JP5261862B2 - Method and apparatus for measuring stray light of diffraction grating - Google Patents

Method and apparatus for measuring stray light of diffraction grating Download PDF

Info

Publication number
JP5261862B2
JP5261862B2 JP2005164759A JP2005164759A JP5261862B2 JP 5261862 B2 JP5261862 B2 JP 5261862B2 JP 2005164759 A JP2005164759 A JP 2005164759A JP 2005164759 A JP2005164759 A JP 2005164759A JP 5261862 B2 JP5261862 B2 JP 5261862B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
diffraction
angle
stray light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005164759A
Other languages
Japanese (ja)
Other versions
JP2006337284A (en
Inventor
正博 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005164759A priority Critical patent/JP5261862B2/en
Publication of JP2006337284A publication Critical patent/JP2006337284A/en
Application granted granted Critical
Publication of JP5261862B2 publication Critical patent/JP5261862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring stray light of grating that figuring a quantity caused from grating of stray light of a spectroscope, and a device for achieving the method. <P>SOLUTION: By a constant deviation measuring method that a laser light source 4 and a photodetector 5 are fixed respectively to rotate the grating 1 arranged on a rotation stage 8, stray light at different rotation angles 14 is measured. Then, effect from other optical elements can be suppressed at a minimum and also measurement in a state approximate to an actual spectroscope can be performed. By determining a stray light value as a ratio with a laser input or the intensity of diffracted light, a stable measurement value can be obtained. Also, luminous flux is concentrated by a pinhole and the stray light near a diffraction angle can be measured easily and precisely. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、回折格子の迷光測定方法に関する。   The present invention relates to a method for measuring stray light of a diffraction grating.

回折格子は分光器や分波器等に使用される、光を狭帯域の波長要素に分離/選択するための光学素子であり、最も一般的には図5に示すように光学材料の表面に極めて微細で均一の間隔を持つ多数の平行な溝を彫琢し、その表面に反射金属膜を蒸着したものである。溝の本数は、回折格子の使用される波長領域に応じて1mm当たり数十本〜数千本の範囲から選択される。溝の断面の形状としては、図5の円内に拡大表示した鋸歯状波形がその高い回折効率のために広く使用される。このような鋸歯状の断面をホログラフィック露光法によって表面に形成させた回折格子はブレーズドホログラフィック回折格子と呼ばれるが、これ以外にも目的によって矩形波あるいは正弦波の断面形状の溝を持つ回折格子が用いられることもしばしばある。一般的な分光器における回折格子の使用例を図6に示す。   A diffraction grating is an optical element for separating / selecting light into narrow-band wavelength elements used in spectroscopes, duplexers, etc., and most commonly on the surface of an optical material as shown in FIG. A large number of parallel grooves with extremely fine and uniform intervals are carved and a reflective metal film is deposited on the surface. The number of grooves is selected from the range of several tens to several thousand per mm depending on the wavelength region in which the diffraction grating is used. As a cross-sectional shape of the groove, a sawtooth waveform enlarged and displayed in a circle in FIG. 5 is widely used because of its high diffraction efficiency. A diffraction grating in which such a sawtooth cross section is formed on the surface by a holographic exposure method is called a blazed holographic diffraction grating. A grid is often used. An example of using a diffraction grating in a general spectrometer is shown in FIG.

図6の(a)はリトロー型と呼ばれる構成の分光器で、1個の軸外放物面鏡32にコリメータ・ミラーとコンデンサ・ミラーの双方の役割を持たせたものであり、一方(b)はツェルニー・ターナー型と呼ばれる構成の分光器で、コリメータ・ミラーとコンデンサ・ミラーとしてそれぞれ独立した軸外放物面鏡32、33を使用するものである。回折格子1は溝の方向が図6の紙面に垂直となる向きで保持されている。入口スリット30および出口スリット31は共に幅の狭い矩形状の開孔で、その矩形の長辺が紙面に垂直となるべく設置されている。入口スリット30からの入射光は軸外放物面鏡32で平行光束に変えられて回折格子1に導かれた後、(a)の構成では、回折格子1からの回折光は軸外放物面鏡32によって出口スリット31に集光される。一方(b)の構成では、回折格子1からの回折光は第2の軸外放物面鏡33によって出口スリット31上に集光される。回折格子1は、これを保持している図6には明示されていない回転テーブルによって、回折格子1の面上にあって溝と平行な一つの軸を中心として回転でき、この回転によって回折角を選択して、出口スリット31に集光される光の波長を選択することが可能となる。   FIG. 6A shows a spectroscope called Littrow type, in which one off-axis paraboloidal mirror 32 serves as both a collimator mirror and a condenser mirror. ) Is a spectroscope having a structure called a Czerny-Turner type, which uses independent off-axis parabolic mirrors 32 and 33 as a collimator mirror and a condenser mirror, respectively. The diffraction grating 1 is held in such a direction that the direction of the groove is perpendicular to the paper surface of FIG. The entrance slit 30 and the exit slit 31 are both rectangular openings having a narrow width, and the long sides of the rectangles are installed so as to be perpendicular to the paper surface. After the incident light from the entrance slit 30 is converted into a parallel light beam by the off-axis parabolic mirror 32 and guided to the diffraction grating 1, in the configuration of (a), the diffracted light from the diffraction grating 1 is off-axis parabolic. The light is condensed on the exit slit 31 by the surface mirror 32. On the other hand, in the configuration of (b), the diffracted light from the diffraction grating 1 is collected on the exit slit 31 by the second off-axis parabolic mirror 33. The diffraction grating 1 can be rotated around a single axis parallel to the groove on the surface of the diffraction grating 1 by a rotary table not shown in FIG. And the wavelength of the light condensed on the exit slit 31 can be selected.

図6に示したような分光器において出口スリット31から外部に射出する光は、回折格子1の回転角度によって定まる波長を中心とする単色光であることが理想であるが、実際の分光器では、回折格子1の溝の不規則性や表面粗さ等の影響によって、回折角以外の方向に反射・散乱される光や、使用されるミラーやレンズによって散乱や多重反射される光が、設定波長の光に混入して出口スリット31から射出することがしばしばある。このように不必要に混入する設定波長以外の光を一般に迷光と称する。迷光の量を最低限に抑える種々の工夫が分光器の設計に施されている。(例えば、特許文献1、2、3参照)   In the spectroscope as shown in FIG. 6, it is ideal that the light emitted from the exit slit 31 to the outside is monochromatic light centered on the wavelength determined by the rotation angle of the diffraction grating 1, but in an actual spectroscope, Depending on the irregularities and surface roughness of the grooves of the diffraction grating 1, the light reflected and scattered in directions other than the diffraction angle, and the light scattered and multiply reflected by the mirror and lens used are set. Often mixed with light of a wavelength and emitted from the exit slit 31. Such light other than the set wavelength that is unnecessarily mixed is generally referred to as stray light. Various devices for minimizing the amount of stray light have been applied to the spectroscope design. (For example, see Patent Documents 1, 2, and 3)

実際の分光器について迷光量を測定することは、その分光器の性能を評価するために重要である。その内部に使用されるレンズ、ミラー、回折格子等の光学素子および分光器筐体内壁などの影響を全て含んだ迷光量を溶液フィルタを用いて測定する方法が日本工業規格に規定されている。(非特許文献1参照)また、より取り扱いの容易な固体フィルタを用いて迷光量を測定する方法も広く使用されている。   Measuring the amount of stray light for an actual spectrometer is important for evaluating the performance of the spectrometer. Japanese Industrial Standards define a method of measuring stray light using a solution filter that includes all the effects of optical elements such as lenses, mirrors, and diffraction gratings used therein, and the inner wall of the spectroscope housing. (See Non-Patent Document 1) In addition, a method of measuring the amount of stray light using a solid filter that is easier to handle is also widely used.

さらに、回折格子表面に単色光を照射し、回折角以外の角度に反射(散乱)される光の量を測定して回折格子のみによって生ずる迷光量を評価する方法として、図8に示す構成の装置も発表されている。この中で、光源HeNeレーザ18の632.8nmの光は空間フィルタ19で成形された後、折り返しミラー20、集光ミラー21、開孔22を経て試験片25(測定対象の回折格子)を照射する。試験片25で回折された光は回折角方向に置かれた検出器27に焦点を結ぶ。検出器27は回転ステージ23と連動する回転アーム26に搭載されており、試験片25を搭載する摺動ステージ24とは独立に試験片25を中心とした円周上を回転移動可能である。検出器27の出力は電流増幅器28を介してA/Dカード付きPC29に送られ、光量値が測定・記録される。試験片25を固定した状態で、検出器27を回転させて回折角の前後の多点の角度における光量測定を行うことにより、回折格子表面から回折角以外の角度方向に反射・散乱される光量を求めることが可能である。(非特許文献2参照)
特開平5−26728号公報 特開平7−55562号公報 特開平9−89665号公報 日本工業規格(JIS)K0115(2004)吸光光度分析通則 「Spectra−Physics社 Difraction Grating Handbook(5th Edition)」 Spectra−Physics社 2002年
Further, as a method for evaluating the amount of stray light generated only by the diffraction grating by irradiating the surface of the diffraction grating with monochromatic light and measuring the amount of light reflected (scattered) at an angle other than the diffraction angle, the structure shown in FIG. The device has also been announced. Among them, 632.8 nm light from the light source HeNe laser 18 is shaped by the spatial filter 19, and then irradiated to the test piece 25 (measurement target diffraction grating) through the folding mirror 20, the collecting mirror 21, and the aperture 22. . The light diffracted by the test piece 25 is focused on the detector 27 placed in the diffraction angle direction. The detector 27 is mounted on a rotating arm 26 that is linked to the rotating stage 23, and can be rotated on the circumference around the test piece 25 independently of the sliding stage 24 on which the test piece 25 is mounted. The output of the detector 27 is sent to a PC 29 with an A / D card via a current amplifier 28, and the light quantity value is measured and recorded. With the test piece 25 fixed, the detector 27 is rotated to measure the amount of light at multiple points before and after the diffraction angle, so that the amount of light reflected and scattered in the angle direction other than the diffraction angle from the diffraction grating surface. Can be obtained. (See Non-Patent Document 2)
Japanese Patent Laid-Open No. 5-26728 Japanese Patent Laid-Open No. 7-55562 JP 9-89665 A Japanese Industrial Standard (JIS) K0115 (2004) Absorption Spectrometry General Rules “Spectra-Physics, Inc. Diffraction Grading Handbook (5th Edition)” Spectra-Physics, Inc. 2002

回折格子の溝形状の不規則性、あるいはその表面粗さが分光器の迷光を増大させることはよく知られている。例えば、図5に示す回折格子1の表面の平面部2あるいは稜部3における微細な凹凸が迷光量に影響する。分子間力顕微鏡(AFM)を用いて測定した平面部2の表面粗さと、分光器の迷光量の関係を図7に示す。測定に使用した分光器は市販の液体クロマトグラフの検出器に使われているものであり、迷光の測定方法は固体フィルタを用いる方法に拠った。図7から表面粗さと迷光量の間には明らかに正の相関があることがわかる。よって、回折格子によって生ずる迷光量を把握することは、回折格子自体の設計・製作、および分光器の設計・製作にとって非常に有用である。しかしながら、固体フィルタを用いる迷光測定方法、あるいは先に述べた日本工業規格に規定されている迷光測定方法は、回折格子を含む全ての光学素子および分光器筐体内壁の影響を包含した全迷光量を求めるものであって、分光器の個々の構成要素に起因する迷光を個別に把握することは困難である。   It is well known that the irregularity of the groove shape of the diffraction grating, or its surface roughness, increases the stray light of the spectrometer. For example, fine irregularities in the flat portion 2 or the ridge portion 3 on the surface of the diffraction grating 1 shown in FIG. 5 affect the amount of stray light. FIG. 7 shows the relationship between the surface roughness of the planar portion 2 measured using an intermolecular force microscope (AFM) and the stray light amount of the spectroscope. The spectroscope used for the measurement was used for a commercially available liquid chromatograph detector, and the method for measuring stray light was based on a method using a solid filter. FIG. 7 clearly shows that there is a positive correlation between the surface roughness and the amount of stray light. Therefore, grasping the amount of stray light generated by the diffraction grating is very useful for the design and production of the diffraction grating itself and the design and production of the spectrometer. However, the stray light measurement method using a solid filter or the stray light measurement method specified in the Japanese Industrial Standard mentioned above is the total stray light amount including the effects of all optical elements including the diffraction grating and the inner wall of the spectroscope housing. It is difficult to grasp the stray light caused by the individual components of the spectrometer.

図8に示した上記の非特許文献2の方法は、回折格子のみによる迷光量を把握することを目的としたものであるが、回折格子(試験片25)を入射光に対して固定し、検出器27を移動させて回折角以外の角度方向に反射・散乱される光量を測定している。しかし実際の分光器では、図6で示したように、回折格子1を回転して単色光を得ている。よって、非特許文献2の方法は必ずしも実際の分光器における回折格子による迷光の特性を把握するものとはならない。   The method of Non-Patent Document 2 shown in FIG. 8 is for the purpose of grasping the amount of stray light due to only the diffraction grating, but the diffraction grating (test piece 25) is fixed to the incident light, The amount of light reflected and scattered in an angular direction other than the diffraction angle is measured by moving the detector 27. However, in an actual spectroscope, as shown in FIG. 6, the diffraction grating 1 is rotated to obtain monochromatic light. Therefore, the method of Non-Patent Document 2 does not necessarily grasp the characteristics of stray light due to the diffraction grating in an actual spectroscope.

本発明は、上記課題を解決するために実際の分光器における状況に極めて近い状況下で回折格子による迷光を測定する方法を提供することを目的とする。この目的を達成するために本発明が提供する第1の方法は、レーザ光源からの光を光束成形光学系によって所定の径の光束に成形し、前記光束を回折格子に導き、前記回折格子からの反射光の中で、前記回折格子の特性と前記レーザ光の波長とによって定まる回折角以外の角度への反射光強度を光検出器によって、定偏角で測定し、この測定値を用いて迷光量を算出するものである。さらに本発明が第2に提供する方法は、迷光量の算出を、レーザ光源から回折格子への入射光強度と、前記回折格子の特性と前記レーザ光の波長とによって定まる回折角以外の角度への反射光強度との比を測定することによって行うものである。本発明の提供する第3の方法は、迷光量の算出を、回折格子の特性とレーザ光の波長とによって定まる回折角への反射光強度(回折光強度)と前記回折角以外の角度への反射光強度との比を測定することによって行うものである。本発明の提供する第4の方法は、レーザ光源の位置と光検出器の位置をそれぞれ固定し、回折格子をその回折面上にあって該回折格子の溝に平行な1個の直線を回転軸として回転させることによって、上記光検出器に入射する上記レーザ光源からの上記回折格子による反射光の反射角を選択することを特徴とする。本発明の提供する第5の方法は、回折格子のn次回折光およびn+1次回折光の回折角をそれぞれθnおよびθn+1とすると、光検出器を用いて測定する回折角以外の角度への反射光の反射角を(θn+θn+1)/2に設定することを特徴とする。さらに本発明の提供する第6の方法は、光検出器を用い測定する回折角以外の角度への反射光の反射角を、回折角の近傍に設定するものである。 In order to solve the above-described problems, an object of the present invention is to provide a method for measuring stray light due to a diffraction grating under a situation very close to that in an actual spectrometer. In order to achieve this object, the first method provided by the present invention is to form light from a laser light source into a light beam having a predetermined diameter by a light beam shaping optical system, guide the light beam to a diffraction grating, and The reflected light intensity at an angle other than the diffraction angle determined by the characteristics of the diffraction grating and the wavelength of the laser light is measured by a photodetector at a constant declination, and the measured value is used. The amount of stray light is calculated. Further, according to a second method of the present invention, the stray light amount is calculated to an angle other than the diffraction angle determined by the incident light intensity from the laser light source to the diffraction grating, the characteristics of the diffraction grating, and the wavelength of the laser light. This is done by measuring the ratio of the reflected light intensity to the above. According to the third method provided by the present invention, the stray light amount is calculated by calculating the reflected light intensity (diffracted light intensity) to a diffraction angle determined by the characteristics of the diffraction grating and the wavelength of the laser light, and an angle other than the diffraction angle. This is done by measuring the ratio with the reflected light intensity. According to the fourth method of the present invention, the position of the laser light source and the position of the light detector are fixed, and the diffraction grating is on the diffraction surface and rotates one straight line parallel to the groove of the diffraction grating. The angle of reflection of light reflected by the diffraction grating from the laser light source incident on the photodetector is selected by rotating as an axis. In the fifth method provided by the present invention, when the diffraction angles of the n-th order diffracted light and the n + 1-order diffracted light of the diffraction grating are θn and θn + 1, respectively, the angles other than the diffraction angle measured using the photodetector are obtained. The reflection angle of the reflected light is set to (θn + θn + 1) / 2. Furthermore, the sixth method provided by the present invention is to set the reflection angle of the reflected light to an angle other than the diffraction angle measured using the photodetector near the diffraction angle.

また、本発明が第7に提供する迷光測定装置は、少なくとも1種のレーザ光源と、迷光を測定すべき回折格子を搭載して、前記回折格子の回折面内にあって前記回折格子の溝に平行な1個の直線を回転軸として前記回折格子を回転させる回転ステージと、前記回折格子からの反射光強度を検出する光検出器と、前記レーザ光源からの光を所定の径の光束に成形し、該光束を前記回折格子の表面に導く光束成形光学系と、前記回折格子の反射光を前記光検出器に集光する集光光学系とを備え、前記回折格子を回転させて自由な反射角における反射光強度の測定が可能であることを特徴とする。 According to a seventh aspect of the present invention, there is provided a stray light measuring apparatus including at least one laser light source and a diffraction grating for measuring stray light, and being in a diffraction plane of the diffraction grating and having grooves in the diffraction grating. A rotation stage that rotates the diffraction grating about a single straight line parallel to the light axis, a photodetector that detects the intensity of reflected light from the diffraction grating, and a light beam having a predetermined diameter from the laser light source. A light beam shaping optical system for shaping and guiding the light beam to the surface of the diffraction grating, and a condensing optical system for condensing the reflected light of the diffraction grating onto the photodetector, and freely rotating the diffraction grating It is possible to measure the intensity of reflected light at various reflection angles.

本発明にかかる回折格子の迷光測定方法および迷光測定装置によって、回折格子自体に起因する迷光量が把握できる。これによって分光器の全迷光を、回折格子に起因するものと、その他の光学素子に起因するものとに分離して評価することが可能となり、低迷光の分光器の設計・製作をより適確に効率よく行うことを可能にする。また、回折格子製作の迷光検査工程で、回折格子を実際の分光器に搭載する必要がなくなるため、工程の大幅な短縮が可能となる。   The stray light amount caused by the diffraction grating itself can be grasped by the stray light measurement method and stray light measurement apparatus for the diffraction grating according to the present invention. This makes it possible to evaluate the total stray light of the spectrometer separately from that caused by the diffraction grating and those caused by other optical elements, and more accurately design and manufacture the low stray light spectrometer. Makes it possible to do efficiently. Further, since it is not necessary to mount the diffraction grating in an actual spectrometer in the stray light inspection process for manufacturing the diffraction grating, the process can be greatly shortened.

本発明が提供する回折格子の迷光測定方法は、実際の分光器に搭載された状況に極めて近い状況下で回折格子の迷光を測定できることを第1の特徴とする。また、回折角以外の方向への反射・散乱光を複数の角度で測定できることを第2の特徴とする。この両者を実現するため、本発明は、検出器を固定し、回折格子を回転することによって反射・散乱角を選択する方法を一つの主要な構成要素としている。   The diffraction grating stray light measurement method provided by the present invention is characterized in that the stray light of the diffraction grating can be measured under conditions very close to those installed in an actual spectrometer. The second feature is that reflected / scattered light in directions other than the diffraction angle can be measured at a plurality of angles. In order to realize both of these, the present invention uses a method of selecting a reflection / scattering angle by fixing a detector and rotating a diffraction grating as one main component.

以下実施例に従って説明する。図1は本発明にかかる回折格子の迷光測定のための装置である。本装置は、レーザ光源4と、これを一定出力で駆動するレーザ駆動電源7と、回折格子1を搭載し、これを回転させる回転ステージ8と、これを駆動するステージ駆動部13と、回転ステージ8の回転角14を制御する制御部12と、回折格子1によって回折あるいは反射・散乱された光を検出する光検出器5と、光検出器5の出力から光検出器5が受光した光量を測定・表示する光量測定器11を具備する。レーザ光源4の出力光束の径は、光束成形光学系6によって拡大され、回転ステージ8の上に保持された回折格子1を照射する。光束の径を目的によって変化させるため、光束成形光学系6には広い範囲の径の可変範囲を持たせてある。また、必要に応じて光束成形光学系6を取り除き、ピンホールを光側中に挿入できる。光検出器5は集光レンズ9とフォトダイオード10で構成されており、集光された光の強度を検出する。回折格子1によって回折あるいは反射・散乱される光を自由な角度において測定するため、回転ステージ8は、制御部12に入力した角度に設定されるようにステージ駆動部13によって駆動される。また、光検出器5は、自由にその位置を調節・固定することができる構造となっている。本実施例ではフォトダイオード10に暗電流の小さいシリコンフォトダイオードを使用した。   A description will be given below in accordance with examples. FIG. 1 shows an apparatus for measuring stray light of a diffraction grating according to the present invention. This apparatus includes a laser light source 4, a laser driving power source 7 for driving the laser light source 4 with a constant output, a rotating stage 8 on which the diffraction grating 1 is mounted and rotating the same, a stage driving unit 13 for driving the rotating stage 8, and a rotating stage. 8, a control unit 12 that controls the rotation angle 14 of the light source 8, a light detector 5 that detects light diffracted or reflected / scattered by the diffraction grating 1, and a light amount received by the light detector 5 from the output of the light detector 5. A light amount measuring device 11 for measuring and displaying is provided. The diameter of the output light beam of the laser light source 4 is enlarged by the light beam shaping optical system 6 and irradiates the diffraction grating 1 held on the rotary stage 8. In order to change the diameter of the light beam according to the purpose, the light beam shaping optical system 6 has a variable range of a wide range of diameters. Further, if necessary, the light beam shaping optical system 6 can be removed and a pinhole can be inserted into the light side. The photodetector 5 includes a condenser lens 9 and a photodiode 10 and detects the intensity of the collected light. In order to measure light diffracted or reflected / scattered by the diffraction grating 1 at a free angle, the rotary stage 8 is driven by the stage drive unit 13 so as to be set to the angle input to the control unit 12. Further, the photodetector 5 has a structure capable of freely adjusting and fixing its position. In this embodiment, a silicon photodiode having a small dark current is used as the photodiode 10.

上述の装置を用いて回折格子の迷光を測定する方法を以下に説明する。
予めレーザ光の出力光強度Pinを光検出器5を用いて測定、記録した後、以下の手順に従って回折格子1の迷光を測定する。
(1)測定する回折格子1を回転ステージ8上に設置する。
(2)光束の径が回折格子1の表面の広い部分を照射するよう光束成形光学系6を調節する。
(3)回転角14を0゜近傍を中心に微調節して、回折格子1によるレーザ光の正反射光(0次回折光)が光路を逆進してレーザ光源4の出射孔に合致する位置を求め、このときの回転角14を0゜とするように制御部12を初期化する。
(4)回転ステージ8を回転させて回転角14を定偏角分回転させる。
(5)光検出器5を、レーザ光の0次回折光が正確にフォトダイオード10の受光面に入射する位置に設置し、光検出器5をこの位置で固定する。
(6)回転ステージ8を駆動して、回折格子1による1次回折光が光検出器5に正確に入射するように回転角14を調節する。このときの回転角14の値θ1を記録する。
(7)さらに回転ステージ8を駆動して、回折格子1による2次回折光が光検出器5に正確に入射するように回転角14を調節する。このときの回転角14の値θ2を記録する。
(8)回転ステージ8を駆動して、回転角14の値が(θ12)/2となるように調節する。
(9)この位置での光検出器5の出力から光強度Pslを測定する。
(10)PinとPslより迷光値としてPsl/Pinを算出する。
上記測定法を複数の回折格子に適用して得られた迷光値と、これらの回折格子を実際の分光器に搭載して固体フィルタを用いて測定した全迷光値の比較を行った。その結果を図2に示す。測定に用いた回折格子は、溝本数1600本/mm、ブレーズ波長250nmのものである。また、使用したレーザ光源は波長473nmの固体レーザである。図2の(a)と(b)は、同一形式の分光器を2台用いて測定した結果である。いずれの結果も本発明にかかる迷光測定方法の結果と実際の分光器による迷光測定の結果が非常に良い相関を示していることがわかる。これによって、本発明にかかる迷光測定方法は回折格子に起因する迷光を把握する上で極めて有効であり、従来のように実際の分光器に搭載する方法を必要とせず、検査工程を大幅に短縮できる。また、図2(a)、(b)にそれぞれ示された点Pおよび点Qは、本発明の方法による迷光値つまり回折格子のみに起因する迷光値がゼロのときに、従来法によって示される迷光値を表している。つまり、本発明による法と、従来方法を併用すれば、回折格子以外の光学系の起因する迷光量を分離して把握することが可能となる。
A method for measuring stray light of a diffraction grating using the above-described apparatus will be described below.
After measuring and recording the output light intensity Pin of the laser beam in advance using the photodetector 5, the stray light of the diffraction grating 1 is measured according to the following procedure.
(1) The diffraction grating 1 to be measured is placed on the rotary stage 8.
(2) The light beam shaping optical system 6 is adjusted so that the light beam diameter irradiates a wide portion of the surface of the diffraction grating 1.
(3) A position where the rotation angle 14 is finely adjusted around 0 °, and the regular reflection light (0th order diffracted light) of the laser beam from the diffraction grating 1 travels backward in the optical path and matches the exit hole of the laser light source 4. The control unit 12 is initialized so that the rotation angle 14 at this time is 0 °.
(4) The rotation stage 8 is rotated to rotate the rotation angle 14 by a constant deflection angle.
(5) The photodetector 5 is installed at a position where the 0th-order diffracted light of the laser beam is accurately incident on the light receiving surface of the photodiode 10, and the photodetector 5 is fixed at this position.
(6) The rotation stage 8 is driven, and the rotation angle 14 is adjusted so that the first-order diffracted light from the diffraction grating 1 accurately enters the photodetector 5. The value θ 1 of the rotation angle 14 at this time is recorded.
(7) Further, the rotation stage 8 is driven to adjust the rotation angle 14 so that the second-order diffracted light from the diffraction grating 1 is accurately incident on the photodetector 5. The value θ 2 of the rotation angle 14 at this time is recorded.
(8) The rotary stage 8 is driven and adjusted so that the value of the rotation angle 14 becomes (θ 1 + θ 2 ) / 2.
(9) The light intensity Psl is measured from the output of the photodetector 5 at this position.
(10) Psl / Pin is calculated as a stray light value from Pin and Psl.
The stray light values obtained by applying the above measurement method to a plurality of diffraction gratings were compared with the total stray light values measured using a solid filter with these diffraction gratings mounted on an actual spectrometer. The result is shown in FIG. The diffraction grating used for the measurement has a groove number of 1600 / mm and a blaze wavelength of 250 nm. The used laser light source is a solid-state laser having a wavelength of 473 nm. 2A and 2B show the results of measurement using two spectroscopes of the same type. It can be seen that both results show a very good correlation between the result of the stray light measurement method according to the present invention and the result of stray light measurement by an actual spectroscope. As a result, the stray light measurement method according to the present invention is extremely effective in grasping the stray light caused by the diffraction grating, and does not require a method for mounting on an actual spectrometer as in the prior art, and greatly reduces the inspection process. it can. Also, the points P and Q shown in FIGS. 2A and 2B, respectively, are indicated by the conventional method when the stray light value according to the method of the present invention, that is, the stray light value caused only by the diffraction grating is zero. It represents the stray light value. That is, if the method according to the present invention and the conventional method are used in combination, it becomes possible to separate and grasp the stray light amount caused by the optical system other than the diffraction grating.

本発明のもう一つの実施例は、実施例1とは異なり、回折格子によるレーザ光の回折角の近傍に現れる迷光を測定することである。回折格子の溝の形状の不完全性や面の粗さによって、回折光のピークの裾に迷光が現れることが知られている。しかし、回折角近傍の迷光を正確に測定するためには、光束の径を小さく絞って測定する必要がある。これを可能にする装置の例を図3に示す。この例は、図1に示した構成から光束成形光学系6を取り除き、その代わりに光束を小さく絞るためにピンホール16を置き、また集光レンズ9を取り除いたものである。測定方法の一つの例は以下の手順で行われる。予めピンホール16の後のレーザ光の強度Pin測定した後、
(1)回折格子1を回転ステージ8上に設置する。
(2)回転角14を0゜近傍で微調節し、レーザ光が回折格子1に正反射して光路を逆進し、正確にピンホール16に一致する位置を求め、このときの角度を0゜とするよう、制御部12を初期化する。
(3)回転ステージ8を回転させて回転角14を定偏角分回転させる。
(4)フォトダイオード10を、レーザ光の0次回折光が正確に受光面に入射する位置に設置し、フォトダイオード10をこの位置で固定する。
(5)回転ステージ8を駆動して、回折格子1による1次回折光がフォトダイオード10に正確に入射するように回転角14を調節する。このときの回転角14の値θ1を記録する。
(6)θ1を中心にその近傍の回転角における光強度Pslを測定する。
(7)迷光量Psl/Pinを算出する。
図3の円内に拡大表示したように、フォトダイオード10の受光面上でレーザ光照射スポット17は回転ステージ8の回転に従って矢印方向に移動する。レーザ光照射スポット17の直径をA、フォトダイオード10の受光面の直径をBとし、回折格子1からフォトダイオード10までの距離をL、偏角15の大きさを2Kとすると、レーザ光照射スポット17がフォトダイオード10の受光面を通過するまでの角度dθは、

dθ=tan-1[(A+B)/L] ………(1)

そして、定偏角で回折格子を使用したときのdθ出の波長幅dλは、

dλ=2・sin(dθ)・cos(K)/N・m ………(2)

となる。但し、Nは1mmあたりの回折格子の溝本数、mは回折の次数である。
溝数N=1600/mm、次数m=2、K=13.5゜、波長λ=473nm、B=1mmとして、この(1)、(2)式より分解能を計算した結果を図4に示す。但し光束の径はピンホール後一定と仮定する。これよりレーザ光照射スポット17の径A=0.5mmを使用し、L=200mmで、約1nmの分解能で回折光近傍を測定することが可能となる。しかし、回折格子の分解能(λ/dλ)は、レーリーの基準によれば、

λ/dλ=m・N×W ………(3)

と表すことができる。但し、Wは、回折格子の幅を示す。これにN=1600/mm、
W=0.5mmをあてはめると、dλ=0.3[nm]となり、(3)式にて十分4.6nmでの分解は可能となる。
また、逆線分散の値は次式(4)で示される。

D=cos(β)/N・m・f ………(4)
(D:逆線分散、β:回折角、f:焦点距離)

したがって、フォトダイオード10の受光面Bでの波長分解能(D×B)は、N=1600/mm、W=0.5mm、m=1という条件を当てはめると約1.24nmとなり、十分分解可能である。
Another embodiment of the present invention is different from the first embodiment in that stray light appearing in the vicinity of the diffraction angle of the laser beam by the diffraction grating is measured. It is known that stray light appears at the bottom of the peak of diffracted light due to imperfect shape of the groove of the diffraction grating and surface roughness. However, in order to accurately measure stray light in the vicinity of the diffraction angle, it is necessary to measure with a small diameter of the light beam. An example of a device that makes this possible is shown in FIG. In this example, the light beam shaping optical system 6 is removed from the configuration shown in FIG. 1, and instead, a pinhole 16 is placed in order to narrow the light beam, and the condenser lens 9 is removed. One example of the measuring method is performed by the following procedure. After measuring the intensity Pin of the laser beam after the pinhole 16 in advance,
(1) The diffraction grating 1 is installed on the rotary stage 8.
(2) The rotation angle 14 is finely adjusted in the vicinity of 0 °, the laser beam is regularly reflected on the diffraction grating 1 and travels backward in the optical path, and the position that exactly matches the pinhole 16 is obtained. The control unit 12 is initialized so as to be.
(3) The rotation stage 8 is rotated to rotate the rotation angle 14 by a constant deflection angle.
(4) The photodiode 10 is installed at a position where the 0th-order diffracted light of the laser beam is accurately incident on the light receiving surface, and the photodiode 10 is fixed at this position.
(5) The rotation stage 8 is driven, and the rotation angle 14 is adjusted so that the first-order diffracted light from the diffraction grating 1 is accurately incident on the photodiode 10. The value θ 1 of the rotation angle 14 at this time is recorded.
(6) The light intensity Psl at a rotation angle in the vicinity of θ 1 is measured.
(7) The stray light amount Psl / Pin is calculated.
As enlarged and displayed in the circle of FIG. 3, the laser beam irradiation spot 17 moves in the direction of the arrow according to the rotation of the rotary stage 8 on the light receiving surface of the photodiode 10. When the diameter of the laser beam irradiation spot 17 is A, the diameter of the light receiving surface of the photodiode 10 is B, the distance from the diffraction grating 1 to the photodiode 10 is L, and the magnitude of the deflection angle 15 is 2K, the laser beam irradiation spot The angle dθ until 17 passes through the light receiving surface of the photodiode 10 is

dθ = tan -1 [(A + B) / L] (1)

And when using a diffraction grating with a constant declination, the wavelength width dλ of dθ output is

dλ = 2 · sin (dθ) · cos (K) / N · m (2)

It becomes. Here, N is the number of grooves of the diffraction grating per mm, and m is the order of diffraction.
FIG. 4 shows the result of calculating the resolution from the equations (1) and (2) assuming that the number of grooves N = 1600 / mm, the order m = 2, K = 13.5 °, the wavelength λ = 473 nm, and B = 1 mm. However, the diameter of the light beam is assumed to be constant after the pinhole. As a result, it is possible to measure the vicinity of the diffracted light with a resolution of about 1 nm when the diameter A of the laser beam irradiation spot 17 is 0.5 mm and L = 200 mm. However, the resolution (λ / dλ) of the diffraction grating is, according to Rayleigh's standard,

λ / dλ = m · N × W (3)

It can be expressed as. Here, W represents the width of the diffraction grating. N = 1600 / mm,
When W = 0.5 mm is applied, dλ = 0.3 [nm], and the decomposition at 4.6 nm is sufficiently possible by the equation (3).
Further, the value of the inverse dispersion is expressed by the following equation (4).

D = cos (β) / N · m · f (4)
(D: inverse dispersion, β: diffraction angle, f: focal length)

Therefore, the wavelength resolution (D × B) at the light receiving surface B of the photodiode 10 is about 1.24 nm when the conditions of N = 1600 / mm, W = 0.5 mm, and m = 1 are applied, and can be sufficiently resolved.

以上に述べた方法は、レーザ光源4と光検出器5あるいはフォトダイオード10を固定し、回折格子1を回転させながら迷光を測定する、定偏角測定を行うものである。これは一般の分光器における回折格子の動作と同じであるため、より実際の状況に近い測定を行うことが可能となり、同時に、回折格子以外の構成要素は変化しないため、これらの影響を受けない測定が可能となる。また、迷光量の算出にレーザ光の入力強度との比を使用する例を説明した。この方法は、レーザ光強度の変化の影響を受けない利点がある。   The method described above performs constant declination measurement in which the laser light source 4 and the photodetector 5 or the photodiode 10 are fixed and stray light is measured while the diffraction grating 1 is rotated. Since this is the same as the operation of a diffraction grating in a general spectrometer, it is possible to perform measurements closer to the actual situation, and at the same time, the components other than the diffraction grating do not change, so they are not affected by these. Measurement is possible. Further, an example in which the ratio with the input intensity of the laser beam is used for calculating the stray light amount has been described. This method is advantageous in that it is not affected by changes in the intensity of the laser beam.

上述の手順を1部変更し、迷光量の算出に回折光強度との比を使うことも可能である。これにより、回折光強度との相対強度がわかり、信号対ノイズ評価が可能となる。
本発明における特徴は、上述したとおりであるが、上記ならびに図示例に限定されるものではなく、種々の変形例を含む。光検出器5の構成は、実施例ではフォトダイオード10と集光レンズ9の組合せであるが、フォトダイオード10の代りに光電子増倍管、集光レンズ9の代わりに凹面集光鏡を組み合わせることも可能である。
It is also possible to change one part of the above procedure and use the ratio with the diffracted light intensity for calculating the stray light amount. Thereby, the relative intensity with respect to the diffracted light intensity can be known, and signal-to-noise evaluation can be performed.
The features of the present invention are as described above. However, the present invention is not limited to the above and illustrated examples, and includes various modifications. The configuration of the photodetector 5 is a combination of a photodiode 10 and a condensing lens 9 in the embodiment, but a photomultiplier tube is used instead of the photodiode 10 and a concave condensing mirror is used instead of the condensing lens 9. Is also possible.

本発明は、回折格子の迷光測定に関する。   The present invention relates to stray light measurement of a diffraction grating.

本発明にかかる回折格子の迷光測定方法とその装置の概念図である。It is a conceptual diagram of the stray light measuring method and apparatus for a diffraction grating according to the present invention. 本発明の迷光測定法による測定結果と実際の分光器に搭載して迷光を測定した結果の比較のグラフである。It is a graph of the comparison of the measurement result by the stray light measuring method of this invention, and the result of having mounted in the actual spectrometer and measuring the stray light. 本発明の別の実施例を示す図である。It is a figure which shows another Example of this invention. レーザ光の光束の径をパラメータとした分解能と焦点距離の関係を示す図である。It is a figure which shows the relationship between the resolution and focal length which used the diameter of the light beam of the laser beam as a parameter. 反射型ホログラフィック回折格子の外観と部分拡大図である。It is the external appearance and partial enlarged view of a reflective holographic diffraction grating. 回折格子を用いる一般的な分光器の構成を示す図である。It is a figure which shows the structure of the common spectrometer which uses a diffraction grating. 原子間力顕微鏡による回折格子の面粗さの測定値と、実際の分光器による迷光測定値の相関図である。It is a correlation diagram of the measured value of the surface roughness of the diffraction grating by an atomic force microscope and the stray light measured value by an actual spectroscope. 非特許文献2記載の回折格子の散乱光強度測定装置の模式図である。6 is a schematic diagram of a scattered light intensity measurement device for a diffraction grating described in Non-Patent Document 2. FIG.

符号の説明Explanation of symbols

1 回折格子
2 平面部
3 稜部
4 レーザ光源
5 光検出器
6 光束成形光学系
7 レーザ駆動電源
8 回転ステージ
9 集光レンズ
10 フォトダイオード
11 光量測定器
12 制御部
13 ステージ駆動部
14 回転角
15 偏角
16 ピンホール
17 レーザ光照射スポット
18 HeNeレーザ
19 空間フィルタ
20 折り返しミラー
21 集光ミラー
22 開孔
23 回転ステージ
24 摺動ステージ
25 試験片
26 回転アーム
27 検出器
28 電流増幅器
29 A/Dカード付きPC
30 入口スリット
31 出口スリット
32、33 軸外放物面鏡
DESCRIPTION OF SYMBOLS 1 Diffraction grating 2 Flat part 3 Edge part 4 Laser light source 5 Photo detector 6 Light beam shaping optical system 7 Laser drive power supply 8 Rotating stage 9 Condensing lens 10 Photodiode 11 Light quantity measuring device 12 Control part 13 Stage drive part 14 Rotation angle 15 Deflection angle 16 Pinhole 17 Laser light irradiation spot 18 HeNe laser 19 Spatial filter 20 Folding mirror 21 Condensing mirror 22 Opening 23 Rotating stage 24 Sliding stage 25 Test piece 26 Rotating arm 27 Detector 28 Current amplifier 29 A / D card PC with
30 Entrance slit 31 Exit slit 32, 33 Off-axis parabolic mirror

Claims (5)

レーザ光源からの光を光束成形光学系によって所定の径の光束に成形し、
前記光束を回折格子に導き、
前記回折格子からの反射光の中で、前記回折格子の特性と前記レーザ光の波長とによって定まる回折角以外の角度への反射光強度の光検出器による測定値を用いて回折格子自体に起因する迷光量を算出することを特徴とする回折格子の迷光測定方法であって、さらに、前記迷光測定は、前記レーザ光源の位置と前記光検出器の位置をそれぞれ固定し、前記回折格子を該回折格子の回折面上にあって該回折格子の溝に平行な1個の直線を回転軸として回転させることによって、前記光検出器に入射する前記レーザ光源からの前記回折格子による反射光の反射角を選択して行うことを特徴とする、定偏角測定による回折格子の迷光測定方法。
The light from the laser light source is formed into a light beam of a predetermined diameter by a light beam shaping optical system,
Guiding the luminous flux to a diffraction grating,
Of the reflected light from the diffraction grating, it is caused by the diffraction grating itself by using the measured value of the reflected light intensity to an angle other than the diffraction angle determined by the characteristics of the diffraction grating and the wavelength of the laser light. it a stray light measurement method of a diffraction grating, characterized in that for calculating the amount of stray light that, further, the stray light measurement, the position of the light detector and the position of the laser light source is fixed, respectively, the said diffraction grating Reflection of reflected light by the diffraction grating from the laser light source incident on the photodetector by rotating about a single straight line on the diffraction surface of the diffraction grating and parallel to the groove of the diffraction grating. A method for measuring stray light of a diffraction grating by constant declination measurement, wherein the method is performed by selecting an angle.
前記回折格子自体に起因する迷光量の算出を、レーザ光源から回折格子への入射光強度と、前記回折格子の特性と前記レーザ光の波長とによって定まる回折角以外の角度への反射光強度との比を測定することによって行うことを特徴とする請求項1記載の回折格子の迷光測定方法。 The calculation of the stray light amount caused by the diffraction grating itself, the reflected light intensity to an angle other than the diffraction angle determined by the incident light intensity from the laser light source to the diffraction grating, the characteristics of the diffraction grating and the wavelength of the laser light, and The stray light measurement method for a diffraction grating according to claim 1, wherein the stray light measurement method is performed by measuring the ratio. 前記回折格子自体に起因する迷光量の算出を、回折格子の特性と前記レーザ光の波長とによって定まる回折角への反射光強度と前記回折角以外の角度への反射光強度との比を測定することによって行うことを特徴とする請求項1記載の回折格子の迷光測定方法。 Calculate the amount of stray light caused by the diffraction grating itself, and measure the ratio of the reflected light intensity to a diffraction angle determined by the characteristics of the diffraction grating and the wavelength of the laser light and the reflected light intensity to an angle other than the diffraction angle The method for measuring stray light of a diffraction grating according to claim 1, wherein: 回折格子のn次回折光およびn+1次回折光の回折角をそれぞれθnおよびθn+1 とすると、光検出器を用いて測定する回折角以外の角度への反射光の反射角を(θn+θn+1)/2に設定することを特徴とする請求項1ないし請求項3のいずれか記載の回折格子の迷光測定方法。 When the diffraction angles of the n-th order diffracted light and the n + 1-order diffracted light of the diffraction grating are θn and θn + 1, respectively, the reflection angle of the reflected light to an angle other than the diffraction angle measured using the photodetector is (θn + θn 4. The method for measuring stray light of a diffraction grating according to claim 1, wherein +1) / 2 is set. 少なくとも1種のレーザ光源と、
迷光を測定すべき回折格子を搭載して、前記回折格子の回折面内にあって前記回折格子の溝に平行な1個の直線を回転軸として前記回折格子を回転させる回転ステージと、
前記回折格子からの反射光強度を検出する光検出器と、前記レーザ光源からのレーザ光を所定の径の光束に成形し、該光束を前記回折格子の表面に導く光束成形光学系と、前記回折格子の反射光を前記光検出器に集光する集光光学系とを備え、
前記レーザ光源、前記光束成形光学系、前記集光光学系および、前記光検出器を固定した状態で、前記回折格子を回転させることにより自由な反射角における反射光強度の測定が可能であって、
前記回折格子からの反射光の中で、前記回折格子の特性と前記レーザ光の波長とによって定まる回折角以外の角度への反射光強度の前記光検出器による測定値を用いて回折格子自体に起因する迷光量を算出する手段を有することを特徴とする定偏角による回折格子の迷光測定装置。
At least one laser light source;
A rotating stage that mounts a diffraction grating for measuring stray light, and that rotates the diffraction grating about a single straight line that is in the diffraction plane of the diffraction grating and parallel to the groove of the diffraction grating;
A photodetector for detecting the intensity of reflected light from the diffraction grating, a light beam shaping optical system for shaping laser light from the laser light source into a light beam having a predetermined diameter, and guiding the light beam to the surface of the diffraction grating; A condensing optical system for condensing the reflected light of the diffraction grating on the photodetector,
It is possible to measure the intensity of reflected light at a free reflection angle by rotating the diffraction grating with the laser light source, the light beam shaping optical system, the condensing optical system, and the photodetector fixed. ,
Of the reflected light from the diffraction grating, the measured value of the reflected light intensity at an angle other than the diffraction angle determined by the characteristics of the diffraction grating and the wavelength of the laser light is used to determine the diffraction grating itself. An apparatus for measuring stray light of a diffraction grating with a constant declination, comprising means for calculating the amount of stray light caused.
JP2005164759A 2005-06-03 2005-06-03 Method and apparatus for measuring stray light of diffraction grating Active JP5261862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164759A JP5261862B2 (en) 2005-06-03 2005-06-03 Method and apparatus for measuring stray light of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164759A JP5261862B2 (en) 2005-06-03 2005-06-03 Method and apparatus for measuring stray light of diffraction grating

Publications (2)

Publication Number Publication Date
JP2006337284A JP2006337284A (en) 2006-12-14
JP5261862B2 true JP5261862B2 (en) 2013-08-14

Family

ID=37557960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164759A Active JP5261862B2 (en) 2005-06-03 2005-06-03 Method and apparatus for measuring stray light of diffraction grating

Country Status (1)

Country Link
JP (1) JP5261862B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111173A (en) * 2007-10-30 2009-05-21 Horiba Ltd Spectrometric analysis device
JP5873775B2 (en) * 2012-07-25 2016-03-01 株式会社日立ハイテクノロジーズ Diffraction grating holder, diffraction grating evaluation apparatus, and measurement apparatus
JP6042213B2 (en) * 2013-01-10 2016-12-14 株式会社日立ハイテクノロジーズ Concave optical element measuring device, concave diffraction grating measuring device, and planar diffraction grating measuring device
CN105004422B (en) * 2015-07-10 2017-10-31 安徽宝龙环保科技有限公司 A kind of ultralow veiling glare grating spectrograph
CN113701676B (en) * 2021-08-02 2022-11-25 清华大学 Stray light measuring device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269036A (en) * 1986-05-19 1987-11-21 Fujitsu Ltd System for automatically measuring diffraction efficiency distribution of diffraction grating
JP3072909B2 (en) * 1990-10-05 2000-08-07 株式会社日本自動車部品総合研究所 Method and apparatus for measuring hologram diffraction efficiency
JPH07128144A (en) * 1993-11-04 1995-05-19 Matsushita Electric Ind Co Ltd Spectral measuring apparatus
JP2002243584A (en) * 2001-02-21 2002-08-28 Ando Electric Co Ltd Snr calculation method and optical spectrum measuring device
JP4162987B2 (en) * 2002-12-26 2008-10-08 日本板硝子株式会社 Reflective diffraction grating

Also Published As

Publication number Publication date
JP2006337284A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US7003075B2 (en) Optical measuring device
JP2008046132A (en) Spectroscopy system
JP2007534965A (en) Double-grating three-dimensional spectrograph with multidirectional diffraction
JP2013096750A (en) X-ray spectral detection device
JP5261862B2 (en) Method and apparatus for measuring stray light of diffraction grating
US6952260B2 (en) Double grating three dimensional spectrograph
CN104406955A (en) Raman spectrum-based substance detection method
US20160334335A1 (en) Laser Induced Breakdown Spectroscopy (LIBS) Apparatus with Dual CCD Spectrometer
JP5873775B2 (en) Diffraction grating holder, diffraction grating evaluation apparatus, and measurement apparatus
JP2006138734A (en) Optical spectrum analyzer
WO2020075548A1 (en) Microspectroscopy device, and microspectroscopy method
Ha et al. Development of an ultraviolet Raman spectrometer for standoff detection of chemicals
US10458917B2 (en) Method of measuring Raman scattering and related spectrometers and laser sources
JP2002189004A (en) X-ray analyzer
RU2081403C1 (en) Instrument transducer for portable analyzer of optical emission
WO2019125308A1 (en) 2 dimensional variable line spacing grating based optical spectrometer
JPS59168345A (en) Spectroscopic analysis method
Kirchner et al. All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples
WO2021261035A1 (en) Raman microspectroscopic measurement device, and method for calibrating raman microspectroscopic measurement device
JP2009244156A (en) Spectroscopic device and spectral confocal microscope
JPWO2019038823A1 (en) Far-infrared spectrometer and far-infrared spectroscopy method
JPH11190695A (en) Semiconductor stress measuring raman spectrophotometer
JP2006300808A (en) Raman spectrometry system
JP2000055809A (en) Raman microspectroscope and method therefor
JP2021051074A (en) Spectroscopic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5261862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151