JP2003007305A - Electrode for secondary lithium battery and secondary lithium battery - Google Patents

Electrode for secondary lithium battery and secondary lithium battery

Info

Publication number
JP2003007305A
JP2003007305A JP2002086530A JP2002086530A JP2003007305A JP 2003007305 A JP2003007305 A JP 2003007305A JP 2002086530 A JP2002086530 A JP 2002086530A JP 2002086530 A JP2002086530 A JP 2002086530A JP 2003007305 A JP2003007305 A JP 2003007305A
Authority
JP
Japan
Prior art keywords
thin film
electrode
current collector
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002086530A
Other languages
Japanese (ja)
Inventor
Masahiro Iyori
将博 井寄
Hiroyuki Fujimoto
洋行 藤本
Takashi Okamoto
崇 岡本
Toyoki Fujiwara
豊樹 藤原
Shigeki Matsuda
茂樹 松田
Maruo Jinno
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002086530A priority Critical patent/JP2003007305A/en
Publication of JP2003007305A publication Critical patent/JP2003007305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode made by stacking on the current collector an active thin films which can electrochemically or chemically occulude and release lithium for a secondary lithium battery, which can restrain deformation such as wrinkles, etc., on the current collector by charging and discharging, and can increase energy density per volume of the battery. SOLUTION: It is featured in that the current collector comprises a copper alloy and has tensile strength of 400 N/mm<2> or more, proportional limit of 160 N/mm<2> or less, elastic coefficient of 1.1 N/mm<2> or more, and surface roughness Ra of 0.01-1 μm for a face of the current collector forming the active material thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用電極及びこれを用いたリチウム二次電池に関するもの
である。
TECHNICAL FIELD The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】近年、リチウム二次電池の開発が盛んに
行われている。リチウム二次電池は、用いられる電極活
物質により、充放電電圧、充放電サイクル寿命特性、保
存特性などの電池特性が大きく左右される。
2. Description of the Related Art In recent years, lithium secondary batteries have been actively developed. In the lithium secondary battery, battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics greatly depend on the electrode active material used.

【0003】負極活物質としてリチウムを用いると、重
量当り及び体積当りともに高いエネルギー密度の電池を
構成することができるが、充電時にリチウムがデンドラ
イト状に析出し、内部短絡を引き起こすという問題があ
った(Solid State Ionics,113-115, p57(1998))。
When lithium is used as the negative electrode active material, a battery having a high energy density per weight and volume can be constructed, but there is a problem that lithium is deposited in dendrite form during charging and causes an internal short circuit. (Solid State Ionics, 113-115, p57 (1998)).

【0004】これに対し、充電の際に電気化学的にリチ
ウムと合金化するアルミニウム、シリコン、錫などを負
極活物質として用いるリチウム二次電池が報告されてい
る(特開平10−255768号公報)。
On the other hand, a lithium secondary battery using aluminum, silicon, tin, etc., which is electrochemically alloyed with lithium during charging, as a negative electrode active material has been reported (JP-A-10-255768). .

【0005】しかしながら、合金化することによりリチ
ウムを吸蔵するこれらの活物質は、リチウムを吸蔵・放
出することにより体積が膨張及び収縮するため、充放電
に伴い活物質が微粉化したり、活物質が集電体から剥離
する。このため、良好な充放電サイクル特性を得ること
ができないという問題があった。
However, these active materials that occlude lithium by alloying expand and contract in volume by occluding and releasing lithium, so that the active material is pulverized with charge and discharge, or the active material is Peel off the current collector. Therefore, there is a problem that good charge / discharge cycle characteristics cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本出願人は、CVD法
やスパッタリング法により、銅箔などの集電体の上に、
非晶質シリコン薄膜や微結晶シリコン薄膜を堆積して形
成したリチウム二次電池用電極は、活物質薄膜が集電体
に密着しているため、良好な充放電サイクル特性を示す
ことを見出している(特願2000−321201
号)。
The applicant of the present invention has found that a current collector such as a copper foil can be formed on a collector such as a copper foil by a CVD method or a sputtering method.
It has been found that an electrode for a lithium secondary battery formed by depositing an amorphous silicon thin film or a microcrystalline silicon thin film exhibits good charge / discharge cycle characteristics because the active material thin film is in close contact with the current collector. (Japanese Patent Application No. 2000-321201)
issue).

【0007】しかしながら、このようなリチウム二次電
池用電極においては、活物質薄膜が集電体と密着してい
るため、充放電反応に伴い活物質薄膜の体積が膨張及び
収縮することにより、集電体に大きな応力が働き、集電
体にしわなどの変形を生じる場合があった。集電体にし
わなどの変形が生じると、この電極を電池内に収納した
際、電極が占める体積が大きくなり、体積当りのエネル
ギー密度が低下するという問題を生じる。
However, in such an electrode for a lithium secondary battery, since the active material thin film is in close contact with the current collector, the volume of the active material thin film expands and contracts due to the charge / discharge reaction, and A large stress acts on the current collector, which may cause deformation such as wrinkles on the current collector. When the current collector is deformed such as wrinkles, when the electrode is housed in a battery, the volume occupied by the electrode becomes large and the energy density per volume decreases.

【0008】本発明の目的は、充放電により集電体にし
わ等の変形が発生するのを抑制することができ、リチウ
ム二次電池の体積当りのエネルギー密度を高めることが
できるリチウム二次電池用電極及びこれを用いたリチウ
ム二次電池を提供することにある。
An object of the present invention is to prevent deformation of the current collector due to charging and discharging, such as wrinkles, and increase the energy density per volume of the lithium secondary battery. An object is to provide an electrode for lithium and a lithium secondary battery using the same.

【0009】[0009]

【課題を解決するための手段】本発明の第1の局面に従
うリチウム二次電池用電極は、電気化学的または化学的
にリチウムを吸蔵・放出可能な活物質薄膜を、集電体上
に堆積して形成したリチウム二次電池用電極であり、集
電体が銅合金からなり、その引張強さが400N/mm
2以上、比例限界が160N/mm2以上、弾性係数が
1.1N/mm2以上であり、かつ活物質薄膜が形成さ
れている集電体の面の表面粗さRaが0.01〜1μm
であることを特徴としている。
The electrode for a lithium secondary battery according to the first aspect of the present invention has an active material thin film capable of electrochemically or chemically absorbing and releasing lithium deposited on a current collector. Is an electrode for a lithium secondary battery formed by forming a current collector made of a copper alloy and having a tensile strength of 400 N / mm
2 or more, a proportional limit 160 N / mm 2 or more, the elastic modulus is at 1.1 N / mm 2 or more and a surface roughness Ra of the surface of the collector where the active material thin film is formed 0.01~1μm
It is characterized by being.

【0010】第1の局面によれば、引張強さが400N
/mm2以上、比例限界が160N/mm2以上、弾性係
数が1.1N/mm2以上の銅合金からなる集電体を用
いているので、リチウムの吸蔵・放出に伴う活物質薄膜
の膨張・収縮による応力を受けても、集電体にしわ等の
変形が生じることがない。また、第1の局面において、
集電体の引張強さは480N/mm2以上であることが
好ましく、比例限界は162N/mm2以上であること
が好ましく、弾性係数は1.15N/mm2以上である
ことが好ましい。
According to the first aspect, the tensile strength is 400 N.
/ Mm 2 or more, a proportional limit 160 N / mm 2 or more, since the elastic coefficient is used a current collector made of 1.1 N / mm 2 or more copper alloys, the expansion of the active material thin film caused by occlusion and release of lithium -The collector will not be deformed such as wrinkles even if it receives stress due to contraction. In the first aspect,
Tensile strength of the current collector is preferably 480N / mm 2 or more, preferably proportional limit is 162N / mm 2 or more, it is preferred that the elastic modulus is 1.15 N / mm 2 or more.

【0011】上記の引張強さ、比例限界、及び弾性係数
は、例えば、インストロン社製のインストロン型556
6万能試験機を用いて測定することができる。本発明の
第2の局面に従うリチウム二次電池用電極は、電気化学
的または化学的にリチウムを吸蔵・放出可能な活物質薄
膜を、集電体上に堆積して形成したリチウム二次電池用
電極であり、集電体がCu−Ni−Si系合金またはC
u−Cr−Zr系合金からなり、かつ活物質薄膜が形成
されている集電体の面の表面粗さRaが0.01〜1μ
mであることを特徴としている。
The above-mentioned tensile strength, proportional limit, and elastic coefficient are, for example, Instron type 556 manufactured by Instron Co., Ltd.
It can be measured by using a universal testing machine. The electrode for a lithium secondary battery according to the second aspect of the present invention is for a lithium secondary battery formed by depositing an active material thin film capable of electrochemically or chemically absorbing and releasing lithium on a current collector. It is an electrode and the current collector is Cu-Ni-Si alloy or C
The surface roughness Ra of the surface of the current collector, which is made of a u-Cr-Zr-based alloy and on which the active material thin film is formed, is 0.01 to 1 μm.
It is characterized by being m.

【0012】Cu−Ni−Si系合金としては、例え
ば、コルソン合金が挙げられる。コルソン合金はNi2
Si相を析出相とする時効硬化型合金で、Cu−Ni2
Si擬二元系とみなされる合金である。このようなコル
ソン合金は引張強さ、比例限界、及び弾性係数が高いの
で、第1の局面において用いる集電体の材料としても用
いることができる。コルソン合金としては、例えば、N
i含有量1.0〜4.0重量%、Si含有量0.1〜
1.0重量%のCu−Ni−Si系合金が挙げられる。
また、この合金には、必要に応じて、Mg0.05〜
0.3重量%、Zn0.05〜5.0重量%、Sn5.
0重量%以下、P0.1重量%未満が含まれていてもよ
い。
Examples of Cu-Ni-Si alloys include Corson alloys. Corson alloy is Ni 2
Cu-Ni 2 is an age hardening alloy that uses Si phase as the precipitation phase.
It is an alloy regarded as a Si pseudo binary system. Since such a Corson alloy has high tensile strength, proportional limit, and elastic modulus, it can be used also as a material for the current collector used in the first aspect. Examples of Corson alloys include N
i content 1.0 to 4.0% by weight, Si content 0.1 to
A Cu-Ni-Si based alloy of 1.0% by weight may be mentioned.
In addition, if necessary, this alloy contains Mg 0.05 to
0.3 wt%, Zn 0.05-5.0 wt%, Sn5.
0 wt% or less and P less than 0.1 wt% may be contained.

【0013】Cu−Cr−Zr系合金としては、Cr含
有量0.05〜0.5重量%、Zr含有量0.01〜
0.3重量%のものが挙げられる。また、この合金には
必要に応じて、Mg0.01〜0.3重量%、Zn0.
05〜5.0重量%、Sn5重量%以下、P0.1重量
%未満が含まれていてもよい。
The Cu-Cr-Zr alloy has a Cr content of 0.05 to 0.5% by weight and a Zr content of 0.01 to.
0.3% by weight may be mentioned. In addition, if necessary, the alloy contains 0.01 to 0.3% by weight of Mg, Zn0.
05 to 5.0% by weight, Sn 5% by weight or less, and P less than 0.1% by weight may be contained.

【0014】第2の局面に従い、Cu−Ni−Si系合
金またはCu−Cr−Zr系合金からなる集電体を用い
ることにより、集電体にしわ等の変形が発生するのを防
止することができ、リチウム二次電池の体積当りのエネ
ルギー密度を高めることができる。
According to the second aspect, by using a current collector made of a Cu-Ni-Si alloy or a Cu-Cr-Zr alloy, it is possible to prevent the current collector from being deformed such as wrinkles. Therefore, the energy density per volume of the lithium secondary battery can be increased.

【0015】本発明の第1の局面及び第2の局面におい
ては、活物質薄膜が形成されている面の表面粗さRaが
0.01〜1μmである集電体を用いている。このよう
な表面粗さRaを有する集電体を用いることにより、集
電体と活物質薄膜との密着性を高めることができる。表
面粗さRaは、日本工業規格(JIS B 0601−
1994)に定められており、例えば表面粗さ計により
測定することができる。
In the first aspect and the second aspect of the present invention, a current collector is used in which the surface roughness Ra of the surface on which the active material thin film is formed is 0.01 to 1 μm. By using the current collector having such a surface roughness Ra, the adhesion between the current collector and the active material thin film can be enhanced. The surface roughness Ra is based on Japanese Industrial Standards (JIS B 0601-
1994) and can be measured by, for example, a surface roughness meter.

【0016】上記の表面粗さRaを有する集電体の上に
活物質薄膜を形成させることにより、集電体表面に形成
されている凹凸に対応した凹凸を活物質薄膜の表面にも
形成することができる。活物質薄膜の表面に凹凸を形成
することにより、活物質薄膜表面の凹凸の谷部と、集電
体表面の凹凸の谷部を結ぶ厚み方向の領域に切れ目が形
成され易くなる。このような切れ目は、活物質薄膜の膨
張及び収縮により形成することができ、通常は初回以降
の充放電により形成される。このような厚み方向の切れ
目が形成されることにより、活物質薄膜がこの切れ目に
よって柱状に分離される。活物質薄膜を柱状に分離する
ことにより、柱状部分の周囲に空隙が形成され、この空
隙によって充放電サイクルに伴う活物質薄膜の膨張収縮
の変化を吸収することができる。従って、充放電サイク
ルに伴う薄膜の膨張収縮による応力を緩和することがで
き、活物質薄膜が微粉化したり、活物質薄膜が集電体か
ら剥離するのを抑制することができ、優れた充放電サイ
クル特性を得ることができる。
By forming an active material thin film on the current collector having the above surface roughness Ra, irregularities corresponding to the irregularities formed on the surface of the current collector are also formed on the surface of the active material thin film. be able to. By forming the unevenness on the surface of the active material thin film, it becomes easy to form a cut in a region in the thickness direction connecting the valley of the unevenness of the surface of the active material thin film and the valley of the unevenness on the surface of the current collector. Such a break can be formed by expansion and contraction of the active material thin film, and is usually formed by charge and discharge after the first time. By forming such a cut in the thickness direction, the active material thin film is separated into columns by the cut. By separating the active material thin film into columns, voids are formed around the columnar portions, and the voids can absorb changes in expansion and contraction of the active material thin film due to charge / discharge cycles. Therefore, the stress due to the expansion and contraction of the thin film due to the charge / discharge cycle can be relaxed, the active material thin film can be prevented from being pulverized, and the active material thin film can be prevented from peeling from the current collector. The cycle characteristics can be obtained.

【0017】また、本発明の第1の局面及び第2の局面
においては、活物質薄膜に集電体の成分が拡散している
ことが好ましい。活物質薄膜に集電体の成分が拡散する
ことにより、集電体と活物質薄膜との密着性を高めるこ
とができる。集電体の成分として、リチウムと合金化し
ない銅などの元素が拡散している場合、拡散領域におい
てリチウムとの合金化が抑制されるため、充放電反応に
伴う薄膜の膨張・収縮を抑制することができ、活物質薄
膜の集電体からの剥離を生じさせるような応力の発生を
抑制することができる。
Further, in the first aspect and the second aspect of the present invention, it is preferable that the components of the current collector are diffused in the active material thin film. By diffusing the components of the current collector in the active material thin film, the adhesion between the current collector and the active material thin film can be enhanced. When an element such as copper that does not alloy with lithium is diffused as a component of the current collector, alloying with lithium is suppressed in the diffusion region, so that expansion and contraction of the thin film due to charge / discharge reaction is suppressed. Therefore, it is possible to suppress the generation of stress that causes peeling of the active material thin film from the current collector.

【0018】集電体表面の表面粗さRaを0.01〜1
μmとするために、粗面化処理を施してもよい。このよ
うな粗面化処理としては、めっき法、気相成長法、エッ
チング法、及び研磨法等が挙げられる。めっき法及び気
相成長法は、銅合金またはCu−Ni−Si系合金から
なる基体の上に、表面に凹凸を有する薄膜層を形成する
ことにより表面を粗面化する方法である。めっき法とし
ては、電解めっき法及び無電解めっき法が挙げられる。
また、気相成長法としては、スパッタリング法、CVD
法、蒸着法などが挙げられる。
The surface roughness Ra of the current collector surface is 0.01 to 1
Roughening treatment may be performed to obtain a thickness of μm. Examples of such roughening treatment include a plating method, a vapor phase growth method, an etching method, and a polishing method. The plating method and the vapor-phase growth method are methods for roughening the surface by forming a thin film layer having irregularities on the surface of a substrate made of a copper alloy or a Cu—Ni—Si alloy. Examples of the plating method include an electrolytic plating method and an electroless plating method.
Further, as the vapor phase growth method, sputtering method, CVD
Methods, vapor deposition methods and the like.

【0019】めっき法による粗面化としては、銅や銅−
亜鉛合金などの銅を主成分とするめっき膜を、銅合金、
Cu−Ni−Si系合金またはCu−Cr−Zr系合金
からなる基体上に形成する方法が挙げられる。
As the surface roughening by the plating method, copper or copper-
The plating film mainly composed of copper such as zinc alloy is
A method of forming on a substrate made of a Cu—Ni—Si alloy or a Cu—Cr—Zr alloy can be mentioned.

【0020】電解めっきにより粗面化する方法として
は、例えば、特公昭53−39376号公報に開示され
た、プリント回路用銅箔に対し一般的に用いられている
めっきによる粗面化方法が好ましく用いられる。すなわ
ち、いわゆる「やけめっき」により、粒粉状銅を形成し
た後、この粒粉状銅めっき層の上に、その凹凸形状を損
なわないように「被せめっき」を行い、実質的に平滑な
めっき層を堆積させて粒粉状銅をいわゆるコブ状銅とす
る粗面化方法が挙げられる。
As the method of roughening by electrolytic plating, for example, the method of roughening by plating which is generally used for copper foils for printed circuits disclosed in Japanese Patent Publication No. 53-39376 is preferable. Used. That is, after forming granular powder copper by so-called "burn plating", "overcoating" is performed on this granular powder copper plating layer so as not to impair the uneven shape, and a substantially smooth plating is performed. A roughening method may be mentioned in which a layer is deposited to convert the copper powder into so-called copper bumps.

【0021】気相成長法による粗面化の方法としては、
銅や銅−亜鉛合金などからなる銅を主成分とする薄膜を
スパッタリング法やCVD法で基体上に形成する方法が
挙げられる。
As a roughening method by the vapor phase growth method,
Examples thereof include a method of forming a thin film containing copper or a copper-zinc alloy as a main component on the substrate by a sputtering method or a CVD method.

【0022】エッチング法による粗面化としては、物理
的エッチングや化学的エッチングによる方法が挙げられ
る。また、研磨法による粗面化としては、サンドペーパ
ーによる研磨やブラスト法による研磨などが挙げられ
る。
Examples of the roughening by the etching method include physical etching and chemical etching. Further, examples of the roughening by the polishing method include polishing with sandpaper and polishing by the blast method.

【0023】以下、本発明の第1の局面及び第2の局面
に共通する事項について、「本発明」として説明する。
本発明における活物質薄膜は、リチウムを吸蔵・放出す
る薄膜であり、リチウムを合金化することにより吸蔵す
る活物質であることが好ましい。このような活物質材料
としては、シリコン、ゲルマニウム、錫、鉛、亜鉛、マ
グネシウム、ナトリウム、アルミニウム、カリウム、イ
ンジウムなどが挙げられる。これらの中でも、シリコ
ン、ゲルマニウム、及び錫がその高い理論容量から好ま
しく用いられる。従って、本発明において用いる活物質
薄膜は、シリコン、ゲルマニウム、または錫を主成分と
する薄膜であることが好ましく、特に好ましくはシリコ
ン薄膜である。
Items common to the first aspect and the second aspect of the present invention will be described below as the "present invention".
The active material thin film according to the present invention is a thin film that absorbs and releases lithium, and is preferably an active material that absorbs lithium by alloying. Examples of such an active material include silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, potassium, indium and the like. Among these, silicon, germanium, and tin are preferably used because of their high theoretical capacity. Therefore, the active material thin film used in the present invention is preferably a thin film containing silicon, germanium, or tin as a main component, and particularly preferably a silicon thin film.

【0024】また、本発明においては、活物質薄膜は、
非晶質薄膜または微結晶薄膜であることが好ましい。従
って、非晶質シリコン薄膜または微結晶シリコン薄膜で
あることが特に好ましい。
In the present invention, the active material thin film is
It is preferably an amorphous thin film or a microcrystalline thin film. Therefore, an amorphous silicon thin film or a microcrystalline silicon thin film is particularly preferable.

【0025】本発明において、活物質薄膜は、CVD
法、スパッタリング法、蒸着法、溶射法、またはめっき
法により形成することができる。このような方法の中で
も、CVD法及びスパッタリング法により形成すること
が好ましい。
In the present invention, the active material thin film is formed by CVD.
Method, sputtering method, vapor deposition method, thermal spraying method, or plating method. Among these methods, the CVD method and the sputtering method are preferable.

【0026】本発明において、集電体は厚みの薄いもの
であることが好ましく、従って金属箔であることが好ま
しい。活物質薄膜は、集電体の片面または両面上に堆積
して形成することができる。集電体の両面上に活物質薄
膜を形成する場合には、集電体の両面の表面粗さRaが
0.01〜1μmであることが好ましい。
In the present invention, the current collector is preferably thin, and is therefore preferably a metal foil. The active material thin film can be formed by depositing on one surface or both surfaces of the current collector. When the active material thin films are formed on both sides of the current collector, the surface roughness Ra on both sides of the current collector is preferably 0.01 to 1 μm.

【0027】本発明における活物質薄膜には、予めリチ
ウムが吸蔵または添加されていてもよい。リチウムは、
活物質薄膜を形成する際に添加してもよい。すなわち、
リチウムを含有する活物質薄膜を形成することにより、
活物質薄膜にリチウムを添加してもよい。また、活物質
薄膜を形成した後に、活物質薄膜にリチウムを吸蔵また
は添加させてもよい。活物質薄膜にリチウムを吸蔵また
は添加させる方法としては、電気化学的にリチウムを吸
蔵または添加させる方法が挙げられる。
Lithium may be occluded or added in advance to the active material thin film in the present invention. Lithium
You may add when forming an active material thin film. That is,
By forming an active material thin film containing lithium,
Lithium may be added to the active material thin film. Further, after forming the active material thin film, lithium may be occluded or added to the active material thin film. Examples of a method of occluding or adding lithium to the active material thin film include a method of electrochemically occluding or adding lithium.

【0028】本発明のリチウム二次電池は、上記本発明
のリチウム二次電池用電極からなる負極と、リチウムを
吸蔵・放出する物質を活物質に用いた正極と、非水電解
質とを備えることを特徴としている。
The lithium secondary battery of the present invention comprises a negative electrode composed of the electrode for a lithium secondary battery of the present invention, a positive electrode using a material that absorbs and releases lithium as an active material, and a non-aqueous electrolyte. Is characterized by.

【0029】本発明のリチウム二次電池において用いる
非水電解質は、溶媒に溶質を溶解した電解質である。非
水電解質の溶媒としては、リチウム二次電池に使用され
る溶媒であれば特に限定されないが、例えば、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、ビニレンカーボネートなどの環状カーボネー
トや、ジメチルカーボネート、ジエチルカーボネート、
メチルエチルカーボネートなどの鎖状カーボネートが挙
げられる。好ましくは、環状カーボネートと鎖状カーボ
ネートとの混合溶媒が用いられる。また、上記環状カー
ボネートと、1,2−ジメトキシエタン、1,2−ジエ
トキシエタンなどのエーテル系溶媒や、γ−ブチロラク
トン、スルホラン、酢酸メチル等の鎖状エステル等との
混合溶媒を用いてもよい。
The non-aqueous electrolyte used in the lithium secondary battery of the present invention is an electrolyte in which a solute is dissolved in a solvent. The solvent of the non-aqueous electrolyte is not particularly limited as long as it is a solvent used in a lithium secondary battery, for example, ethylene carbonate, propylene carbonate, butylene carbonate, cyclic carbonate such as vinylene carbonate, dimethyl carbonate, diethyl carbonate,
Examples include chain carbonates such as methyl ethyl carbonate. Preferably, a mixed solvent of cyclic carbonate and chain carbonate is used. Further, a mixed solvent of the above cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane or a chain ester such as γ-butyrolactone, sulfolane or methyl acetate may be used. Good.

【0030】非水電解質の溶質としては、リチウム二次
電池に用いられる溶質であれば特に限定されるものでは
なく、例えば、LiPF6、LiBF4、LiCF3
3、LiN(CF3SO22、LiN(C25
22、LiN(CF3SO2)(C49SO2)、LiC
(CF3SO23、LiC(C25SO23、LiAs
6、LiClO4、Li210Cl10、Li212Cl12
などが挙げられる。特に、LiXFy(式中、XはP、
As、Sb、B、Bi、Al、Ga、またはInであ
り、XがP、AsまたはSbのときyは6であり、Xが
B、Bi、Al、Ga、またはInのときyは4であ
る。)と、リチウムペルフルオロアルキルスルホン酸イ
ミドLiN(Cm2m+1SO2)(Cn2n+1SO2)(式
中、m及びnはそれぞれ独立して1〜4の整数であ
る。)またはリチウムペルフルオロアルキルスルホン酸
メチドLiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr
2r+1SO2)(式中、p、q及びrはそれぞれ独立し
て1〜4の整数である。)との混合溶質が好ましく用い
られる。これらの中でも、LiPF6とLiN(C25
SO22との混合溶質が特に好ましく用いられる。
The solute of the non-aqueous electrolyte is not particularly limited as long as it is a solute used in a lithium secondary battery. For example, LiPF 6 , LiBF 4 , LiCF 3 S.
O 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 S
O 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC
(CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAs
F 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12
And so on. In particular, LiXFy (where X is P,
As, Sb, B, Bi, Al, Ga, or In, y is 6 when X is P, As or Sb, and y is 4 when X is B, Bi, Al, Ga, or In. is there. ) And, in the lithium perfluoroalkyl sulfonic acid imide LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) ( wherein, m and n are each independently an integer of 1 to 4. ) Or lithium perfluoroalkyl sulfonate methide LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r
F 2r + 1 SO 2 ) (in the formula, p, q and r are each independently an integer of 1 to 4) and a mixed solute is preferably used. Among these, LiPF 6 and LiN (C 2 F 5
A mixed solute with SO 2 ) 2 is particularly preferably used.

【0031】また、非水電解質として、ポリエチレンオ
キシド、ポリアクリロニトリル、ポリフッ化ビニリデン
などのポリマー電解質に電解液を含浸したゲル状ポリマ
ー電解質や、LiI、Li3Nなどの無機固体電解質を
用いてもよい。
Further, as the non-aqueous electrolyte, a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N may be used. .

【0032】本発明のリチウム二次電池の電解質は、イ
オン導電性を発現させる溶質としてのLi化合物とこれ
を溶解・保持する溶媒が電池の充電時や放電時あるいは
保存時の電圧で分解しない限り、制約なく用いることが
できる。
The electrolyte of the lithium secondary battery of the present invention is a lithium compound as a solute that exhibits ionic conductivity and a solvent that dissolves and holds the Li compound, as long as it does not decompose at the voltage during charging, discharging or storage of the battery. , Can be used without restriction.

【0033】また、正極に用いる正極活物質としては、
LiCoO2、LiNiO2、LiMn24、LiMnO
2、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn
0.12などのリチウム含有遷移金属酸化物や、MnO2
などのリチウムを含有していない金属酸化物が例示され
る。また、この他にも、リチウムを電気化学的に挿入・
脱離する物質であれば、制限なく用いることができる。
As the positive electrode active material used for the positive electrode,
LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO
2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn
Lithium-containing transition metal oxides such as 0.1 O 2 and MnO 2
Examples thereof include metal oxides not containing lithium. In addition to this, lithium is electrochemically inserted.
Any substance that can be desorbed can be used without limitation.

【0034】[0034]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and may be appropriately modified within the scope of the invention. It is possible to carry out.

【0035】(実施例1及び2) 〔作用極の作製〕コルソン合金箔に電解めっきによる銅
のやけめっきを施し、粒粉状銅を形成した。さらに、該
粒粉状銅めっき層の上にその凹凸形状を損なわないよう
に、緻密な銅めっき(被せめっき)を行い、粒粉状銅と
コルソン合金箔との密着性を向上させた粗面化銅合金箔
を作製し、集電体a1とした。
(Examples 1 and 2) [Preparation of working electrode] Corson alloy foil was subjected to copper burn plating by electrolytic plating to form granular powder copper. Further, a dense copper plating (cover plating) is performed on the granular powder copper plating layer so as not to impair the uneven shape, and a rough surface with improved adhesion between the granular powder copper and Corson alloy foil. A copper alloy foil was produced and used as a current collector a1.

【0036】次に、Cu−Cr−Zr−Mg合金からな
る金属箔に、集電体a1と同様に、やけめっき及び被せ
めっきを施し、集電体a2を作製した。集電体a1及び
a2の厚み、引張強さ、比例限界、弾性係数、及び表面
粗さRaを表1に示す。
Next, the metal foil made of the Cu-Cr-Zr-Mg alloy was subjected to burn plating and cover plating in the same manner as the current collector a1 to produce a current collector a2. Table 1 shows the thickness, tensile strength, proportional limit, elastic modulus, and surface roughness Ra of the current collectors a1 and a2.

【0037】なお、厚みは、マイクロメーターで測定し
た値であり、引張強さ、比例限界、及び弾性係数は、イ
ンストロン社製のインストロン型5566万能試験機を
用いて測定した値である。また、表面粗さRaは、表面
粗さ計により測定した値である。
The thickness is a value measured with a micrometer, and the tensile strength, the proportional limit and the elastic modulus are values measured with an Instron type 5566 universal testing machine manufactured by Instron. The surface roughness Ra is a value measured by a surface roughness meter.

【0038】[0038]

【表1】 [Table 1]

【0039】次に、集電体a1及びa2の上に、RFス
パッタリング法により負極活物質となるシリコン薄膜を
形成した。スパッタリングの条件は、スパッタガス:ア
ルゴン(Ar)、スパッタガス流量:100sccm、
基板温度:室温(加熱なし)、反応圧力:0.133P
a(1.0×10-3Torr)、高周波電力:200W
とした。シリコン薄膜は、その厚みが5.5μmとなる
まで堆積させた。
Next, a silicon thin film as a negative electrode active material was formed on the current collectors a1 and a2 by the RF sputtering method. The sputtering conditions are as follows: sputter gas: argon (Ar), sputter gas flow rate: 100 sccm,
Substrate temperature: room temperature (no heating), reaction pressure: 0.133P
a (1.0 × 10 -3 Torr), high frequency power: 200W
And The silicon thin film was deposited until its thickness was 5.5 μm.

【0040】得られたシリコン薄膜について、ラマン分
光分析を行ったところ、480cm -1近傍のピークは検
出されたが、520cm-1近傍のピークは検出されなか
った。このことから、得られたシリコン薄膜は非晶質シ
リコン薄膜であることがわかる。
Raman content of the obtained silicon thin film
When optical analysis was performed, it was 480 cm. -1Peaks in the vicinity are not detected
It was put out, but 520 cm-1Is a nearby peak not detected?
It was. From this, the obtained silicon thin film is amorphous
It can be seen that it is a recon thin film.

【0041】シリコン薄膜を集電体とともに2cm×2
cmの大きさに切り出し、ニッケルリード線を取り付け
た後、100℃で2時間真空下に乾燥して、実施例1
(集電体a1)の作用極及び実施例2(集電体a2)の
作用極を得た。
Silicon thin film together with current collector 2 cm × 2
After cutting into a size of cm and attaching a nickel lead wire, it was dried under vacuum at 100 ° C. for 2 hours to give Example 1.
A working electrode of (current collector a1) and a working electrode of Example 2 (current collector a2) were obtained.

【0042】〔ビーカーセルの作製〕上記の作用極を用
い、アルゴンガス雰囲気下のグローブボックス中で、図
4に示すような三電極式ビーカーセルを作製した。図4
に示すように、ビーカーセルは、容器1内に入れられた
電解液中に、対極3、作用極4、及び参照極5を浸漬す
ることにより構成されている。電解液2としては、エチ
レンカーボネートとジエチルカーボネートを体積比3:
7の割合で混合した溶媒に対し、LiPF6を1モル/
リットル溶解した電解液を用いた。対極3及び参照極5
としてはリチウム金属を用いた。
[Production of Beaker Cell] Using the working electrode described above, a three-electrode beaker cell as shown in FIG. 4 was produced in a glove box under an argon gas atmosphere. Figure 4
As shown in, the beaker cell is configured by immersing the counter electrode 3, the working electrode 4, and the reference electrode 5 in the electrolytic solution placed in the container 1. As the electrolyte solution 2, ethylene carbonate and diethyl carbonate are used in a volume ratio of 3:
LiPF 6 in an amount of 1 mol / mol with respect to the solvent mixed in the ratio
1 liter of the dissolved electrolyte was used. Counter electrode 3 and reference electrode 5
Lithium metal was used as.

【0043】〔充放電サイクル特性の評価〕上記のよう
にして作製したビーカーセルを、25℃にて4mAの定
電流で、作用極の電位が0V(vs.Li/Li+)に
達するまで充電した後、4mAの定電流で、作用極の電
位が2V(vs.Li/Li+)に達するまで放電し、
単位面積当りの放電容量及び初期サイクルにおける充放
電効率を評価した。なお、初期サイクルの充放電効率
(初期充放電効率)とは、以下の式により算出されるも
のである。 初期充放電効率(%)=初期の放電容量÷初期の充電容
量×100 評価結果を表3に示す。
[Evaluation of Charge / Discharge Cycle Characteristics] The beaker cell manufactured as described above was charged at 25 ° C. with a constant current of 4 mA until the potential of the working electrode reached 0 V (vs. Li / Li + ). After that, it was discharged with a constant current of 4 mA until the potential of the working electrode reached 2 V (vs. Li / Li + ),
The discharge capacity per unit area and the charge / discharge efficiency in the initial cycle were evaluated. The charge / discharge efficiency of the initial cycle (initial charge / discharge efficiency) is calculated by the following formula. Initial charge / discharge efficiency (%) = initial discharge capacity / initial charge capacity × 100 Table 3 shows the evaluation results.

【0044】〔電極厚みの評価〕充放電試験前及び充放
電試験後の作用極の厚みをマイクロメーターで測定し、
充放電試験前後の厚みの変化を求めた。なお、電極につ
いては中央部及び四隅の合計5点の厚みを測定し、その
平均値を電極の厚みとした。評価結果を表4に示す。
[Evaluation of Electrode Thickness] The thickness of the working electrode before and after the charge / discharge test was measured with a micrometer,
The change in thickness before and after the charge / discharge test was determined. The thickness of the electrode was measured at a total of 5 points in the center and four corners, and the average value was used as the thickness of the electrode. The evaluation results are shown in Table 4.

【0045】(比較例1及び2)集電体b1として、表
2に示すような物性値の電解銅箔を用いた。集電体b2
としては、圧延銅箔(表面粗さRa=0.1μm)に対
し、実施例1と同様の電解めっきによる粗面化処理を施
したものを用いた。集電体b1及びb2の厚み、引張強
さ、比例限界、弾性係数、及び表面粗さRaを表2に示
す。
(Comparative Examples 1 and 2) As the current collector b1, an electrolytic copper foil having physical properties shown in Table 2 was used. Current collector b2
The rolled copper foil (surface roughness Ra = 0.1 μm) was subjected to surface roughening treatment by electrolytic plating as in Example 1. Table 2 shows the thickness, the tensile strength, the proportional limit, the elastic modulus, and the surface roughness Ra of the current collectors b1 and b2.

【0046】[0046]

【表2】 [Table 2]

【0047】集電体b1及びb2の上に、実施例1及び
2と同様にして、非晶質シリコン薄膜を形成し、実施例
1及び2と同様にして比較例1(集電体b1)及び比較
例2(集電体b2)の作用極を作製した。
An amorphous silicon thin film was formed on the current collectors b1 and b2 in the same manner as in Examples 1 and 2, and Comparative Example 1 (current collector b1) was performed in the same manner as in Examples 1 and 2. A working electrode of Comparative Example 2 (current collector b2) was prepared.

【0048】これらの作用極を用いて実施例1及び2と
同様にしてビーカーセルを作製し、各ビーカーセルにつ
いて、初期放電容量及び初期充放電効率を測定し、その
結果を表3に示した。
Using these working electrodes, beaker cells were prepared in the same manner as in Examples 1 and 2, and the initial discharge capacity and the initial charge / discharge efficiency of each beaker cell were measured. The results are shown in Table 3. .

【0049】[0049]

【表3】 [Table 3]

【0050】表3に示す結果から明らかなように、実施
例1及び2並びに比較例1及び2のいずれの電極におい
ても、3.5mAh/cm2程度の放電容量が得られて
おり、94%以上の初期充放電効率が得られている。こ
れは、いずれの集電体も表面が粗面化されており、ま
た、活物質薄膜が厚み方向に形成された切れ目によって
柱状に分離されているので、活物質薄膜が剥離または崩
壊することなく、集電体と密着しているためと考えられ
る。
As is clear from the results shown in Table 3, in all the electrodes of Examples 1 and 2 and Comparative Examples 1 and 2, a discharge capacity of about 3.5 mAh / cm 2 was obtained, which was 94%. The above initial charge / discharge efficiency is obtained. This is because the surface of any current collector is roughened, and since the active material thin film is separated into columns by the cuts formed in the thickness direction, the active material thin film does not peel or collapse. It is thought that this is because it is in close contact with the current collector.

【0051】また、比較例1及び2の作用極について
も、実施例1及び2の作用極と同様にして、充放電試験
前後の厚みを測定し、充放電試験前後の厚みの変化を求
め、表4に結果を示した。
Regarding the working electrodes of Comparative Examples 1 and 2, the thickness before and after the charge / discharge test was measured in the same manner as the working electrode of Examples 1 and 2, and the change in the thickness before and after the charge / discharge test was obtained. The results are shown in Table 4.

【0052】[0052]

【表4】 [Table 4]

【0053】表4から明らかなように、実施例1及び2
の作用極は、比較例1及び2の作用極に比べ、充放電試
験前後の厚みの変化が著しく小さくなっている。これ
は、実施例1及び2の作用極においては、充放電試験に
よっても集電体にしわなどの変形が生じないためであ
る。
As is clear from Table 4, Examples 1 and 2
The working electrode of No. 2 has a significantly smaller change in thickness before and after the charge / discharge test than the working electrodes of Comparative Examples 1 and 2. This is because, in the working electrodes of Examples 1 and 2, the current collector was not deformed such as wrinkles even by the charge / discharge test.

【0054】図1は、充放電試験後の実施例1の作用極
の状態を示す写真であり、図2及び図3は、それぞれ充
放電試験後の比較例1及び2の作用極の状態を示す写真
である。図1〜図3からも明らかなように、比較例1及
び2の作用極においては多数のしわによる集電体の変形
が認められるの対し、実施例1の作用極では、しわなど
の変形はほとんど認められていない。
FIG. 1 is a photograph showing the state of the working electrode of Example 1 after the charge / discharge test, and FIGS. 2 and 3 show the state of the working electrode of Comparative Examples 1 and 2 after the charge / discharge test, respectively. It is a photograph shown. As is clear from FIGS. 1 to 3, in the working electrodes of Comparative Examples 1 and 2, deformation of the current collector due to a large number of wrinkles was observed, whereas in the working electrode of Example 1, deformation of wrinkles and the like was observed. Almost unrecognized.

【0055】従って、実施例1の電極を用いることによ
り、体積当りのエネルギー密度の高いリチウム二次電池
が得られることがわかる。
Therefore, it can be seen that by using the electrode of Example 1, a lithium secondary battery having a high energy density per volume can be obtained.

【0056】[0056]

【発明の効果】本発明によれば、充放電により集電体に
しわ等の変形が発生するのを抑制することができ、リチ
ウム二次電池の体積当りのエネルギー密度を高めること
ができる。
According to the present invention, it is possible to prevent the current collector from being deformed such as wrinkles due to charge and discharge, and it is possible to increase the energy density per volume of the lithium secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う実施例の電極の充放電試験後の状
態を示す図。
FIG. 1 is a diagram showing a state of an electrode of an example according to the present invention after a charge / discharge test.

【図2】比較例の電極の充放電試験後の状態を示す図。FIG. 2 is a view showing a state of a comparative example electrode after a charge / discharge test.

【図3】比較例の電極の充放電試験後の状態を示す図。FIG. 3 is a view showing a state of a comparative example electrode after a charge / discharge test.

【図4】三電極式ビーカーセルを示す概略構成図。FIG. 4 is a schematic configuration diagram showing a three-electrode beaker cell.

【符号の説明】[Explanation of symbols]

1…容器 2…電解液 3…対極 4…作用極 5…参照極 1 ... Container 2 ... Electrolyte 3 ... Counter electrode 4 ... Working pole 5 ... Reference pole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/02 H01M 4/02 D 4/38 4/38 Z 10/40 10/40 Z (72)発明者 岡本 崇 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤原 豊樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 松田 茂樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 神野 丸男 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 AS02 BB00 BB06 BB14 BB16 CC01 DD01 EE01 HH01 HH04 5H029 AJ03 AJ11 AK02 AK03 AL11 AL12 AM03 AM04 AM05 AM07 BJ13 CJ24 CJ25 DJ07 DJ14 DJ17 EJ01 5H050 AA08 AA14 BA17 CA02 CA07 CB11 CB12 DA07 FA04 FA10 FA15 FA18 GA22 GA24 GA25─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01M 4/02 H01M 4/02 D 4/38 4/38 Z 10/40 10/40 Z (72) Invention Person Takashi Okamoto 2-5-5 Keihanmoto-dori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toyoki Fujiwara 2-5-5 Keihan-hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72 ) Inventor Shigeki Matsuda 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. (72) Maruo Jinno 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. F-term (reference) 5H017 AA03 AS02 BB00 BB06 BB14 BB16 CC01 DD01 EE01 HH01 HH04 5H029 AJ03 AJ11 AK02 AK03 AL11 AL12 AM03 AM04 AM05 AM07 BJ13 CJ24 CJ25 DJ07 DJ14 DJ17 EJ01 5H050 AA08 AA14 BA17 CA02 CA07 CB11 CB12 DA07 FA04 FA10 FA15 FA18 GA22 GA24 GA25

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的または化学的にリチウムを吸
蔵・放出可能な活物質薄膜を、集電体上に堆積して形成
したリチウム二次電池用電極であって、 前記集電体が銅合金からなり、その引張強さが400N
/mm2以上、比例限界が160N/mm2以上、弾性係
数が1.1N/mm2以上であり、かつ前記活物質薄膜
が形成されている前記集電体の面の表面粗さRaが0.
01〜1μmであることを特徴とするリチウム二次電池
用電極。
1. A lithium secondary battery electrode formed by depositing an active material thin film capable of electrochemically or chemically absorbing and releasing lithium on a current collector, wherein the current collector is copper. Made of an alloy, its tensile strength is 400N
/ Mm 2 or more, a proportional limit 160 N / mm 2 or more, an elastic modulus 1.1 N / mm 2 or more and a surface roughness Ra of the surface of the current collector where the active material thin film is formed is 0 .
An electrode for a lithium secondary battery, which has a thickness of 0 to 1 μm.
【請求項2】 電気化学的または化学的にリチウムを吸
蔵・放出可能な活物質薄膜を、集電体上に堆積して形成
したリチウム二次電池用電極であって、 前記集電体がCu−Ni−Si系合金からなり、かつ前
記活物質薄膜が形成されている前記集電体の面の表面粗
さRaが0.01〜1μmであることを特徴とするリチ
ウム二次電池用電極。
2. A lithium secondary battery electrode formed by depositing an active material thin film capable of electrochemically or chemically absorbing and releasing lithium on a current collector, wherein the current collector is Cu. An electrode for a lithium secondary battery, which is made of a —Ni—Si alloy and has a surface roughness Ra of 0.01 to 1 μm on the surface of the current collector on which the active material thin film is formed.
【請求項3】 電気化学的または化学的にリチウムを吸
蔵・放出可能な活物質薄膜を、集電体上に堆積して形成
したリチウム二次電池用電極であって、 前記集電体がCu−Cr−Zr系合金からなり、かつ前
記活物質薄膜が形成されている前記集電体の面の表面粗
さRaが0.01〜1μmであることを特徴とするリチ
ウム二次電池用電極。
3. An electrode for a lithium secondary battery, which is formed by depositing an active material thin film capable of electrochemically or chemically absorbing and releasing lithium on a current collector, wherein the current collector is Cu. An electrode for a lithium secondary battery, which is made of a —Cr—Zr alloy and has a surface roughness Ra of 0.01 to 1 μm on the surface of the current collector on which the active material thin film is formed.
【請求項4】 前記活物質薄膜が形成されている前記集
電体の面が、めっき法、気相成長法、エッチング法、ま
たは研磨法により粗面化されていることを特徴とする請
求項1〜3のいずれか1項に記載のリチウム二次電池用
電極。
4. The surface of the current collector on which the active material thin film is formed is roughened by a plating method, a vapor phase growth method, an etching method, or a polishing method. The electrode for a lithium secondary battery according to any one of 1 to 3.
【請求項5】 前記粗面化が、めっき法により銅を主成
分とするめっき膜を形成することによりなされているこ
とを特徴とする請求項4に記載のリチウム二次電池用電
極。
5. The electrode for a lithium secondary battery according to claim 4, wherein the roughening is performed by forming a plating film containing copper as a main component by a plating method.
【請求項6】 前記活物質薄膜に前記集電体の成分が拡
散していることを特徴とする請求項1〜5のいずれか1
項に記載のリチウム二次電池用電極。
6. The component of the current collector is diffused in the active material thin film, according to any one of claims 1 to 5.
An electrode for a lithium secondary battery according to item.
【請求項7】 前記活物質薄膜がその厚み方向に形成さ
れた切れ目によって柱状に分離されており、かつ該柱状
部分の底部が前記集電体と密着していることを特徴とす
る請求項1〜6のいずれか1項に記載のリチウム二次電
池用電極。
7. The active material thin film is separated into columns by a cut formed in the thickness direction thereof, and the bottom of the columnar portion is in close contact with the current collector. 7. The electrode for a lithium secondary battery according to any one of items 1 to 6.
【請求項8】 前記活物質薄膜が、CVD法、スパッタ
リング法、蒸着法、溶射法、またはめっき法により形成
されていることを特徴とする請求項1〜7のいずれか1
項に記載のリチウム二次電池用電極。
8. The active material thin film is formed by a CVD method, a sputtering method, an evaporation method, a thermal spraying method, or a plating method.
An electrode for a lithium secondary battery according to item.
【請求項9】 前記活物質薄膜が、シリコン、ゲルマニ
ウム、または錫を主成分とする薄膜であることを特徴と
する請求項1〜8のいずれか1項に記載のリチウム二次
電池用電極。
9. The electrode for a lithium secondary battery according to claim 1, wherein the active material thin film is a thin film containing silicon, germanium, or tin as a main component.
【請求項10】 前記活物質薄膜が、微結晶シリコン薄
膜または非晶質シリコン薄膜であることを特徴とする請
求項1〜9のいずれか1項に記載のリチウム二次電池用
電極。
10. The electrode for a lithium secondary battery according to claim 1, wherein the active material thin film is a microcrystalline silicon thin film or an amorphous silicon thin film.
【請求項11】 請求項1〜10のいずれか1項に記載
の電極からなる負極と、リチウムを吸蔵・放出する物質
を活物質に用いた正極と、非水電解質とを備えることを
特徴とするリチウム二次電池。
11. A negative electrode comprising the electrode according to any one of claims 1 to 10, a positive electrode using a material that absorbs and releases lithium as an active material, and a non-aqueous electrolyte. Rechargeable lithium battery.
JP2002086530A 2001-04-19 2002-03-26 Electrode for secondary lithium battery and secondary lithium battery Pending JP2003007305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086530A JP2003007305A (en) 2001-04-19 2002-03-26 Electrode for secondary lithium battery and secondary lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001121172 2001-04-19
JP2001-121172 2001-04-19
JP2002086530A JP2003007305A (en) 2001-04-19 2002-03-26 Electrode for secondary lithium battery and secondary lithium battery

Publications (1)

Publication Number Publication Date
JP2003007305A true JP2003007305A (en) 2003-01-10

Family

ID=26613836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086530A Pending JP2003007305A (en) 2001-04-19 2002-03-26 Electrode for secondary lithium battery and secondary lithium battery

Country Status (1)

Country Link
JP (1) JP2003007305A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (en) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2005150039A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2005285651A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Lithium secondary battery
JP2005293852A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery and anode for the lithium secondary battery
WO2005109548A1 (en) * 2004-05-12 2005-11-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
WO2005112149A1 (en) * 2004-05-19 2005-11-24 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery
EP1633013A1 (en) * 2003-06-09 2006-03-08 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
WO2006028316A1 (en) * 2004-09-11 2006-03-16 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
WO2006030681A1 (en) * 2004-09-17 2006-03-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP2006092748A (en) * 2004-09-21 2006-04-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
JP2007027008A (en) * 2005-07-20 2007-02-01 Sony Corp Battery
JP2007258084A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Lithium secondary battery
JP2008124036A (en) * 2008-01-10 2008-05-29 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2009054376A (en) * 2007-08-24 2009-03-12 Sanyo Electric Co Ltd Method and device for manufacturing lithium secondary battery, and lithium secondary battery
US7655354B2 (en) * 2006-03-30 2010-02-02 Sony Corporation Battery
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
WO2010086911A1 (en) 2009-01-29 2010-08-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method therefor
US7838153B2 (en) 2006-08-29 2010-11-23 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
JP2011008987A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery, and lithium secondary battery
JP2011108442A (en) * 2009-11-16 2011-06-02 Jx Nippon Mining & Metals Corp Rolled copper foil and negative electrode collector using this, negative electrode plate, and secondary battery
KR101071485B1 (en) 2003-11-19 2011-10-10 산요덴키가부시키가이샤 Lithium Secondary Battery
JP2011216463A (en) * 2010-03-15 2011-10-27 Jx Nippon Mining & Metals Corp Rolled copper foil, and negative electrode collector, negative electrode plate and secondary battery using the same
JP2011225987A (en) * 2010-03-31 2011-11-10 Furukawa Electric Co Ltd:The Copper (alloy) foil for negative electrode collector of lithium ion secondary battery and method for producing the same, and negative electrode of lithium ion secondary battery and method for producing the negative electrode
KR101113074B1 (en) * 2009-06-08 2012-02-16 주식회사 엘지화학 Cathode active material, and cathode, lithium secondary battery comprising the same
JP2012033475A (en) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP2012038737A (en) * 2011-10-05 2012-02-23 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JPWO2010110205A1 (en) * 2009-03-24 2012-09-27 古河電気工業株式会社 Lithium ion secondary battery, battery electrode, electrolytic copper foil for battery electrode
US8338026B2 (en) 2009-05-27 2012-12-25 Lg Chem, Ltd. Positive electrode active material, and positive electrode and lithium secondary battery including the same
WO2013140942A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 All-solid-state lithium secondary battery
WO2013157600A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
WO2013157598A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
WO2014080890A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
JP2015513763A (en) * 2012-04-16 2015-05-14 エルジー・ケム・リミテッド Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same
US9350050B2 (en) 2006-03-30 2016-05-24 Sony Corporation Current collector, negative electrode and battery
US9614214B2 (en) 2004-12-16 2017-04-04 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
CN112133924A (en) * 2019-06-24 2020-12-25 丰田自动车株式会社 All-solid-state battery and all-solid-state battery system

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (en) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
US8216720B2 (en) 2002-06-26 2012-07-10 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
US8609279B2 (en) 2003-06-09 2013-12-17 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
EP1633013A1 (en) * 2003-06-09 2006-03-08 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
EP1633013A4 (en) * 2003-06-09 2009-02-25 Sanyo Electric Co Lithium secondary battery and method for producing same
KR101071485B1 (en) 2003-11-19 2011-10-10 산요덴키가부시키가이샤 Lithium Secondary Battery
JP4497899B2 (en) * 2003-11-19 2010-07-07 三洋電機株式会社 Lithium secondary battery
JP2005150039A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery
US7767344B2 (en) 2004-03-30 2010-08-03 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2005285651A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Lithium secondary battery
KR101227321B1 (en) 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Lithium secondary battery
JP2005293852A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery and anode for the lithium secondary battery
WO2005109548A1 (en) * 2004-05-12 2005-11-17 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
US7682739B2 (en) 2004-05-12 2010-03-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery and process of producing the same
KR100791746B1 (en) * 2004-05-12 2008-01-04 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
WO2005112149A1 (en) * 2004-05-19 2005-11-24 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery
JP2008512838A (en) * 2004-09-11 2008-04-24 エルジー・ケム・リミテッド A method to improve the performance of Si thin film anodes for rechargeable lithium batteries
WO2006028316A1 (en) * 2004-09-11 2006-03-16 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
JP2006086058A (en) * 2004-09-17 2006-03-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery, and non-aqueous electrolytic solution
WO2006030681A1 (en) * 2004-09-17 2006-03-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP2006092748A (en) * 2004-09-21 2006-04-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same
US9614214B2 (en) 2004-12-16 2017-04-04 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
JP4653510B2 (en) * 2005-01-04 2011-03-16 Jx日鉱日石金属株式会社 Anode material for lithium secondary battery
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
JP2007027008A (en) * 2005-07-20 2007-02-01 Sony Corp Battery
JP2007258084A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Lithium secondary battery
US9742039B2 (en) 2006-03-30 2017-08-22 Sony Corporation Current collector, negative electrode and battery
US9640830B2 (en) 2006-03-30 2017-05-02 Sony Corporation Current collector, negative electrode and battery
US9350050B2 (en) 2006-03-30 2016-05-24 Sony Corporation Current collector, negative electrode and battery
US7655354B2 (en) * 2006-03-30 2010-02-02 Sony Corporation Battery
US7838153B2 (en) 2006-08-29 2010-11-23 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
JP2009054376A (en) * 2007-08-24 2009-03-12 Sanyo Electric Co Ltd Method and device for manufacturing lithium secondary battery, and lithium secondary battery
JP2008124036A (en) * 2008-01-10 2008-05-29 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
WO2010086911A1 (en) 2009-01-29 2010-08-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method therefor
JPWO2010110205A1 (en) * 2009-03-24 2012-09-27 古河電気工業株式会社 Lithium ion secondary battery, battery electrode, electrolytic copper foil for battery electrode
US8338026B2 (en) 2009-05-27 2012-12-25 Lg Chem, Ltd. Positive electrode active material, and positive electrode and lithium secondary battery including the same
KR101113074B1 (en) * 2009-06-08 2012-02-16 주식회사 엘지화학 Cathode active material, and cathode, lithium secondary battery comprising the same
JP2011008987A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery, and lithium secondary battery
JP2011108442A (en) * 2009-11-16 2011-06-02 Jx Nippon Mining & Metals Corp Rolled copper foil and negative electrode collector using this, negative electrode plate, and secondary battery
JP2011216463A (en) * 2010-03-15 2011-10-27 Jx Nippon Mining & Metals Corp Rolled copper foil, and negative electrode collector, negative electrode plate and secondary battery using the same
JP2011225987A (en) * 2010-03-31 2011-11-10 Furukawa Electric Co Ltd:The Copper (alloy) foil for negative electrode collector of lithium ion secondary battery and method for producing the same, and negative electrode of lithium ion secondary battery and method for producing the negative electrode
JP2012033475A (en) * 2010-06-28 2012-02-16 Furukawa Electric Co Ltd:The Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP2012038737A (en) * 2011-10-05 2012-02-23 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
WO2013140942A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 All-solid-state lithium secondary battery
US10026952B2 (en) 2012-04-16 2018-07-17 Lg Chem, Ltd. Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same
JP2015513763A (en) * 2012-04-16 2015-05-14 エルジー・ケム・リミテッド Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same
KR20160122280A (en) 2012-04-19 2016-10-21 신닛테츠스미킨 카부시키카이샤 Steel foil and method for producing same
KR20140068114A (en) 2012-04-19 2014-06-05 신닛테츠스미킨 카부시키카이샤 Steel foil and method for producing same
WO2013157598A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
US9997786B2 (en) 2012-04-19 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel foil and method for manufacturing the same
WO2013157600A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
US10201953B2 (en) 2012-04-19 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Steel foil and method for manufacturing the same
JP6015769B2 (en) * 2012-11-22 2016-10-26 日産自動車株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2014080890A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
CN112133924A (en) * 2019-06-24 2020-12-25 丰田自动车株式会社 All-solid-state battery and all-solid-state battery system
CN112133924B (en) * 2019-06-24 2024-05-24 丰田自动车株式会社 All-solid battery and all-solid battery system

Similar Documents

Publication Publication Date Title
JP2003007305A (en) Electrode for secondary lithium battery and secondary lithium battery
US7147971B2 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery
US7258950B2 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery
JP4183401B2 (en) Method for manufacturing electrode for lithium secondary battery and lithium secondary battery
US8197969B2 (en) Anode and battery
JP4027255B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP4248240B2 (en) Lithium secondary battery
JP4033720B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
US9698416B2 (en) Anode and secondary battery with anode material with pore group with low volumetric capacity
JP4212392B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
US7556881B2 (en) Lithium secondary battery
US8669012B2 (en) Anode and battery
WO2010110205A1 (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP2002313319A (en) Electrode for lithium secondary battery and lithium secondary battery
JP2002319431A (en) Lithium secondary cell
JP2001283834A (en) Secondary battery
JP2007042329A (en) Lithium secondary battery
JP2002151056A (en) Electrode for lithium secondary battery and lithium secondary battery
JP4898095B2 (en) Lithium secondary battery
JP2002373644A (en) Electrode for lithium secondary battery, and manufacturing method therefor
JP4744076B2 (en) Lithium secondary battery and manufacturing method thereof
JP4148665B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP2002319407A (en) Lithium secondary battery electrode and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111