JP2008292169A - Apparatus and method for monitoring refining - Google Patents

Apparatus and method for monitoring refining Download PDF

Info

Publication number
JP2008292169A
JP2008292169A JP2007135052A JP2007135052A JP2008292169A JP 2008292169 A JP2008292169 A JP 2008292169A JP 2007135052 A JP2007135052 A JP 2007135052A JP 2007135052 A JP2007135052 A JP 2007135052A JP 2008292169 A JP2008292169 A JP 2008292169A
Authority
JP
Japan
Prior art keywords
refining
molten metal
tuyere
analysis
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007135052A
Other languages
Japanese (ja)
Other versions
JP5052962B2 (en
Inventor
Hiroyuki Kondo
裕之 近藤
Mayumi Okimori
麻佑巳 沖森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007135052A priority Critical patent/JP5052962B2/en
Publication of JP2008292169A publication Critical patent/JP2008292169A/en
Application granted granted Critical
Publication of JP5052962B2 publication Critical patent/JP5052962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously monitor refining at analyses of molten metals in a refining container by solving the problem of analysis interruptions due to interferences by slag and their solidification to a tuyere for analysis. <P>SOLUTION: The tuyere 1 for analysis is passed through a refractor 14 at the side wall of the refining container, has one end open to the outside of the refining container and the other end open to the inside of the refining container, and is provided in such a way that an inside opening part of the refining container may be at a location lower than the surface 5 of molten metals and that an outside opening part of the refining container may be at a location higher than the surface 5 of molten metals at refining. A laser beam is irradiated to the surface M of molten meals to be analyzed at the same level as the surface 5 of molten metals in the refining container formed in the tuyere for analysis to observe light emission. It is possible to easily secure the surface M of molten metals to be analyzed not covered with slag in the tuyere 1 for analysis, prevent the adhesion of metals to the tuyere, and stably, continuously perform laser emission analysis. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属精錬工程において、溶融金属中の化学成分をリアルタイムに測定するためのものである。特に、鉄鋼の精錬における、転炉(1次精錬)やRH等の2次精錬のモニタリングに適用可能なものである。   The present invention is for measuring chemical components in molten metal in real time in a metal refining process. In particular, it is applicable to monitoring of secondary refining such as converter (primary refining) and RH in steel refining.

以下、鉄の精錬を例として説明する。製鋼の精錬において、成分を連続的に測定することが必要になる。転炉では、O2をランスから上吹き込み、さらに炉底から吹き込むことを実施して、脱炭すると同時に脱P、脱S等を進めている。脱炭するにはO2の吹込みを継続することが有効であるが、炭素濃度が銑鉄の4%から下がって0.3%以下になってくると、吹き込まれたO2が鉄分の酸化に使用されることになり、鉄分ロス(FeOの生成)が増加する。吹錬を終了するときは、狙いとするC濃度や温度になることが必要であるが、FeOが生成する状況ではC濃度を的中させることはできない。さらに、増加したFeOは耐火物と反応して、耐火物の溶損が進み、コストの増大を引き起こす。上記の成分の不的中や耐火物の溶損という課題に対して、吹錬中の成分を連続的に測定する必要がある。一方、スポット的に成分を測定する方式としては、サブランス方式があり、吹錬が終了する直前で溶鋼の中からサンプルを取り、発光分析でC濃度を決定するが、情報の量が極めて少なく、高い精度で狙いとするC濃度や温度にすることは難しい上に、鉄分ロス(FeO)を少ないように制御をすることは極めて難しい。以上のような現在の状況に対して、連続的に成分を測定する技術が求められている。 Hereinafter, iron refining will be described as an example. In refining steelmaking, it is necessary to continuously measure the components. In the converter, O 2 is blown up from the lance and then blown from the bottom of the furnace to decarburize and at the same time de-P and S are being promoted. To decarburize, it is effective to continue blowing O 2 , but when the carbon concentration falls below 0.3% from 4% of pig iron, the blown O 2 is used for oxidation of iron. As a result, iron loss (production of FeO) increases. At the end of blowing, it is necessary to reach the target C concentration and temperature, but in the situation where FeO is generated, the C concentration cannot be achieved. Further, the increased FeO reacts with the refractory, causing the refractory to melt and increase the cost. It is necessary to continuously measure the components during blowing in response to the problem of inadequate of the above components and refractory melting. On the other hand, as a method of measuring components in a spot manner, there is a sublance method, a sample is taken from molten steel immediately before the end of blowing, and the C concentration is determined by emission analysis, but the amount of information is extremely small, It is difficult to achieve the target C concentration and temperature with high accuracy, and it is extremely difficult to control the iron loss (FeO) to be small. In view of the current situation as described above, a technique for continuously measuring components is required.

次に、2次精錬技術に関しては、例えば、大量生産の脱ガス装置(RH)における場合を述べる。RHの主要な目標は脱炭である。脱ガス処理でのC成分の挙動を把握することは重要であり、特に目標とするC濃度になった時点で処理を終了することで、真空化する際の蒸気の無駄な使用を避けて、コスト削減が可能となる。このためには、連続成分測定が必要になり、従来、次の2つの方法が一般的に採用されている。   Next, regarding the secondary refining technology, for example, the case of mass production degassing equipment (RH) will be described. RH's main goal is decarburization. It is important to understand the behavior of the C component in the degassing process, especially by ending the process when the target C concentration is reached, avoiding wasteful use of steam when evacuating, Cost reduction is possible. For this purpose, continuous component measurement is required, and the following two methods have been generally adopted.

一つは、処理中の排気ガス中のCO濃度を測定し、処理開始時点のC濃度から排出された炭素量を差し引いて、処理中の炭素を推定しているが、必ずしも精度が高くない。他の方法は、取鍋の表面に近い溶鋼のサンプルを採取して、迅速に発光分析装置で分析する方法で、Cとその他のMn等の成分分析が可能であるが、サンプルをバッチで採取する上に、脱ガス装置とは離れた場所の分析装置で処理するので、脱ガス処理における成分変化に迅速に追従できないのが欠点である。   One is to measure the CO concentration in the exhaust gas during processing, and subtract the amount of carbon discharged from the C concentration at the start of processing to estimate the carbon during processing, but the accuracy is not necessarily high. The other method is to collect a sample of molten steel close to the ladle surface and quickly analyze it with an emission analyzer. Component analysis such as C and other Mn is possible, but samples are collected in batches. In addition, since the processing is performed by an analysis device at a location away from the degassing apparatus, it is a drawback that it is impossible to quickly follow the component change in the degassing process.

以上のように、製鋼の大量生産を支える転炉と脱ガス装置では、処理中の刻々とした成分変化を把握することができず、解決されねばならない課題であった。   As described above, in the converter and degassing apparatus that support mass production of steelmaking, it is impossible to grasp the component change every moment during the process, which is a problem to be solved.

これらの対応策として、レーザを溶鋼に照射して溶鋼に含有される成分に応じた励起発光を成分の分析に活用する方式の開発が進められてきた。この方式では、溶鋼にレーザを照射する技術で二つの方式がある。方法(I)は、溶鋼の上からレーザを照射する方法であり、他の方法(II)は、溶鋼を保持している耐火物に羽口を穿ち、その羽口から溶鋼にレーザを照射する方法である。   As countermeasures for these problems, development of a method for irradiating molten steel with laser and utilizing excitation light emission according to the component contained in the molten steel for analysis of the component has been advanced. In this method, there are two methods for irradiating the molten steel with laser. Method (I) is a method of irradiating a laser from above the molten steel, and the other method (II) pierces the refractory holding the molten steel and irradiates the molten steel from the tuyere. Is the method.

方法(I)としては、例えば、特許文献1〜3に開示されており、また、方法(II)としては、特許文献4に開示されている。
特開2002-174631号公報 特開平8-219993号公報 特開平7-190933号公報 特開昭60-231141号公報
The method (I) is disclosed in, for example, Patent Documents 1 to 3, and the method (II) is disclosed in Patent Document 4.
JP 2002-174631 A JP-A-8-219993 Japanese Laid-Open Patent Publication No.7-190933 Japanese Unexamined Patent Publication No. 60-231141

上記の方法(I)では、溶鋼の上にはスラグがあり、そのスラグを除去して溶鋼に直接にレーザを照射する必要がある。しかし、一般的には、取鍋内ではスラグの厚みが約100mm程度あり、転炉内ではガスを含んでではあるが約1mの厚みがあり、これを排除して裸の湯面を出すことが困難であった。   In the above method (I), there is slag on the molten steel, and it is necessary to remove the slag and directly irradiate the molten steel with laser. However, in general, the thickness of the slag is about 100mm in the ladle, and there is a thickness of about 1m in the converter, even though it contains gas. It was difficult.

方法(II)は、溶鋼内にスラグは存在しないので、上記方法(1)の課題はないが、溶鋼内に羽口は設置されているので、大量の溶鋼が内部に差し込んで固まらないように、羽口にガスを流して溶鋼の静圧分以上の圧力をかける必要がある。吹き込むガスは、通常はArやN2のような不活性ガスを選択するが、羽口の先端がガスの顕熱により冷却されて、地金が成長し付着し易い。この地金が付着したために、羽口の入り口側から溶鋼側を見ると、羽口の断面積に相当するだけの溶鋼面を見ることができず、羽口の入り口側内部からレーザを溶鋼に照射しても十分な照射面積が得られなくなる。その結果、十分な励起発光を得ることができないので、溶鋼に含有される成分を正確に判定することができないという問題があった。 Method (II) has no problem with the above method (1) because there is no slag in the molten steel, but there are tuyere installed in the molten steel, so that a large amount of molten steel is not inserted and hardened. It is necessary to apply a pressure higher than the static pressure of the molten steel by flowing gas through the tuyere. As the gas to be blown, an inert gas such as Ar or N 2 is usually selected, but the tip of the tuyere is cooled by the sensible heat of the gas, and the metal is likely to grow and adhere. Because this metal was attached, when the molten steel side was viewed from the entrance side of the tuyere, the molten steel surface corresponding to the cross-sectional area of the tuyere could not be seen. Even if it irradiates, sufficient irradiation area cannot be obtained. As a result, there is a problem that the components contained in the molten steel cannot be accurately determined because sufficient excitation light emission cannot be obtained.

本発明は、上記方法(I)及び(II)のそれぞれの方式に固有の実用上の問題点を解決し、スラグが排除されていて、かつ、地金付着が無い、十分な面積の分析湯面を安定して確保し、安定して精度の良いレーザ発光分析による精錬モニタリングのための装置及び方法を提供することを目的とする。   The present invention solves the practical problems inherent in each of the above methods (I) and (II), eliminates slag, and does not cause metal adhesion, so that the analysis hot water has a sufficient area. An object of the present invention is to provide an apparatus and method for refining monitoring by laser emission analysis that stably secures a surface and is stable and accurate.

上記課題を解決するための本発明の要旨は、以下の通りである。
(1) 精錬容器の側壁の耐火物を貫通し、その一端が精錬容器外部に開口し、他端が精錬容器内部に開口していて、精錬時、精錬容器の内部側の開口部が溶融金属湯面より低い位置にあり、かつ、精錬容器の外部側の開口部が溶融金属湯面よりも高い位置にあるように分析用羽口が設けられた精錬容器と、精錬時、前記分析用羽口内部に形成される溶融金属の湯面にレーザを照射して溶融金属の一部を気化及び原子化するためのアブレーションレーザ発振器と、分析目的元素を共鳴励起するための選択励起レーザ発振器と、前記湯面上に発生した発光を伝送するための光ファイバーと、分光分析装置と、レーザ誘起蛍光を計測するための光量検出器とを少なくとも備えることを特徴とする精錬モニタリング装置。
(2) 前記分析用羽口内部にガス導入口と、ガス排出口と、電磁バルブを備えた観測用ノズルが挿入されている (1)に記載の精錬モニタリング装置。
(3) 前記観測用ノズルの少なくとも最も内側がステンレス製の管である(2)に記載の精錬モニタリング装置。
(4) 前記分析用羽口が、精錬容器外部側の内径よりも精錬容器内部側の内径が大きくなるテーパーを有する(1)〜(3)のいずれかに記載の精錬モニタリング装置。
(5) 前記精錬容器が転炉であり、前記溶融金属が溶銑又は溶鋼の一方又は両方である(1)〜(4)のいずれかに記載の精錬モニタリング装置。
(6) 前記精錬容器が2次精錬脱ガス真空槽であり、前記溶融金属が溶鋼である(1)〜(4)のいずれかに記載の精錬モニタリング装置。
(7) 精錬容器の側壁の耐火物を貫通し、その一端が精錬容器外部に開口し、他端が精錬容器内部に開口していて、精錬時、精錬容器内部側の開口部が溶融金属湯面より低い位置にありかつ、精錬容器外部側の開口部が溶融金属湯面よりも高い位置にあるように設けられた分析用羽口内部に形成される溶融金属の湯面に、溶融金属の一部を気化及び原子化するためのアブレーションレーザを照射して発生した発光を分光分析することによって、溶融金属中の化学成分濃度を測定することを特徴とする精錬モニタリング方法。
(8) 精錬容器の側壁の耐火物を貫通し、その一端が精錬容器外部に開口し、他端が精錬容器内部に開口していて、精錬時、精錬容器内部側の開口部が溶融金属湯面より低い位置にありかつ、精錬容器外部側の開口部が溶融金属湯面よりも高い位置にあるように設けられた分析用羽口内部に形成される溶融金属の湯面に、アブレーションレーザを照射して前記溶融金属の一部を蒸発・原子化した後、分析目的元素の共鳴波長の一つに一致する波長の選択励起レーザを照射して発生させた発光光量を光量検出器によって電気シグナルに変換し、該電気シグナル強度を電送して測定することによって、溶融金属中の化学成分濃度を測定することを特徴とする精錬モニタリング方法。
The gist of the present invention for solving the above problems is as follows.
(1) It penetrates the refractory on the side wall of the smelting vessel, one end opens to the outside of the smelting vessel, and the other end opens to the inside of the smelting vessel. A refining vessel provided with an analysis tuyere at a position lower than the molten metal surface and having an opening on the outside of the refining vessel located at a position higher than the molten metal surface; An ablation laser oscillator for vaporizing and atomizing a part of the molten metal by irradiating a molten metal surface of the molten metal formed inside the mouth, and a selective excitation laser oscillator for resonantly exciting the element to be analyzed, A refining monitoring device comprising at least an optical fiber for transmitting light emission generated on the molten metal surface, a spectroscopic analyzer, and a light amount detector for measuring laser-induced fluorescence.
(2) The refining monitoring apparatus according to (1), wherein an observation nozzle including a gas inlet, a gas outlet, and an electromagnetic valve is inserted into the analysis tuyere.
(3) The refining monitoring apparatus according to (2), wherein at least the innermost side of the observation nozzle is a stainless steel pipe.
(4) The refining monitoring device according to any one of (1) to (3), wherein the analysis tuyere has a taper in which the inner diameter on the inner side of the refining vessel is larger than the inner diameter on the outer side of the refining vessel.
(5) The refining monitoring apparatus according to any one of (1) to (4), wherein the refining vessel is a converter, and the molten metal is one or both of hot metal and molten steel.
(6) The refining monitoring apparatus according to any one of (1) to (4), wherein the refining vessel is a secondary refining degassing vacuum tank, and the molten metal is molten steel.
(7) The refractory on the side wall of the smelting vessel penetrates, one end of which opens to the outside of the smelting vessel, and the other end opens to the inside of the smelting vessel. On the surface of the molten metal formed inside the tuyere for analysis provided so that the opening on the outside of the refining vessel is at a position higher than the surface of the molten metal. A refining monitoring method comprising measuring a chemical component concentration in a molten metal by spectroscopically analyzing light emission generated by irradiating an ablation laser for vaporizing and atomizing a part.
(8) The refractory on the side wall of the smelting vessel passes through, one end of which opens to the outside of the smelting vessel, and the other end opens to the inside of the smelting vessel. The ablation laser is applied to the molten metal surface formed inside the tuyere for analysis provided so that the opening on the outside of the refining vessel is at a position higher than the molten metal surface. After irradiating and evaporating and atomizing a part of the molten metal, the amount of emitted light emitted by irradiating a selective excitation laser having a wavelength that matches one of the resonance wavelengths of the element to be analyzed is converted into an electric signal by a light amount detector. A refining monitoring method characterized in that the chemical component concentration in the molten metal is measured by converting the electric signal intensity into electric power and measuring the electric signal intensity by electric transmission.

本発明によって、スラグに覆われていない分析湯面が簡便に確保でき、羽口の地金付着も発生しなくなり、安定して連続的なレーザ発光分析が可能となった。これにより、精錬時間の短縮が図られ、ガスや水蒸気、耐火物等の変動コストを削減することに寄与することができる。   According to the present invention, an analysis hot water surface not covered with slag can be easily secured, and no metal deposit on the tuyere is generated, so that stable and continuous laser emission analysis can be performed. Thereby, shortening of refining time can be achieved and it can contribute to reducing variable costs, such as gas, water vapor, and refractory.

以下、本発明をさらに詳細に説明する。
まず、スラグの排除に関する課題について述べる。スラグを排除するためには、堰を溶鋼内に設置にする方法が有効である。この考え方を取り入れて、分析用羽口1の形状を図1のようにして、羽口のDの箇所(精錬容器内部側の分析用羽口1の開口部よりも上方に位置する精錬容器内側面)が堰の役目を果して、分析用羽口1内にスラグのない湯面Mを作ることができる。湯面Mの位置は、溶鋼(溶融金属6)の湯面レベル5と同じ1次メニスカスの位置である。
Hereinafter, the present invention will be described in more detail.
First, issues related to slag elimination will be described. In order to eliminate slag, it is effective to install a weir in the molten steel. Incorporating this concept, the shape of the analysis tuyere 1 is as shown in Fig. 1, and the location of the tuyere D (in the refining vessel located above the opening of the analysis tuyere 1 inside the refining vessel) The side surface) serves as a weir, and a hot water surface M without slag can be formed in the analysis tuyere 1. The position of the molten metal surface M is the position of the primary meniscus which is the same as the molten metal surface level 5 of the molten steel (molten metal 6).

次に、羽口の凝固・閉塞に対する方策として、大量にガスを吹き込まなくても良いようにするには、溶鋼6の静圧がかからない状態、即ち、分析位置における溶鋼水頭圧を0にすることが必要である。その状態は、図1に示すように、羽口1の中のメニスカス位置が精錬容器本体内部の湯面5と同じ位置になることである。   Next, as a measure against the solidification / clogging of the tuyere, in order not to blow a large amount of gas, the molten steel 6 is not subjected to static pressure, that is, the molten steel head pressure at the analysis position is set to zero. is required. As shown in FIG. 1, the state is that the meniscus position in the tuyere 1 is the same position as the hot water surface 5 inside the refining vessel body.

上記のように、図1に示すような羽口構造とすることで、スラグ排除と羽口閉塞の両課題を解決することができる。即ち、本発明の精錬容器には図1に示すように、側壁の耐火物14を斜めに貫通した分析用羽口1が設けられており、この分析用羽口1の精錬容器内側の開口部は、精錬時、溶融金属6の湯面5より低い位置に設けられている。このようにすることによって、精錬すべき溶融金属6が精錬容器に注入されたとき、分析用羽口1の途中にスラグに覆われていない分析湯面Mが形成される。   As described above, the tuyere structure as shown in FIG. 1 can solve both the problems of slag removal and tuyere blockage. That is, as shown in FIG. 1, the refining vessel of the present invention is provided with an analysis tuyere 1 that obliquely penetrates the refractory 14 on the side wall, and an opening inside the refining vessel of this analyzing tuyere 1 Is provided at a position lower than the molten metal surface 5 of the molten metal 6 during refining. By doing in this way, when the molten metal 6 to be smelted is poured into the smelting vessel, the analysis hot water surface M not covered with the slag is formed in the middle of the analysis tuyere 1.

操業上からの問題点は、溶融金属6の湯表面位置が変化することで、二つの場合がある。先ず、毎回のチャージで溶融金属量は変動することであり、溶融金属6の変化量、即ち、メニスカスの変化に応じることができるように羽口の長さが決定される。   There are two problems in operation from the fact that the surface position of the molten metal 6 changes. First, the amount of molten metal varies with each charge, and the tuyere length is determined so that the amount of change of the molten metal 6, that is, the change of the meniscus can be accommodated.

次に、精錬容器の耐火物が溶損するから、同じ溶融金属量でも湯表面位置、メニスカスは、下降する側に変化していくことが起きる。これに対応するには、羽口レンガの設定位置を精錬容器の使用回数の増加に応じて変化させるようにする。即ち、羽口を交換して配置する方式が有効で、精錬容器の使用回数が少ない、耐火物の溶損が少ないときは、位置H(高目の位置)に羽口を設定し、精錬容器の使用回数が多い、耐火物の溶損が大きくなったときは、位置L(低目の位置)に羽口を設定することを実行することで、これに対処することができる。   Next, since the refractory in the smelting vessel melts down, the hot metal surface position and the meniscus may change to the lowering side even with the same amount of molten metal. In order to cope with this, the setting position of the tuyere brick is changed according to the increase in the number of times the refining vessel is used. That is, when the method of exchanging the tuyere is effective, the number of times the smelting vessel is used is low, and the refractory melts little, the tuyere is set at position H (high position), and the smelting vessel Can be dealt with by setting a tuyere at position L (low position).

羽口内部のメニスカス部分で地金が固まらないようにするためには、羽口1の溶融金属側(精錬容器の内部側)はやや広目になるように、テーパーがついていることが望ましく、このことによって、常に高温の溶融金属6が羽口1の中に入り込むようになる。このためには、羽口1の全長に亘ってテーパーがついている必要はなく、羽口1の中でメニスカスが形成され得る部分がテーパーを有していればよい。羽口全長の内、テーパーを有す部分の長さをL(mm)、最大羽口内径と最小羽口内径との差をΔd(mm)としたとき、Δd/Lを1/50以上3/50以下とすることが望ましい。ここで、Δdは、10mm以上30mm以下が適当である。   In order to prevent the metal from solidifying at the meniscus portion inside the tuyere, it is desirable that the molten metal side of the tuyere 1 (the inner side of the refining vessel) is tapered so that it is slightly wider. As a result, the hot molten metal 6 always enters the tuyere 1. For this purpose, it is not necessary that the tuyere 1 has a taper over the entire length of the tuyere 1, and it is only necessary that the portion of the tuyere 1 where a meniscus can be formed has a taper. Of the total length of the tuyere, the length of the tapered portion is L (mm), and the difference between the maximum tuyere inner diameter and the minimum tuyere inner diameter is Δd (mm), Δd / L is 1/50 or more 3 / 50 or less is desirable. Here, Δd is suitably from 10 mm to 30 mm.

本発明の分析用羽口1では、溶融金属6が重力によって精錬容器から漏れ出ることは無いので、底吹き羽口等の場合のように、溶融金属6の静圧に逆らうほどの大流量のガスを羽口1に吹き込む必要はない。しかし、分析目的元素に炭素等が含まれる場合は、空気からの汚染を防止するために、Ar等の不活性ガスで羽口内部を置換する必要が生ずる。分析用羽口1内には、観測用ノズル7が挿入されており、電磁バルブ10を開いてガス吹込み口12から導入されたガスは、観測用ノズル7の溶融金属側開口部から羽口内部の分析湯面Mに向けて吹出され、羽口7内を満たした後、排気口13から精錬容器外側へ抜けて行く。観測用ノズル7の溶融金属側開口部は、溶融金属注入量の変動や精錬時の湯面変動を考慮し、分析湯面Mから上方の適当な距離、例えば、100〜300mmの距離に位置させることが望ましい。   In the analysis tuyere 1 of the present invention, the molten metal 6 does not leak out of the refining vessel due to gravity, so that the flow rate is large enough to counter the static pressure of the molten metal 6 as in the case of bottom blowing tuyere. There is no need to blow gas into the tuyere 1. However, when carbon or the like is included in the analysis target element, it is necessary to replace the inside of the tuyere with an inert gas such as Ar in order to prevent contamination from air. An observation nozzle 7 is inserted into the analysis tuyere 1, and the gas introduced from the gas blowing port 12 by opening the electromagnetic valve 10 is introduced from the molten metal side opening of the observation nozzle 7 into the tuyere. It blows out toward the analysis hot water surface M inside, fills the inside of the tuyere 7, and then escapes from the exhaust port 13 to the outside of the refining vessel. The opening on the molten metal side of the observation nozzle 7 is positioned at an appropriate distance above the analysis molten metal surface M, for example, a distance of 100 to 300 mm in consideration of fluctuations in the amount of molten metal injected and fluctuations in the molten metal surface during refining. It is desirable.

溶融金属6の装入や出湯中は、羽口内部に不活性ガスが吹き込まれていて、スラグや溶融金属6が差し込まないようにする。このときは、排気側の電磁バルブ11を閉じ、ガス導入側の電磁バルブ10を開けて、所要量の流量でAr等のガスを吹き込めばよい。   During charging and discharging of the molten metal 6, inert gas is blown into the tuyere so that no slag or molten metal 6 is inserted. At this time, the exhaust-side electromagnetic valve 11 is closed, the gas introduction-side electromagnetic valve 10 is opened, and a gas such as Ar is blown in at a required flow rate.

精錬容器の壁の中での円周方向の配置は、溶銑の装入や溶融金属6の出鋼における湯面5の位置を考慮することに加えて、羽口1の交換を考慮して決める必要がある。今、精錬容器として転炉の場合を、図2を参照しながら考える。先ず、トラニオン位置100,101は、転炉の傾動装置があるので、羽口交換が極めて困難であり、実機では採用できない。そこで、出鋼側102もしくは装入側103のどちらが有利かを考察する。出鋼側102に羽口1を設定すると、羽口1は出鋼中に高温の溶鋼と直接接触する可能性があるので、採用し難い。一方、装入側103は、羽口1は低温の溶銑との接触になるが、転炉を垂直方向から45°程度傾けて溶銑を装入する際に溶銑が羽口内部に侵入しないようにする必要があるので、羽口位置は、トラニオン位置と装入側位置の中間位置、より詳しくはトラニオンを含む水平面内でトラニオンから35〜45°装入側の位置を採用することが有効であることが判明した。   The circumferential arrangement in the wall of the smelting vessel is determined in consideration of the replacement of the tuyere 1 in addition to considering the position of the molten metal surface 5 in the hot metal charging and the outgoing steel of the molten metal 6. There is a need. Now consider the case of a converter as a refining vessel with reference to FIG. First, the trunnion positions 100 and 101 have a converter tilting device, so it is very difficult to replace the tuyere and cannot be used in the actual machine. Therefore, it is considered which of the steel output side 102 and the charging side 103 is advantageous. If tuyeres 1 are set on the outgoing steel side 102, the tuyere 1 may be in direct contact with high-temperature molten steel during the outgoing steel and is difficult to employ. On the other hand, on the charging side 103, the tuyere 1 comes into contact with the low temperature hot metal, but when the converter is tilted about 45 ° from the vertical direction and the hot metal is charged, the hot metal does not enter the tuyere. It is effective to adopt the tuyere position at an intermediate position between the trunnion position and the charging side position, more specifically, a position 35 to 45 ° from the trunnion in the horizontal plane including the trunnion. It has been found.

また、RH真空槽に設ける羽口1の位置は、上昇管側は、スプラッシュが吹き上がり、湯面変動が大きいので、より湯面が安定している下降管側に設けるのが良い。   Further, the position of the tuyere 1 provided in the RH vacuum tank is preferably provided on the downcomer pipe side where the riser side is more stable because the splash blows up and the molten metal surface fluctuation is large.

次に、分析湯面Mにレーザを照射して、発光を観測する方法について述べる。
アブレーションレーザ発振器28から発振されたレーザは、ミラー22によって反射され、光学窓9を透過して観測ノズル7内を通り、分析湯面Mに照射される。ここで、レーザは、レンズ23によって、分析湯面M上で焦点を結ぶように集光される。レーザのエネルギーによって、分析湯面Mにレーザ誘起プラズマ8が生成し、このプラズマ8から放出される原子の発光は、観測ノズル7内をレーザとは逆向きに進行して光学窓9を透過後、ミラー20によって反射され、レンズ24によって光ファイバー26の受光端25に集光されて、光ファイバー26によって分光分析装置27に導かれ、分光分析装置27により、測定される分析目的元素の固有波長の線スペクトル強度から、予め求めておいた検量線を用いて、この元素の濃度が求められる。
Next, a method for observing light emission by irradiating the analysis hot water surface M with a laser will be described.
The laser oscillated from the ablation laser oscillator 28 is reflected by the mirror 22, passes through the optical window 9, passes through the observation nozzle 7, and is irradiated onto the analysis hot water surface M. Here, the laser is condensed by the lens 23 so as to be focused on the analysis surface M. Laser-induced plasma 8 is generated on the analysis surface M by the energy of the laser, and the emission of atoms emitted from the plasma 8 travels in the direction opposite to the laser in the observation nozzle 7 and passes through the optical window 9. Reflected by the mirror 20, condensed on the light receiving end 25 of the optical fiber 26 by the lens 24, guided to the spectroscopic analysis device 27 by the optical fiber 26, and measured by the spectroscopic analysis device 27. From the spectrum intensity, the concentration of this element is determined using a calibration curve determined in advance.

アブレーションレーザパルスから10〜150μsの遅延時間をおいて、選択励起レーザ29から選択励起レーザパルスが発振され、ミラー21によって反射された後、光学窓9を透過して観測ノズル7内を通り、分析湯面Mに照射される。選択励起レーザは、分析目的元素に共鳴する波長にチューニングして照射される。レーザ誘起蛍光は、観測ノズル7内をレーザとは逆向きに進行して光学窓9を透過後、ミラー19によって反射され、光量検出器30にて光量に比例する強さの電気シグナルに変換され、この電気シグナルは電線31によって測定装置32に電送され、測定、記録が行われる。このようにして測定された電気シグナル強度から、予め求めておいた検量線を用いて、この元素の濃度が求められる。   After a delay time of 10 to 150 μs from the ablation laser pulse, the selective excitation laser 29 oscillates from the selective excitation laser 29 and is reflected by the mirror 21, then passes through the optical window 9 and passes through the observation nozzle 7 for analysis. The hot water surface M is irradiated. The selective excitation laser is irradiated while being tuned to a wavelength that resonates with the analysis target element. The laser-induced fluorescence travels in the observation nozzle 7 in the opposite direction to the laser, passes through the optical window 9, is reflected by the mirror 19, and is converted into an electrical signal having a strength proportional to the amount of light by the light amount detector 30. The electric signal is transmitted to the measuring device 32 through the electric wire 31, and is measured and recorded. From the electric signal intensity measured in this way, the concentration of this element is determined using a calibration curve determined in advance.

分析羽口1は、厚さ約1mの炉壁を斜めに貫通するため、長さが2mにも及び、その内部の観測ノズル7も1〜1.5mの長さとなる。このため、分析湯面M上の発光を直接観測する立体角は小さい。そこで、発光が通過する観測ノズルとしては、ステンレス管を用いることで、発光観測効率が向上することを本発明者等は見出した。これは、発光がステンレス管内壁で反射されつつ、通過するため、直接観測される立体角よりも大きな立体角で放出される発光も検出されるためであると考えられる。このような反射特性を有し、高温で安定して用いることができ、かつ、安価な材料としてステンレス管が最適である。尚、ステンレス管の内面が電解研磨等が施されていて、粗度が小さければ、より好適である。   Since the analysis tuyere 1 obliquely penetrates the furnace wall having a thickness of about 1 m, the analysis tuyere 1 has a length of 2 m, and the observation nozzle 7 inside thereof has a length of 1 to 1.5 m. For this reason, the solid angle for directly observing the light emission on the analysis hot water surface M is small. Therefore, the present inventors have found that the use of a stainless steel tube as the observation nozzle through which light emission passes improves the light emission observation efficiency. This is considered to be because light emitted at a solid angle larger than the solid angle observed directly is detected because the light passes through while being reflected by the inner wall of the stainless steel tube. A stainless steel tube is most suitable as an inexpensive material that has such reflection characteristics and can be used stably at high temperatures. It is more preferable if the inner surface of the stainless steel tube is subjected to electrolytic polishing or the like and the roughness is small.

アブレーションレーザは、パルスレーザであり、分析湯面上でのエネルギー密度及び尖頭出力密度は、それぞれ、凡そ5J/cm2以上、0.3GW/cm2以上となるように、集光して照射されなければならない。この目的に使用されるレーザとしては、QスイッチパルスNd:YAGレーザが最も一般的であり、パルス時間半値全幅5〜15ns、パルスエネルギー100〜1000mJ、パルス繰り返し10〜50Hzのものが一般に市販されている。 The ablation laser is a pulsed laser that is focused and irradiated so that the energy density and the peak power density on the surface of the analytical solution are approximately 5 J / cm 2 or more and 0.3 GW / cm 2 or more, respectively. There must be. The most commonly used laser for this purpose is a Q-switched pulse Nd: YAG laser, with a pulse time half width of 5 to 15 ns, a pulse energy of 100 to 1000 mJ, and a pulse repetition of 10 to 50 Hz being generally marketed. Yes.

選択励起レーザとしては、チタンサファイアレーザ、色素レーザ、オプティカルパラメーター発振器(OPO)等が使用可能である。   As the selective excitation laser, a titanium sapphire laser, a dye laser, an optical parameter oscillator (OPO), or the like can be used.

レーザ発光を伝送するための光ファイバー26としては、溶融石英をコアとした光ファイバーが適している。   As the optical fiber 26 for transmitting the laser emission, an optical fiber having a fused silica core is suitable.

アブレーションレーザ発振器28及び選択励起レーザ発振器29は、精錬容器から独立して離れた位置に設置し、空間伝播又は光ファイバー伝播によって、分析用羽口1の入り口まで伝送することができる。あるいは、レーザ発振器28,29を分析用羽口1と一体化して設置しても良い。   The ablation laser oscillator 28 and the selective excitation laser oscillator 29 can be installed at a position independently from the refining vessel and can be transmitted to the entrance of the analysis tuyere 1 by spatial propagation or optical fiber propagation. Alternatively, the laser oscillators 28 and 29 may be installed integrally with the analysis tuyere 1.

分光分析装置27は、光ファイバー長5〜20mによって接続可能な場所に固定すれば良い。   The spectroscopic analyzer 27 may be fixed at a place where it can be connected by an optical fiber length of 5 to 20 m.

(実施例1)
150t転炉40の装入側に、図1に示した分析用羽口1を取り付けた。その概観を図3に示す。図3に示す分析用羽口1は、溶融金属側の500mm長さにわたってテーパーを有しており、溶融金属側の内径を40mm、溶融金属側の開口部から500mm鉄皮側の内径を30mmとした。溶融金属側の開口部は、炉底から約1800mmとし、精錬時に羽口の内部に分析湯面Mが生ずるようにした。炉正立時(精錬時)には、鉛直方向と羽口1の中心線とのなす角が約30°であった。図2に示すように、炉正立時の水平方向における羽口1の取り付け位置は、トラニオンから約40°の位置に取り付けた。
(Example 1)
The analysis tuyere 1 shown in FIG. 1 was attached to the charging side of the 150-ton converter 40. The overview is shown in FIG. The analytical tuyere 1 shown in FIG. 3 has a taper over a length of 500 mm on the molten metal side, the inner diameter on the molten metal side is 40 mm, the inner diameter on the molten metal side is 500 mm, and the inner diameter on the iron skin side is 30 mm. did. The opening on the molten metal side was about 1800 mm from the bottom of the furnace so that the analytical hot water surface M was generated inside the tuyere during refining. When the furnace was upright (during refining), the angle between the vertical direction and the center line of tuyere 1 was about 30 °. As shown in FIG. 2, the mounting position of the tuyere 1 in the horizontal direction when the furnace was upright was mounted at a position of about 40 ° from the trunnion.

羽口内部には、内側が内径7.5mmのステンレス管であり、その周囲はムライト管で包囲した観測用ノズル7を装入した。   Inside the tuyere, a stainless steel tube with an inner diameter of 7.5 mm was installed, and an observation nozzle 7 surrounded by a mullite tube was inserted around the tube.

溶銑装入時は、電磁バルブ11を閉じ、電磁バルブ10を開けて、Arガスを羽口内に吹き込むことによって、溶銑の羽口内への浸入を防止した。   At the time of hot metal charging, the electromagnetic valve 11 was closed, the electromagnetic valve 10 was opened, and Ar gas was blown into the tuyere to prevent the hot metal from entering the tuyere.

溶銑を装入後、炉40を正立させ、電磁バルブ11を開けて、観測用ノズル7にArガスを100〜200NL/minの流量で吹込み、観測用ノズル内部及び分析湯面Mの表面の雰囲気をパージした。   After the hot metal is charged, the furnace 40 is erected, the electromagnetic valve 11 is opened, and Ar gas is blown into the observation nozzle 7 at a flow rate of 100 to 200 NL / min. The atmosphere was purged.

QスイッチパルスNd:YAGレーザ(パルスエネルギー200mJ、パルス繰返し10Hz)を羽口内の分析湯面Mに照射し、次いで、炭素(C)の共鳴波長193.09nmにチューニングした波長可変レーザ(チタンサファイアレーザ)を照射することによって発生した発光を光量検出器30で測定し、電気シグナルを電線31で電送して、測定装置32で観測、記録した。測定装置としてはオシロスコープを用いた。   A Q-switched pulsed Nd: YAG laser (pulse energy 200 mJ, pulse repetition 10 Hz) is irradiated onto the analysis surface M in the tuyere, and then tuned to a resonance wavelength of carbon (C) of 193.09 nm (titanium sapphire laser) The light emission generated by irradiating was measured with the light quantity detector 30, and the electric signal was transmitted with the electric wire 31 and observed and recorded with the measuring device 32. An oscilloscope was used as a measuring device.

また、QスイッチパルスNd:YAGレーザを照射することによって発生した発光を20m長の光ファイバー26で分光分析装置27に伝送し、分光分析することによって、マンガン(Mn)の発光強度をモニタリングした。   Further, the light emission generated by irradiating the Q switch pulse Nd: YAG laser was transmitted to the spectroscopic analyzer 27 by the optical fiber 26 having a length of 20 m, and the light emission intensity of manganese (Mn) was monitored by spectroscopic analysis.

C濃度は、予め測定した既知C濃度と光量検出器30の出力電圧との関係(検量線)を用いて求めた。Mn濃度は、予め測定した既知Mn濃度とMn発光ピーク強度との関係(検量線)を用いて求めた。   The C concentration was determined using a relationship (calibration curve) between the known C concentration measured in advance and the output voltage of the light quantity detector 30. The Mn concentration was determined using the relationship (calibration curve) between the known Mn concentration measured in advance and the Mn emission peak intensity.

図5に、吹錬途中から上述の方法によって測定されたC、Mn濃度の推移を示す。図5の太い実線と細い実線は、それぞれ本発明の方法によって、30秒間隔で測定されたC及びMn濃度を示す。また、●、○は、それぞれ、サンプリングした溶鋼をスパーク発光分析法で分析して得た、C、Mn濃度を示す。   FIG. 5 shows changes in C and Mn concentrations measured by the above method from the middle of blowing. The thick solid line and the thin solid line in FIG. 5 indicate the C and Mn concentrations measured at intervals of 30 seconds by the method of the present invention, respectively. Further, ● and ○ indicate the C and Mn concentrations obtained by analyzing the sampled molten steel by the spark emission analysis method, respectively.

図5に示されるように、本発明の精錬モニタリング装置、方法を用いれば、分析用羽口1が溶融金属の凝固によって閉塞して分析が妨げられることがないので、連続的に溶融金属中成分濃度を測定することが可能であった。   As shown in FIG. 5, if the refining monitoring apparatus and method of the present invention are used, the analysis tuyere 1 is not blocked by the solidification of the molten metal and the analysis is not hindered. It was possible to measure the concentration.

(実施例2)
RH真空槽41の下降管側に、図1に示した分析用羽口1を取り付けた。その概観を図4に示す。分析用羽口1は、溶融金属側の500mm長さにわたってテーパーを有しており、溶融金属側の内径を40mm、溶融金属側の開口部から500mm鉄皮側の内径を30mmとした。溶融金属側の開口部の高さ(図4におけるH1)は、約150mmとし、溶鋼還流時に羽口の内部に擬似湯面Mが生ずるようにした。
(Example 2)
The analysis tuyere 1 shown in FIG. 1 was attached to the downcomer side of the RH vacuum chamber 41. An overview is shown in FIG. The analysis tuyere 1 has a taper over a length of 500 mm on the molten metal side, the inner diameter on the molten metal side is 40 mm, and the inner diameter on the 500 mm iron side from the opening on the molten metal side is 30 mm. The height of the opening on the molten metal side (H1 in FIG. 4) was set to about 150 mm so that a simulated molten metal surface M was generated inside the tuyere when the molten steel was refluxed.

羽口内部には、内側が内径7.5mmのステンレス管であり、その周囲はムライト管で包囲した観測用ノズル7を装入した。   Inside the tuyere, a stainless steel tube with an inner diameter of 7.5 mm was installed, and an observation nozzle 7 surrounded by a mullite tube was inserted around the tube.

電磁バルブ10及び11は共に閉じた状態で、真空槽の上昇管と下降管を取鍋42中の溶鋼に浸漬し、真空引きを開始し、溶鋼を還流させ真空精錬を開始した。   With the electromagnetic valves 10 and 11 both closed, the ascending and descending tubes of the vacuum chamber were immersed in the molten steel in the ladle 42, evacuation was started, the molten steel was refluxed, and vacuum refining was started.

QスイッチパルスNd:YAGレーザ(パルスエネルギー200mJ、パルス繰返し10Hz)を羽口内の分析湯面Mに照射し、次いで、Cの共鳴波長193.09nmにチューニングした波長可変レーザ(チタンサファイアレーザ)を照射することによって発生した発光を光量検出器30で測定し、電気シグナルをオシロスコープで観測、記録した。   A Q-switched pulse Nd: YAG laser (pulse energy 200 mJ, pulse repetition 10 Hz) is irradiated to the analysis hot water surface M in the tuyere, and then a wavelength tunable laser (titanium sapphire laser) tuned to a resonance wavelength of C of 193.09 nm. The emitted light was measured by the light quantity detector 30 and the electric signal was observed and recorded with an oscilloscope.

C濃度は、予め測定した既知C濃度と光量検出器の出力電圧との関係(検量線)を用いて求めた。   The C concentration was determined using the relationship (calibration curve) between the known C concentration measured in advance and the output voltage of the light amount detector.

図6に、上述の方法によって測定されたC濃度の推移(実線)を示す。図6中の●は、サンプリングした溶鋼を燃焼赤外線吸収法によって定量したC濃度を示す。   FIG. 6 shows the transition (solid line) of the C concentration measured by the method described above. The black circles in Fig. 6 indicate the C concentration determined by the combustion infrared absorption method of the sampled molten steel.

図6から、本発明の精錬モニタリング装置、方法を用いれば、取鍋湯面のスラグや分析用羽口1での溶融金属の凝固による閉塞によって分析が妨げられることがないので、連続的に溶融金属中成分濃度を測定することが可能であることが示された。   From FIG. 6, if the refining monitoring apparatus and method of the present invention are used, the analysis is not hindered by the slag of the ladle hot water surface or the clogging due to the solidification of the molten metal at the tuyere 1 for analysis. It has been shown that the concentration of components in metals can be measured.

本発明の分析用羽口及び分析装置の構成を表す図The figure showing the structure of the analysis tuyere and analyzer of this invention 転炉の水平方向の分析用羽口取り付け位置を説明する図The figure explaining the tuyere mounting position for horizontal analysis of the converter 転炉に本発明の分析用羽口及び分析装置を取り付けた装置構成図Device configuration diagram with the analysis tuyere and analyzer of the present invention attached to the converter RH真空槽に本発明の分析用羽口及び分析装置を取り付けた装置構成図Device configuration diagram with the analysis tuyere and analyzer of the present invention attached to the RH vacuum chamber 本発明により転炉精錬におけるMn、Cの濃度を連続的に測定した結果を示す図The figure which shows the result of having continuously measured the density | concentration of Mn and C in converter refining by this invention 本発明によりRH真空脱ガスにおけるCの濃度を連続的に測定した結果を示す図The figure which shows the result of having continuously measured the density | concentration of C in RH vacuum degassing by this invention

符号の説明Explanation of symbols

1 : 分析用羽口
2 : 精錬容器鉄皮
3 : 精錬容器耐火物内壁面
4 : 精錬容器内側
5 : 溶融金属湯面
6 : 溶融金属
7 : 観測ノズル
8 : レーザ誘起プラズマ
9 : 光学窓
10,11 : 電磁バルブ
12 : ガス導入口
13 : 排気口
14 : 精錬容器側壁耐火物
19 : レーザ誘起蛍光反射ミラー
20 : レーザ発光反射ミラー
21 : 選択励起レーザ反射ミラー
22 : アブレーションレーザ反射ミラー
23 : レンズ
24 : レーザ発光集光レンズ
25 : 光ファイバー受光端
26 : 光ファイバー
27 : 分光分析装置
28 : アブレーションレーザ発振器
29 : 選択励起レーザ発振器
30 : 光量検出器
31 : 電送線
32 : 測定装置
33 : スラグ
40 : 転炉
41 : RH真空槽
42 : 取鍋
43 : 上昇管
44 : 下降管
100,101 : トラニオン側
102 : 出鋼側
103 : 装入側
104,105 : 分析用羽口取り付け位置
M : 分析湯面
1: analysis tuyere
2: Refining container iron skin
3: inner wall of refractory refractory
4: Inside the refining vessel
5: Molten metal surface
6: Molten metal
7: Observation nozzle
8: Laser induced plasma
9: Optical window
10,11: Solenoid valve
12: Gas inlet
13: Exhaust port
14: Refractory container side wall refractory
19: Laser-induced fluorescence reflection mirror
20: Laser emission reflecting mirror
21: Selective excitation laser reflection mirror
22: Ablation laser reflection mirror
23: Lens
24: Laser-emitting condenser lens
25: Optical fiber receiving end
26: Optical fiber
27: Spectroscopic analyzer
28: Ablation laser oscillator
29: Selective pump laser oscillator
30: Light intensity detector
31: Transmission line
32: Measuring equipment
33: Slag
40: Converter
41: RH vacuum chamber
42: Ladle
43: Rise pipe
44: Downcomer
100,101: Trunnion side
102: Steel exit side
103: charging side
104,105: Mounting position for analysis tuyere
M: Analytical hot water

Claims (8)

精錬容器の側壁の耐火物を貫通し、その一端が精錬容器外部に開口し、他端が精錬容器内部に開口していて、精錬時、精錬容器の内部側の開口部が溶融金属湯面より低い位置にあり、かつ、精錬容器の外部側の開口部が溶融金属湯面よりも高い位置にあるように分析用羽口が設けられた精錬容器と、精錬時、前記分析用羽口内部に形成される溶融金属の湯面にレーザを照射して溶融金属の一部を気化及び原子化するためのアブレーションレーザ発振器と、分析目的元素を共鳴励起するための選択励起レーザ発振器と、前記湯面上に発生した発光を伝送するための光ファイバーと、分光分析装置と、レーザ誘起蛍光を計測するための光量検出器とを少なくとも備えることを特徴とする精錬モニタリング装置。   It penetrates the refractory on the side wall of the smelting vessel, one end opens to the outside of the smelting vessel, and the other end opens to the inside of the smelting vessel. A refining vessel provided with an analysis tuyere at a low position and the opening on the outside of the refining vessel is located at a position higher than the surface of the molten metal, and during refining, inside the analysis tuyere An ablation laser oscillator for vaporizing and atomizing a part of the molten metal by irradiating a laser on a molten metal surface to be formed, a selective excitation laser oscillator for resonantly exciting an analysis target element, and the molten metal surface A refining monitoring device comprising at least an optical fiber for transmitting emitted light generated thereon, a spectroscopic analyzer, and a light amount detector for measuring laser-induced fluorescence. 前記分析用羽口内部にガス導入口と、ガス排出口と、電磁バルブを備えた観測用ノズルが挿入されている請求項1に記載の精錬モニタリング装置。   2. The refining monitoring apparatus according to claim 1, wherein an observation nozzle including a gas inlet, a gas outlet, and an electromagnetic valve is inserted into the analysis tuyere. 前記観測用ノズルの少なくとも最も内側がステンレス製の管である請求項2に記載の精錬モニタリング装置。   3. The refining monitoring apparatus according to claim 2, wherein at least the innermost side of the observation nozzle is a stainless steel pipe. 前記分析用羽口が、精錬容器外部側の内径よりも精錬容器内部側の内径が大きくなるテーパーを有する請求項1〜3のいずれかに記載の精錬モニタリング装置。   4. The smelting monitoring apparatus according to claim 1, wherein the analysis tuyere has a taper in which the inner diameter on the inner side of the smelting container is larger than the inner diameter on the outer side of the smelting container. 前記精錬容器が転炉であり、前記溶融金属が溶銑又は溶鋼の一方又は両方である請求項1〜4のいずれかに記載の精錬モニタリング装置。 The refining monitoring apparatus according to any one of claims 1 to 4, wherein the refining vessel is a converter, and the molten metal is one or both of hot metal and molten steel. 前記精錬容器が2次精錬脱ガス真空槽であり、前記溶融金属が溶鋼である請求項1〜4のいずれかに記載の精錬モニタリング装置。 The refining monitoring apparatus according to any one of claims 1 to 4, wherein the refining vessel is a secondary refining degassing vacuum tank, and the molten metal is molten steel. 精錬容器の側壁の耐火物を貫通し、その一端が精錬容器外部に開口し、他端が精錬容器内部に開口していて、精錬時、精錬容器内部側の開口部が溶融金属湯面より低い位置にありかつ、精錬容器外部側の開口部が溶融金属湯面よりも高い位置にあるように設けられた分析用羽口内部に形成される溶融金属の湯面に、溶融金属の一部を気化及び原子化するためのアブレーションレーザを照射して発生した発光を分光分析することによって、溶融金属中の化学成分濃度を測定することを特徴とする精錬モニタリング方法。   It penetrates the refractory on the side wall of the refining vessel, one end opens to the outside of the refining vessel, and the other end opens to the inside of the refining vessel. During refining, the opening inside the refining vessel is lower than the molten metal surface A part of the molten metal on the surface of the molten metal formed inside the analysis tuyere provided so that the opening on the outside of the smelting vessel is at a position higher than the surface of the molten metal. A refining monitoring method characterized in that the chemical component concentration in a molten metal is measured by spectroscopic analysis of light emission generated by irradiation with an ablation laser for vaporization and atomization. 精錬容器の側壁の耐火物を貫通し、その一端が精錬容器外部に開口し、他端が精錬容器内部に開口していて、精錬時、精錬容器内部側の開口部が溶融金属湯面より低い位置にありかつ、精錬容器外部側の開口部が溶融金属湯面よりも高い位置にあるように設けられた分析用羽口内部に形成される溶融金属の湯面に、アブレーションレーザを照射して前記溶融金属の一部を蒸発・原子化した後、分析目的元素の共鳴波長の一つに一致する波長の選択励起レーザを照射して発生させた発光光量を光量検出器によって電気シグナルに変換し、該電気シグナル強度を電送して測定することによって、溶融金属中の化学成分濃度を測定することを特徴とする精錬モニタリング方法。   It penetrates the refractory on the side wall of the refining vessel, one end opens to the outside of the refining vessel, and the other end opens to the inside of the refining vessel. During refining, the opening inside the refining vessel is lower than the molten metal surface Ablation laser is applied to the molten metal surface formed in the tuyere for analysis, which is located at the position and the opening on the outside of the smelting vessel is higher than the molten metal surface. After evaporating and atomizing a part of the molten metal, the amount of emitted light generated by irradiating a selective excitation laser having a wavelength that matches one of the resonance wavelengths of the element to be analyzed is converted into an electric signal by a light amount detector. A refining monitoring method, wherein the concentration of chemical components in the molten metal is measured by measuring the electric signal intensity by electric transmission.
JP2007135052A 2007-05-22 2007-05-22 Refining monitoring apparatus and method Expired - Fee Related JP5052962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135052A JP5052962B2 (en) 2007-05-22 2007-05-22 Refining monitoring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135052A JP5052962B2 (en) 2007-05-22 2007-05-22 Refining monitoring apparatus and method

Publications (2)

Publication Number Publication Date
JP2008292169A true JP2008292169A (en) 2008-12-04
JP5052962B2 JP5052962B2 (en) 2012-10-17

Family

ID=40167059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135052A Expired - Fee Related JP5052962B2 (en) 2007-05-22 2007-05-22 Refining monitoring apparatus and method

Country Status (1)

Country Link
JP (1) JP5052962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032388A (en) * 2010-06-30 2012-02-16 Central Res Inst Of Electric Power Ind Method and device of measuring concentration of metallic surface adhesion component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231141A (en) * 1984-04-11 1985-11-16 フリード・クルツプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of measuring temperature of molten metal and chemicalcomposition
JPH0875651A (en) * 1994-09-06 1996-03-22 Sumitomo Metal Ind Ltd Method for emission spectrochemical analysis by laser
JPH10132741A (en) * 1996-11-05 1998-05-22 Mitsubishi Heavy Ind Ltd Technique and apparatus for measurement of trace component by using laser
JPH11326061A (en) * 1998-05-20 1999-11-26 Sumitomo Metal Ind Ltd Temperature measuring method and device for molten bath in furnace
JP2001356096A (en) * 2000-04-13 2001-12-26 Nippon Steel Corp Method and apparatus for remotely monitoring smelting furnace
WO2006072418A1 (en) * 2004-12-30 2006-07-13 Sms Demag Ag Device for detecting the temperature and for analyzing molten masses in metallurgical vessels
JP2007315945A (en) * 2006-05-26 2007-12-06 Nippon Steel Corp Component analysis method and apparatus of melted metal within finery
JP2008215851A (en) * 2007-02-28 2008-09-18 Nippon Steel Corp Probe for laser induced fluorescence analysis and laser induced fluorescence analyzer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231141A (en) * 1984-04-11 1985-11-16 フリード・クルツプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of measuring temperature of molten metal and chemicalcomposition
JPH0875651A (en) * 1994-09-06 1996-03-22 Sumitomo Metal Ind Ltd Method for emission spectrochemical analysis by laser
JPH10132741A (en) * 1996-11-05 1998-05-22 Mitsubishi Heavy Ind Ltd Technique and apparatus for measurement of trace component by using laser
JPH11326061A (en) * 1998-05-20 1999-11-26 Sumitomo Metal Ind Ltd Temperature measuring method and device for molten bath in furnace
JP2001356096A (en) * 2000-04-13 2001-12-26 Nippon Steel Corp Method and apparatus for remotely monitoring smelting furnace
WO2006072418A1 (en) * 2004-12-30 2006-07-13 Sms Demag Ag Device for detecting the temperature and for analyzing molten masses in metallurgical vessels
JP2007315945A (en) * 2006-05-26 2007-12-06 Nippon Steel Corp Component analysis method and apparatus of melted metal within finery
JP2008215851A (en) * 2007-02-28 2008-09-18 Nippon Steel Corp Probe for laser induced fluorescence analysis and laser induced fluorescence analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032388A (en) * 2010-06-30 2012-02-16 Central Res Inst Of Electric Power Ind Method and device of measuring concentration of metallic surface adhesion component

Also Published As

Publication number Publication date
JP5052962B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
RU2576277C2 (en) Method and plant for measurement of molten metal temperature
EP1482302B1 (en) Method for in situ, real time measurements of properties of liquids
US9116054B2 (en) Drop-in probe
US9500528B2 (en) Method for maintaining a temperature of a metal melt
AU2008249182B2 (en) Method for analysis of a fused material device and dipping sensor
JP2000502183A (en) Method for measuring electromagnetic waves generated from melt
JPS60231141A (en) Method of measuring temperature of molten metal and chemicalcomposition
US5830407A (en) Pressurized port for viewing and measuring properties of a molten metal bath
JP5052962B2 (en) Refining monitoring apparatus and method
US6071466A (en) Submergible probe for viewing and analyzing properties of a molten metal bath
JP2007316050A (en) Componential analysis technique of molten metal and componential analysis device of molten metal
JP2008527314A (en) Apparatus for detecting the temperature of molten metal in a metallurgical melting vessel and analyzing the molten metal
JP4788089B2 (en) Molten metal component measuring device
JP3962362B2 (en) Method and apparatus for monitoring molten metal in refining furnace
JP3549477B2 (en) Probe for measuring the composition of molten metal
JP5000379B2 (en) Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe
EP1134295A1 (en) Submergible probe for viewing and analyzing properties of a molten metal bath
JP5195664B2 (en) Lance for continuous monitoring of molten steel, continuous monitoring device and continuous monitoring method
US20240094133A1 (en) Method and apparatus for quantitative chemical analysis of liquid metals and alloys
MX2010013585A (en) Arc furnace.
Monfort et al. Journal of Applied and Laser Spectroscopy
AU6275301A (en) Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
JP2002168851A (en) Molten metal component measuring method and control method
CN117795320A (en) Refractory lance assembly and refractory lance tube
JP2003302286A (en) Method and device for sequentially measuring molten metal temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R151 Written notification of patent or utility model registration

Ref document number: 5052962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees