JP2003007724A - Method of manufacturing compound semiconductor device - Google Patents
Method of manufacturing compound semiconductor deviceInfo
- Publication number
- JP2003007724A JP2003007724A JP2001182686A JP2001182686A JP2003007724A JP 2003007724 A JP2003007724 A JP 2003007724A JP 2001182686 A JP2001182686 A JP 2001182686A JP 2001182686 A JP2001182686 A JP 2001182686A JP 2003007724 A JP2003007724 A JP 2003007724A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- pad
- region
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 150000001875 compounds Chemical class 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 35
- 238000000151 deposition Methods 0.000 claims description 15
- 238000005468 ion implantation Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000002788 crimping Methods 0.000 claims description 4
- 239000010931 gold Substances 0.000 abstract description 23
- 238000007747 plating Methods 0.000 abstract description 23
- 150000004767 nitrides Chemical class 0.000 abstract description 18
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052737 gold Inorganic materials 0.000 abstract description 14
- 238000002955 isolation Methods 0.000 abstract description 12
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 160
- 108091006146 Channels Proteins 0.000 description 42
- 230000008569 process Effects 0.000 description 23
- 238000000206 photolithography Methods 0.000 description 16
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 15
- 239000012535 impurity Substances 0.000 description 9
- 238000002161 passivation Methods 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 3
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 3
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 2
- 101100484930 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) VPS41 gene Proteins 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 1
- 101000854908 Homo sapiens WD repeat-containing protein 11 Proteins 0.000 description 1
- 102100020705 WD repeat-containing protein 11 Human genes 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05556—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01018—Argon [Ar]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01031—Gallium [Ga]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/049—Nitrides composed of metals from groups of the periodic table
- H01L2924/0504—14th Group
- H01L2924/05042—Si3N4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/10329—Gallium arsenide [GaAs]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12032—Schottky diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/141—Analog devices
- H01L2924/1423—Monolithic Microwave Integrated Circuit [MMIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19043—Component type being a resistor
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Wire Bonding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、化合物半導体装置
の製造方法、特にGaAs基板を用いた化合物半導体装
置の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a method for manufacturing a compound semiconductor device using a GaAs substrate.
【0002】[0002]
【従来の技術】携帯電話等の移動体用通信機器では、G
Hz帯のマイクロ波を使用している場合が多く、アンテ
ナの切換回路や送受信の切換回路などに、これらの高周
波信号を切り替えるためのスイッチ素子が用いられるこ
とが多い(例えば、特開平9−181642号)。その
素子としては、高周波を扱うことからガリウム・砒素
(GaAs)を用いた電界効果トランジスタ(以下FE
Tという)を使用する事が多く、これに伴って前記スイ
ッチ回路自体を集積化したモノリシックマイクロ波集積
回路(MMIC)の開発が進められている。2. Description of the Related Art In mobile communication devices such as mobile phones, G
In many cases, microwaves in the Hz band are used, and switching elements for switching these high-frequency signals are often used in antenna switching circuits, transmission / reception switching circuits, and the like (for example, Japanese Patent Laid-Open No. 9-181642). issue). As its element, since it handles high frequencies, a field effect transistor (hereinafter referred to as FE) using gallium arsenide (GaAs) is used.
In most cases, a monolithic microwave integrated circuit (MMIC) in which the switch circuit itself is integrated is being developed.
【0003】図11(A)は、GaAs FETの断面
図を示している。ノンドープのGaAs基板31の表面
部分にn型不純物をドープしてn型のチャネル領域32
を形成し、チャネル領域32表面にショットキー接触す
るゲート電極33を配置し、ゲート電極33の両脇には
GaAs表面にオーミック接触するソース・ドレイン電
極34、35を配置したものである。このトランジスタ
は、ゲート電極33の電位によって直下のチャネル領域
32内に空乏層を形成し、もってソース電極34とドレ
イン電極35との間のチャネル電流を制御するものであ
る。FIG. 11A shows a sectional view of a GaAs FET. The surface portion of the undoped GaAs substrate 31 is doped with an n-type impurity to form an n-type channel region 32.
, The gate electrode 33 is formed on the surface of the channel region 32 in Schottky contact, and the source / drain electrodes 34, 35 in ohmic contact with the GaAs surface are arranged on both sides of the gate electrode 33. This transistor forms a depletion layer in the channel region 32 immediately below by the potential of the gate electrode 33, thereby controlling the channel current between the source electrode 34 and the drain electrode 35.
【0004】図11(B)は、GaAs FETを用い
たSPDT(Single Pole Double Throw)と呼ばれる化合
物半導体スイッチ回路装置の原理的な回路図を示してい
る。FIG. 11B shows a principle circuit diagram of a compound semiconductor switch circuit device called SPDT (Single Pole Double Throw) using a GaAs FET.
【0005】第1と第2のFET1、FET2のソース
(又はドレイン)が共通入力端子INに接続され、各F
ET1、FET2のゲートが抵抗R1、R2を介して第
1と第2の制御端子Ctl-1、Ctl-2に接続され、
そして各FETのドレイン(又はソース)が第1と第2
の出力端子OUT1、OUT2に接続されたものであ
る。第1と第2の制御端子Ctl-1、Ctl-2に印加
される信号は相補信号であり、Hレベルの信号が印加さ
れたFETがONして、入力端子INに印加された信号
をどちらか一方の出力端子に伝達するようになってい
る。抵抗R1、R2は、交流接地となる制御端子Ctl
-1、Ctl-2の直流電位に対してゲート電極を介して
高周波信号が漏出することを防止する目的で配置されて
いる。Sources (or drains) of the first and second FET1 and FET2 are connected to a common input terminal IN, and each F
The gates of ET1 and FET2 are connected to the first and second control terminals Ctl-1 and Ctl-2 via resistors R1 and R2,
The drain (or source) of each FET is the first and second
Of the output terminals OUT1 and OUT2. The signals applied to the first and second control terminals Ctl-1 and Ctl-2 are complementary signals, and the FET applied with the H level signal is turned on to determine which signal is applied to the input terminal IN. It is designed to be transmitted to one of the output terminals. The resistors R1 and R2 are control terminals Ctl that are AC grounded.
It is arranged for the purpose of preventing a high frequency signal from leaking through the gate electrode with respect to the DC potential of -1, Ctl-2.
【0006】かかる化合物半導体スイッチ回路装置のF
ET、パッドおよび配線の製造方法を図12〜図20に
示す。The F of such a compound semiconductor switch circuit device
A method of manufacturing the ET, the pad and the wiring is shown in FIGS.
【0007】図12では、基板1表面にチャネル層2を
形成する。In FIG. 12, the channel layer 2 is formed on the surface of the substrate 1.
【0008】すなわち、基板1全面を約100Åの厚み
のスルーイオン注入用シリコン窒化膜3で被覆する。次
に、予定のチャネル層2上のレジスト層4を選択的に窓
開けするフォトリソグラフィプロセスを行う。その後、
このレジスト層4をマスクとして予定のチャネル層2へ
動作層を選択するためにp-型を与える不純物のイオン
注入およびn型を与える不純物のイオン注入を行う。こ
の結果、ノンドープの基板1にはp-型領域5と、その
上にn型チャネル層2が形成される。That is, the entire surface of the substrate 1 is covered with a silicon nitride film 3 for through ion implantation having a thickness of about 100Å. Next, a photolithography process of selectively opening the resist layer 4 on the intended channel layer 2 is performed. afterwards,
Using this resist layer 4 as a mask, ion implantation of an impurity giving ap − type and ion implantation of an impurity giving an n type are performed in order to select an operation layer into a predetermined channel layer 2. As a result, the p − type region 5 and the n type channel layer 2 are formed on the non-doped substrate 1.
【0009】図13では、基板1表面にチャネル層2の
両端に隣接してソース領域6およびドレイン領域7を形
成する。In FIG. 13, a source region 6 and a drain region 7 are formed on the surface of the substrate 1 adjacent to both ends of the channel layer 2.
【0010】前工程で用いたレジスト層4を除去し、新
たに予定のソース領域6およびドレイン領域7上のレジ
スト層8を選択的に窓開けするフォトリソグラフィプロ
セスを行う。続いて、このレジスト層8をマスクとして
予定のソース領域6およびドレイン領域7にn型を与え
る不純物のイオン注入を行し、n+型のソース領域6お
よびドレイン領域7を形成する。The resist layer 4 used in the previous step is removed, and a photolithography process is performed to selectively open the resist layer 8 on the newly planned source region 6 and drain region 7. Then, using the resist layer 8 as a mask, ion implantation of impurities imparting n-type is performed to the planned source region 6 and drain region 7 to form the n + -type source region 6 and drain region 7.
【0011】図14では、ソース領域6およびドレイン
領域7に第1層目の電極としてのオーミック金属層10
を付着し第1ソース電極11および第1ドレイン電極1
2を形成する。In FIG. 14, the ohmic metal layer 10 as the first electrode is formed in the source region 6 and the drain region 7.
Attached to the first source electrode 11 and the first drain electrode 1
Form 2.
【0012】予定の第1ソース電極11および第1ドレ
イン電極12形成する部分を選択的に窓開けするフォト
リソグラフィプロセスを行う。予定の第1ソース電極1
1および第1ドレイン電極12上にあるシリコン窒化膜
3をCF4プラズマにより除去し引き続いてオーミック
金属層10となるAnGe/Ni/Auの3層を順次真
空蒸着し積層する。その後、レジスト層13を除去し
て、リフトオフによりソース領域6およびドレイン領域
7上に第1ソース電極11および第1ドレイン電極12
を残す。引き続いて合金化熱処理により第1ソース電極
11とソース領域6、および第1ドレイン電極12とド
レイン領域7のオーミック接合を形成する。A photolithography process for selectively opening windows in portions where the first source electrode 11 and the first drain electrode 12 are to be formed is performed. Planned first source electrode 1
The silicon nitride film 3 on the first and first drain electrodes 12 is removed by CF 4 plasma, and subsequently, three layers of AnGe / Ni / Au to be the ohmic metal layer 10 are sequentially vacuum-deposited and laminated. Then, the resist layer 13 is removed, and the first source electrode 11 and the first drain electrode 12 are formed on the source region 6 and the drain region 7 by lift-off.
Leave. Subsequently, an alloying heat treatment is performed to form ohmic contacts between the first source electrode 11 and the source region 6 and between the first drain electrode 12 and the drain region 7.
【0013】図15では、予定のゲート電極16部分を
選択的に窓開けするフォトリソグラフィプロセスを行
う。In FIG. 15, a photolithography process for selectively opening a predetermined gate electrode 16 portion is performed.
【0014】図16では、露出した窒化膜3をドライエ
ッチング後、ゲート金属層18となるTi/Pt/Au
の3層を順次真空蒸着して積層する。その後レジスト層
14を除去してリフトオフによりチャネル層2にコンタ
クトするゲート長0.5μmのゲート電極16および第
1パッド電極17を形成する。In FIG. 16, after the exposed nitride film 3 is dry-etched, Ti / Pt / Au to be the gate metal layer 18 is formed.
Are sequentially vacuum-deposited and laminated. After that, the resist layer 14 is removed and lift-off is performed to form a gate electrode 16 and a first pad electrode 17 having a gate length of 0.5 μm and contacting the channel layer 2.
【0015】図17では、パッシベーション膜19を形
成後、第2ソースおよびドレイン電極23、24と配線
層25を形成する。In FIG. 17, after forming the passivation film 19, the second source and drain electrodes 23 and 24 and the wiring layer 25 are formed.
【0016】ゲート電極16を形成した後、ゲート電極
16周辺のチャネル層2を保護するために、基板1表面
はシリコン窒化膜よりなるパッシベーション膜19で被
覆される。このパッシベーション膜19上にフォトリソ
グラフィプロセスを行い、第1ソースおよびドレイン電
極11、12とのコンタクト部及びゲート電極16との
コンタクト部に対して選択的にレジストの窓開けを行
い、その部分のパッシベーション膜19をドライエッチ
ングする。その後、レジスト層は除去される。After forming the gate electrode 16, the surface of the substrate 1 is covered with a passivation film 19 made of a silicon nitride film in order to protect the channel layer 2 around the gate electrode 16. A photolithography process is performed on this passivation film 19, and a resist window is selectively opened in a contact portion with the first source and drain electrodes 11 and 12 and a contact portion with the gate electrode 16 to passivate the portion. The film 19 is dry-etched. After that, the resist layer is removed.
【0017】その後、第2ソースおよびドレイン電極2
3、24と配線層25を形成する。基板1全面に新たな
フォトリソグラフィプロセスを行い、第1ソース電極1
1、第1ドレイン電極12部分と、予定の配線層25上
のパッシベーション膜19を露出して、他をレジスト層
20で覆う。続いて、全面に第3層目の電極としての配
線金属層21となるTi/Pt/Auの3層を順次真空
蒸着して積層する。レジスト層20はそのままマスクと
して利用されるので、第1ソース電極11、第1ドレイ
ン電極12にコンタクトする第2ソース電極23および
第2ドレイン電極24と配線層25が形成される。配線
金属層21の他の部分はレジスト層20上に付着される
ので、レジスト層20を除去してリフトオフにより第2
ソース電極23および第2ドレイン電極24と配線層2
5のみを残し、他は除去される。なお、一部の配線部分
はこの配線金属層21を用いて形成されるので、当然そ
の配線部分の配線金属層21は残される。Then, the second source and drain electrodes 2
3, 24 and the wiring layer 25 are formed. A new photolithography process is performed on the entire surface of the substrate 1 to remove the first source electrode 1
First, the first drain electrode 12 portion and the passivation film 19 on the predetermined wiring layer 25 are exposed, and the others are covered with the resist layer 20. Then, three layers of Ti / Pt / Au, which will be the wiring metal layer 21 as the third electrode, are sequentially vacuum-deposited and laminated on the entire surface. Since the resist layer 20 is used as a mask as it is, the second source electrode 23 and the second drain electrode 24, which are in contact with the first source electrode 11 and the first drain electrode 12, and the wiring layer 25 are formed. Since the other part of the wiring metal layer 21 is attached on the resist layer 20, the resist layer 20 is removed and the second portion is lifted off.
Source electrode 23, second drain electrode 24, and wiring layer 2
Only 5 are left and the others are removed. Since a part of the wiring portion is formed by using this wiring metal layer 21, the wiring metal layer 21 of that wiring portion is naturally left.
【0018】図18では、層間絶縁膜用の窒化膜26を
形成し、メッキ用電極27を形成する。In FIG. 18, a nitride film 26 for an interlayer insulating film is formed and a plating electrode 27 is formed.
【0019】多層配線化のため、基板1表面はシリコン
窒化膜よりなる層間絶縁膜26で被覆される。層間絶縁
膜26上にフォトリソグラフィプロセスを行い第2ソー
スおよびドレイン電極23、24とのコンタクト部分及
び配線電極25のコンタクト部分に対して選択的にレジ
ストの窓開けを行い、その部分のパッシベーション膜1
9をドライエッチングする。その後、レジスト層は除去
される。The surface of the substrate 1 is covered with an interlayer insulating film 26 made of a silicon nitride film in order to realize multi-layer wiring. A photolithography process is performed on the interlayer insulating film 26 to selectively open a window of a resist with respect to the contact portion with the second source and drain electrodes 23 and 24 and the contact portion with the wiring electrode 25, and the passivation film 1 at that portion is opened.
9 is dry-etched. After that, the resist layer is removed.
【0020】その後、メッキ用電極27を形成する。全
面にメッキ用電極27となるTi/Pt/Auの3層を
順次真空蒸着して積層する。第2ソースおよびドレイン
電極23、24及び配線電極25の所定部分にはコンタ
クト孔が設けられているので、メッキ用電極27がコン
タクトする。After that, the plating electrode 27 is formed. Three layers of Ti / Pt / Au to be the plating electrodes 27 are sequentially vacuum-deposited and laminated on the entire surface. Since contact holes are provided in predetermined portions of the second source and drain electrodes 23, 24 and the wiring electrode 25, the plating electrode 27 makes contact.
【0021】図19では金メッキを施し、第3ソースお
よびドレイン電極28、29とボンディングワイヤを固
着するためのパッド電極31を形成する。In FIG. 19, gold plating is applied to form pad electrodes 31 for fixing the third source and drain electrodes 28 and 29 and bonding wires.
【0022】基板1にフォトリソグラフィプロセスを行
い、予定の第3ソース電極28、第3ドレイン電極29
および予定のパッド電極31部分のメッキ用電極27を
露出して、他をレジスト層30で覆った後、電解金メッ
キを行う。そのときレジスト層30がマスクとなり、メ
ッキ用電極27が露出した部分のみ金メッキが付着す
る。つまり、第2ソース電極23、第2ドレイン電極2
4にコンタクトする第3ソース電極28および第3ドレ
イン電極29とボンディングワイヤを固着するためのパ
ッド電極31が形成される。A photolithography process is performed on the substrate 1, and the planned third source electrode 28 and third drain electrode 29 are formed.
Then, the plating electrode 27 at the planned pad electrode 31 is exposed and the other part is covered with the resist layer 30, and then electrolytic gold plating is performed. At that time, the resist layer 30 serves as a mask, and gold plating adheres only to the exposed portion of the plating electrode 27. That is, the second source electrode 23 and the second drain electrode 2
A pad electrode 31 for fixing the bonding wire to the third source electrode 28 and the third drain electrode 29 which contact the electrode 4 is formed.
【0023】図20では、パッド電極31を最終的に形
成し、その上にボンディングワイヤ40を圧着する。In FIG. 20, the pad electrode 31 is finally formed, and the bonding wire 40 is pressure-bonded thereon.
【0024】レジスト30を除去後、全面に露出した不
要なメッキ用電極27を除去する。金メッキが施された
第3ソース電極28、第3ドレイン電極29およびパッ
ド電極31以外のメッキ用電極は不要である。Arプラ
ズマによるイオンミリングを行うと金メッキが施されて
いない部分のメッキ用電極が削られ層間絶縁膜26が露
出する。金メッキ部分も多少削られるが、2〜3μm程
度の厚みがあるので問題ない。なお、一部の配線部分は
この金メッキを用いて形成されるので、当然その配線部
分のメッキ用電極27および金メッキは残される。After removing the resist 30, the unnecessary plating electrode 27 exposed on the entire surface is removed. No plating electrodes other than the gold-plated third source electrode 28, third drain electrode 29, and pad electrode 31 are required. When ion milling with Ar plasma is performed, the plating electrode in the portion not plated with gold is scraped off to expose the interlayer insulating film 26. The gold-plated portion is also slightly scraped, but there is no problem because it has a thickness of about 2 to 3 μm. Since a part of the wiring portion is formed by using this gold plating, the plating electrode 27 and the gold plating of that wiring portion are naturally left.
【0025】化合物半導体スイッチ回路装置は前工程を
完成すると、組み立てを行う後工程に移される。ウエフ
ァ状の半導体チップはダイシングされて、個別の半導体
チップ分離され、フレーム(図示せず)にこの半導体チ
ップを固着した後、ボンディングワイヤ40で半導体チ
ップのパッド電極31と所定のリード(図示せず)とを
接続する。ボンディングワイヤ40としては金細線を用
い、周知のボールボンディングで接続される。その後、
トランスファーモールドされて樹脂パッケージが施され
る。When the compound semiconductor switch circuit device has completed the pre-process, it is moved to the post-process for assembling. The wafer-shaped semiconductor chip is diced into individual semiconductor chips, and the semiconductor chips are fixed to a frame (not shown). Then, a pad electrode 31 of the semiconductor chip and a predetermined lead (not shown) are bonded by a bonding wire 40. ) And connect. A thin gold wire is used as the bonding wire 40 and is connected by well-known ball bonding. afterwards,
Transfer molding is performed and a resin package is applied.
【0026】[0026]
【発明が解決しようとする課題】GaAs基板は半絶縁
性ではあるが、基板上にワイヤボンディング用のパッド
電極層を直接設けると、隣接した電極間の電気的相互作
用は依然として存在する。例えば絶縁強度が弱いため静
電破壊が発生したり、高周波の信号が漏れてアイソレー
ションが悪化するなど、特性的に問題が多くなる。その
ため従来の製造方法では、配線層やパッド電極層の下に
窒化膜を敷いていた。Although the GaAs substrate is semi-insulating, when a pad electrode layer for wire bonding is directly provided on the substrate, electrical interaction between adjacent electrodes still exists. For example, since the insulation strength is weak, electrostatic breakdown occurs, high-frequency signals leak, and the isolation is deteriorated. Therefore, in the conventional manufacturing method, a nitride film is laid under the wiring layer and the pad electrode layer.
【0027】しかし、窒化膜は堅いため、ボンディング
時の圧力でパッド部分に割れが発生する。これを抑制す
るために窒化膜上のボンディング電極には金メッキを施
して対応しているが、金メッキの工程は、工程数も増加
する上、コストも増えることになる。However, since the nitride film is hard, the pad portion is cracked by the pressure during bonding. In order to suppress this, the bonding electrode on the nitride film is treated by applying gold plating, but the gold plating process increases the number of processes and also increases the cost.
【0028】また、従来の化合物半導体装置では、パッ
ドや配線層を半絶縁性GaAs基板に接触して形成する
とき、アイソレーションを確保するために隣接する電極
間において20μm以上の離間距離を設けていた。この
理論的な裏付けは乏しいが、今まで半絶縁性GaAs基
板は絶縁基板という考え方から、耐圧は無限大であると
考えられていた。しかし実測をすると、耐圧が有限であ
ることが分かった。このために半絶縁性GaAs基板の
中で空乏層が伸びて、高周波信号に応じた空乏層距離の
変化により、空乏層が隣接する電極まで到達するとそこ
で高周波信号の漏れを発生することが考えられる。この
ため、パッド電極層および配線層などの電極は20μm
以上の離間距離を設けて配置されていた。Further, in the conventional compound semiconductor device, when the pad and the wiring layer are formed in contact with the semi-insulating GaAs substrate, a separation distance of 20 μm or more is provided between the adjacent electrodes to ensure isolation. It was Although this theoretical backing is poor, it has been thought that the semi-insulating GaAs substrate has an infinite breakdown voltage from the idea that it is an insulating substrate. However, it was found that the breakdown voltage was finite when actually measured. For this reason, the depletion layer expands in the semi-insulating GaAs substrate, and due to the change in the depletion layer distance depending on the high frequency signal, when the depletion layer reaches the adjacent electrode, the high frequency signal may leak there. . Therefore, the electrodes such as the pad electrode layer and the wiring layer have a thickness of 20 μm.
The above-mentioned separation distance is provided.
【0029】しかし、前述の化合物半導体装置では5個
のパッドが半導体チップの半分近くを占めており、チッ
プサイズが低減できない大きな要因となっていた。However, in the above-described compound semiconductor device, the five pads occupy nearly half of the semiconductor chip, which is a major factor that the chip size cannot be reduced.
【0030】現在ではシリコン半導体チップの性能の向
上も目覚ましく、高周波帯での利用の可能性が高まりつ
つある。従来ではシリコンチップは高周波帯での利用は
難しく、高価な化合物半導体チップが利用されていた
が、シリコン半導体の利用の可能性が高まれば、当然ウ
エファ価格の高い化合物半導体チップは価格競争で負け
てしまう。このためにチップサイズをシュリンクしてコ
ストを抑える必然性があり、チップサイズの低減は不可
避である。At present, the performance of silicon semiconductor chips is remarkably improved, and the possibility of use in the high frequency band is increasing. Conventionally, it was difficult to use silicon chips in the high frequency band, and expensive compound semiconductor chips were used, but if the possibility of using silicon semiconductors increases, naturally compound wafers with high wafer prices will lose in price competition. I will end up. For this reason, it is inevitable to shrink the chip size to reduce the cost, and it is inevitable to reduce the chip size.
【0031】[0031]
【課題を解決するための手段】本発明は上述した諸々の
事情に鑑み成されたものであり、パッド電極の下の窒化
膜を除去してワイヤボンド時の圧力による影響を抑制
し、更にパッド電極下に高濃度領域を設け、また配線と
して用いたゲート金属の下に高濃度領域を設けることに
より、隣接するパッド電極、配線電極の離間距離を縮小
してチップサイズをシュリンクできるパッド構造、配線
電極構造を工程数を増やすことなく実現する化合物半導
体装置の製造方法を提供することに特徴がある。The present invention has been made in view of the above-mentioned various circumstances, and the nitride film under the pad electrode is removed to suppress the influence of the pressure at the time of wire bonding. By providing a high-concentration region under the electrode and a high-concentration region under the gate metal used as the wiring, the distance between adjacent pad electrodes and wiring electrodes can be reduced, and the chip size can be shrunk. A feature of the present invention is to provide a method for manufacturing a compound semiconductor device that realizes an electrode structure without increasing the number of steps.
【0032】すなわち、基板表面にチャネル層を形成す
る工程と、前記チャネル層に接してソースおよびドレイ
ン領域を形成し、同時に予定のパッド領域下および予定
の配線層下に高濃度領域を形成する工程と、前記ソース
およびドレイン領域に第1層目の電極としてのオーミッ
ク金属層を付着し第1ソースおよび第1ドレイン電極を
形成する工程と、前記チャネル層および前記高濃度領域
上に第2層目の電極としてのゲート金属層を付着しゲー
ト電極および第1パッド電極および配線層を形成する工
程と、前記第1ソースおよび第1ドレイン電極と前記第
1パッド電極上に第3層目の電極としてのパッド金属層
を付着し第2ソースおよび第2ドレイン電極と第2パッ
ド電極を形成する工程と、前記第2パッド電極上にボン
ディングワイヤを圧着する工程とを具備することを特徴
とする。That is, a step of forming a channel layer on the surface of the substrate, a step of forming source and drain regions in contact with the channel layer, and a step of simultaneously forming a high concentration region under a predetermined pad region and a predetermined wiring layer. And a step of depositing an ohmic metal layer as a first-layer electrode on the source and drain regions to form first source and first drain electrodes, and a second layer on the channel layer and the high-concentration region. A gate metal layer as an electrode for forming a gate electrode, a first pad electrode and a wiring layer, and as a third layer electrode on the first source and first drain electrodes and the first pad electrode. A pad metal layer to form second source and second drain electrodes and a second pad electrode, and a bonding wire on the second pad electrode. Characterized by comprising the step of wearing.
【0033】[0033]
【発明の実施の形態】以下に本発明の実施の形態につい
て図1から図10を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.
【0034】本発明は、基板51表面にチャネル層52
を形成する工程と、前記チャネル層52に接してソース
およびドレイン領域56、57を形成し、同時に予定の
パッド領域下および予定の配線層下に高濃度領域60、
61を形成する工程と、前記ソースおよびドレイン領域
56、57に第1層目の電極としてのオーミック金属層
64を付着し第1ソースおよび第1ドレイン電極65、
66を形成する工程と、前記チャネル層52および前記
高濃度領域60、61上に第2層目の電極としてのゲー
ト金属層68を付着しゲート電極69および第1パッド
電極70および配線層62を形成する工程と、前記第1
ソースおよび第1ドレイン電極65、66と前記第1パ
ッド電極70上に第3層目の電極としてのパッド金属層
74を付着し第2ソースおよび第2ドレイン電極75、
76と第2パッド電極77を形成する工程と、前記第2
パッド電極77上にボンディングワイヤ80を圧着する
工程とから構成される。According to the present invention, the channel layer 52 is formed on the surface of the substrate 51.
And forming source and drain regions 56 and 57 in contact with the channel layer 52, and simultaneously forming a high concentration region 60 under a planned pad region and a planned wiring layer.
61, and a step of forming a first source and drain electrode 65 by depositing an ohmic metal layer 64 as a first layer electrode on the source and drain regions 56 and 57.
66, and a gate metal layer 68 as a second-layer electrode is attached on the channel layer 52 and the high-concentration regions 60 and 61 to form a gate electrode 69, a first pad electrode 70, and a wiring layer 62. Forming step and the first
A pad metal layer 74 as a third electrode is deposited on the source / first drain electrodes 65, 66 and the first pad electrode 70 to form second source / second drain electrodes 75,
76 and the second pad electrode 77, and the second step
And a step of crimping the bonding wire 80 onto the pad electrode 77.
【0035】本発明の第1の工程は、図1に示す如く、
基板51表面にチャネル層52を形成することにある。The first step of the present invention is as shown in FIG.
The purpose is to form the channel layer 52 on the surface of the substrate 51.
【0036】すなわち、GaAs等で形成される化合物
半導体基板51全面を約100Åから200Åの厚みの
スルーイオン注入用シリコン窒化膜53で被覆する。次
に、予定のチャネル層52上のレジスト層54を選択的
に窓開けするフォトリソグラフィプロセスを行う。その
後、このレジスト層54をマスクとして予定のチャネル
層52へ動作層を選択するためにp−型を与える不純物
(24Mg+)のイオン注入およびn型を与える不純物
(29Si+)のイオン注入を行う。That is, the entire surface of the compound semiconductor substrate 51 made of GaAs or the like is covered with the through-ion implantation silicon nitride film 53 having a thickness of about 100 Å to 200 Å. Next, a photolithography process for selectively opening the resist layer 54 on the predetermined channel layer 52 is performed. Then, using this resist layer 54 as a mask, ion implantation of an impurity (24Mg + ) for giving a p-type and an impurity for giving an n-type for selecting an operation layer into a predetermined channel layer 52.
Ion implantation of (29Si + ) is performed.
【0037】この結果、ノンドープの基板51にはp-
型領域55と、その上にn型チャネル層52が形成され
る。As a result, p − is formed on the non-doped substrate 51.
The mold region 55 and the n-type channel layer 52 are formed thereon.
【0038】本発明の第2の工程は、図2に示す如く、
前記チャネル層52に接してソース領域56およびドレ
イン領域57を形成し、同時に予定のパッド領域70下
および予定の配線層62下に高濃度領域60、61を形
成することにある。The second step of the present invention is as shown in FIG.
A source region 56 and a drain region 57 are formed in contact with the channel layer 52, and at the same time, high-concentration regions 60 and 61 are formed under a planned pad region 70 and a planned wiring layer 62.
【0039】本工程は、本発明の第1の特徴となる工程
であり、前工程で用いたレジスト層54を除去し、新た
に予定のソース領域56、ドレイン領域57、予定の配
線層62およびパッド領域70上のレジスト層58を選
択的に窓開けするフォトリソグラフィプロセスを行う。
続いて、このレジスト層58をマスクとして予定のソー
ス領域56およびドレイン領域57、予定の配線層62
およびパッド電極70の下の基板表面にn型を与える不
純物(29Si+)のイオン注入を行う。これにより、n+
型のソース領域56およびドレイン領域57を形成し、
同時に予定のパッド領域70および配線層62の下の基
板表面に高濃度領域60、61を形成する。ここで重要
なことは、高濃度領域60、61は予定のパッド電極7
0および配線層62よりもはみ出すようにレジスト層5
8を除去することである。これにより、後の工程で形成
されるパッド電極70および配線層62の下にはそれら
の領域より大きい高濃度領域60、61が形成される。This step is the first characteristic step of the present invention, in which the resist layer 54 used in the previous step is removed, and a new source region 56, a drain region 57, a predetermined wiring layer 62 and A photolithography process is performed to selectively open the resist layer 58 on the pad region 70.
Then, using the resist layer 58 as a mask, the planned source region 56 and drain region 57 and the planned wiring layer 62 are formed.
Then, ion implantation of an impurity (29Si + ) giving n-type is performed on the substrate surface below the pad electrode 70. This gives n +
Forming a source region 56 and a drain region 57 of the mold,
At the same time, high-concentration regions 60 and 61 are formed on the surface of the substrate below the planned pad region 70 and wiring layer 62. What is important here is that the high-concentration regions 60 and 61 are the planned pad electrodes 7.
0 and the resist layer 5 so as to protrude from the wiring layer 62.
8 is to be removed. As a result, high-concentration regions 60 and 61, which are larger than those regions, are formed below the pad electrode 70 and the wiring layer 62 which will be formed in a later step.
【0040】GaAs基板上にパッド電極または配線層
を直接設けると、高周波信号に応じた空乏層距離の変化
により、空乏層が隣接する電極または配線層まで到達す
るとそこで高周波信号の漏れを発生することが考えられ
る。When a pad electrode or a wiring layer is directly provided on a GaAs substrate, a high frequency signal may leak when the depletion layer reaches an adjacent electrode or wiring layer due to a change in the depletion layer distance according to a high frequency signal. Can be considered.
【0041】しかし、パッド電極70および配線層62
の下の基板51表面にn+型の高濃度領域60、61が
設けられれば、不純物がドープされていない基板51
(半絶縁性であるが、基板抵抗値は1×107Ω・c
m)表面と異なり、不純物濃度が高くなる(イオン種
29Si+で濃度は1〜5×108cm-3)。これにより
配線層62およびパッド電極70と基板51は分離さ
れ、パッド電極70、配線層62への空乏層が伸びない
ので、隣接するパッド電極70、配線層62はお互いの
離間距離を大幅に近接して設けることが可能となる。However, the pad electrode 70 and the wiring layer 62
If n + -type high-concentration regions 60 and 61 are provided on the surface of the lower substrate 51, the substrate 51 not doped with impurities
(Although it is semi-insulating, the substrate resistance is 1 × 10 7 Ω ・ c
m) Unlike the surface, the impurity concentration is high (ionic species
29Si + with a concentration of 1-5 × 10 8 cm -3 ). As a result, the wiring layer 62 and the pad electrode 70 are separated from the substrate 51, and the depletion layer for the pad electrode 70 and the wiring layer 62 does not extend. Therefore, the adjacent pad electrode 70 and the wiring layer 62 are greatly separated from each other. Can be provided later.
【0042】具体的には、離間距離を4μmにすれば、
20dB以上のアイソレーションを確保するには十分で
あると割り出された。また、電磁界シミュレーションに
おいても4μm程度の離間距離を設ければ2.4GHz
において40dB程度もアイソレーションを得られるこ
とがわかっている。Specifically, if the separation distance is 4 μm,
It was determined to be sufficient to ensure an isolation of 20 dB or more. Also, in the electromagnetic field simulation, if a separation distance of about 4 μm is provided, 2.4 GHz
It has been found that the isolation of about 40 dB can be obtained.
【0043】つまり、パッド電極70および配線層62
の下に、これらの領域よりもはみ出すように高濃度領域
60、61を設けることにより、パッド電極70および
配線層62を直接GaAs基板に設けても、アイソレー
ションが十分確保できるので、従来安全のために設けて
いた窒化膜を除去することができる。That is, the pad electrode 70 and the wiring layer 62.
By providing the high-concentration regions 60 and 61 so as to protrude below these regions, even if the pad electrode 70 and the wiring layer 62 are directly provided on the GaAs substrate, sufficient isolation can be ensured, so that conventional safety is ensured. The nitride film provided for that purpose can be removed.
【0044】窒化膜が不必要であれば、ボンディングワ
イヤの圧着時に窒化膜が割れることを考慮しなくてよい
ので、従来必要であった金メッキ工程を省くことができ
る。金メッキ工程は工程数も多く、コストもかかる工程
であるので、この工程が省略できれば、製造工程の簡素
化およびコスト削減に大きく寄与できる。If the nitride film is unnecessary, it is not necessary to consider the fact that the nitride film is cracked when the bonding wire is pressure-bonded, so that the gold plating step which has been conventionally required can be omitted. Since the gold plating process has many processes and is costly, if this process can be omitted, it can greatly contribute to simplification of the manufacturing process and cost reduction.
【0045】更に、互いに隣接するパッド電極70また
は配線層62の離間距離を4μmまで近接しても、20
dBmのアイソレーションを確保するには十分である。
例えば5個のパッドが半導体チップの半分近くを占めて
いるような化合物半導体装置では、チップサイズの大幅
なシュリンクが可能となり、化合物半導体装置の低価格
化が実現できる。Furthermore, even if the distance between the pad electrodes 70 or the wiring layers 62 adjacent to each other is reduced to 4 μm,
Sufficient to ensure isolation of dBm.
For example, in a compound semiconductor device in which five pads occupy nearly half of a semiconductor chip, it is possible to significantly shrink the chip size, and the cost of the compound semiconductor device can be reduced.
【0046】本発明の第3の工程は、図3に示す如く、
前記ソース領域56およびドレイン領域57に第1層目
の電極としてのオーミック金属層64を付着し第1ソー
ス電極65および第1ドレイン電極66を形成すること
にある。The third step of the present invention is as shown in FIG.
A first source electrode 65 and a first drain electrode 66 are formed by attaching an ohmic metal layer 64 as a first layer electrode to the source region 56 and the drain region 57.
【0047】まず、予定の第1ソース電極65および第
1ドレイン電極66を形成する部分を選択的に窓開けす
るフォトリソグラフィプロセスを行う。予定の第1ソー
ス電極65および第1ドレイン電極66上にあるシリコ
ン窒化膜53をCF4プラズマにより除去し、引き続い
てオーミック金属層64となるAnGe/Ni/Auの
3層を順次真空蒸着して積層する。その後、レジスト層
63を除去して、リフトオフによりソース領域56およ
びドレイン領域57上にコンタクトした第1ソース電極
65および第1ドレイン電極66を残す。引き続いて合
金化熱処理により第1ソース電極65とソース領域5
6、および第1ドレイン電極66とドレイン領域57の
オーミック接合を形成する。First, a photolithography process for selectively opening windows in portions where the first source electrode 65 and the first drain electrode 66 are to be formed is performed. The planned silicon nitride film 53 on the first source electrode 65 and the first drain electrode 66 is removed by CF 4 plasma, and then three layers of AnGe / Ni / Au to be the ohmic metal layer 64 are sequentially vacuum-deposited. Stack. Then, the resist layer 63 is removed, and the first source electrode 65 and the first drain electrode 66 contacting the source region 56 and the drain region 57 are left by lift-off. Then, the first source electrode 65 and the source region 5 are subjected to alloying heat treatment.
6, and an ohmic junction between the first drain electrode 66 and the drain region 57 is formed.
【0048】本発明の第4の工程は、図4から図6に示
す如く、前記チャネル層52および前記高濃度領域6
0、61上に第2層目の電極としてのゲート金属層68
を付着しゲート電極69、第1パッド電極70および配
線層62を形成することにある。In the fourth step of the present invention, as shown in FIGS. 4 to 6, the channel layer 52 and the high concentration region 6 are formed.
A gate metal layer 68 as a second electrode on 0, 61
To form the gate electrode 69, the first pad electrode 70 and the wiring layer 62.
【0049】本工程は、本発明の第2の特徴となる工程
である。第1の実施例として、まず図4では、予定のゲ
ート電極69、パッド電極70および配線層62部分を
選択的に窓開けするフォトリソグラフィプロセスを行
う。予定のゲート電極69、パッド電極70および配線
層62部分から露出したシリコン窒化膜53をドライエ
ッチングして、予定のゲート電極69部分のチャネル層
52を露出し、予定の配線層62および予定のパッド電
極70部分の基板51を露出する。This step is the second characteristic step of the present invention. As a first embodiment, first, in FIG. 4, a photolithography process for selectively opening windows of the planned gate electrode 69, pad electrode 70 and wiring layer 62 is performed. The silicon nitride film 53 exposed from the planned gate electrode 69, the pad electrode 70, and the wiring layer 62 is dry-etched to expose the channel layer 52 at the planned gate electrode 69, and the planned wiring layer 62 and the planned pad. The substrate 51 of the electrode 70 portion is exposed.
【0050】予定のゲート電極69部分の開口部は0.
5μmとし微細化されたゲート電極69を形成できるよ
うにする。このとき、第2の工程で説明したように従来
では、アイソレーションを確保するために必要であった
窒化膜が、高濃度領域60、61を設けたことにより除
去できるので、ボンディングワイヤの圧着時の衝撃によ
り、窒化膜および基板が割れることが無くなる。The planned opening of the gate electrode 69 portion is 0.
The gate electrode 69 having a size of 5 μm can be formed. At this time, as described in the second step, the nitride film, which was conventionally required to secure the isolation, can be removed by providing the high concentration regions 60 and 61. By the impact of, the nitride film and the substrate are not cracked.
【0051】図5では、チャネル層52および露出した
基板51に第2層目の電極としてのゲート金属層68を
付着しゲート電極69、配線層62および第1パッド電
極70を形成する。In FIG. 5, a gate metal layer 68 as an electrode of the second layer is attached to the channel layer 52 and the exposed substrate 51 to form a gate electrode 69, a wiring layer 62 and a first pad electrode 70.
【0052】すなわち、基板51に第2層目の電極とし
てのゲート金属層68となるTi/Pt/Auの3層を
順次真空蒸着して積層する。その後レジスト層67を除
去してリフトオフによりチャネル層52にコンタクトす
るゲート長0.5μmのゲート電極69と、第1パッド
電極70および配線層62を形成する。That is, three layers of Ti / Pt / Au, which will be the gate metal layer 68 as the second electrode, are sequentially vacuum-deposited and laminated on the substrate 51. Then, the resist layer 67 is removed, and a gate electrode 69 having a gate length of 0.5 μm, which contacts the channel layer 52, a first pad electrode 70, and a wiring layer 62 are formed by lift-off.
【0053】また、第2の実施例として、図6に示すご
とくゲート電極69の一部をチャネル層52に埋め込ん
でもよい。その場合は、ゲート金属層68としてPt/
Ti/Pt/Auの4層を順次真空蒸着して積層する。
その後リフトオフにより、ゲート電極69、第1パッド
電極70および配線層62を形成後、Ptを埋め込む熱
処理を施す。これにより、図6に示す如く、ゲート電極
69は基板とのショットキー接合を保ったままチャネル
層52に一部が埋設される。ここで、この場合のチャネ
ル層52の深さは第1の工程でチャネル層52を形成す
る場合に、このゲート電極69の埋め込み分を考慮し
て、所望のFET特性を得られるように深く形成してお
く。As a second embodiment, a part of the gate electrode 69 may be embedded in the channel layer 52 as shown in FIG. In that case, Pt / is used as the gate metal layer 68.
Four layers of Ti / Pt / Au are sequentially vacuum-deposited and laminated.
After that, the gate electrode 69, the first pad electrode 70, and the wiring layer 62 are formed by lift-off, and then heat treatment for burying Pt is performed. As a result, as shown in FIG. 6, the gate electrode 69 is partially embedded in the channel layer 52 while maintaining the Schottky junction with the substrate. Here, the depth of the channel layer 52 in this case is formed so as to obtain a desired FET characteristic in consideration of the embedded portion of the gate electrode 69 when the channel layer 52 is formed in the first step. I'll do it.
【0054】チャネル層52表面(例えば表面から50
0Å〜1000Å程度)は、自然空乏層が発生したり、
結晶が不均一な領域であるなどで電流が流れず、チャネ
ルとしては有効でない。ゲート電極69の一部をチャネ
ル領域52に埋め込むことにより、ゲート電極69直下
の電流の流れる部分がチャネル領域52表面から下が
る。チャネル領域52は予め所望のFET特性が得られ
るようにゲート電極69の埋設分を考慮して深く形成さ
れているため、チャネルとして有効活用できる。具体的
には電流密度、チャネル抵抗や高周波歪み特性が大幅に
改善される利点を有する。The surface of the channel layer 52 (for example, 50 from the surface)
0 Å ~ 1000 Å), a natural depletion layer occurs,
Current does not flow because the crystal is in a non-uniform region, so it is not effective as a channel. By embedding a part of the gate electrode 69 in the channel region 52, the portion of the current flowing directly below the gate electrode 69 is lowered from the surface of the channel region 52. Since the channel region 52 is deeply formed in consideration of the embedded portion of the gate electrode 69 so that desired FET characteristics can be obtained in advance, it can be effectively used as a channel. Specifically, it has an advantage that the current density, channel resistance, and high frequency distortion characteristics are significantly improved.
【0055】いずれの場合でも、パッド電極70および
配線層62下の窒化膜を除去できるので、割れの発生が
なくなる。また、従来は静電破壊の防止やアイソレーシ
ョン確保のためにも必要であったが、パッド電極70の
下および配線層62の下の基板51に高濃度領域60、
61を設けることにより、空乏層の拡がりを抑制し、所
定のアイソレーションが確保できる。In any case, since the nitride film under the pad electrode 70 and the wiring layer 62 can be removed, cracks will not occur. Further, conventionally, it was necessary to prevent electrostatic breakdown and ensure isolation, but the high concentration region 60 is formed on the substrate 51 under the pad electrode 70 and the wiring layer 62.
By providing 61, the expansion of the depletion layer can be suppressed and a predetermined isolation can be secured.
【0056】このように、窒化膜が不必要であれば、そ
の割れを抑制するために設けていた金メッキ工程が不必
要となるので、コストを大幅に削減でき、製造工程も簡
素化できる。As described above, if the nitride film is unnecessary, the gold plating step provided for suppressing the cracking is unnecessary, so that the cost can be greatly reduced and the manufacturing process can be simplified.
【0057】本発明の第5の工程は、図7および図8に
示す如く、前記第1ソース電極65および第1ドレイン
電極66と前記第1パッド電極70上に第3層目の電極
としてのパッド金属層74を付着し第2ソースおよび第
2ドレイン電極75、76と第2パッド電極77を形成
することにある。In the fifth step of the present invention, as shown in FIGS. 7 and 8, a third layer electrode is formed on the first source electrode 65, the first drain electrode 66, and the first pad electrode 70. The pad metal layer 74 is deposited to form the second source and second drain electrodes 75 and 76 and the second pad electrode 77.
【0058】図7では、第1ソース電極65および第1
ドレイン電極66と第1パッド電極70上のパッシベー
ション膜72にコンタクト孔を形成する。In FIG. 7, the first source electrode 65 and the first source electrode 65
Contact holes are formed in the passivation film 72 on the drain electrode 66 and the first pad electrode 70.
【0059】ゲート電極69、配線層62および第1パ
ッド電極70を形成した後、ゲート電極69周辺のチャ
ネル層52を保護するために、基板51表面はシリコン
窒化膜よりなるパッシベーション膜72で被覆される。
このパッシベーション膜72上にフォトリソグラフィプ
ロセスを行い、第1ソース電極65、第1ドレイン電極
66、および第1パッド電極70とのコンタクト部に対
して選択的にレジストの窓開けを行い、その部分のパッ
シベーション膜72をドライエッチングする。その後、
レジスト層71は除去される。After forming the gate electrode 69, the wiring layer 62 and the first pad electrode 70, in order to protect the channel layer 52 around the gate electrode 69, the surface of the substrate 51 is covered with a passivation film 72 of a silicon nitride film. It
A photolithography process is performed on the passivation film 72 to selectively open a resist window for the contact portions with the first source electrode 65, the first drain electrode 66, and the first pad electrode 70, and The passivation film 72 is dry-etched. afterwards,
The resist layer 71 is removed.
【0060】図8では、第1ソース電極65および第1
ドレイン電極66と第1パッド電極70上に第3層目の
電極としてのパッド金属層74を付着し第2ソース電極
75および第2ドレイン電極76と第2パッド電極77
を形成する。In FIG. 8, the first source electrode 65 and the first source electrode 65
A pad metal layer 74 as a third layer electrode is attached on the drain electrode 66 and the first pad electrode 70, and the second source electrode 75, the second drain electrode 76, and the second pad electrode 77 are attached.
To form.
【0061】基板51全面に新たなレジスト層73を塗
布してフォトリソグラフィプロセスを行い、予定の第2
ソース電極75および第2ドレイン電極76と第2パッ
ド電極77上のレジストを選択的に窓開けするフォトリ
ソグラフィプロセスを行う。続いて、第3層目の電極と
してのパッド金属層74となるTi/Pt/Auの3層
を順次真空蒸着して積層し、第1ソース電極65、第1
ドレイン電極66および第1パッド電極70にコンタク
トする第2ソース電極75および第2ドレイン電極76
と第2パッド電極77が形成される。パッド金属層74
の他の部分はレジスト層73上に付着されるので、レジ
スト層73を除去してリフトオフにより第2ソース電極
75および第2ドレイン電極76と第2パッド電極77
のみを残し、他は除去される。なお、一部の配線部分は
このパッド金属層74を用いて形成されるので、当然そ
の配線部分のパッド金属層74は残される。A new resist layer 73 is applied on the entire surface of the substrate 51, and a photolithography process is performed to perform a second
A photolithography process of selectively opening the resist on the source electrode 75, the second drain electrode 76, and the second pad electrode 77 is performed. Subsequently, three layers of Ti / Pt / Au, which will be the pad metal layer 74 as the third-layer electrode, are sequentially vacuum-deposited and laminated to form the first source electrode 65, the first source electrode 65, and the first source electrode 65.
A second source electrode 75 and a second drain electrode 76 that contact the drain electrode 66 and the first pad electrode 70.
Then, the second pad electrode 77 is formed. Pad metal layer 74
Since the other portions are attached on the resist layer 73, the resist layer 73 is removed and lift-off is performed to remove the second source electrode 75, the second drain electrode 76, and the second pad electrode 77.
Only the others are left and the others are removed. Since a part of the wiring portion is formed by using the pad metal layer 74, the pad metal layer 74 of the wiring portion is naturally left.
【0062】本発明の第6の工程は、図9に示す如く、
前記第2パッド電極77上にボンディングワイヤ80を
圧着することにある。図9(a)は、本発明の第1の実
施の形態の場合であり、図9(b)は、本発明の第2の
実施の形態の場合である。The sixth step of the present invention is as shown in FIG.
The bonding wire 80 is pressure-bonded onto the second pad electrode 77. FIG. 9A shows the case of the first embodiment of the present invention, and FIG. 9B shows the case of the second embodiment of the present invention.
【0063】本工程では、前述の如く高濃度領域60、
61により第1パッド電極70および第2パッド電極7
7下の窒化膜が除去できるので、ボンディングワイヤの
圧着時にクラックが入ることが防止できる。In this step, as described above, the high concentration region 60,
61 by the first pad electrode 70 and the second pad electrode 7
Since the nitride film under 7 can be removed, cracking can be prevented when the bonding wire is pressure bonded.
【0064】化合物半導体スイッチ回路装置は前工程を
完成すると、組み立てを行う後工程に移される。ウエフ
ァ状の半導体チップはダイシングされて、個別の半導体
チップ分離され、フレーム(図示せず)にこの半導体チ
ップを固着した後、ボンディングワイヤ80で半導体チ
ップの第2パッド電極77と所定のリード(図示せず)
とを接続する。ボンディングワイヤ80としては金細線
を用い、周知のボールボンディングで接続される。その
後、トランスファーモールドされて樹脂パッケージが施
される。When the compound semiconductor switch circuit device completes the pre-process, it is moved to the post-process for assembling. The wafer-shaped semiconductor chip is diced into individual semiconductor chips, and the semiconductor chips are fixed to a frame (not shown), and then the second pad electrodes 77 of the semiconductor chip and predetermined leads (see FIG. (Not shown)
And connect. A thin gold wire is used as the bonding wire 80 and is connected by a well-known ball bonding. After that, transfer molding is performed and a resin package is applied.
【0065】また、高濃度領域は、図10(a)(b)
に示す如く、フォトリソグラフィプロセスにより選択的
にレジストに窓開けを行い、予定の配線層62の周端部
の下および予定のパッド電極70の周端部の下に設けら
れても良い。この場合でも配線層62およびパッド電極
70よりも一部がはみ出すように設ける。The high-concentration region is shown in FIGS. 10 (a) and 10 (b).
As shown in FIG. 7, a window may be selectively opened in the resist by a photolithography process, and the resist may be provided below the peripheral edge of the planned wiring layer 62 and below the peripheral edge of the planned pad electrode 70. Even in this case, the wiring layer 62 and the pad electrode 70 are provided so as to partially protrude from the wiring layer 62 and the pad electrode 70.
【0066】図10(c)には高濃度領域60、61の
配置例を示す。高濃度領域60、61はパッド電極70
および配線層62の周囲を囲むように設けても良いが、
図10(c)の如く設けても良い。つまり、パッド電極
70aは上辺を除き、3辺に沿って高濃度領域60を設
け、パッド電極70bはGaAs基板のコーナー部分を
除き、変則的な五角形の4辺に沿ってC字状に高濃度領
域60を設けられている。高濃度領域40を設けない部
分はいずれもGaAs基板の周端に面した部分であり、
空乏層が広がっても隣接するパッドや配線と十分な離間
距離があり、リークが問題とならない部分である。FIG. 10C shows an arrangement example of the high concentration regions 60 and 61. The high-concentration regions 60 and 61 are pad electrodes 70.
Although it may be provided so as to surround the periphery of the wiring layer 62,
It may be provided as shown in FIG. That is, the pad electrode 70a is provided with the high-concentration regions 60 along the three sides except the upper side, and the pad electrode 70b is formed in the C-shaped high concentration along the four sides of the irregular pentagon except the corner portions of the GaAs substrate. A region 60 is provided. All the portions not provided with the high concentration region 40 are the portions facing the peripheral edge of the GaAs substrate,
Even if the depletion layer expands, there is a sufficient separation distance from the adjacent pad or wiring, and the leak is not a problem.
【0067】また、高濃度領域61は、パッド電極70
a、70bに近接した側の配線層62下に選択的に設け
る。The high-concentration region 61 has pad electrodes 70.
It is selectively provided under the wiring layer 62 on the side close to a and 70b.
【0068】これらの配置例は一例であり、パッド電極
70に印可される高周波信号を基板51を介して配線層
62に伝達することを防止する働きがあればよい。尚、
図10では省略したが、本発明の第2の実施の形態の如
くゲート電極69をチャネル層52表面に埋め込んでも
よい。These examples of arrangement are merely examples, and it is sufficient that they have a function of preventing the high-frequency signal applied to the pad electrode 70 from being transmitted to the wiring layer 62 via the substrate 51. still,
Although omitted in FIG. 10, the gate electrode 69 may be embedded in the surface of the channel layer 52 as in the second embodiment of the present invention.
【0069】[0069]
【発明の効果】以上に詳述した如く、本発明に依れば以
下の効果が得られる。As described in detail above, according to the present invention, the following effects can be obtained.
【0070】第1に、基板に設けた高濃度領域により、
パッド電極および配線層と基板との分離が可能となるの
で、従来十分なアイソレーションを確保するために設け
ていた窒化膜を除去することができる。窒化膜が不必要
であれば、ボンディングの際に窒化膜の割れを防止する
ために行っていた金メッキ工程を省略できる。金メッキ
工程は工程数も多く、コストも高いので、この工程が省
略できれば低コストでフローを簡素化した化合物半導体
装置の製造方法を実現できる。First, due to the high concentration region provided on the substrate,
Since the pad electrode and the wiring layer can be separated from the substrate, the nitride film conventionally provided for ensuring sufficient isolation can be removed. If the nitride film is not necessary, the gold plating step, which is performed to prevent cracking of the nitride film during bonding, can be omitted. Since the gold plating step has many steps and is high in cost, if this step can be omitted, it is possible to realize a method for manufacturing a compound semiconductor device which is low in cost and has a simplified flow.
【0071】第2に、高濃度領域によりパッド電極およ
び配線層と基板との分離ができ、絶縁破壊や干渉を防げ
る、互いに隣接する離間距離を大幅に縮小することがで
きる。具体的には20dBmのアイソレーションを確保
する場合では4μmまでは近接して配置することが可能
となり、チップサイズのシュリンクに大きく寄与でき
る。つまり、低コストで高品質な化合物半導体装置を製
造することが可能となる。Second, the high-concentration region allows the pad electrode and the wiring layer to be separated from the substrate, which can prevent dielectric breakdown and interference, and can greatly reduce the distance between adjacent electrodes. Specifically, in the case of ensuring isolation of 20 dBm, it is possible to dispose them close to each other up to 4 μm, which can greatly contribute to the shrink of the chip size. That is, it is possible to manufacture a high-quality compound semiconductor device at low cost.
【0072】第3に、ゲート金属層はPt/Ti/Pt
/Auを用い、熱処理によりゲート電極の一部をチャネ
ル領域に埋設することにより、ゲート電極直下の電流が
流れる部分をチャネル領域表面から下げることができ
る。チャネル表面はチャネルとして有効でない領域であ
り、ゲート電極を埋設することによりチャネルを有効活
用できるので、電流密度、チャネル抵抗や高周波歪み特
性が大幅に改善される。Third, the gate metal layer is Pt / Ti / Pt
By using / Au and burying a part of the gate electrode in the channel region by heat treatment, the portion where the current flows directly below the gate electrode can be lowered from the surface of the channel region. The channel surface is a region that is not effective as a channel, and the channel can be effectively used by embedding the gate electrode, so that the current density, the channel resistance, and the high frequency distortion characteristics are significantly improved.
【図1】本発明を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining the present invention.
【図2】本発明を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the present invention.
【図3】本発明を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the present invention.
【図4】本発明を説明するための断面図である。FIG. 4 is a sectional view for explaining the present invention.
【図5】本発明を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining the present invention.
【図6】本発明を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining the present invention.
【図7】本発明を説明するための断面図である。FIG. 7 is a sectional view for explaining the present invention.
【図8】本発明を説明するための断面図である。FIG. 8 is a sectional view for explaining the present invention.
【図9】本発明を説明するための断面図である。FIG. 9 is a cross-sectional view for explaining the present invention.
【図10】本発明を説明するための(a)断面図、
(b)断面図、(c)平面図である。FIG. 10A is a sectional view for explaining the present invention,
It is a sectional view and (c) top view.
【図11】従来例を説明するための(A)断面図、
(B)回路図である。FIG. 11 is a sectional view (A) for explaining a conventional example;
(B) A circuit diagram.
【図12】従来例を説明するための断面図である。FIG. 12 is a cross-sectional view for explaining a conventional example.
【図13】従来例を説明するための断面図である。FIG. 13 is a cross-sectional view for explaining a conventional example.
【図14】従来例を説明するための断面図である。FIG. 14 is a cross-sectional view for explaining a conventional example.
【図15】従来例を説明するための断面図である。FIG. 15 is a cross-sectional view for explaining a conventional example.
【図16】従来例を説明するための断面図である。FIG. 16 is a cross-sectional view for explaining a conventional example.
【図17】従来例を説明するための断面図である。FIG. 17 is a cross-sectional view for explaining a conventional example.
【図18】従来例を説明するための断面図である。FIG. 18 is a cross-sectional view for explaining a conventional example.
【図19】従来例を説明するための断面図である。FIG. 19 is a sectional view for explaining a conventional example.
【図20】従来例を説明するための断面図である。FIG. 20 is a cross-sectional view for explaining a conventional example.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/812 Fターム(参考) 4M104 AA05 BB06 BB11 BB15 CC01 CC03 DD08 DD17 DD34 DD68 DD78 DD83 EE06 EE17 GG12 HH14 HH20 5F033 GG02 HH07 HH13 HH18 JJ01 JJ07 JJ13 JJ18 KK07 KK13 KK18 MM08 MM13 MM30 NN06 NN07 PP19 QQ09 QQ11 QQ12 QQ37 QQ41 QQ58 QQ61 QQ62 QQ69 QQ73 RR06 VV06 VV07 XX03 XX31 XX33 XX34 5F044 AA14 EE06 EE11 EE21 5F102 GB01 GC01 GD01 GJ05 GR04 GR07 GS02 GS09 GT03 GV03 HC07 HC11 HC15 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 29/812 F term (reference) 4M104 AA05 BB06 BB11 BB15 CC01 CC03 DD08 DD17 DD34 DD68 DD78 DD83 EE06 EE17 GG12 HH14 HH20 5F033 GG02 HH07 HH13 HH18 JJ01 JJ07 JJ13 JJ18 KK07 KK13 KK18 MM08 MM13 MM30 NN06 NN07 PP19 QQ09 QQ11 QQ12 QQ37 QQ41 QQ58 QQQQQQQQQQEQQQQQQQQQEEQQQQQQQQQQQQQQQQQQQQQQ7Q7Q7Q07Q07 GV03 HC07 HC11 HC15
Claims (11)
着する工程以前に予定のパッド領域下の半導体基板表面
に高濃度領域を形成する工程と、 前記高濃度領域上に前記ゲート金属層を付着して第1パ
ッド電極を形成する工程と、 前記第1パッド電極上にパッド金属層を付着して第2パ
ッド電極を形成する工程と、 前記第2パッド電極上にボンディングワイヤを圧着する
工程とを具備することを特徴とする化合物半導体装置の
製造方法。1. A step of forming a high-concentration region on a surface of a semiconductor substrate below a predetermined pad region before a step of depositing a gate metal layer for forming a gate electrode; and a step of depositing the gate metal layer on the high-concentration region. Forming a first pad electrode, depositing a pad metal layer on the first pad electrode to form a second pad electrode, and crimping a bonding wire on the second pad electrode. A method for manufacturing a compound semiconductor device, comprising:
着する工程以前に予定のパッド領域下および予定の配線
層下の半導体基板表面に高濃度領域を形成する工程と、 前記高濃度領域上に前記ゲート金属層を付着して第1パ
ッド電極および配線層を形成する工程と、 前記第1パッド電極上にパッド金属層を付着して第2パ
ッド電極を形成する工程と、 前記第2パッド電極上にボンディングワイヤを圧着する
工程とを具備することを特徴とする化合物半導体装置の
製造方法。2. A step of forming a high-concentration region on a surface of a semiconductor substrate below a predetermined pad region and a predetermined wiring layer before a step of depositing a gate metal layer for forming a gate electrode, and on the high-concentration region. Depositing the gate metal layer to form a first pad electrode and a wiring layer, depositing a pad metal layer on the first pad electrode to form a second pad electrode, and the second pad electrode And a step of crimping a bonding wire thereon.
と、 前記チャネル層に接してソースおよびドレイン領域を形
成し、同時に予定のパッド領域下に高濃度領域を形成す
る工程と、 前記ソースおよびドレイン領域に第1層目の電極として
のオーミック金属層を付着し第1ソースおよび第1ドレ
イン電極を形成する工程と、 前記チャネル層および前記高濃度領域上に第2層目の電
極としてのゲート金属層を付着しゲート電極および第1
パッド電極を形成する工程と、 前記第1ソースおよび第1ドレイン電極と前記第1パッ
ド電極上に第3層目の電極としてパッド金属層を付着し
第2ソースおよび第2ドレイン電極と第2パッド電極を
形成する工程と、 前記第2パッド電極上にボンディングワイヤを圧着する
工程とを具備することを特徴とする化合物半導体装置の
製造方法。3. A step of forming a channel layer on the surface of a substrate, a step of forming a source and drain region in contact with the channel layer, and at the same time a high concentration region under a predetermined pad region, and the source and drain. Depositing an ohmic metal layer as a first-layer electrode on the region to form first source and first drain electrodes, and a gate metal as a second-layer electrode on the channel layer and the high-concentration region. Depositing a layer on the gate electrode and the first
Forming a pad electrode, and depositing a pad metal layer as a third layer electrode on the first source and first drain electrode and the first pad electrode to form a second source and second drain electrode and a second pad A method of manufacturing a compound semiconductor device, comprising: a step of forming an electrode; and a step of crimping a bonding wire on the second pad electrode.
と、 前記チャネル層に接してソースおよびドレイン領域を形
成し、同時に予定のパッド領域下および予定の配線層下
に高濃度領域を形成する工程と、 前記ソースおよびドレイン領域に第1層目の電極として
のオーミック金属層を付着し第1ソースおよび第1ドレ
イン電極を形成する工程と、 前記チャネル層および前記高濃度領域上に第2層目の電
極としてのゲート金属層を付着しゲート電極および第1
パッド電極および配線層を形成する工程と、 前記第1ソースおよび第1ドレイン電極と前記第1パッ
ド電極上に第3層目の電極としてのパッド金属層を付着
し第2ソースおよび第2ドレイン電極と第2パッド電極
を形成する工程と、 前記第2パッド電極上にボンディングワイヤを圧着する
工程とを具備することを特徴とする化合物半導体装置の
製造方法。4. A step of forming a channel layer on the surface of a substrate, and a step of forming a source and drain region in contact with the channel layer and simultaneously forming a high-concentration region under a predetermined pad region and a predetermined wiring layer. And a step of depositing an ohmic metal layer as a first-layer electrode on the source and drain regions to form first source and first drain electrodes, and a second layer on the channel layer and the high-concentration region. Depositing a gate metal layer as an electrode of the gate electrode and the first electrode
Forming a pad electrode and a wiring layer, and depositing a pad metal layer as a third electrode on the first source and first drain electrode and the first pad electrode, and forming a second source and second drain electrode And a step of forming a second pad electrode, and a step of press-bonding a bonding wire on the second pad electrode.
み出して設けられることを特徴とする請求項1または請
求項3に記載の化合物半導体装置の製造方法。5. The method of manufacturing a compound semiconductor device according to claim 1, wherein the high-concentration region is provided so as to protrude from the pad electrode.
前記配線層よりはみ出して設けられることを特徴とする
請求項2または請求項4に記載の化合物半導体装置の製
造方法。6. The method for manufacturing a compound semiconductor device according to claim 2, wherein the high-concentration region is provided so as to protrude from the pad electrode and the wiring layer.
の下で一部が前記パッド電極よりはみ出して設けられる
ことを特徴とする請求項1または請求項3に記載の化合
物半導体装置の製造方法。7. The compound semiconductor device according to claim 1, wherein the high-concentration region is provided below the peripheral edge of the pad electrode so that a part of the high-concentration region extends beyond the pad electrode. Method.
および前記配線層周端部の下で一部が前記パッド電極お
よび前記配線層よりはみ出して設けられることを特徴と
する請求項2または請求項4に記載の化合物半導体装置
の製造方法。8. The high-concentration region is provided under the pad electrode peripheral end portion and the wiring layer peripheral end portion, and a part thereof is provided so as to protrude from the pad electrode and the wiring layer. The method for manufacturing the compound semiconductor device according to claim 4.
金属多層膜を蒸着後、熱処理して前記ゲート電極の一部
を前記基板表面に埋め込む工程を具備することを特徴と
する請求項1から請求項4のいずれかに記載の化合物半
導体装置の製造方法。9. The method according to claim 1, wherein the gate metal layer comprises a step of depositing a metal multi-layer film having a lowermost layer of Pt and then performing a heat treatment to fill a part of the gate electrode in the surface of the substrate. 5. The method for manufacturing a compound semiconductor device according to claim 4.
けることを特徴とする請求項1から請求項4のいずれか
に記載の化合物半導体装置の製造方法。10. The method of manufacturing a compound semiconductor device according to claim 1, wherein the high concentration region is provided by ion implantation.
設けることを特徴とする請求項3または請求項4に記載
の化合物半導体装置の製造方法。11. The method of manufacturing a compound semiconductor device according to claim 3, wherein the channel region is provided by ion implantation.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001182686A JP2003007724A (en) | 2001-06-18 | 2001-06-18 | Method of manufacturing compound semiconductor device |
US09/973,197 US6580107B2 (en) | 2000-10-10 | 2001-10-10 | Compound semiconductor device with depletion layer stop region |
EP01124125A EP1198006B1 (en) | 2000-10-10 | 2001-10-10 | Compound semiconductor device |
TW91110605A TW565948B (en) | 2001-06-18 | 2002-05-21 | Method for making a chemical semiconductor device |
KR20020033699A KR100621502B1 (en) | 2001-06-18 | 2002-06-17 | Manufacturing method of compound semiconductor device |
CNB021233144A CN1215539C (en) | 2001-06-18 | 2002-06-18 | Compound semiconductor device manufacture |
US10/211,311 US6867115B2 (en) | 2000-10-10 | 2002-08-05 | Compound semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001182686A JP2003007724A (en) | 2001-06-18 | 2001-06-18 | Method of manufacturing compound semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003007724A true JP2003007724A (en) | 2003-01-10 |
Family
ID=19022730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001182686A Withdrawn JP2003007724A (en) | 2000-10-10 | 2001-06-18 | Method of manufacturing compound semiconductor device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2003007724A (en) |
KR (1) | KR100621502B1 (en) |
CN (1) | CN1215539C (en) |
TW (1) | TW565948B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006339192A (en) * | 2005-05-31 | 2006-12-14 | Sanyo Electric Co Ltd | Compound semiconductor device |
US7294900B2 (en) | 2004-06-14 | 2007-11-13 | Sanyo Electric Co., Ltd. | Compound semiconductor device and manufacturing method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005353992A (en) * | 2004-06-14 | 2005-12-22 | Sanyo Electric Co Ltd | Compound semiconductor device and manufacturing method thereof |
US20110147796A1 (en) * | 2009-12-17 | 2011-06-23 | Infineon Technologies Austria Ag | Semiconductor device with metal carrier and manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5633817A (en) * | 1979-08-29 | 1981-04-04 | Fujitsu Ltd | Preparation of semiconductor device |
-
2001
- 2001-06-18 JP JP2001182686A patent/JP2003007724A/en not_active Withdrawn
-
2002
- 2002-05-21 TW TW91110605A patent/TW565948B/en not_active IP Right Cessation
- 2002-06-17 KR KR20020033699A patent/KR100621502B1/en not_active IP Right Cessation
- 2002-06-18 CN CNB021233144A patent/CN1215539C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7294900B2 (en) | 2004-06-14 | 2007-11-13 | Sanyo Electric Co., Ltd. | Compound semiconductor device and manufacturing method thereof |
JP2006339192A (en) * | 2005-05-31 | 2006-12-14 | Sanyo Electric Co Ltd | Compound semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN1407608A (en) | 2003-04-02 |
KR100621502B1 (en) | 2006-09-13 |
KR20020096954A (en) | 2002-12-31 |
TW565948B (en) | 2003-12-11 |
CN1215539C (en) | 2005-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100710775B1 (en) | Compound semiconductor device and manufacturing method thereof | |
US6777277B2 (en) | Manufacturing method of Schottky barrier diode | |
US7294900B2 (en) | Compound semiconductor device and manufacturing method thereof | |
US20030025175A1 (en) | Schottky barrier diode | |
US6853072B2 (en) | Semiconductor switching circuit device and manufacturing method thereof | |
US20050179106A1 (en) | Schottky barrier diode | |
JP4236442B2 (en) | Switch circuit device | |
US7005688B2 (en) | Semiconductor device with impurity layer to prevent depletion layer expansion | |
JP2004006816A (en) | Semiconductor switch circuit device and its manufacture | |
JP2003007724A (en) | Method of manufacturing compound semiconductor device | |
JP2003007725A (en) | Method of manufacturing compound semiconductor device | |
EP1198006B1 (en) | Compound semiconductor device | |
JP2001332555A (en) | Manufacturing method of compound semiconductor device | |
JP2004134434A (en) | Switching circuit device and method for manufacturing compound semiconductor device | |
JP2002118121A (en) | Method for manufacturing compound semiconductor device | |
JP2004158782A (en) | Method for manufacturing compound semiconductor device | |
JP2002231732A (en) | Method for fabricating compound semiconductor device | |
JP2004134433A (en) | Switching circuit device and method for manufacturing compound semiconductor device | |
JP2004134588A (en) | Method for manufacturing semiconductor device | |
JP2002231897A (en) | Compound semiconductor switch circuit device | |
JPS6155920A (en) | Manufacture of monolithic semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090709 |