composition and plasma temperature present in the plasma section, gas, liquid,
A trace component measurement method using a laser, which comprises measuring the concentration of a trace component present in a solid substance.
【請求項2】 気体、液体、固体物質中に含まれる微量
成分を検出する計測装置であって、気体、液体、固体物
質中の成分をプラズマ化させる第一のレーザ光を出力す
るプラズマ用レーザ光源及び該レーザ光を前記物質に集
光する光学系と、検出すべき成分の電子エネルギー差に
対応した波長を持ちプラズマ中に存在する検出すべき成
分をレーザ励起する第二のレーザ光をプラズマ生成から
一定時間後に出力する成分励起用レーザ光源及び該レー
ザ光を誘起されたプラズマ中に入射させる光学系と、第
一のレーザ光照射により発生するプラズマ光を検出し、
プラズマ部に存在する成分組成及びプラズマ温度を同定
する手段と、第二のレーザ光照射により励起された測定
対象成分が発する蛍光強度を光検出器を用いて検出し、
測定対象成分が発する蛍光強度をプラズマ部に存在する
成分組成及びプラズマ温度で補正する手段とを有し、気
体、液体、固体物質中に存在する微量成分の濃度を測定
することを特徴とするレーザを用いた微量成分計測装
置。
2. A measuring device for detecting a trace component contained in a gas, a liquid, or a solid substance, wherein the plasma laser outputs a first laser beam for converting the gas, liquid, or solid substance into a plasma. A light source and an optical system for condensing the laser light on the substance; and a second laser light having a wavelength corresponding to the electron energy difference of the component to be detected and laser-exciting the component to be detected present in the plasma. A laser light source for component excitation that is output after a certain time from generation and an optical system that causes the laser light to enter the induced plasma, and detects plasma light generated by the first laser light irradiation,
Means for identifying the component composition and the plasma temperature present in the plasma portion, and detecting the fluorescence intensity emitted by the measurement target component excited by the second laser beam irradiation using a photodetector,
Means for correcting the fluorescence intensity emitted by the component to be measured with the component composition and the plasma temperature present in the plasma portion, and measuring the concentration of a trace component present in a gas, liquid, or solid substance. Trace component measurement device using
JP29228896A 1996-11-05 1996-11-05 Trace component measurement method and device using laser Expired - Lifetime JP3377699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29228896A JP3377699B2 (en) 1996-11-05 1996-11-05 Trace component measurement method and device using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29228896A JP3377699B2 (en) 1996-11-05 1996-11-05 Trace component measurement method and device using laser

Publications (2)

Publication Number Publication Date
JPH10132741A true JPH10132741A (en) 1998-05-22
JP3377699B2 JP3377699B2 (en) 2003-02-17

Family

ID=17779824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29228896A Expired - Lifetime JP3377699B2 (en) 1996-11-05 1996-11-05 Trace component measurement method and device using laser

Country Status (1)

Country Link
JP (1) JP3377699B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003510A (en) * 2005-05-26 2007-01-11 Toshiba Corp Element analysis method and apparatus, and analysis sample producing method
JP2008032606A (en) * 2006-07-31 2008-02-14 Japan Aerospace Exploration Agency Analyzing method and device in laser induced plasma spectroscopy
JP2008292169A (en) * 2007-05-22 2008-12-04 Nippon Steel Corp Apparatus and method for monitoring refining
JP2008298449A (en) * 2007-05-29 2008-12-11 Kobe Steel Ltd Plasma constituent element analyzer
JP2010216915A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP2010216913A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP4838270B2 (en) * 2005-02-28 2011-12-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Methods and systems for physicochemical analysis using laser pulse ablation
CN102706850A (en) * 2012-06-25 2012-10-03 哈尔滨工业大学 Calibration method and device based on laser induced plasma spectroscopy and method and device for measuring equivalent ratio of combustible gas to oxidant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618132A4 (en) * 2010-09-15 2016-04-06 Imagineering Inc Analysis device and analysis method
CN108168726B (en) * 2016-12-08 2020-10-02 中国科学院福建物质结构研究所 Method for measuring internal temperature of gain medium in solid laser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838270B2 (en) * 2005-02-28 2011-12-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Methods and systems for physicochemical analysis using laser pulse ablation
JP2007003510A (en) * 2005-05-26 2007-01-11 Toshiba Corp Element analysis method and apparatus, and analysis sample producing method
JP2008032606A (en) * 2006-07-31 2008-02-14 Japan Aerospace Exploration Agency Analyzing method and device in laser induced plasma spectroscopy
JP2008292169A (en) * 2007-05-22 2008-12-04 Nippon Steel Corp Apparatus and method for monitoring refining
JP2008298449A (en) * 2007-05-29 2008-12-11 Kobe Steel Ltd Plasma constituent element analyzer
JP2010216915A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP2010216913A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
CN102706850A (en) * 2012-06-25 2012-10-03 哈尔滨工业大学 Calibration method and device based on laser induced plasma spectroscopy and method and device for measuring equivalent ratio of combustible gas to oxidant

Also Published As

Publication number Publication date
JP3377699B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP4046612B2 (en) X-ray fluorescence analyzer combined with laser-induced fluorescence quantum analyzer
US6657721B1 (en) Method for quantitative analysis of atomic components of materials by LIBS spectroscopy measurements
Lazzari et al. Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique
US5715053A (en) Method for determining the concentration of atomic species in gases and solids
JP3377699B2 (en) Trace component measurement method and device using laser
Stevenson et al. Analysis of polynuclear aromatic compounds using laser-excited synchronous fluorescence
CN109387482A (en) Isotope measure device
Corsi et al. Calibration free laser induced plasma spectroscopy: a new method for combustion products analysis
JP2009288067A (en) Analyzing method and analyzer
Bauer et al. Rapid, ultra-sensitive detection of gas phase elemental mercury under atmospheric conditions using sequential two-photon laser induced fluorescence
JP3660938B2 (en) Component analysis method using laser
Petrucci et al. Analytical and spectroscopic characterization of double-resonance laser-induced fluorescence of gold atoms in a graphite furnace and in a flame
JP3349353B2 (en) Solid particle component analyzer using laser
JP3197132B2 (en) Measuring device using laser light
JPH112604A (en) Method and device for analyzing element
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
Kumar et al. Stack gas pollutant detection using laser Raman spectroscopy
JP2948209B1 (en) Method and apparatus for monitoring trace components in gas
JPS5957143A (en) Measurement of nox concentration
JP2002526767A (en) Method and system for isotope-selective measurement of chemical elements present in substances
JPH0875651A (en) Method for emission spectrochemical analysis by laser
Telle In-situ assaying of materials using laser analytical spectroscopy
JPH112605A (en) Directly analyzing method of gas using laser
JPH09281044A (en) Analytical method for metal carbide
JPH08247943A (en) Method and device for metering carbide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term