JP5000379B2 - Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe - Google Patents

Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe Download PDF

Info

Publication number
JP5000379B2
JP5000379B2 JP2007135055A JP2007135055A JP5000379B2 JP 5000379 B2 JP5000379 B2 JP 5000379B2 JP 2007135055 A JP2007135055 A JP 2007135055A JP 2007135055 A JP2007135055 A JP 2007135055A JP 5000379 B2 JP5000379 B2 JP 5000379B2
Authority
JP
Japan
Prior art keywords
laser
induced fluorescence
light amount
sample
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007135055A
Other languages
Japanese (ja)
Other versions
JP2008292170A (en
Inventor
裕之 近藤
紀史 浅原
逸朗 北川
充高 松尾
敏 鷲巣
幹人 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007135055A priority Critical patent/JP5000379B2/en
Publication of JP2008292170A publication Critical patent/JP2008292170A/en
Application granted granted Critical
Publication of JP5000379B2 publication Critical patent/JP5000379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、レーザを用いた遠隔、非接触な元素濃度定量技術に関するものであり、特にレーザ誘起蛍光分析技術に関するものである。   The present invention relates to a remote, non-contact element concentration determination technique using a laser, and particularly to a laser-induced fluorescence analysis technique.

高温、有毒ガス、有害放射線等のために接近することが困難な分析対象を直接分析する必要がある。このような分析対象の例として、精錬中の溶融金属が挙げられる。   Analytes that are difficult to access due to high temperatures, toxic gases, harmful radiation, etc. need to be analyzed directly. An example of such an analysis object is a molten metal being refined.

例えば、鉄鋼の製造工程の中で、酸素吹錬によって脱炭を行なう転炉精錬においては、過度の吹錬によるスラグ中トータルFe濃度の増加、溶鋼中フリー酸素濃度過多、FeやMnの歩留まり低下といった製鋼コスト増要因を抑えるために、現状のサブランスによる点測定のみでは不十分であり、溶鋼中炭素濃度の連続的なモニタリングが強く要求されている。   For example, in converter refining, where decarburization is performed by oxygen blowing during the steel manufacturing process, the total Fe concentration in the slag is increased by excessive blowing, the free oxygen concentration is excessive in the molten steel, and the yield of Fe and Mn is reduced. In order to suppress such factors that increase the cost of steelmaking, it is not sufficient to perform point measurement with current sublances, and continuous monitoring of the carbon concentration in molten steel is strongly required.

このような溶鋼中成分、特に炭素や燐等の非金属元素の濃度測定を、試料を採取することなく直接に行なうことを目的に、レーザを利用した発光分光分析法を適用した技術がこれまでに数多く報告されている。これらの殆どは、尖頭出力の高いパルスレーザを集光して溶鋼に照射することによってプラズマ状態を生成し、このプラズマからの発光を分光分析することにより溶鋼中元素濃度を測定するものであり、一般にレーザ発光分析法等と呼ばれている。例えば、特許文献1には、転炉の耐火物を貫通した羽口を通してレーザを溶鋼に照射し、発光を光ファイバーで分光器に伝送して、分光分析する方法が開示されている。   The technology that has applied laser-based emission spectroscopy for the purpose of directly measuring the concentration of non-metallic elements such as carbon and phosphorus, such as carbon and phosphorus, without taking a sample. Have been reported a lot. Most of these measure the concentration of elements in molten steel by generating a plasma state by condensing a pulse laser with high peak power and irradiating the molten steel, and analyzing the emission from this plasma. Generally, it is called a laser emission analysis method or the like. For example, Patent Document 1 discloses a method of performing spectroscopic analysis by irradiating a molten steel with laser through a tuyere penetrating a refractory of a converter and transmitting light emission to a spectroscope through an optical fiber.

一方、目的元素の共鳴波長の一つに波長をチューニングしたレーザを蒸気原子に照射して、この原子の蛍光を誘起するレーザ誘起蛍光法は、高感度でありかつ選択性に優れた分析法として知られており、本発明者等は、この点に注目して、レーザ誘起蛍光法による溶鋼中CやPのモニタリング技術を開発した。これらの技術の詳細は、特許文献2に開示されているところである。レーザ誘起蛍光法を用いた分析では、先ず試料の一部を蒸発・原子化するためにアブレーションレーザを照射する。そして、アブレーションレーザパルスから適当な遅延時間経過後、選択励起レーザを照射する。このとき、目的元素の蛍光のみが選択的に放出されるので、大型の分光器を用いる必要は無く、光電子増倍管やフォトダイオード等の光量測定器によって直接目的元素から放出されたシグナル光量を測定することができる。
特開昭60-231141号公報 特開2001-356096号公報
On the other hand, the laser-induced fluorescence method, in which a vapor atom is irradiated with a laser whose wavelength is tuned to one of the resonance wavelengths of the target element to induce fluorescence of this atom, is a highly sensitive and highly selective analytical method. The present inventors have known this point and have developed a monitoring technique for C and P in molten steel by laser-induced fluorescence. Details of these techniques are disclosed in Patent Document 2. In analysis using laser-induced fluorescence, an ablation laser is first irradiated to evaporate and atomize a part of the sample. Then, after an appropriate delay time has elapsed from the ablation laser pulse, the selective excitation laser is irradiated. At this time, since only the fluorescence of the target element is selectively emitted, there is no need to use a large spectroscope, and the amount of signal emitted directly from the target element by a light quantity measuring device such as a photomultiplier tube or a photodiode is calculated. Can be measured.
Japanese Unexamined Patent Publication No. 60-231141 JP 2001-356096

しかし、上述のレーザ誘起蛍光法による溶鋼分析においては、選択励起レーザ発振器の出力変動や選択励起レーザの分析点に至るまでの出力(エネルギー)伝送効率の変動により、最終的に分析点に照射される選択励起レーザ出力が変動することにより、レーザ誘起蛍光光量が変動するという問題があった。日々の操業において連続的に分析する上で、これらの変動は避けられない問題であり、日間の分析精度を劣化させる要因であった。   However, in the analysis of molten steel by the laser-induced fluorescence method described above, the analysis point is finally irradiated due to the output fluctuation of the selective excitation laser oscillator and the fluctuation of the output (energy) transmission efficiency up to the analysis point of the selective excitation laser. There is a problem that the amount of laser-induced fluorescence fluctuates due to fluctuations in the output of the selective excitation laser. These fluctuations are unavoidable problems in continuous analysis in daily operations, and are factors that deteriorate daily analysis accuracy.

レーザ誘起蛍光分析法は、他の発光分析法や吸光分析法等の機器分析法と同様に、検量線を用いて濃度を定量する相対分析法である。これらの相対分析法では、一般的には、濃度既知の標準試料を分析して検量線を作成し、これを基にして未知濃度試料の定量を行なう。一方、例えば、溶融金属の直接分析の場合には、精錬炉内の溶融金属試料を採取して分析した結果と、溶融金属を直接分析して測定されたレーザ誘起蛍光光量との相関から検量線が求められる。しかし、このような試料採取に要する時間、手間、費用を削減するためには、試料採取の頻度は最小限とすることが要求される。したがって、初期段階で作成した検量線に基づいて濃度を定量するためには、試料に照射される選択励起レーザのエネルギーの変動を補正する手段が必要であった。   The laser-induced fluorescence analysis method is a relative analysis method in which the concentration is quantified using a calibration curve, as in other instrumental analysis methods such as emission spectrometry and absorption spectrometry. In these relative analysis methods, generally, a standard sample with a known concentration is analyzed to prepare a calibration curve, and based on this, a sample with an unknown concentration is quantified. On the other hand, for example, in the case of direct analysis of molten metal, a calibration curve is obtained from the correlation between the result of collecting and analyzing a molten metal sample in a refining furnace and the amount of laser-induced fluorescence measured by directly analyzing the molten metal. Is required. However, in order to reduce the time, labor, and cost required for sampling, it is required to minimize the sampling frequency. Therefore, in order to quantify the concentration based on the calibration curve created in the initial stage, a means for correcting the energy fluctuation of the selective excitation laser irradiated to the sample is necessary.

そこで、本発明は、上記の問題を解決するため、簡便な手法で選択励起レーザのエネルギーの変動を補正できるレーザ誘起蛍光分析法及びレーザ誘起蛍光分析プローブを提供することを目的とする。   Therefore, an object of the present invention is to provide a laser-induced fluorescence analysis method and a laser-induced fluorescence analysis probe that can correct fluctuations in energy of a selective excitation laser by a simple method in order to solve the above-described problems.

本発明は、上述のレーザ誘起蛍光分析法における問題を安価にかつ簡便に解決するためになされたものであり、その主旨は、以下の通りである。
(1) 試料を蒸発・原子化するためのアブレーションレーザと、目的とする元素に共鳴する波長の選択励起レーザとを試料に照射して発生させたレーザ誘起蛍光光量(F)と、試料に照射される前記選択励起レーザ光量の変動光量(L’)とを検出し、得られた比F/L’で目的元素濃度を補正することにより、目的元素濃度を定量するレーザ誘起蛍光分析法であって、
前記選択励起レーザの波長(λex)と前記レーザ誘起蛍光の波長(λfl)が一致せず、λex>200nm、λfl<200nmであり、レーザ誘起蛍光光量(F)を、λexにて実質的に感度を持たない光量検出器で検出することを特徴とするレーザ誘起蛍光分析法
(2) 前記光量検出器は、Cs-Iを光電面材料とすることを特徴とする(1)に記載のレーザ誘起蛍光分析法
(3) 試料を蒸発・原子化するためのアブレーションレーザと、目的とする元素に共鳴する波長の選択励起レーザとを試料に照射して発生させたレーザ誘起蛍光光量(F)を検出するための光量検出器と、試料に照射される選択励起レーザ光量の変動光量(L’)を検出するための光量検出器と、目的元素濃度の濃度補正手段を少なくとも備えたレーザ誘起蛍光分析プローブであって、前記選択励起レーザの波長(λex)と前記レーザ誘起蛍光の波長(λfl)が一致せず、λex>200nm、λfl<200nmであり、前記レーザ誘起蛍光光量(F)を検出するための光量検出器が選択励起レーザの波長において実質的に感度を持たないことを特徴とするレーザ誘起蛍光分析プローブ
(4) 前記光量検出器は、Cs-Iを光電面材料とすることを特徴とする(3)に記載のレーザ誘起蛍光分析プローブ
The present invention has been made in order to solve the above-described problems in laser-induced fluorescence analysis at low cost and simply, and the gist thereof is as follows.
(1) Laser-induced fluorescence light intensity (F) generated by irradiating the sample with an ablation laser for evaporating and atomizing the sample and a selective excitation laser having a wavelength that resonates with the target element, and irradiating the sample This is a laser-induced fluorescence analysis method that quantifies the target element concentration by detecting the fluctuation amount (L ′) of the selected excitation laser light amount and correcting the target element concentration with the obtained ratio F / L ′. And
The wavelength of the selective excitation laser (λ ex ) and the wavelength of the laser induced fluorescence (λ fl ) do not match, λ ex > 200 nm, λ fl <200 nm, and the laser induced fluorescence light amount (F) is changed to λ ex And a laser-induced fluorescence analysis method, characterized in that the detection is performed by a light amount detector having substantially no sensitivity .
(2 ) The laser-induced fluorescence analysis method according to (1), wherein the light amount detector uses Cs-I as a photocathode material .
(3 ) To detect the amount of laser-induced fluorescence (F) generated by irradiating the sample with an ablation laser for evaporating and atomizing the sample and a selective excitation laser having a wavelength that resonates with the target element. A laser-induced fluorescence analysis probe comprising at least a light amount detector, a light amount detector for detecting a fluctuation amount (L ′) of a selective excitation laser light amount irradiated on a sample, and a concentration correction means for a target element concentration The wavelength (λ ex ) of the selective excitation laser and the wavelength (λ fl ) of the laser-induced fluorescence do not match, λ ex > 200 nm, λ fl <200 nm, and the laser-induced fluorescence light amount (F) is detected A laser-induced fluorescence analysis probe characterized in that the light quantity detector for the sensor is substantially insensitive at the wavelength of the selective excitation laser .
(4 ) The laser-induced fluorescence analysis probe according to (3) , wherein the light amount detector uses Cs-I as a photocathode material .

本発明によれば、高温、有害ガス、有害放射線等のため接近困難な分析対象の遠隔、非接触分析において、試料に照射される選択励起レーザのエネルギー変動の影響を受けずに、日々安定した成分濃度定量を連続的に実施することが可能であるので、例えば、これを鉄鋼製造工程に利用した場合、転炉や2次精錬工程における脱炭終点判定が最適に行われる等、製鋼操業の制御性改善に寄与するところ大である。   According to the present invention, in a remote, non-contact analysis of an analysis object that is difficult to access due to high temperature, harmful gas, harmful radiation, etc., it is stable daily without being affected by the energy fluctuation of the selective excitation laser irradiated to the sample. Since it is possible to carry out component concentration determination continuously, for example, when this is used in the steel manufacturing process, the decarburization end point determination in the converter and secondary refining process is optimally performed, etc. It greatly contributes to improving controllability.

以下に、本発明についてより詳細に説明する。
本発明の要点は、試料に照射される選択励起レーザのエネルギーの変動によるレーザ誘起蛍光光量の変動を補正することである。ところで、本発明では、レーザ誘起蛍光法により、溶融金属を分析するが、この実施態様においては、一般に選択励起レーザ発振器は、分析対象の溶融金属が入った精錬炉等の装置から熱やダスト等の影響を受けない程度に十分離れた位置に設置されることが必要とされる。そのため、結果的に試料に照射される選択励起レーザのエネルギーは、レーザ発振器から発振されるレーザのエネルギー変動の他、レーザ発振器から試料に至るまでのレーザの伝送効率の変動によっても影響される。後者は、例えば、レーザを伝送する光ファイバーの透過率の劣化や、ミラーやレンズ等の光学素子の汚染による損失等が原因となって引き起こされる。
The present invention will be described in detail below.
The main point of the present invention is to correct the variation in the amount of laser-induced fluorescence caused by the variation in the energy of the selective excitation laser irradiated to the sample. By the way, in the present invention, molten metal is analyzed by a laser-induced fluorescence method. In this embodiment, however, a selective excitation laser oscillator is generally used for heat, dust, etc. from an apparatus such as a refining furnace containing molten metal to be analyzed. It is required to be installed at a position sufficiently separated so as not to be affected by. Therefore, the energy of the selective excitation laser irradiated to the sample as a result is influenced not only by the fluctuation of the energy of the laser oscillated from the laser oscillator but also by the fluctuation of the laser transmission efficiency from the laser oscillator to the sample. The latter is caused by, for example, deterioration of transmittance of an optical fiber that transmits a laser, loss due to contamination of an optical element such as a mirror or a lens, and the like.

そこで、本発明者らは、溶融金属にレーザを照射し、蛍光光量(F)を測定するための光量検出器が収納されたプローブ内に、選択励起レーザの変動光量(L’)を検出するための光量検出器を設置し、光量比F/L’で目的元素濃度cを補正することから目的元素濃度を定量することによって、上記のような選択励起レーザのエネルギー変動に起因する定量値のバラツキを低減することができることを実験で見出し、本発明に至ったのである。   Therefore, the present inventors detect the fluctuation light quantity (L ′) of the selective excitation laser in a probe in which a light quantity detector for measuring the fluorescence light quantity (F) is irradiated by irradiating the molten metal with a laser. By quantifying the target element concentration by correcting the target element concentration c with the light intensity ratio F / L ′, the quantitative value due to the energy fluctuation of the selective excitation laser as described above can be obtained. As a result of experiments, it was found that variation can be reduced, and the present invention has been achieved.

本発明では、選択励起レーザの波長(λex)とレーザ誘起蛍光の波長(λfl)とが異なるように各々の遷移を選択する(非共鳴蛍光)ことが好ましい。このようにすることによって、いずれか一方の波長の光を選択的に反射又は透過するミラーや光フィルター等の光学素子を用いて、他方の光と分別することが可能となるからである。そして、レーザ誘起蛍光の光量検出器の分光感度曲線としては、λflには感度を有し、λexには殆ど感度を持たないものを選択することによって、選択励起レーザの迷光を分離して、正味のレーザ誘起蛍光光量を測定することが可能となる。 In the present invention, it is preferable to select each transition (non-resonant fluorescence) so that the wavelength of the selective excitation laser (λ ex ) and the wavelength of the laser-induced fluorescence (λ fl ) are different. By doing so, it is possible to separate from the other light by using an optical element such as a mirror or an optical filter that selectively reflects or transmits light of either wavelength. Then, as the spectral sensitivity curve of the laser-induced fluorescence light quantity detector, by selecting one having sensitivity to λ fl and little sensitivity to λ ex , the stray light of the selective excitation laser is separated. The net laser-induced fluorescence amount can be measured.

上記のような特性を有す光量検出器としては、例えば、光電子増倍管が適当である。光電子増倍管は、光電面の材料によって分光感度曲線が異なる。紫外又は真空紫外域のみに感度を有するものを、一般にソーラーブラインド管と呼ぶ。一例として、Cs-Iを光電面材料とするものは、概ね200nmから長波長側において殆ど感度を持たないため、λex>200nmなる励起波長とλfl<200nmなるレーザ誘起蛍光波長を選択することにより、選択励起レーザの迷光の影響が無く、レーザ誘起蛍光光量を測定することができる。同様に、Cs-Teを光電面材料とするものを用いた場合は、λex>350nmなる励起波長とλfl<350nmなるレーザ誘起蛍光波長の選択が適当である。 For example, a photomultiplier tube is suitable as the light quantity detector having the above characteristics. Photomultiplier tubes have different spectral sensitivity curves depending on the material of the photocathode. Those having sensitivity only in the ultraviolet or vacuum ultraviolet region are generally called solar blind tubes. As an example, since the photocathode material with Cs-I has almost no sensitivity on the long wavelength side from 200 nm, select an excitation wavelength of λ ex > 200 nm and a laser-induced fluorescence wavelength of λ fl <200 nm. Thus, the amount of laser-induced fluorescence can be measured without being affected by the stray light of the selective excitation laser. Similarly, when a material using Cs-Te as the photocathode material is used, it is appropriate to select an excitation wavelength of λ ex > 350 nm and a laser-induced fluorescence wavelength of λ fl <350 nm.

溶鋼を分析するための本発明のレーザ誘起蛍光分析プローブを、図1に示す。このレーザ誘起蛍光分析プローブは、溶鋼(試料17)にレーザを照射するための中空管16と、レーザ誘起蛍光の光量検出器1と、選択励起レーザの変動光量を検出するための光量検出器2を、主として内蔵する保護ケース18とから少なくとも構成される。   A laser-induced fluorescence analysis probe of the present invention for analyzing molten steel is shown in FIG. This laser-induced fluorescence analysis probe includes a hollow tube 16 for irradiating a molten steel (sample 17) with a laser, a light amount detector 1 for laser-induced fluorescence, and a light amount detector for detecting a variable light amount of a selective excitation laser. 2 is mainly composed of a built-in protective case 18.

アブレーションレーザ発振器19で発振したアブレーションレーザaは、ミラー4によって反射され、反射ミラー5、6を透過し、さらに窓材3を透過して、中空管16内を伝播して、試料17の測定面に照射される。   The ablation laser a oscillated by the ablation laser oscillator 19 is reflected by the mirror 4, passes through the reflection mirrors 5 and 6, further passes through the window material 3, propagates through the hollow tube 16, and measures the sample 17. The surface is irradiated.

アブレーションレーザaの照射から適当な時間間隔をとって選択励起発振器20で発振される選択励起レーザbは、ミラー5によって反射され、ミラー6を透過し、さらに窓材3を透過して、中空管16内を伝播して、試料17の測定面に照射される。そして、アブレーションレーザaと選択励起レーザbの照射によって発生した蛍光は、中空管16内をレーザa、bとは逆向きに伝播して、ミラー6によって反射され、レンズ9及び10によって集光、コーリメートされた後、ミラー7、8によって反射され、光量検出器1で検出される。光量検出器1で検出されたレーザ誘起蛍光光量(F)は、電気シグナルに変換され、電送線12によりデータ処理装置21へ伝送される。また、選択励起レーザの変動光量(L’)が、光量検出器2によって検出される。これは、例えば、光学窓3の表面で反射した選択励起レーザが、ミラー6で反射され、ミラー7を透過して、光量検出器2によって変動光量として検出されるものである。   The selective excitation laser b oscillated by the selective excitation oscillator 20 at an appropriate time interval from the irradiation of the ablation laser a is reflected by the mirror 5, passes through the mirror 6, and further passes through the window material 3 to be hollow. It propagates through the tube 16 and is irradiated onto the measurement surface of the sample 17. Then, the fluorescence generated by the irradiation of the ablation laser a and the selective excitation laser b propagates in the hollow tube 16 in the direction opposite to the lasers a and b, is reflected by the mirror 6, and is condensed by the lenses 9 and 10. After being collimated, the light is reflected by the mirrors 7 and 8 and detected by the light quantity detector 1. The laser-induced fluorescence light amount (F) detected by the light amount detector 1 is converted into an electric signal and transmitted to the data processing device 21 through the transmission line 12. Further, the light quantity detector 2 detects the fluctuation light quantity (L ′) of the selective excitation laser. For example, the selective excitation laser reflected by the surface of the optical window 3 is reflected by the mirror 6, passes through the mirror 7, and is detected by the light quantity detector 2 as a variable light quantity.

ミラー4〜8、レンズ9,10、光量検出器1,2等の光学部品は、溶融金属(試料17)からのダストやスプラッシュ、熱輻射から保護するために、保護ケース18内に収納されている。また、レーザや発光、蛍光の光路からのダスト、スプラッシュ、ヒューム等の排除、及び、中空管16の内壁や窓材1の汚染防止を目的として、ガス導入口15より、中空管16内にガスを吹き込み、中空管16の試料側端面より、試料面17に向けてガスを吹き付ける。尚、ここで、ガスの種類としては、通常、試料との反応しないAr、He、N2等の不活性ガスが好ましい。 Optical components such as the mirrors 4 to 8, the lenses 9 and 10, and the light quantity detectors 1 and 2 are housed in a protective case 18 in order to protect them from dust, splash, and heat radiation from the molten metal (sample 17). Yes. In addition, for the purpose of eliminating dust, splash, fume, etc. from the laser, light emission, and fluorescent light paths, and preventing contamination of the inner wall of the hollow tube 16 and the window material 1, the inside of the hollow tube 16 is introduced from the gas inlet 15. Then, gas is blown toward the sample surface 17 from the sample side end surface of the hollow tube 16. Here, as the type of gas, an inert gas such as Ar, He, or N 2 that does not react with the sample is usually preferable.

中空管16の試料側端面は、溶融金属中に浸漬されていても良い。また、溶融金属容器の底面又は側面の耐火物を貫通した中空管の場合には、溶融金属の中空管を通した流出を防ぐために必要なガス流量を吹き込むことは言うまでもない。   The sample side end surface of the hollow tube 16 may be immersed in the molten metal. Needless to say, in the case of a hollow tube penetrating the refractory on the bottom surface or side surface of the molten metal container, a gas flow rate necessary for preventing the molten metal from flowing out through the hollow tube is blown.

データ処理装置21は、光量検出器1及び2で検出された、レーザ誘起蛍光光量(F)と選択励起レーザの変動光量(L’)とを記録し、光量の比F/L’を算出し、予め求められた補正検量線から、時々刻々の濃度を表示、記録する。   The data processing device 21 records the laser-induced fluorescence light amount (F) detected by the light amount detectors 1 and 2 and the fluctuation light amount (L ′) of the selective excitation laser, and calculates the light amount ratio F / L ′. From the corrected calibration curve obtained in advance, the concentration is displayed and recorded every moment.

アブレーションレーザ発振器19は、パルスレーザ発振器であり、分析面上でのエネルギー密度及び尖頭出力密度は、それぞれ、凡そ5〜125J/cm2、0.3〜7.5GW/cm2となるように、集光して照射することが好ましい。この目的に使用されるレーザとしては、QスイッチパルスNd:YAGレーザが最も一般的であり、パルス時間半値全幅5〜15ns、パルスエネルギー100〜1000mJ、パルス繰り返し10〜50Hzのものが一般に市販されている。 Ablation laser oscillator 19 is a pulse laser oscillator, the energy density and peak power density on the analysis plane, respectively, approximately 5~125J / cm 2, so that 0.3~7.5GW / cm 2, the condenser It is preferable to irradiate. The most commonly used laser for this purpose is a Q-switched pulse Nd: YAG laser, with a pulse time half width of 5 to 15 ns, a pulse energy of 100 to 1000 mJ, and a pulse repetition of 10 to 50 Hz being generally marketed. Yes.

選択励起レーザbとしては、チタンサファイアレーザ、色素レーザ、オプティカルパラメーター発振器(OPO)等が使用可能である。   As the selective excitation laser b, a titanium sapphire laser, a dye laser, an optical parameter oscillator (OPO), or the like can be used.

(実施例1)
誘導溶解炉で溶融させた溶鋼表面に、図1に示したプローブを近づけて、レーザ誘起蛍光分析法により溶鋼中炭素(C)濃度を測定した。アブレーションレーザaとして、QスイッチパルスNd:YAGレーザを、選択励起レーザbとしては、チタンサファイアレーザを用いた。アブレーションレーザaと選択励起レーザbは、図示していないパルス発生器からのトリガーパルスによって、毎秒10パルスの繰り返し数で、互いの遅延時間50〜100μsで同期して動作させた。
(Example 1)
The probe shown in FIG. 1 was brought close to the surface of the molten steel melted in the induction melting furnace, and the carbon (C) concentration in the molten steel was measured by laser-induced fluorescence analysis. A Q-switched pulse Nd: YAG laser was used as the ablation laser a, and a titanium sapphire laser was used as the selective excitation laser b. The ablation laser a and the selective excitation laser b were operated in synchronization with each other at a delay time of 50 to 100 μs at a repetition rate of 10 pulses per second by a trigger pulse from a pulse generator (not shown).

ガス導入口15からArガスを導入し、中空管16の下端より溶鋼面に吹き付けながら分析した。   Ar gas was introduced from the gas inlet 15 and analyzed while spraying the molten steel surface from the lower end of the hollow tube 16.

選択励起レーザbの波長は247.85nmとし、波長193.09nmのレーザ誘起蛍光光量(F)を光量検出器1で測定した。また、光学窓の表面で反射された選択励起レーザbは、その一部がレーザ誘起蛍光反射ミラー6によって反射された後、2枚目のレーザ誘起蛍光反射ミラー7を透過後、光量検出器2で変動光量として測定された(L’)。光量検出器1、光量検出器2としては、それぞれCs-I及びCs-Teを光電面とする光電子増倍管を用いた。   The wavelength of the selective excitation laser b was 247.85 nm, and the laser-induced fluorescence light amount (F) having a wavelength of 193.09 nm was measured by the light amount detector 1. The selective excitation laser b reflected on the surface of the optical window is partially reflected by the laser-induced fluorescence reflection mirror 6 and then transmitted through the second laser-induced fluorescence reflection mirror 7, and then the light quantity detector 2 (L ') as a variable light quantity. As the light quantity detector 1 and the light quantity detector 2, photomultiplier tubes having Cs-I and Cs-Te as photocathodes were used.

光量検出器1、2からの出力は、電送線によって電送され、オシロスコープ21で記録された。   Outputs from the light quantity detectors 1 and 2 were transmitted by a transmission line and recorded by an oscilloscope 21.

各パルス毎、同時に測定されたFとL’の各々の100パルスに亘る平均値の比<F>av/<L’>avを求めた。 For each pulse, the ratio <F> av / <L '> av of the average value over 100 pulses of F and L ′ measured simultaneously was determined.

図2は、それぞれ異なる測定日に得られた3組のデータを示しており、本発明による補正を適用せずに、<F>avとC濃度[C]との相関を表すものである。3組のデータは、各々直線相関を示しているが、それらの相関直線は互いに一致していない。したがって、測定値<F>avと[C]との間に一対一の対応が無いために、濃度の定量ができない。 FIG. 2 shows three sets of data obtained on different measurement dates, and shows the correlation between <F> av and C concentration [C] without applying the correction according to the present invention. The three sets of data each show a linear correlation, but the correlation lines do not match each other. Therefore, since there is no one-to-one correspondence between the measured value <F> av and [C], the concentration cannot be quantified.

これに対し、本発明に従い、光量比<F>av/<L’>avと[C]との相関を図示すると、図3のようになり、一本の相関直線が得られた。したがって、一度、光量比<F>av/<L’>avと[C]との相関を求めておくと、これを補正検量線として濃度の定量が可能となり、日常の操業において脱炭工程のモニタリングに適用可能となることが示された。 On the other hand, according to the present invention, the correlation between the light amount ratio <F> av / <L ′> av and [C] is illustrated as shown in FIG. 3, and a single correlation line was obtained. Therefore, once the correlation between the light intensity ratio <F> av / <L '> av and [C] is obtained, the concentration can be quantified using this as a corrected calibration curve. It was shown to be applicable to monitoring.

(実施例2)
RH真空脱ガス精錬時の取鍋内溶鋼の炭素(C)濃度を、図1のレーザ誘起蛍光分析プローブを用いて、分析した。実施例1と同様の方法で、溶鋼中C濃度[C]を30秒間隔で測定した。図4中の実線は、予め測定された補正検量線を基に、測定値<F>av/<L’>avから求められたC濃度[C]の精錬時間に対する推移を示す。○印は、溶鋼試料を採取して、燃焼赤外線吸収法によって定量した結果を表す。本発明による連続的な[C]値は、従来の採取試料分析結果と良く一致しており、精度良く連続分析が可能であることが示された。
(Example 2)
The carbon (C) concentration of the molten steel in the ladle during RH vacuum degassing was analyzed using the laser-induced fluorescence analysis probe shown in FIG. In the same manner as in Example 1, the C concentration [C] in the molten steel was measured at 30 second intervals. The solid line in FIG. 4 shows the transition with respect to the refining time of the C concentration [C] obtained from the measured value <F> av / <L '> av based on the corrected calibration curve measured in advance. A circle indicates a result obtained by collecting a molten steel sample and quantifying it by a combustion infrared absorption method. The continuous [C] value according to the present invention is in good agreement with the conventional collected sample analysis results, indicating that continuous analysis can be performed with high accuracy.

本発明は、レーザを用いた元素濃度の定量分野に適用できる。   The present invention can be applied to the field of element concentration determination using a laser.

本発明の実施の形態にかかるプローブの構成を表す図である。It is a figure showing the structure of the probe concerning embodiment of this invention. 異なる測定日に得られた3組のC濃度-レーザ誘起蛍光光量の関係を示す図である。It is a figure which shows the relationship of 3 sets of C density | concentrations-laser induced fluorescence light quantity obtained on a different measurement day. 異なる測定日に得られた3組のC濃度-光量比<F>av/<L’>avの関係を示す図である。It is a figure which shows the relationship of three sets C density | concentration-light quantity ratio <F> av / <L '> av obtained on a different measurement day. RH真空脱ガス精錬時の取鍋内溶鋼中C濃度を本発明の方法により、連続的に測定した結果(○:溶鋼採取試料を従来法で分析した結果)を示す図である。It is a figure which shows the result ((circle): result which analyzed the molten steel extract | collected sample by the conventional method) which measured continuously the C density | concentration in the molten steel in a ladle at the time of RH vacuum degassing by the method of this invention.

符号の説明Explanation of symbols

1 : レーザ誘起蛍光光量検出器
2 : 光量検出器
3 : 窓材
4 : アブレーションレーザ反射ミラー
5 : 選択励起レーザ反射ミラー
6、7、8 : レーザ誘起蛍光反射ミラー
9、10 : レンズ
12、13 : シグナル電送ケーブル
15 : ガス導入口
16 : 中空管
17 : 試料
19 : アブレーションレーザ発振器
20 : 選択励起レーザ発振器
21 : データ処理装置
a : アブレーションレーザ
b : 選択励起レーザ
1: Laser-induced fluorescence light intensity detector
2: Light intensity detector
3: Window material
4: Ablation laser reflection mirror
5: Selective excitation laser reflection mirror
6, 7, 8: Laser-induced fluorescence reflection mirror
9, 10: Lens
12, 13: Signal transmission cable
15: Gas inlet
16: Hollow tube
17: Sample
19: Ablation laser oscillator
20: Selective pump laser oscillator
21: Data processing device
a: Ablation laser
b: Selective pump laser

Claims (4)

試料を蒸発・原子化するためのアブレーションレーザと、目的とする元素に共鳴する波長の選択励起レーザとを試料に照射して発生させたレーザ誘起蛍光光量(F)と、試料に照射される前記選択励起レーザ光量の変動光量(L’)とを検出し、得られた比F/L’で目的元素濃度を補正することにより、目的元素濃度を定量するレーザ誘起蛍光分析法であって、
前記選択励起レーザの波長(λex)と前記レーザ誘起蛍光の波長(λfl)が一致せず、λex>200nm、λfl<200nmであり、レーザ誘起蛍光光量(F)を、λexにて実質的に感度を持たない光量検出器で検出することを特徴とするレーザ誘起蛍光分析法
Laser-induced fluorescence light amount (F) generated by irradiating the sample with an ablation laser for evaporating and atomizing the sample and a selective excitation laser having a wavelength that resonates with the target element, and the sample irradiated A laser-induced fluorescence analysis method that quantifies the target element concentration by detecting the fluctuation light amount (L ′) of the selective excitation laser light amount and correcting the target element concentration with the obtained ratio F / L ′.
The wavelength of the selective excitation laser (λ ex ) and the wavelength of the laser induced fluorescence (λ fl ) do not match, λ ex > 200 nm, λ fl <200 nm, and the laser induced fluorescence light amount (F) is changed to λ ex And a laser-induced fluorescence analysis method, characterized in that the detection is performed by a light amount detector having substantially no sensitivity .
前記光量検出器は、Cs-Iを光電面材料とすることを特徴とする請求項1に記載のレーザ誘起蛍光分析法 The laser-induced fluorescence analysis method according to claim 1, wherein the light amount detector uses Cs-I as a photocathode material . 試料を蒸発・原子化するためのアブレーションレーザと、目的とする元素に共鳴する波長の選択励起レーザとを試料に照射して発生させたレーザ誘起蛍光光量(F)を検出するための光量検出器と、試料に照射される選択励起レーザ光量の変動光量(L’)を検出するための光量検出器と、目的元素濃度の濃度補正手段を少なくとも備えたレーザ誘起蛍光分析プローブであって、前記選択励起レーザの波長(λex)と前記レーザ誘起蛍光の波長(λfl)が一致せず、λex>200nm、λfl<200nmであり、前記レーザ誘起蛍光光量(F)を検出するための光量検出器が選択励起レーザの波長において実質的に感度を持たないことを特徴とするレーザ誘起蛍光分析プローブ Light intensity detector for detecting the amount of laser-induced fluorescence (F) generated by irradiating the sample with an ablation laser for evaporating and atomizing the sample and a selective excitation laser with a wavelength that resonates with the target element And a laser-induced fluorescence analysis probe comprising at least a light amount detector for detecting a fluctuation amount (L ′) of the selective excitation laser light amount irradiated to the sample and a concentration correction means for the target element concentration, the selection The wavelength of the excitation laser (λ ex ) does not match the wavelength of the laser-induced fluorescence (λ fl ), and λ ex > 200 nm, λ fl <200 nm, and the light amount for detecting the laser-induced fluorescence light amount (F) A laser-induced fluorescence analysis probe characterized in that the detector is substantially insensitive at the wavelength of the selective excitation laser . 前記光量検出器は、Cs-Iを光電面材料とすることを特徴とする請求項に記載のレーザ誘起蛍光分析プローブ The laser-induced fluorescence analysis probe according to claim 3 , wherein the light amount detector uses Cs-I as a photocathode material .
JP2007135055A 2007-05-22 2007-05-22 Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe Expired - Fee Related JP5000379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135055A JP5000379B2 (en) 2007-05-22 2007-05-22 Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135055A JP5000379B2 (en) 2007-05-22 2007-05-22 Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe

Publications (2)

Publication Number Publication Date
JP2008292170A JP2008292170A (en) 2008-12-04
JP5000379B2 true JP5000379B2 (en) 2012-08-15

Family

ID=40167060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135055A Expired - Fee Related JP5000379B2 (en) 2007-05-22 2007-05-22 Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe

Country Status (1)

Country Link
JP (1) JP5000379B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297218B (en) * 2013-07-15 2016-09-14 中国科学院沈阳自动化研究所 The remote original position of components of metallurgical liquid metal, on-line measuring device and method
CN113514398A (en) * 2021-08-09 2021-10-19 南京昊控软件技术有限公司 Calibration method of large-range laser-induced fluorescence concentration measurement system
CN114112099B (en) * 2021-11-23 2023-07-28 西南科技大学 Temperature measurement method and system based on plane laser-induced fluorescence measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639638A (en) * 1985-01-28 1987-01-27 Sangamo Weston, Inc. Photomultiplier dynode coating materials and process
JPH0915156A (en) * 1995-06-28 1997-01-17 Kdk Corp Spectroscopic measuring method and measuring device
KR20010110420A (en) * 1999-01-26 2001-12-13 추후제출 Autofluorescence imaging system for endoscopy
JP4430261B2 (en) * 2000-04-13 2010-03-10 新日本製鐵株式会社 Method and apparatus for remote monitoring of refining furnace
JP2005121479A (en) * 2003-10-16 2005-05-12 Tokyo Instruments Inc Confocal microscopic spectroscope

Also Published As

Publication number Publication date
JP2008292170A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
CA2296623C (en) Method and apparatus for materials analysis by enhanced laser induced plasma spectroscopy
Rai et al. Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys
EP0176625B1 (en) Method of laser emission spectroscopical analysis of steel and apparatus therefor
US6661511B2 (en) Method and apparatus for enhanced laser-induced plasma spectroscopy using mixed-wavelength laser pulses
Freedman et al. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy
JP6022210B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
JP4734273B2 (en) Laser-induced fluorescence analyzer
JP2010038560A (en) Element analyzer and element analysis method
Ciucci et al. CF-LIPS: a new approach to LIPS spectra analysis
EP0215483B1 (en) Method of spectroscopically determining the composition of molten iron
JP2008256585A (en) Elemental analyzer and elemental analysis method
JP5000379B2 (en) Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe
JP4625428B2 (en) Method and apparatus for analyzing component of molten metal in refining furnace
JP4430261B2 (en) Method and apparatus for remote monitoring of refining furnace
JP3510561B2 (en) Coolant metal leak detection method and leak detector
Garcia et al. Real-time monitoring of high-temperature corrosion in stainless steels by open-path laser-induced plasma spectrometry
JP2006300819A (en) Method and analyzer for laser emission spectrochemical analysis for molten metal
JP5552798B2 (en) Elemental analysis method and elemental analysis apparatus using laser
JP5085594B2 (en) Method and apparatus for continuous monitoring of molten steel
JP2010019626A (en) Element analyzer and element analysis method
JP2017173045A (en) Measurement method, measurement device and measurement program for carbon concentration in steel
JPH04274743A (en) Laser emission analysis method
JPH0875651A (en) Method for emission spectrochemical analysis by laser
JP2000338039A (en) Method and apparatus for analyzing molten metal
JP5152050B2 (en) Method and apparatus for continuous monitoring of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R151 Written notification of patent or utility model registration

Ref document number: 5000379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees